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Abstract

We give direct proofs on the perfect block diagonalization and on the transfor-
mation to Arnold-Petkov’s normal form of matrices of pseudo-differential
operators in the ultradifferentiable classes.

1. Introduction

Let K be a compact set in R’, R be a positive number, {M,} be a non-decreasing
and logarithmically convex sequence of positive numbers and B{M,}z(K) be {f(x)

eC™(K): '(a—ax>af(x) <CR"“M, on K for arbitrary a in Z}, where Z,=NU

{0}={0,1,2,> }, la|=a 1+ -+, for a=(a,,"*",a,)EZ', and C is a positive constant
depending on f but not on . We call B{n!"}z(K) for s>1 the Gevrey class of order
s. In case of the Gevrey classes, we have B{n!'}z(K)XB{n!*}x( K)C B{n!"}z(K) (See
Proposition 4.1.) On the other hand, in case of the real analytic class, B{n!}z(K)X
B{n!}x(K)Z B{n!}x(K). For example, in case of /=1, let us take K={|x|<1} and
f(x)=2+. We have max,cx

2 Y 2 \"

x (Z)7 (Z)v=nl=
(n+1)n!. Thus, fEB{n!},(K) but f Xf&EB{n!},(K). This is a difficulty on the
theory of pseudo-differential operators in the ultradifferentiable classes. L. Boutet de
Monvel and P. Krée[3] introduced an elegant norm of formal symbols and overcame
this difficulty. T. Nishitani[17] obtained the perfect factorization of full symbols in
the ultradifferentiable classes using the same norm. However, never-the-less the all
terms are obtained algebraically step by step (see H. Kumano-go[7], [8], V.I. Arnold
[1], K. Kajitani[5] and V.M. Petkov[18]), his proof is a successive approximation
and not a direct estimate of each term obtained algebraically.

=n! and max,cx
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In order to treat the ultradifferentiable classes in a unified way without L. Boutet
de Monvel and P. Krée’s norm, a way is often used standing on the fact that B{n!},,
(K)X B{n!}z(K)C B{n!}z(K) for R,# R, and R=max{R,, R,} because we encounter
the products of knowns and knowns or knowns and unknowns for the results in L.
Boutet de Monvel and P.Krée[3]. However, for the perfect factorization, we
encounter the products of unknowns and unknowns. Thus, we need consider
products of type B{M,}x(K)X B{M,}x(K). (See the proofs of Theorems 1 and 2.)
The following fact is well-known that B{M,_, }x(K)C B{M,}x(K)C B{M,_,}:(K),
YV R’>R for log M,= o(n*) (3 R">R for log M,= O(n?), respectively) and a positive
integer ko. (See S. Manderbrojt[9] and W. Matsumoto[10].) An idea is to consider
the product of functions in B{M,_, }z(K) where k, =2 for the space of functions and
ko=3 for the space of formal symbols. For example, we can show that B{M,_,}x
(K)YX B{M,_}x(KYCB{M,_,}(K) if {M,/n'} is logarithmically convex and ko>
2 (Proposition 2.3). By this idea, we can show the results in [3] and in [17]
estimating step by step the terms algebraically obtained. We give the results in the
matrix form.

The advantages of the direct proof are the following:

1) For the perfect block diagonalization, which corresponds to the perfect factor-
ization in T. Nisitani[17], each term of the unknown formal symbol has an ambigu-
ity. We can settle it freely if we use the direct method.

2) We can also treat C°([ T, T:); S{M,,L,}(O(t))) defined in Subsection 3.4.

Through Sections 2 and 3, we assume that {M,/n!} and {L,/n!} are logarith-
mically convex and non-decreasing. In Section 2, we offer some fundamental
inequalities and the results on the operations of functions. In Section 3, we give the
results on the operator product of formal symbols, for example, the perfect block
diagonalization, the normal form of Arnold-Petkov and the final normal form. In
Subsection 3.4, we also give the results on C®([T,,Ty]; S{M,,L.}(O(t)). In
Appendix, we reconsider the product and the division assuming the logarithmical
convexity of {M,/n!*} (s>1), which the analytic class does not satisfy but every
Gevrey class does.

Theorem 2 in Subsection 3.3 had already been used in W. Matsumoto[12] to
obtain the main theorem, which is presented as Theorem 3 in Subsection 3.4 in this
article. (The result in [12] is essential to obtain the results in W. Matsumoto and H.
Yamahara[15], [16] and W. Matsumoto[13], [14].) The latter theorem in Subsection
3.4 will be applied in a forthcoming paper on the necessary condition for the
Cauchy-Kowalevskaya theorem of Nagumo type on systems.

2. Fundamental inequalities and operations on functions

2.1. Fundamental inequalities (1). Let {M,};=, and {L,}i=, be logarithmically
convex and non-decreasing sequences of positive numbers. (We say that {M,} is
logarithmically convex when M3<M,_,M,.,.) When we consider functions and
formal symbols of ultradifferentiable class, we can replace finite M,’s arbitrarily.
Then, we can assume that M= M,=1. It is convenient to set M,=1 for negative n’s.
Thus, (—3)!=(—2)!=(—1)!=1 and, more generally, j!=j.! for j in Z, where j,=



Perfect diagonalization of systems of ultra-d. class 543

max{j, 1}. Through this paper, we assume the following:
Assumption. {M,/n!} and {L,/n!} are logarithmically convex and non-decreasing.

For the results in this paper, this assumption can be relaxed to a weaker one.
However, when we further consider the composition of functions and the theorem of
the implicit function, it seems difficult to verify the sufficiency of the weaker condi-
tion but it is easy to see that our Assumption is also sufficient for these. Further, the
logarithmical convexity is easier to judge on the concrete examples. Thus, we assume
the logarithmical convexity of {M,/n!} and {L,/n!}. Of course, when Assumption
is satisfied for n>1, we can find an equivalent sequence which satisfies Assumption
for all n’s.

Let o and 8 be elements in Z'. We set a!=aola\!""*a/!, a+ 8= (a0t o, ",

a;+ ;) and we denote S<qa when B, <a; for 0<i</. We set <f>=k!/j!(k—j)!

for 0<j<k and (a,>=<a°>--'<af> for o' <.
a

The following inequ:liotics a(:é easily seen but used again and again.
Lemma 2.1. (1) For 0<h<i<j<k and i+j<h+k,
i < hlk!.
(2)
Zaez'.. |a|=k% =1

(3) If lal=k,

Sa(2)=(5)

(4) For 0<j,<k; (i=1, 2) and ko =0,

<k1> (kz_ko)' < (k1+k2_ko)’
j; (.fz_ko)!(kz—jz_ko)! (jl+j2_k0)!(kl+kZ_jl_jZ_kO)! ’

(5) Let {N,} be logarithmically convex, that is N><N,_\N,+,, and non-decreasing.
If p, q and k are non-negative, the following holds ;

Np—qu—k < Np+q—k'

(6) Let {M,/n'} be logarithmically convex and non-decreasing. If p, q and k are
non-negative, it holds that

M, Mq—i < (p—=Kk)(g—k)!
M,y (ptq—k) -

(7) Let {N,} be logarithmically convex and non-decreasing. If k=—1, then
{(N,_)""}, is non-decreasing on n. (The restriction k>—1 is not essential.
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When N,=1 for n<no, we can relax it to k=—n. and this is always realized
by replacing {N,} to a suitable equivalent one.)

(8) Let a be a positive number. There exists a positive constant c,+, such that

£ [ k\e
ZFO( j ) = Cant

(9) Let a be a positive number. There exists a positive constant c,+, such that

T — e
Ek_'[.l;(k__l);] <
=L (k=1
Proof. The assertions from (1) to (4) are well-known.
Nn Nn+l
(5) AS Nn—l S Nn ’
non-negative, it implies N,y Ny—x < N4 q-20 < N,4,—x. When p—k <0, N,_,=1 and
N,—t<N,;,—r. The case where ¢ —k <0 is shown by the same way. When both of
p—k and g—k are negative, N,o Ny k=1 < N4 4.

N,N,<N,., is easily seen. When p—k and g—k are

(6) Setting N,=M,/n!, (5) means this.

(7) Let usset a,=log N,—log N,_,. {a,}is non-decreasing and log N_,=0. Then,

1 1 _ L n _ l n—I
710g Ny — n—1 log Ny—k—1 = n ZFlaj_k n—1 Ej:]aj_k

1

_ 1 _—l_ n—1 _l- _
- nan—k n(n—l) ijlaj—k = n (an—k an—k—l) = 0.

(8) We take jo=1/a. For jo<j<k/2, it holds that

Pe=P o ol
kU S k—jo¥1y

Thus, we obtain

k [ k\e , k=i, a4 . _ , e
2/:0(]') SZJ°+21=;J°! (k—jot1)™" < 2j0 +jo! = carr.

(9) This is shown by the same way as (8). O
The following is the key lemma for the operations of functions.
Lemma 2.2. Let ko be an integer greater than or equal to 2. There exists a

positive constant clko), and the followings hold.
(1) For k in Z.,

.} g <t
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(2) For a in Z,

a \ M- M-
24’+a”=a< a’ > Mlal—k. = c[kO]'

Proof. (1) Because the proof is same for each ko, we give it for ko=2.

For k =6,
K\ (G=2DW(k—j—2)
DI

(k/2] k(k—1)
= 22/:0 J+U—Ds(k—)k—j—1)

_ (k/2] 1
=102 G

= 10<1 + 14 [,k_m(—.l ~ i))
=2\ j—1 J
< 30.

On the other hand, by the direct calculation, the left-hand side of (1) is majorized by
9 for 0<k <5. Thus, we can see that there exists a constant c[2] which satisfies (1)
and it is less than 30. (We can also show that c[3]<84 through the direct calculation
up to k=17.)

(2)
E : < a ) M- Mg
dta’=a\ g My-

”
[23

(o] = ko)(la”|—ko)!
<2(8)te (al—ko)!

a

= SV (S %)) <|a'|—(fc;|)g|z:)|!—ko)y

%

_ K\ (j—ko)(k—j—ko)!
=200 )

J

< C[ko],

where we set |¢'|=j and |a|=k and used Lemma 2.1 (3), (6) and Lemma 2.2 (1).

U
2.2. Formal symbols. In this subsection, we give the definitions of formal symbols.
From an arbitrary asymptotic expansion of a symbol of a pseudo-differential
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operator in an ultradifferentiable class, a true symbol in the same class can be
constructed and the ambiguity is of class S, (See L. Boutet de Monvel and P. Krée
[3], L. Boutet de Monvel[2] and W. Matsumoto[11].) Therefore, in order to consider
many problems on partial differential equations in a ultradifferentiable class, it is
sufficient to consider asymptotic expansions, which we call here formal symbols. Let

B
us set a(t,x,g)}’j;:D‘,’“D?.‘"'D?:'(a_ag) a(tx,&) for « €EZY and BEZ,, where D,=
1 9
‘/——l ot , etc.

Now, we define a formal symbol of class {M,, L,} on areal domain. We say that
aset O in R, XR.XR} is conic when (4,x,&)E O implies (4,x,1&)E O for arbitrary
positive A and that a subset I" in O is conically compact in O when T' is conic and

rN{l&|=1} is compact in ON{|&|=1}, where |&|=V Xl &7

Definition 1. (Formal symbol of class {M,, L,}, [12]). We say that the formal

sum a(tx,&)=272a;(tx,&) is a formal symbol of class {M,, L,} (=fs. of class

{M,, L,}) on O when there exists a real number x such that

1) a;(tx&) belongs to C*(0) and positively homogeneous of degree x —i on &,
(iI€EZy).

2) For arbitrary conically compact subset I" in O, there are positive constants C, R
and R’ and we have

|a:B(tx,8) < CRIR“M, 4 s Livig-s(i—3)7' g™ on T,
(i€EZy, €LY, BEZY).

Next, we introduce a holomorphic formal symbol and a meromorphic one. We
say that a set O in G XC.LXC; is conic when (4x,£)E 0 implies (£x,1&)E O for
arbitrary positive 1 and that a subset I' in O is conically compact in O when T is
conic and T N{|&|=1} is compact in O N{|&l=1}, where |&]=
V2 |Re& P+[Ime;[*. We say that 3 is a subvariety of O if it is a zero set of a
holomorphic function in O.

Definition 2. (Meromorphic and holomorphic formal symbols, [12]).

I. We say that the formal sum a(tx,&)=2{Zoa;(tx,&) is a meromorphic formal

symbol (=m.fs.) on O when there exist a conic subvariety 2 in O and a real number

»x such that

1) ai(tx&) is meromorphic in O, holomorphic in O\ and positively homogene-
ous of degree x—i on &, (iI€Z,).

2) For arbitrary conically compact set I' in O\S, there are positive constants C, R
and R’ and we have
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02 laB(x,&)| < CRTR™A(i+|a| =3)1(i+|gl—=3)G=3)!"l&l™" on T,
' (I€Z., aS LY, BEZ,),

II. The formal sum 2{2, a; is called a holomorphic formal symbol (= A.fs.) when
it is a meromorphic formal symbol with S=49.

Remark 2.1. We use &, as a holomorphic scale of order in case of a complex
domain and ¥ includes {g.=0}. Of course, &, can be replaced by another &; and =
includes {&,=0}.

Remark 2.2. In (2.2), it is important that 3 is independent of i .

Remark 2.3. When {M,} and {L,} satisfy the differentiable condition, that is,
log M, and log L, are O(n?), the definition is equivalent if we replace M4j,—3L+|5-3
(i—3)!"" in the right-hand side of (2.1) by M4 Li+gi!"" taking other R and R".
Further, always taking other R and R’, when {M,} and {L,} satisfy the separativity
condition, that is, M,+,< R%"“M,M, for a positive R, and so on {L,} (essentially M,
=nP, L,=n, s s> 1), we can replace it by M|a|L|,,|M,~L,~i!_‘, then, especially if L,
=n!, by M|B|l!M;. Therefore, on the holomorphic and meromorphic formal
symbols, we can replace (i +|a|—3)!(i+|8]—3)!(i—3)! "' by a!8!i!. (See S. Mander-
brojt[9] and W. Matsumoto[10].) Thus, for a separative {M,} and L,=n!, we can
construct a true symbol of class {M,} from a formal symbol of class {M,, n!}. (See
L. Boutet de Monvel and P. Krée[3], L. Boutet de Monvel[2] and W. Matsumoto

[11])

The number x is called the order of the formal symbol a and denoted by ord a.
When a;=0 for 0<i<j/,—1 and a,¥*0, x—io is called the true order of a and
denoted by true ord a. The order of 0 is posed —. We set S*{M,,L,}(0)={the
fs.s of class {M,,L,} on O of order x}, S5(0)={the m.fs5.’s on O of order x},

5(0)={the h.fs.’s on O of order x} and S{M,,L,}(0)=U ,exS*{M,,L,}(0), etc.
As our consideration is common to every space of formal symbols of
ultradifferentiable class, we simply represent it by S$* and S. For the holomorphic
and meromorphic formal symbols, we always regard (2.2) as a special case of (2.1)
and replace |£| below by |&)[.

2.3. Product. We consider the product of functions in this subsection.

Proposition 2.3 (Product). Let clko] be that in Lemma 2.2 for ko=2.
(1) If the followings are satisfied on a compact set K by positive constants R and
C (=12

lfj(x)(a)| < Cleathzl—k.
the product of f, and f, satisfies
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[ () fo())al < elko]CLCR M, -,
where a €EZ,.

(2) If the followings are satisfied on a conically compact set T by positive
constants R, R, C;, real numbers x; and nonnegative integers i; (j=1, 2):

(2.3) la;E(tx,8)] < CRPR“MAM, 4103 Liyig—s(i;—3)! | &=
the product of a, and a, satisfies
24  l(a(tx&)atx&)E)
<c[31PC R MERIEM, i vai—s Lk sripi—s(i1F i— 3)! | &R e A

where a €7 and BEZ. (We can replace 3" by ko>3 in (2.3) and (2.4).
However, later on we use only the above form.)

Proof. (1) Applying Lemma 2.2 (2), we can see the following:

IA

SNl < CCR M D, (@) MatsMime

al M|cy|—k.

< C[ko] C, C2R|01M|a|—k~

(2) The proof is similar as that of (1). We group i’s into two cases 1) i=5 and 2)
i<4, and further 1) into ) i;=3 (j=1, 2), ii) iy<3 and {,=3, i) {,=3 and {,<3 and
2) into ii’) {;<3 and i,=3, iii’) i,=3 and i,<3 and iv) ;<3 (j=1, 2). In case of i,
=1i,=0, the proof is just same as that of (1). (See also the proof of Lemma 3.1 (1)
in Section 3.) ]

2.4. Division. Under our Assumption, B{M,}x(K) is not closed on the division by
non-vanishing element. In fact, taking /=1, K={|x|<1} and f(x)=2—x, we have
1<|f(x)|<3 on K, f,,(x)=1 and f,,(x)=0 for n=2. Therefor if we take C.=¢ "',
we have |f,(x)|< C.e"n! for ¢<1/3 ie. f(x) belongs to B{n!}.(K). However, as
max,ex|(1/f (x))wm|=n! for arbitrary n, 1/f(x) does not belong to B{n!}z(K) for R
<1. Further, even though lf(,,,(x)|£C€e”(n—2)!, 1/f(x) does not belong to
B{(n—2)!},(K). On the other hand, under our Assumption, the division by non-
vanishing element in B{M,}:(K) belongs to the class replaced R by another one.
(See W. Rudin[19].) We give a proof of this result for the case of B{M,_.}z(K) in
this subsection.

As we see above, in the real analytic class, we cannot keep R by the division.
Never-the-less, every Gevrey class B{n!"}x(K) (s>1) is closed on the division. We
prove this in Appendix.

Proposition 2.4 (Division). Let c[ko] be that in Lemma 2.2.
(1) When f(x) satisfies the following
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(2.5) If ()| < CRY'Mi, 4. on K,
and
lf(x)=c.>0 onK,
it follows that
(2.6) |1/ f (D)l < (1/ )R Mig—i. 0on K,
where R(1)=clko]CR/cm.
(2) When a(t,x,&) satisfies the following
2.7 la@(6x,8) < CR“™PM\,_sLig_slgl*" on T,
and
la(tx,&) = c.l&l* on T, (cm>0),
it follows that
28) 11/ a(ex))8 < (1/cn) R Mi1-sLig-lg] ™7 on T,
where R(2)=c[3)°CR/c,.. (We can replace ”3"’ by ko>3 in (2.7) and (2.8).

However, later on we use only the above form.)

Proof. (1) We show this by the induction on k=|a|. Let us set g(x)=1/f(x).
1) Case of k=0. As 1=|f(x)g(x)|=c.lg(x)|, (2.6) holds for k=0.
2) Case of k>1. We assume (2.6) holds for arbitrary o” with |o¢”|<k and
consider the case of |a|=k.

As

0= (@90 = 20,1 &) 7 0000

by Lemma 2.2 (2), it holds that

If (Olg(x)wl < Za,ﬂﬂzm |a’|21< ;1/ >|f(x)(a')"g(x)(a”)|

< (C/em(RIROIROI Mo D rore & ) Mielopuios

< R("“'Mizi—s.

This shows that (2.6) also holds in case of |a|=k.
Thus (2.6) holds for arbitrary «.

(2) This is shown by the same way as the proof of (1). O
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We denote the inverse matrix of a matrix F by (F)™".

Proposition 2.5 (Inverse matrix).

(1) Let F(x) be an NXN matrix whose entries satisfy (2.5). If |det F|=c,>0,
there exist the inverse matrix (F(x))™'=(9")i<, <n and positive constants C,
and c(1) determined by C, ¢, N and ko such that R,=c(1)R and

|gpq(x)(a>| < C]Rl’alMlal-—k. on K.

(2) Let F(t,x,&) be an NXN matrix whose entries satisfy (2.1) with i=0.
If |det F|=c,| &|* (cn>0), there exist the inverse matrix (F(tx,&))”'=
(97(t,x,&) 1<, 4<n and positive constants C, and c(2) determined by C, ¢, and N
such that R,=c(2)R and

29 |78, x,8) < CR“™P M sLig—s|&1™7" on T,
' («EZY, gEZL).

Proof. The inverse matrix (¢g”),<, ,<~ Of F is given by ¢”=A,/det F, where A,, is
the (g, p)-cofactor of F. Then, by Propositions 2.3 and 2.4, (1) is evident. (2) is also
obtained by the same reason. ]

3. Operations on the operator product
In this section, we give the results on the formal symbols by the operator

product.

3.1. Fundamental inequalities (2). We define the operator product on S in
Subsection 3.2. Corresponding to it, the following is the key lemma on the opera-
tions on the formal symbols..

Lemma 3.1. Let R be a positive constant greater than or equal to 2. There exists
a positive constant c¢. and the followings hold.

(1)
(3.1 ZOSjsk, 0<q<p, i.+iz+r=iR_r< I; >< Z > (i,—g!?ifﬁblr! )

(i =Ntk —j+r=3(i+g+r=3)(i+p—g—3)! _
(i+k—=3)(i+p—23) = Co-

(2)

2 Rl—h—r( k )( p ) (=3 .
0<j<k 0<q<p, it+itr=i a<i j g/ (I,—=3)!(i,—3)!r!

(4=t k—j+r=3)G,+qg+r—)(itp—g—3)
(i+k—3)(i+p—23)

< Co.
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(&)

D s gz ,~.+,-a+|,|=f(”§)_'< o >( §'> (i.—.’f)i!(—if§3)!y! ’

4

g) i—3)!

(i, —3)(=3)y!

My iaq—3Livip-3 a
Proof. (1) We group i’s into two cases: 1) /=5 and 2) i<4.

Case 1) i=5. We further group these i’s into four cases: i) i;=3 (j=1, 2), ii) | <
2 and i,=3, iii) {;=3 and {,<2 and iv) ;<2 (j=1, 2).

i) ;=3 (j=1,2). When i=5, this case is empty. Taking ko=0 in Lemma 2.1 (4),

we have
k\/i—6 i+k—6
<j><i|—3) = (i.+j—3>’
that is,
(k) (=3, +k—j+r—3) < (i,—= )+ r—3)!
j (i+k—3)! T -6tk (itk—d(itk—3)"

By the same way, we also have

(p) (i +gt+r=3)0,+p—g—3)! < (i, +r—3)!(i,—3)!
q (i+p—3)! (—=6)(i+p—5)(i+p—4)(i+p—3)"

Therefore, by the relations i+k—3=i—3, i+k—4>k+1, i+p—5=p+1 and
(i, +r=23)i,+r—3)!<(i—6)!r! (Lemma 2.1 (1)), we have

the left-hand side of (3.1)

s—r =35 —4)(GE—3)
< 2R (T k=5t hk—a)(iTk—-3i+tp=5+tp—Di+tp—3)

. I
= ZOSjSk, 0<q<p ititr=i R (i+k—4)(i+k—=3)(it+p—5)

| i- i—h o,
S GFDoFD—3) Zflo 2:=0 2202 <2
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ii) {;7<2 and i,=3. Taking ko=0 in Lemma 2.1 (4), we have

(i ts) = (557

()= ()

g/\i,—3/ ~ \ii\+q+r/

By the relations (i, +7)!(i,+r—3)! < (i—3)!7! (Lemma 2.1 (1)), (i,—3)!=1, i,!<2
and 272,1/(j—1)+(j)+=3, we have

and

the left-hand side of (3.1)

= 2
< " — T ; p
ZR (L Fj—=2)+ (i +Hj— D+ )+ g+ r—2)+ (i +g+r—1)1(G+qg+r)+

X 1 P 1 2 i—i
= 22’:0 U=D+0)+ Z‘F" (g—D+(q)+ EFO 2'=02

< 108.

iii) i,=3 and {,<2. In this case, (3.1) is provable by the same way as in Case ii).

) ;<2 (j=1,2). Asi=5,i,+r=i—i,=23 and i,+r=i—i, =3, applying Lemma
2.1 (4) with k,=0, we have

<k>< i—3 ><< i+k—3 )
jNiy+r=3/ " \iy2+k—j+r—=3/

(s = ()

qg/\i,2+r—3/ " \i,1+q+r—3/

By the relations (i,+#—3)!(i,+r—3)!<(i—3)!(r—3)! (Lemma 2.1 (1)), (i;—3)!=1,
i1<2 (j=1,2) and 22, 1/(G—1)+(j)+=3, we have

and

the left-hand side of (3.1)

~_ 4
< "— S S T . n ; . "
ER (I +j=2)+(ii+j—=D+(i, + )+t p—q—2)+ (i +p—qg—D+(i2+p—q)+

k 1 » 1 2 =i,
< 42/':0 G—D+(+ 24]:0 (g—D+(q)+ 2:'1:0 2r=02

< 21e.

Thus, we obtain (3.1) in Case 1).
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Case2) i<4. We group these i’s into three cases: ii") {;<2 and i{,=>3, iii’) i;=3 and
<2 and V') ;<2 (j=1, 2).
The calculations in the cases ii’) and iii") are same as in the cases ii) and iii).

V) <2 (G=1,2). As

=Ntk —j+r=3)! - (=3)k—j—3)!
(i+k—3)! (k—3)!

and
(htgtr=3)i+p—q=3)! _ (¢=3)(p—g—3)!
(i+p—3)! (p—3)!

by the relations (k—h)+/(k—j—h)+ <(k—h)+/(k/2—h)+ <2{1+(h/(k—2h)+)} <
2(14+h) (0<j<k/2,0<h<2), (i—3)!=(i;—3)!=1(=1,2) and 272, 1/ — 1)+(j)+
=3, we have

the left-hand side of (3.1)

5—r (k—=2)+(k—1)+(k)+
SZR U=+ = D+(N+(k—=j=2)+(k—j—1)+(k J)+

@=2)+(p—D+(p)+
(=2)+(g—D+(@)+(p—q—2)+(p—g—D+(p—q)+

<423 foom 2 G (q—1)+(q)+ 25,20

<2"3
Thus, in Case 2), also (3.1) holds.

(2) By the inequality

2i|+iz+r=i, B<i Rl_il_r < i=| R_[ ' + Zl. Z, “ __
<3 T

(2) is obtained by the same way as (1).
(3) and (4) are the immediate consequences of Lemma 3.1 (1) and (2) respectively,

applying Lemma 2.1 (2), (3) and (6). (See also the proof of Lemma 2.2 (2)). [

3.2. Operator product and inverse. Corresponding to the asymptotic expansion of
the symbol of the product of pseudo-differential operators, we introduce the operator
product of formal symbols.
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Definition 3. Let a= 272, a, and b=272( b; be formal symbols. We set

(2 aob=3T e altxg)= 2. T A5 8)bi(tx8)
and call it the operator product of a and b.
The following is the direct consequence of Lemma 3.1 (3).
Proposition 3.2 (Operator Product). We assume that R'>2IR* and that formal
symbols ' =227, al(t,x,&) satisfy the following (j=1, 2):
|a8)(tx,8) < CRR“MOM, s Liiys(i—3) g on T,
(I€EZ4, a€EZY', pEZY).
Then, the operator product a=a'0 a*=272, a,(1,x,&) satisfies
la®(6x,8) < co CLCRRIM 4 s Ligig—s(i—3)17"[g]*T="""1 on T,
(iI€EZ4, a€EZY', pEZY).

Now, let us consider the inverse formal symbol. For the inverse of a as the
formal symbol by the operator product, we denote it by @' and for the inverse of
a, as a function by 1/a, or (o)™

Proposition 3.3 (Inverse). (1) We assume that a formal symbol a=272, a;(t,x,&)
satisfies the estimate (2.1) and
lag(tx,&)| = cal&l* on T, (c,>0).
Then, the inverse a~'=2272, b;(t,x,&) satisfies
b r(a)| < CR”RMHMM/H«:I sLivig- 3|5| xilal onT,

where Ry=R(2)=c[3]*CR/c,., Rs=(c5C/c,) max {R’, 2IR}} and Ci=co/c,.
(cl3], co and R(2) are those in Lemma 2.2, 3.1 and Proposition 2.4, respective-
Iy.)

(2) Let N(tx,&) be an NXN matrix whose entries satisfy (2.1). If

|det Mo(,x.8)| = cal&l* on T, (c.>0),
there exists the inverse N ™' (4,x,&)=(h"") <, gen, AP =22720 h? and
it satisfies
|h2 B (1,x,&) < C3RYREMM -3 Livig—s(i—3)!7'&]* ¥ on T,

(3.3)
(iI€Z+, a€ZY, BEZY),

where C, and R, are those in Proposition 2.5 and R;=(Nco)*CC, max {R’,
2IR%} and C;=NcoC,.
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As we need to make attention to the choice of R;, we introduce the following
norm of a matrix A=(a”(t,x,&))i<p 4<n With  in R, i in Z,, a positive number R
and a conic set T

"A”x,i,R,I‘ = MaxX, <y ¢<N MaX, ez}, gezt MAXxe)er
| @& (6x, R MIM, 4 3L -2 — 3!~

Proof.  As the proofs of (1) and (2) are similar, we give only the latter.

(Step 1) By Proposition 2.5, every entry of (#;)”' satisfies the estimate (2.9). As
(No)™" itself is a formal symbol, we take the product of #/ and (#;)~'. Let us set
N Oy '=F=372, F.. F, becomes Iy. By Proposition 3.2, F; satisfies

[ Filloscorr < C”R™,
where C"=Nc,CC, and R"=max{R’, 2/(R,)’}.

(Step 2) Weset F7'=G=212,G:. Gyisalso Iy. We show the following estimate
by the induction on i :

(3:4) |G lloscome < RS,

where R;=NcoC"R".

As Go=1y, (3.4) is satisfied for i=0.

Assuming (3.4) for ,<i, we consider G;. By the relation Gi=— 2} +i+iy=; a<i
(1/y)F,"Gy,, and Lemma 3.1 (4), we see

IGilloserrr < NeoC"(R"/R)R; < Ry
Thus, (3.4) holds for arbitrary i in Z,.
(Step 3) As N '=(Ny)7'O G, by Proposition 3.2, we obtain (3.3). Ol

3.3 Block Diagonalization and Arnold-Petkov’s normal form. In this subsection,
we consider the following matrix ;

(3.5) P(tx,D,&) = D — A(tx,&), A = 220 A(t,x,&) E M(S*) (xEN).

From now on, for simplicity, we assume that C and R in (2.1) are greater than or
equal to one.

Theorem 1 (Perfect Block Diagonalization). We assume that every entry of A
satisfies (2.1) and that the eigenvalues U, <i<dAi(£x,8))7, of Ao (Ziz) m=N)
satisfies

M (t%,E) = Ayt x,E)| = cl&]* on T (¢>0, k+k', 1<j<my, 1< <my).

Then, for every point (to,x0,&0) in T, there exist a conically compact neighborhood
I, No(tx,8)=22 Ni in GL(N;STY)), Ni=(n2") 1<), g<n and Bi(t,x,8)= 220 Bu
in M,.,(S*(T)), Bu=(b%)<p g<m Such that
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-/V;l(t:x"’;:)oP(tr-xﬁDhé-)o/VO(tvx»f;:) = EDISdePk,

(3.6)
Pk(t'X,Dm’;:) = Im.Dl - ﬁk(t'x:&'),

where Bio has the eigenvalues {1 w(tx, g)};";.. Further the following estimates hold :

[622E)(1,x,8)] < CoRIRETP My s Livig—s(i—3)! 7|77 on T,
3.7)
&%) < CiRIRE™IM 4 s Livip—o(i=3)17' g7 on T,

(IEZ+, a €LY, BEZY),
B

where the constants C, Ci, R, and R, are determined only by P.
In case of meromorphic formal symbol, No and By belong to GL(N;S%(0))
and M, (S%(0)), respectively.

Proof. Essentially the proof is similar to that of Proposition 3.3.
(Stepl) The projection to the generalized eigenspace of {A4(4x,&)}7, is given by

(38) Pultx§) = 5= | (eh—du(x.8/18)dz,

where C is a simple closed path encircling only {4 4(£x,&)}72,.
As min,ec|det(z— Ay(£,x,&/|&])| = ¢,,>0, by Proposition 2.5 (2), we have the esti-
mate :

(3.9) l(zln— Ao(t.%,E/1ED) Nooerr < Co

Let us take m, linearly independent column vectors of 2y at (f0,x0,&0) (1<k <d).
No(tx,&) is constituted by them and satisfies the estimate (3.9) replacing C, by
another C,. As det /, does not vanish on a conically compact neighborhood T of
(to,X0,&0) in T', we have |det /g|=¢c,>0 on I". In case of meromorphic formal
symbols, there exists a conic subvariety 3" and det #/,#0 on I'\S’". For I'CTI\3/,
applying Proposition 2.5 (2) once again, we obtain

(3.10) (Ao t:x:f))_I"o,o.f(z)ca)'k,r' < G,

It is seen that (o)™ Ao No=@ <x<aBro, Where By, has eigenvalues {14(5x,&)}7,
(1<k<d). Thus, by Proposition 2.3 (2), we have

.11 I Brol t.x.EDwocrecyrr < C.

Let us set

P = (N)'OPONy= I\D, + (Ny) 'ONopy — (No) 'O A ON,y
(3.12)
= LD — 3B,

where Bo=@®,<x<sBro and Noww=D,(Ny). Regarding Ny, as the second element of
a first order operator, the following estimate follows by Proposition 3.2.
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(3.13) (B (tx. e icrarrr < C'R™,
where R”=max{R’, 2lc(2)’c(2)'R*}.

(Step 2) Let us seek for A(tx,&)=22: in GL(N;S°T)), N=1Ix and
Bi(t,x,&)= 2272 By in M, (S*(I')) (1<k<d) for which the follwing relation
holds :

(3.14) N '0PON = @ <k<sP*, P =1,D — B

The relation (3.14) is written as

@nsdeﬁkf_(ﬁo/Vi_/ijso) = - 2 %/Vi,m(@jgkw))

ititlyl=i 0<i<i #<i
2} I &
— BN — A
+ ititlyl=i e<i g ﬁ” /V'M) /V'—x(')’

where By=®,<<¢Bi. Let us decompose A; and B; corresponding to @, <x<yBo:
‘/Vi = ('/Vi<pq>)l5p, g<d> ﬁi = (ﬁqu>)ISp,qu'
We take /~%>=0 for i>1 and 1<k <d. The relation (3.15) becomes

(3.15)

1
(3.16) By = 21’.+iz+|yl=i, b<i —’y_' (ﬁi‘(y)ﬂ&‘y))<kk>’

<pg> 7 <pg> — E: | <pg>
ﬁpo/vi Pa> — NP ﬁqo— —'/V,-,” B

it itlyl=i 0<in<i, i<i a! qily)

3.17) |
- 2;.+i2+|yl=i, iz<i7[Bix(7)Niz(y)]<pq> + /Vf_",f(?, . (pFq).

Lemma 34. For i>1, C;=C"R", Ci=Mc[3'C"C/R" (M=max,<, ,<sm,m,}),
Ri=¢(2)c(2)'¢(2)"R and a positive number R, determined by P, the following
estimate hold :

I Bill.iror < CsRE,

(3.18) .
29 g irr < CiRET

Proof.  We denote the transposed matrix of 4 by 4”. Let A=(a;) be a k X/ matrix
and B be an m X n matrix. We set vec A=(a,,, @y, ***, Qx, A1z, ***, A2, ***5 Ay *°°
ay)’ and A®B=(a,jB),s,~sk,lsj51: kmXIn matrix and call them the associated
vector of 4 and the Kronecker product of 4 and B, respectively.

By (3.16) and (3.17), Bw and /"7 are determined step by step on i, respective-
ly. Especially, on /7%, we need solve the equation B, X —X B,0=H, where X
and H are an unknown and a given m, X m, matrices. This is a linear equation on
vec X and is written as the Kronecker form : [(Im,®ﬁpo)—(53;0®1m,)]vec X =vec H.
Its coefficient matrix has the eigenvalues {,lpj(t,x,é‘)—Aq,'(t,x,(’;")}mjs,n,,, 1<j<me  (See
R.A.Horn and C.R.Johnson [4] 4.4.5) Then, [|[(1,®B,)—( BL&I,)]"
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|- woc@eeyeayrr< C3 holds by suitable constants ¢(2)” and C7 by Proposition 2.5
replacing N by m,m,. We set R,=c(2)c(2)'c(2)"R.

Case of i=1) By (3.16) with i=1, B,,=38:*>. Then, taking Cs=C"R", t
former of (3.18) holds for i=1 because ¢(2)”">1. The right-hand side of (3.17) w1th
i=1 becomes —B7??> and the latter estimate of (3. 18) holds for i=1 for Ci=
Mc[3]*C”C3R” by Proposition 2.3 (2).

Case of i>1) We assume (3.18) for i’ less than i.
First, we consider B,;, We divide the sum in the right-hand side of (3.16) to I':
;=0 and I*: i,=1. On I', as #{,=0 for y#0, we have I'= B> and

"1|"x,i,R.,r < C"R".

On I’ as i,<i—1 in the right-hand side of (3.16), by virtue of Proposition 3.2 with
R”=max{R", 2lc(2)c(2) RR,}, we have

172, irr < Neo C”CH(R”/ R )R
Thus, we arrive at
(3.19) 1Bl iz < (C"R” + NeoC”Cs)(R”/RIRY

As we take R;>(1+MN¢[3]’co CYC”)R”, the former of (3.18) holds also for i.
Now, we consider A <79>. On the first sum in (3.17), we divide it to I*: i,=0
and I*: i,=1. On I, as i,<i—1, we have

1], irrr < meoC'C5(R”/RRI,
where m is max,<z<q M. On I* also as i,<i—1, it follows that
114 i < meo CsCSRT'RIT
Thus, we arrive at
1P+ 1 ire < meo(C'R” + Cs)/Ri+ CSRI™.

The second sum has the same estimate as (3.19).
On the last term in (3.17), we have

“‘/Vl u(!)"len[1 < "./V, x(l)||11+1 — xR 5(R4) )‘R” l'

Therefore, setting the right-hand side of (3.17) as I(i), we can see

(3.20) 171(i)ire < (C(5)/Ry)C5 R,
where C(5)=[co(mC’+NC")+C"R"/C;]R”+mcoCs+1. Finally, we obtain
(3.21) A2 o, pr < (Mc[3]°C5C(5)/Ry)C5RY™

and taking R;=[Mc[3)co CY(mC +NC")+1]R”"+Mc[3]°C"(mco C"R"+1), the
second estimate of (3.17) holds for i.
Then, (3.18) holds for arbitrary / in N and Lemma 3.4 has been shown. 1
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(Step 3) We set C;=max{C’, Cs/Rs} and Ci=NcoC,max{l, C{/R;}. As No=
NoO N, we obtain the estimate (3.7) and then Theorem 1. O

Now, we give a normal form of Arnold-Petkov of systems in ultradifferentiable
classes.

Theorem 2 (Normal form of Arnold-Petkov). We assume that every entry of A
satisfies (2.1) and that each eigenvalue A (t,x,&) (1<k=<d) of A, has the constant
multiplicity my, that is, 2¢-, m=N and

N e(%,8) — Le(tx,&)| = cl&l* in O  (¢>0, k+k)

Then, there exist finite disjoint open conical sets {O;}; such that U;0O; is dense in
O. On each O, there exist natural numbers d, and {ny}i~, (X, ny=my,). For
every point (to,X0,E0) in O;, there exist a conically compact neighborhood T,
NO(4x,8)=220 N in GL (N;S°(T)) and 6,4(t,x,&)= 2720 G in M, (S*(T)), Gy
=(65" ) i<pg<dn Bui: NiyX Ny, such that

(3.22) N (tx,8) O P(t,x,D,E)ON°(t,x,&) = D\<r<aP",

PY1xD,&) = Ln(D, — Ai(4x8)) — Gil(4x,8)
01
Bro = @.5jsd.1(nkj)|§|”’ J(n) = l :nXn
..0

%
6?,-"">=< 0 ) (r<q), =(§ 0 ) (p>q) for i=1.

The entries of N; and 6, satisfy the same estimates as (3.7) on T, replacing
C., Ci, R, and R, by other positive constqants. They are also determined only by
P.

In case of meromorphic formal symbol, {O;}; is composed by only one element
and 0,=0\3X’ for a subvariety S'. N'° and 6, belong to GL (N;S%(0)) and M,,
(S(0)), respectively.

Proof. The proof is almost same as that of Theorem 1 and all estimates are of same
type replacing the constants by other ones. For the simplicity, we use the same
notation.

(Step 1)  We can find finite open conic sets { O}, such that the Jordan structure of
the generalized eigenspace of A ,(t,x,&) is stable on each O,, and each U ,0,, is dense
in O (1<k<d). We can find Jordan chains on each O, using only the addition,
subtraction and multiplication. (See Propositions 2.4 and 2.5 in W. Matsumoto
[12]-) Let us set {Oj}:{n ISdeOkll.}(hl.-".hd)- Then, for every point (f0,x0,&0) in O,
there exists a conically compact neighborhood T" on which we can find invertible /4,
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which satisfies (45) ™' AoV o= D)<k <a( A 4(6X,8) I+ Gio), o= <j<ad (1) &l and
Ny and (N,) ™' satisfy similar estimates as (3.9) and (3.10), respectively. We set (#5)™"'
OPON,=P=I\D,— €. €, satisfies similar estimates as (3.11) for i=0 and (3.13)
for i=1 on T, respectively.

(Step 2) Let us seek for /(t,x,&)=272 N in GL(N;S°(T)), #o=1Iy and 6,(4,x,&)
=32206, in M, (S*(T)) (1<k<d). We decompose N, and €, corresponding to
@Di<k<abio:

/Vi = (/prp)]ansd, gi = (gqu>)|Sp,qu'
We have the relations

gki - (6koﬁi<kk> - /kak>€k0)

(3.23) =— > L0,

it btlyl=i 0<i<i 0<i<i o]

2 : ! (
» <kk>__ fr<ik>
+ ithtlyl=i &<i ! (g"' /{7“2‘7’) i= x>

<pg> <pg> — l <pg>
G797 — NP7 6 = -2-: — NP7 0E

it itlyl=i 0<i<i 0<ip<i 'y!

(3.24) i
o Zi|+iz+|'y|=i, a<i 7[«6[‘(?)/(7;(”]@0 + A2 ).

We can show the similar estimate on € and /%> as in Lemma 3.4 also by the
induction on /. In this case, as /> does not vanish, the differences from Lemma
3.4 are that we need to estimate the first sum and the third element in the right-hand
side of (3.23) and that the decision of 6,; and /%> Let us decompose /%>, &,
and the right-hand side H %> of (3.23) corresponding to €ko=®,sjs,i,.l(nkj)|§|":

‘6“ = (6;‘<Pq>)lsﬁ, q<d. = (C{"M(u,v))ISuSn.p, 1< v ixg 2
-/V‘i<kk> = (/V{'(<pq>)15p, g<dx = (nll“pq(u:v))lSuSn.p, 1<v<1uq »

Hi<kk> = (H:(<pq>)ISp, g<di — (hqu(u,v))ls“s"“,, 1< v g
The relation (3.23) becomes
(325)  BFIT = (S MEPE = AEP  (m))| gl = HEe,
For p=<g, this has the solution

0 (1=u<ng,—1)
P (uy) =

2:»_:I0 h{_‘P‘I (nkp_w: V_W) (u:nkp):

and
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0 (u=1)

Syminbe=2 0=l phet (y—w—1, v—w)|&|7* 2<u<ny,),
where v runs from 1 to sy, and for p>gq,
2t AP (utw, 1+w)  (v=1)
cki(u,v) =
2<v<ny,),
and
- {Z“J‘Q{({"""" gkt (utw, vEwHDIETF (1Sv<n,—1)
nP(u,v) =
(v:nkq)r

where u runs from 1 to n,.
Using the above expressions of the solution of (3.25), we obtain the estimates of same
type as (3.18).

(Step 3) The last step is just same as the proof of Theorem 1. O

3.4. Normal form of systems. As we showed in W.Matsumoto [12], applying
Theorem 2 and changing order by 1|&[*@Ix_, or [,®Ix_,|&|* (1 >0) finite times, we
arrive at the following theorem. For the simplicity, we assume the differentiability
condition on {M,} and {L,}. Under this, we can say always the true order is its order.

Theorem 3 (Normal form of system in ultradifferentiable class, [12]). We assume
that every entry of A satisfies (2.1) and that the each eigenvalue A,(tx&)
(1<k<d) of A, has the constant multiplicity m,. Then, there exist finite disjoint
open conical sets {0}, such that U,0, is dense in O. On each O, there exist
natural numbers d, and {ny}ix, (2=, ny; = my). For every point (to,X0,&0) in
O,, there exist a conically compact neighborhood T, N(tx,&)=272,N; in
GL(N;S(I") and Dy(t,x,8)=220 Dui in M, (SXT)), such that

/V_‘(anf)OP(t.x.Dz,tE)O/V(f,XnS) = @ISde@ISde.ijr

ij(t'val’g) = l”lu(Df - lk(t:xrg)) - @kj(t:x:g);
(3.26)

Do = J(ni)| &l Dw=< 0 ) (i=>1)
* *

The entries of N; and Dy; satisfy the same estimates as (3.7) on T, replacing
Cy, Ci R, and R, by other positive constants. Here, on N' and N ™', the orders of
those entries may be positive and the power —i—|g| in (3.7) must be replaced by
xo—i—|B| for a suitable non-negative number x.. These constants are also
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determined only by P.

In case of meromorphic formal symbol, {0}, is composed by only one element
and 0,=0\Z’ for a subvariety 3'. N and D, belong to GL(N;S,(0)) and
M, (S3(0)), respectively.

Remark 3.1. Of course, the above dy, ny, O, and 3’ are different from those in
Theorem 2. Further, in Theorem 3, d and s, on each O, may be different each
other.

Now, we consider the formal symbols which are partially ultradifferentiable.
For the simplicity, we treat only formal symbols of C® class on ¢ and of
ultradifferentiable class on x.

Definition 4 (Formal symbol of class {0, M,, L,}). We say that the formal sum

a(tx,&)=2720ai(tx,&) is a formal symbol of class {0, M, L,} on O=

U.err. it} X O(2), O(t) is an open conic set in T*R’, when there exists a real

number x such that

1) a:(tx,&) belongs to C™(0) and positively homogeneous of degree » —i on &,
(i€Z,).

2) For arbitrary conically compact subset I in O, there are positive constants {C,},
R and R’ and we have

(3.27) @ B(6x,E)| < CaRR“M, 4115 Ligig—s(i— 31| g4
' onT, (I€Zy, a€Z.'"", BELL),

where o= (a0, a).

We consider also holomorphic formal symbol and a meromorphic one in C* on

Definition 5 (Meromorphic and holomorphic formal symbols of C* class on t).
I. We say that the formal sum a(t,x,&)=272 a;(£,x,&) is a meromorphic formal
symbol of C% class on ¢ on O=U ,e(r, m{t} X O(t), O(¢) is an open conic set in
T*C', when there exist a conic subvariety 3(¢) for ¢ in [T,, T,] and a real number
»x such that
1) For each fixed ¢, a;(%x,&) is meromorphic in O(¢), holomorphic in O(H\Z(1)
and positively homogeneous of degree x —i on &, (i€Z4).
2) For arbitrary conically compact set T" in U e(r, nit) X(O(t)\Z(1)), there are
positive constants {C, }, R and R" and we have
@@ (6x.86)] < CoRTR“™A(i+]a|=3)1(i+181—=3)1(i—3)! &
(3:29) onT, (iI€Z., a€Z,'", BEL,.

II. The formal sum {2, a; is called a holomorphic formal symbol of C* class on
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t on O=U g(r, it} X O(t) when it is a meromorphic formal symbol with 3(7)=9
for arbitrary ¢ in [T, Ts].

We denote the set of the formal symbols of class {o, M,, L,} on O=
Uern nlt} X 0(2) by C=([T,, T»),; S{M,, L,}(O(t)), that of the meromorphic for-
mal symbol of C® class in t by C*([T\, T»]; Sw(O(1))), etc.

We regard the estimate (3.28) is a special case of (3.27).

Theorem 4 (Normal form of system of C* class on ¢ and of u.d.’ble class in x). We
assume that every entry of A satisfies (3.27) and that the each eigenvalue
A(tx,&) 1=k <d) of A, has the constant multiplicity m,. Then, the assertion in
Theorem 3 also holds except the estimates. For arbitrary i, in L., the entries of
N and Dy satisfy the same estimates as (3.27) on T" for 0<i<i,, replacing C,,
R and R’ by other positive constants. They are determined only by P and i..

In case of C([T,, T»]; Su(O(t))), {0,} becomes the following ; There exist
finite disjoint open sets {04} in [T\, T:) such that U,o, is dense in [T, T,] and
exists a subvariety S(t) in O(t) for each t in U,o, O, is given by
Ueonlt} X(O()\S(t)). Further, N' and D,; belong to GL(N; C*(Uo,; Sk(O(1))))
and M, (C*(Uo,; Si(0(1)))), respectively.

Proof. Applying Theorerm 2 and changing order by W,=L|&[*@Iy_, or =1, DI, -,
|&1 (u;>0, 1<j<r) alternately, we arrive at the normal from. We can assume that
{C.} is logarithmically convex and non-decreasing. Let us set g=(r=+1)io~+ 2/ ju;
and C,=C,4+, for n in Z,. On each conically compact " in O, every entries of «
satisfies

(3.29) |a:B(6%,6)| < Crstm—q a R RM, 4115 Liggg—s(i —3)1 7| g
' on [T, TIXT, (I€Z., «€Z'", BEL).

After we transform P by A ° in Theorem 2, the entries of the transformed
operator satisfy a similar estimate as (3.29) for 0<i<i,+2lj-,u; replacing
Cruxtao—g. 0} DY Cranlw—q 0 § =Fio+23j=2(j—1)u;. Further, after the transformation
by W, it holds for 0<i<i,+2)j-,u;. Repeating this 7 times, the estimate of the
entries are like (3.29) for 0<i<i, replacing Cru(m—y 0) DY Cmixim—-i 0 At last, once
again we may apply Theorem 2 and the estimates of the entries in the normal form
of type (3.27) hold for 0<i<i,. O

4. Appendix : Product and Division, Reconsideration

From now on, we assume the following:

Assumption’. {(M,/n!")} is logarithmically convex and non-decreasing for some
s>1.

Gevrey weight {n"} and many more rapidly increasing {M,} than n! for s>1



564 Waichiro Matsumoto

satisfy this but {n!} does not. The following proposition is easily obtained by virtue
of Lemma 2.1 (8).

Proposition 4.1 (Product (2)). We pose Assumption’. If the followings are
satisfied on a compact set K by positive constants R and C; (j=1,2)
lfj(x)(n)l < CjR|a|M|a| ’
the product of f\ and f, satisfies
[ L))ol < ¢,COR" My,
where a €Z." and c, is that in Lemma 2.1 (8).

Further, B{M,}z(K) is also closed on the division by non-zero element.
Proposition 4.2 ( Division (2) ). We pose Assumption’. If, for some positive C, R
and ¢, f(x) satisfies the following on K

If ()l < CR“M
and
lf ()] = e,
then 1/f(x) satisfies
l(1/f (Dl < C'R*M,,,
for ¢ in Lemma 2.1 (9), ¢'(s)=2 40 (c:C/c)/q"""" and C'=c'(s)C/cy'.
Proof. We use the majorant. We follow the proof for the composed function in
H. Komatsu [6]. For two formal sum G/(x)=2,ecz..G,x* (j=1,2). We denote
G'< < G? when it holds that |GL|< G2 for all @. For f(x) of C* class, we identify
it with its formal Taylor expansion. Let us set a formal sum F(X)=2\, F,X"/n!

of one variable X and take arbitrary point xo in K. The relations |f,(xo)|< F
for @ in Z,' is equivalent to the relation f(x)<<F(2i=) (Xi—Xo;)). As

1 __ 1 200 (_ [(x)—[gxo}y
FIH( () —F(xo))/f(x0)} — f(x0) =0 S (x0)

1 ® 1 \¢
<< (L FEO = FO lrmsinms

setting the coefficient of X" as G,/n!, we have [(1/f(x))a| < Ga.
Let us calculate the following

(L) roo = Foyr = 207 (L) @ crom, x
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oo n q M M
=1+ anl R”X"Zq=l<c—i> 2M+A.‘+m=n,p(2|ﬁ...ﬁ.

As {(M,/n!*)""~"} is non-decreasing by lemma 2.1 (7) and {(M,/n!)} is logarith-
mically convex, it is seen

sl

Di

k]

M2.£< My—ys

)(Pi"')/(”_q)
Di! (n—q+1¥

e e
p! pd T (n—g+D!\(n—g+1)!

< M, (‘1_1)!< pil* D! )s—l
T onl M \(n—gtD)!

< Mn l ( pl!“'pa! >:_I
T onl (g—Dr'\(n—g+1)

On the other hand, applying Lemma 2.1(9), for g =2, we can see

2 <_M2q!_>s_'
ptetpe=n pzI\ (n—g+1)!

= 2"“’+‘<P|!("_Q+2_P|)! >x_' Z”“’*““( pl(n—qg+3—p,—py)! >"'
= (n—gq+1)! =l (n—q+2—p)!

e A ( Pet(n=pi—"—pg)! )5"
(n=1=pi==p,)
<N

Thus, we arrive at

o (L)qz M, M, <M, C © (¢,C/ey)!
9=\ Cp, pttpe=n, pi=1 pI' pq' n! ¢, 9=0 q!s—l
_c)C M,
Cm n!
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