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Abstract

We give direct proofs on the perfect block diagonalization and on the transfor-
m a tio n  to  Arnold-Petkov's no rm al fo rm  o f m a tr ice s  o f  pseudo-differential
operators in  th e  ultradifferentiable classes.

1. Introduction

Let K  be a compact set in It', R be a positive number, {M,} be a non-decreasing
and logarithmically convex sequence of positive numbers and B{M„} R (K ) be V (x)

E  C - (K ) :    f  ( x )  C R H M
 1, 1 on  K fo r arbitrary  a  in Z i

+ }, where Z + =N U

{0}={0,1,2,• • } l a l = a 1 + • — + o e r  for a = (a l ,• ••,a i )E Z 1
+ and  C is a positive constant

depending on f  but not on a . We call B{nr} R (K ) for s>1 the Gevrey class of order
s .  In case of the Gevrey classes, we have B{n!'} R (K) X B{n!s} R (K )CB{nr} R(K ) (See
Proposition 4.1.) On the other hand, in case of the real analytic class, B{n!} ,(K)X
13{n!} ,(K) B{n!} R (K ) .  For example, in case of l = 1, let us tak e  K = {Ix' _<1} and

f  (x)=
2 ± x  

. W e  have m ax .„E K  ( a ) n f  =-n !  an d  m ax K ( a )u - xf)ax ax
( n +l) n ! .  Thus, f  EB { n!} ,(K ) but f  X  f  ErB { n!} ,(K ). This is  a  difficulty on the
theory of pseudo-differential operators in the ultradifferentiable classes. L. Boutet de
Monvel and P. Krée[3] introduced an elegant norm of formal symbols and overcame
this difficulty. T. Nishitani[17] obtained the perfect factorization of full symbols in
the ultradifferentiable classes using the same n o rm . However, never-the-less the all
terms are obtained algebraically step by step (see H. Kumano-go[7], [8], V.I. Arnold
[1], K. Kajitani[5] and V.M. Petkov[I8]), h is  p ro o f is  a successive approximation
and n o t a direct estimate of each term obtained algebraically.

The final version of th is  article has been achieved during the  stay  o f  th e  au tho r i n  1998-1999 at
University of Paris VI, UFR 920.
Com m unicated by Prof. T.Nishida, A p ril 12, 1999



542 Waichiro Matsumoto

In order to treat the ultradifferentiable classes in a unified way without L. Boutet
de Monvel and P. Krée's norm, a way is often used standing on the fact that B{n!},,
(K)X  B{n!} R ,(K)CB{n1} R (K ) for R ,* R 2 and R=max{RI, R 2 } because we encounter
the products of knowns and knowns or knowns and unknowns for the results in  L.
Boutet de  M onve l and  P . K rée [3 ]. However, fo r  th e  perfect factorization, we
encounter th e  products o f  unknowns a n d  unknow ns. Thus, w e need consider
products of type B{M,} R (K )X  B  { M  R (K ) .  (See the proofs of Theorems 1 and 2.)
The following fact is well-known that B I ,  - k .  1(R( )( c 2 B{Mn}R(K)CB{M„-k.}R ,(K),

R '> R  for log M ,= o(n 2) (] R t> R  for log
 A 4  =  0 n ) ,  

respectively) and a positive
integer k a .  (See S. Manderbrojt[9] and W. Matsumoto[10].) An idea is to consider
the product of functions in 

B { M n - k . } R ( K )  where k0 = 2 for the space of functions and
k 0 = 3  for the space of formal symbols. For example, we can show that BO In-JR
(K)X  B{ M,_ k }R (K )CB { M „_ k }R (K ) if {M„/ n!}  is logarithmically convex and k a

2  (P roposition  2 .3 ). B y th is idea, w e can show  the  results in  [3 ] and  in  [17]
estimating step by step the terms algebraically obtained. We give the results in the
matrix form.

The advantages of the direct proof are the following :
1) For the perfect block diagonalization, which corresponds to  the perfect factor-
ization in T. Nisitani[17], each term of the unknown formal symbol has an ambigu-
ity. W e can settle it freely if we use the direct method.
2) We can also treat C - ([ Tr, T2] ; S{ M n,L ,} 09(t))) defined in  Subsection 3.4.

Through Sections 2 and 3, we assume tha t {.41,/ n!} and { L /n ! }  are logarith-
mically convex a n d  non-decreasing. In  S ec tion  2 , we offer some fundamental
inequalities and the results on the operations of functions. In Section 3, we give the
results on the operator product of formal symbols, for example, the perfect block
diagonalization, the normal form of Arnold-Petkov and the final normal form. In
Subsection 3.4, w e also give th e  results o n  C - ([ T 2 ]  ;  S I M „,L j( 0 ( t ) ) ) .  In
Appendix, we reconsider the product and the division assuming the logarithmical
convexity of { M ,/n !}  ( s> 1 ) , which the  analytic class does not satisfy b u t every
Gevrey class does.

Theorem 2 in  Subsection 3.3 had already been used in W. Matsumoto[12] to
obtain the main theorem, which is presented as Theorem 3 in  Subsection 3.4 in this
article. (The result in [12] is essential to obtain the results in W. Matsumoto and H.
Yamahara[15], [16] and W. Matsumoto[13], [14 ] .)  The latter theorem in Subsection
3 .4  w ill be  applied  in  a  forthcoming paper o n  th e  necessary condition fo r the
Cauchy-Kowalevskaya theorem of Nagumo type on systems.

2. Fundamental inequalities and operations on functions

2 .1. Fundamental inequalities (1). Let { W 3 an d  { L n } 0  be logarithmically
convex and non-decreasing sequences of positive numbers. (W e say that {M„} is
logarithmically convex when /14 M ,_ 1M + 1 .) W hen we consider functions and
formal symbols of ultradifferentiable class, w e can replace finite M a 's arbitrarily.
Then, we can assume that M o = M I = I. It is convenient to set M ,= 1 for negative n's.
Thus, (-3)!=(-2)!= ( —  1)!= 1 and, more generally, j ! = j + ! for j  in Z, where j+=
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maxtj, 11. Through this paper, we assume the following :

Assum ption. {M / n!} and  {L/ n!} are logarithmically convex and  non - decreasing.

For the results in this paper, this assumption can be relaxed to a  weaker one.
However, when we further consider the composition of functions and the theorem of
the implicit function, it seems difficult to verify the sufficiency of the weaker condi-
tion but it is easy to see that our Assumption is also sufficient for these. Further, the
logarithmical convexity is easier to judge on the concrete examples. Thus, we assume
the logarithmical convexity of {M,,/ n!} a n d  {L i n ! } .  Of course, when Assumption
is satisfied for n> 1, we can find an equivalent sequence which satisfies Assumption
for a ll n's.

Let a  and g  be elements in  Z 1
+

4 .1 .  We set a != a o !a l!• • • a i! , a + 1 3 = (a 0 - 1- flo,•••,

a l+ )31) and we denote 13< a  w hen )6'; ‹ a i fo r 0 < I. We set (  ) =  k!/ ./!(k — j ) !

a aofor 0 < j< k  and ( for a ' ‹  a.
a/

The following inequalities are easily seen but used again and again.

Lemma 2.1. ( 1 )  For 0 < h < i< j< k  an d  i± j< h ± k ,

i ! j !  <  h !k ! .

(2)
k! •  =  /k.ial=k a!

(3) I f  la l= k ,

(
j  ) .

(4) For 0 < j 1 < k 1 ( i= 1 ,  2) an d  k0>0,

(  ( k 2 — k 0 )1 (k,±k2— k0)1 
j ,  )  (j 2— k0)!(k2 — j2 — k0)! (j1 -4- j2 — k0)!(k1 - 1- k2 — j , — j2 — ko)!

(5) L et {N,,} be logarithmically convex, that is Aqi < N„_,N„ + ,, and  non-decreasing.
I f  p ,  g  an d  k  are  non-negative, the follow ing holds;

Arp_k Arg - kN + - k .

(6) L et {M/ n!} be logarithmically convex an d  non-decreasing. I f  p ,  g  an d  k  are
non-negative, it holds that

Mp-kMa-k <  (p —  k)!(g — k)! 
111,9+,-k (13± 9— k)! •

(7) L e t {N„} be logarithm ically  conv ex  a n d  non-decreasing. I f  k > - 1 ,  then
{(N„_ k ) 1/"},, is non-decreasing o n  n .  (T he restriction k> — 1 is  n o t  essential.
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When N n =1  f or n < n o ,  we can relax it to no and  this is always realized
by replacing {N„}  to a suitable equivalent one.)

(8) L et a be a positive num ber. There ex ists a positive constant cp+ , such that

k  y a
ca+ ,.

(9) L et a be a positive num ber. There ex ists a positive constant c'a+ , such that

j!(k—Pa <
Z j i= 1  L ( k - l ) !  

l

P ro o f  The assertions from (1) to (4) are well-known.

(5) A s <  
N n

+
1

 N
P  Nq

 <N
P  + q

 is  eas ily  seen . W h en  p — k  and q — k  are
N , 

non-negative, it implies N p-kN q -k < N p + q -2 k < N p + ,_k . When p — k < 0, Np_ k = 1  and
N ,-k < N p + q - k .  The case where q — k < 0  is shown by the same w ay . When both of
p — k  and q — k  are negative, N p-k N q -k =1 ‹N p -E q -k .

(6) Setting N = M , / n ! ,  (5) means this.

(7) Let us set an=log Nk — log N n - i .  {a n} is non-decreasing and log N -k
=

0 . Then,

1 1 log Nn-k n _ l
1

log N ,,-k - i" -= .-k E n- I
j  l ai-ki=1

a
 ' n - 1

1 1 1 1 1 -  I 1
=  an-k

n ( n  — 1 )  L . . 1 n  
(a k a n _ k _ 1 )>  0 .

(8) We take jo ->-1/a. For jo  <.j.<_k/2, it holds that

j!(k — j)! <  j o !  
k! (k —  j o+1)"° •

Thus, we obtain

k
<  2j 0 + 0!a(k—  jo+1) - I  < 2 j 0 + j ! ' =  c a + 1 ..J=0

( 9 )  This is shown by the same way as (8).

The following is the key lemma for the operations of functions.

Lemma 2.2. L et k o  be an  integer greater than o r equal to 2. There exists a
positive constant c [k d ,  and the followings hold.
(1) For k  in Z + ,

• —  k .)!(k  j 10 !  <  C [k d .(k —  k.)!
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(2) Fo r a in  Z i
+ ,

a  )  C[ko].a +
a"

-
c ' ( 4 ,1 -k .

P ro o f  (1) Because the  proof is sam e for each k ., w e give it fo r ko = 2.
For k 6,

(  k  (.1-2)!(k— j — 2)! 
j (k — 2)!

<  2
[k /2 ]  k ( k - 1)  

i=0 j ± ( j - 1 ) ± (k — j)(k — j-1 )

= 10
E  [k/2 ] I

i=0  j+ (J -

 10  (1  ±  + [k/21( I
) )Z-I j = 2  j - j

<30.

On the other hand, by the direct calculation, the left-hand side of (1) is majorized by
9 for 0<k 5 .  Thus, we can see that there exists a  constant c[2] which satisfies (I)
and it is less than 30. (We can also show that c[3]<84 through the direct calculation
u p  to  k= 7.)

(2)

a  )
a '±  a "=  a (  a ' 11461- k.

E (  a  \ k o ) ! ( l a l —  k o )! 
a ' I ko)!

))(1al — koYdal — ko)!• k

j= 0 a
, 

k o ) !

'Ç l k (  k  (j — ka )!(k — j — ko)! 
j_ k i = A  j ) (k — 10!

c [ k o t

set a n d  Ial=where we k  and  used Lemma 2.1 (3), (6) an d  Lemma 2.2 (1).

2.2. F orm al sym bols. In this subsection, we give the definitions of formal symbols.
F ro m  a n  arb itrary  asym pto tic  e x p a n s io n  o f  a  sy m b o l o f  a  pseudo-differential
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operator in  a n  ultradifferentiable class, a  true sym bol in  th e  same class can be
constructed and the ambiguity is of class ( S e e  L .  Boutet de Monvel and P. Krée
[3], L. Boutet de Monvel[2] and W. Matsumoto[11].) Therefore, in order to consider
many problems on partial differential equations in  a  ultradifferentiable class, it is
sufficient to consider asymptotic expansions, which we call here formal symbols. Let

us set a(t,x ,4*'6 >=.M'D,,a;•••Dx":( )fl a ( t, x,4- ) for a EZ I
+

+ 1  and  flEZ /
4., where D t =

a
,7- 1  a t , etc.

Now, we define a formal symbol of class { M , L„} on a real dom ain. We say that
a set 0  in R i X L/ XR I

4 . is conic when (t,x4)E  0  implies (tx ,16)E  0  for arbitrary
positive A  and that a  subset r in  0  is conically compact in 0  when F is conic and
F n{161=1) is compact in 0 ntl1-=.11, where 141=7Z=le •

D efin ition  1 . (Form al sym bol o f  class {M„, L, },  [12]). W e say that the formal
sum  a(t,x 4)=E 7= o a r ( t ,x 4 )  is  a  formal symbol of class { M,„ L }  ( = f s .  o f  class
(M„, L,,}) o n  0  when there exists a real number x such that
1) a 1( t ,x 4 )  belongs to C '''(0 ) and positively homogeneous of degree )c — i o n  6,

(iE Z + ).
2) For arbitrary conically compact subset F in 0, there are positive constants C, R

and R' and we have

(2.1)
o n  F,la (159 ( t xy , 3Li+01_3(i_3)!-1141x-i-o

( iE Z ± , pEzi+).

Next, we introduce a holomorphic formal symbol and a meromorphic one . We
say that a  set 0  in  C, X Cx

l ><C4. is conic when (tx ,6)E  0  implies (t,x, W E  0  for
arbitrary positive A. and that a  subset F in  0  is conically compact in 0  when F is

n{II 6  II=F6 1 1 =  1 ) is c o m p a c t  i n  0c o n ic  and 1}, w h e r e  0 6 II=
la=l1Re6i1 2 +11m6i1 2 • We say that X is a  subvariety o f 0  if it  is  a zero set of a
holomorphic function in  O.

D efinition 2. (Meromorphic and  holomorphic formal symbols, [12]).
I. W e say that the  formal sum a(t,x ,6 )=E 7- oa1(t,x 4) is  a  meromorphic formal
symbol (= m .fs.) on 0 when there exist a conic subvariety X in 0 and a real number
x such that
1) a1( t ,x 4 )  is meromorphic in  0, holomorphic in  0\X and positively homogene-

ous of degree X 1 on  6 , (iEZ+)•
2) For arbitrary conically compact set F in  0\1, there are positive constants C, R

and R ' and we have
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laie)(t,x,6/1 o v 1RA -Fo(i+I c r i_3)!(i+1 16 1 - 3 ) v - 3 ) ! - '14-,1' on F ,
(2.2)

( iE z + , aEz4.- ", leE zi+ ).

II. The formal sum E;7- c, a, is called a holomorphic formal symbol (=h.f s.) when
it is a meromorphic formal symbol with E=0.

Remark 2.1. W e use  4, as a holom orphic scale o f  order in  case  o f a  complex
domain a n d  includes { 0}. Of course, 4, can be replaced by another 6, and
includes {6, =0}.

Remark 2.2. In (2.2), it is important that is independent o f i .

Remark 2.3. When {M„} and  { L „}  satisfy th e  differentiable condition, th a t  is,
log M„ and log L , are 0(n 2 ), the definition is equivalent if we replace M i + 11_3L, ± 1ft1_3

(i —3)! - ' in  the  right-hand side of (2.1) by M i + 1IL 1 ± 11i! - I  tak ing  o ther R  and R'.
Further, always taking other R  and R ', when {M„} and {L„} satisfy the separativity
condition, that is, /14,,+ ,_</Vo

+ gM„M, for a positive R . and so on {L„} (essentially M„
= n!', L„= n! f , s, 1), we can replace it by MR,,ILIAMi L i i! - I , then, especially if L„
=n ! , b y  M 1 .1 1 [ 1 1 ! M 1 .  T h e re fo re , on the holom orphic and m erom orphic formal
symbols, we can replace (i - Fla1 - 3)!(i - 1- 01 - 3)!(i - 3)! - ' by cr!f iT . (See S. Mander-
brojt[9] and W. Matsumoto[10].) Thus, for a  separative {M,,} and  L„= n!, we can
construct a true symbol of class {M,,} from a formal symbol of class {M„, n!}. (See
L. Boutet de Monvel and P. Krée[3], L. Boutet de M onvel[2] and W . Matsumoto
1

The number x  is called the order of the formal symbol a and denoted by ord a.
When a 1 = 0  for 0<  i o

 — 1 and K — i o  is called the  true order o f  a  and
denoted by true ord a .  The order of 0 is posed —00. We set S'{ M„,L„} (0)={ the
f s . 's  o f  class {M„,L,}  o n  0  of  order x } , S 'k ,(0)={ the m .f s.'s o n  0  o f  order K },

S k 0 )={ the  h .f s .'s  o n  0  o f  order x} and S{M„,L,,} (0)= U,,11 ,5 {̀M. , L , }( 0 ), etc.
A s  o u r  c o n s id e ra t io n  is  c o m m o n  to  e v e ry  s p a c e  o f  fo rm a l sy m b o ls  of
ultradifferentiable class, we simply represent it by S " and S .  For the holomorphic
and meromorphic formal symbols, we always regard (2.2) as a special case of (2.1)
and replace 14'1 b e lo w  b y  J .

2.3. P roduct. We consider the product of functions in  this subsection.

Proposition 2.3 (P ro d u c t) . L et c[k o ] be  that in L em m a 2.2 f o r k . 2.
( I )  I f  th e  followings are satisf ied on a compact set K  by positive constants R and

C , (j= 1, 2)

Ifi(x)(.)1

the product o f  f  a n d  f 2 satisfies
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kf ,(4 f2(x ))(.)1
where a EZ 1_,..

(2) I f  th e  follow ings are  satisf ied o n  a  conically  com pact set F  b y  positive
constants R, R ', C p  real num bers x i  an d  n on n ega t iv e  integers i  ( j=  1, 2):

(2.3) la1nt,x,6)1 CfR''Rlai+,131 m

the product o f  a , an d  a 2 satisfies

(2.4) kal(t,x,6)a2(t,x,6))a

< c[3] 2 C, C2 R

where tr EZ I
+

+ 1  and  gEz 1„. ( W e can replace "3"  by  k0> 3 in (2.3) and (2.4).
However, later on w e use only  the above form.)

P ro o f  ( 1 )  Applying Lemma 2.2 (2), we can see the following :

l y . ,(xv2(x »,a)i c,c2Rialm,a,_L
'

E )-M1.1-k.1111."1-k. 
a -I- a"= a (  œ ' k.

< c [k ] C, C2R1alMi ad-k. •

( 2 )  The proof is similar as that of (1 ) . We group i's into two cases 1) and 2)
i <4, and further 1) into i) 3 ( j= 1 , 2), i, <3 and i 2 3, 3  and i 2 <3 and
2) into ii') i, <3 and i 2 3, iii') >3 and i 2 <3 and iv) i <3  ( j=  1, 2 ). In case of i,
= i 2 =0, the proof is just same as that of (1 ) .  (See also the proof of Lemma 3.1 (1)
in Section 3.)

2.4. D iv is io n . Under our Assumption, B{MJ R ( K ) is not closed on the division by
non-vanishing element. In fact, taking 1= 1, K={1.xl< 1} and f  (x)=2 —  x, we have
1.<1f (x)1<3 on K , f ( ,)(x )=  1 and f o (x )= 0  for n _> 2 . Therefor if we take Ce = e  ,
we have If(n)(x)1<C,e"n! for e <1/3 i.e. f  ( x )  belongs to B{n!},(K). However, as
max.,EK1( 1/f (x))(ol = n ! for arbitrary n , l/ f(x )  does not belong to B{n!} R (K )  for R
< 1 .  Further, even though If„,(x)1< C,8"(n - 2 ) ! ,  1 / f(x ) does no t be long  to
B{(n - 2)! },(K ) .  O n the other hand, under our Assumption, the division by non-
vanishing element in  B{M„} R ( K ) belongs to the class replaced R  by another one.
(See W. Rudin[19].) We give a proof of this result for the case of B{M,-k.}R(K) in
this subsection.

As we see above, in the real analytic class, we cannot keep R  by the division.
Never-the-less, every Gevrey class B{nr} R ( K ) (s> 1) is closed on the division. We
prove this in  Appendix.

Proposition 2.4 (D iv is io n ) . Let c [ k 0 ]  b e  th at  in L em m a 2.2.
(1) W hen f  (x )  satisf ies the following
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(2.5) If (x)(.)I < on K,

and

(x)I c o  on K,

it follows that

(2.6) 1(1/f (x))(a)l /c.)R(1) Mlar - k. on K,

where R(1)= c[k o ] CR/

(2) W hen a ( t ,x 4 )  satisfies the following

(2.7) I an( t,x,6)1 < on I;

and

la(t,x,6)1 C.161" on F, ( c , ,> 0 ) ,

<

it follows that

(2.8) 1(1/a(t,x,6))CO < ( 1/ c)R ( 2 )1a1+1P1M1.1-3431-314.1- ' - '6' on F,

where R(2)=c[3] 2 CR/c m.  ( W e can replace "3 "  by  ko > 3 in (2.7) and (2.8).
However, later on we use only  the above form.)

P ro o f  ( 1 )  We show this by the induction on k = lad. Let us set g(x)= 1 I f (x ).
1) Case of  k = 0 . As 1 f (x )g(x ) 1 c.19(x)1, (2.6) holds for k=0.
2) C ase  o f  k > 1 .  We assume (2.6) holds fo r arbitrary a" with la"1< k and
consider the case of la = k.

As

(  a
,w(x)(r,0  =  (x)g(x))(a) E .+ a = a \  t r , )

f (x)(a

by Lemma 2.2 (2), it holds that

If (x)11.9(4a)1 E a "=  ir r i I (  aa  ' )1
f  (x ) ( . ' )1 1 g (x ) ( e , - )1

<  ( c  c m )(R / R (0)R ( 1
)1' 111461-LE . ,+.- ,1 .1 , i (  a  ,) M i al - k *M i ""i - k 'a

R(1) M _ . .

This shows that (2.6) also holds in case of la l= k .
Thus (2.6) holds for arbitrary a.

( 2 )  This is shown by the same way as the proof of (1).
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We denote the inverse matrix of a  matrix F  by (F ) '.

Proposition 2.5 (Inverse matrix).
(1) L et F (x ) be an  N XN matrix whose entries satisfy  (2 .5 ) . I f  idet c,,, >0,

there exist the inverse m atrix  (F (x ) )  1=(qP (1), p ,,i N  and positive constants C,
and  c(1) determined by C, cm , N  and  k0  such that R I = c(1)R and

le(x)(col on K.

(2) L et F(t,x,4) be an N X N matrix whose entries satisfy (2.1) with i =0.
I f  det F c  4 1 ' (cm> 0 ) , there ex ist the inverse m atrix  (F(t,x,4))

(qPg(t,x,4),„,,, N  and positive constants C2 and c(2) determined by C, cm  and N
such that R2

=  c(2)R and

on r,
( cr E z i++i,

P ro o f  The inverse matrix (9Pg), p , q t.4 of F is given by 91 q=z1,/det F, where A q p  is
the (q, p)-cofactor of F .  Then, by Propositions 2.3 and 2.4, (1) is evident. (2) is also
obtained by the same reason.

3. Operations on the operator product

I n  th is section, w e give the  results o n  th e  form al sym bols by th e  operator
product.

3.1. Fundamental inequalities (2). W e define th e  operator product o n  S  in
Subsection 3 .2 . Corresponding to it, the following is the key lemma on the opera-
tions on the formal symbols..

Lemma 3.1. Let be a positive constant greater than or equal to 2 .  There exists
a positive constant c 0  and  the  followings hold.
(1)

(3.1) E r ( k  ) ( P
( i-3 ) !  

0 5 j< k j q )  (ii - 3)!(i2 - 3)!r!

(i,-1-1-3)!(i 2 ± k — j± r- 3 ) ! ( i ,± q ± r- 3 ) ! ( i 2 ± p— q-3)! <  c o .(i+ k —3)!(i p — 3)!

1gPqn t ,X 4 ) 1
2C  R 21a1+104 , 4  3  • 10L

(2.9)

(ii + j - 3)!(i2d- k — j + r - 3 )! ( i,± q ± r - 3)!(i,± p — q - 3)! <  c o .(i k  — 3 )!(i +p -3 )!
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:

( i - 3 ) !  
E a ' - Fa'=or,fl'+#"=fi, h+h - Fivi j

iA )
6 C ' f lf i  ') — 3)!(i2 — 3 )!Y ! •

M ic H a rl - 3-M i d
- iald - ivi - 3

L
ic H fil+ iv H 3

L
i?±113"1

- 3  <  c o .

#'-hr3" - fi, 4±i2+1y1=i, r R i— ''— r (  
a , X .
a / 3 ( L i 3 )!(/ 2 3 ) !y ! •

114 61-61-3A 6-Hal+iy1-3 1, i,+1,51+1,1-3Lh+18"1-3 <  c o .
M

P r o o f  ( 1 )  W e group i 's  in to  tw o  cases: 1) and 2) i 4.

Case 1) 5 .  W e further group these i 's  in to  four cases :  i) i 3 ( j= 1 , 2), 1 <
2 and i 2 3, 1 >3 i 2

. 2 and iv ) i ./ 2 (1= 1, 2).

i )  i  > 3 ( j=  1 , 2 ) . When 1 = 5, this case is em pty . T aking  k0 0 in  Lemma 2.1 (4),
we have

<

th a t is,

k\  (i 1+ j - 3)!(i 2 + k — j+  r---3 )! <  ( i 1 - 3)!(12+r - 3)! 
( i+ k -3 ) ! ( i - 6 ) ! ( i+ k -5 ) ( i+ k -4 ) ( i+ k  —3) •

By the same way, w e also have

( 1 3 \( i i + g + r - 3)!(i 2 + p — q - 3)!  <  ( i i +  r - 3 ) ! ( i 2 - 3 ) !  

\q (i+  p -3 )! ( i - 6 ) ! ( i+ p -5 ) ( i+ p -4 ) ( i+ p  —3) •

T herefore , by  the  re la tions i +k —3> i —3, 1 + k - 4 > k + 1 ,  i+ p - 5 p - F 1  and
(i, ± r — 3)!(i 2 + r — 3 )!< ( i- 6 ) !r !  (Lemma 2.1 (1)), we have

the left-hand side o f  (3.1)

(i — 5)(i —  4)(i —3) 
( i+ k -5 ) ( i+ k -4 ) ( i+ k -3 ) ( i+ p -5 ) ( i+ p -4 ) ( i+ p  —3)

1 
.

05j5k, 05q5p, h-l-i2-1-r=i (1 +  k -4 ) ( i+ k - 3)(i± p —5)

1 V i k  N i p  E i - 3 2—r

(k +1)(p+  1)(i - 3 )  L ti= 0 44-i y =0 = 0

(3)

(4)

< 2.
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i i .<2 and i2 >3. Taking 1(0 =0 in  Lemma 2.1 (4), we have

(

k i - 3 i +  k —3
j ) ( i 2 + r- 3 ) ii +j

and

( 11 C - 3 ) C + 1 3 - 3q  i 2 - 3 ii + q + r).

By the relations (i 1 + r)!( i 2 + r - 3)! (i - 3 )!r! (Lemma 2.1 (1)), (i1 - 3)!=1,
and ET=0 1/(J-1) ± (j) + =3, we have

the lef t-hand side of  (3.1)

2 
.< ER

 ' (i 1 - 1- j - 2) ± (i i + j - 1) + (i i + j) + (i i +q - kr - 2) + ( i, - -F- q - kr - 1)+ ( i ck q 4 - r) +

< 2

V I I < 'V 1 2

j= 0 1 )+ U ) q = 0  ( q - 1 ) + ( q ) +i , = 0  L ,= 0
 2

< 108.

1, >3 and i2<2 . In this case, (3.1) is provable by the same way as in Case

iv) if .<2 (j=1, 2). As i1-kr=i—i2>3 and i 2 ± r= i — i 1 >3, applying Lemma
2.1 (4) with k0 =0, we have

( k V  i — 3 k— 3
W i 2 - F r - 3 )  ( i 2 + k — j± r-3 ) '

and

(P i - 3q ) ( <  i + P

By the relations (i 1d-r-3)!(i 2
-1- r - 3)!<(i - 3)!(r - 3)! (Lemma 2.1 (1)), (i 1 - 3)!=1,

ii !<2 (j= 1 , 2) and ET=0 1/(j - 1)+ (j) + =3, we have

the lef t-hand side o f  (3.1)

4
J - 2 ) + (i ,-Fi — 1)+(i 1+1)+(i2+ p —  q - 2)+(i2 -1- p — q - 1)+(i2+p - 0+

< 4

'Ç l l c

Z—Ji=o —  1 ) + U) ± q = .  (q  —  1 ) + ( q ) +h = 0 r=0 2

< 216.

Thus, we obtain (3.1) in Case 1).
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Case2) i 4. W e group these  i's into three cases :  ii') i 2 and i 2 3, iii') i 3 and
i2 < 2  and iv ') i1 <2  ( j=1 ,  2).

The calculations in the cases ii')  and are same as in the cases and

iv') i 1 <_2 (j = 1, 2 ) .  As

(i1 + / - 3)!(i2+k — j + r - 3)!  <  ( j -3 ) ! (k —  j - 3)! 
( i+ k -3 ) ! (k —3)!

and

(i, ±  q - F  r-3 )!(i 2 -F p—  q-3)!  <  (q -3 )!(p—  q  —3)! 
(i+  p -3 ) !—3)! (P -3 ) !

by the relations (k — h) + / (k — j — h) +  <(k — h) + I (k /2— h) + < 2{1 +(h/(k —2h) + )}<
2(1+h) (0< j<k /2, 0 < h < 2 ) , (i —3)!=(i 1 -3 )!=  1  ( j= 1 , 2) and E7=0 14 / - 1 )+W+
= 3 , we have

the lef t-hand side o f  (3.1)

< E k -r ( k  — 2 ) + (k —1) ± (k ) +  

(j —2) + (j —1) ± ( j) + (k — j —2) + (k — j —1) + (k —

2)+ (p —1 )+(P)+ 
(q - 2) + ( q - 1 ) + (q) ± (p — q - 2) + (p —  q —1) ± (p— q) +

< 4 (2 33!)2
1 P / 2 1_

-  
1

)+ W +  
L i

q
=° (q —1)+(q)+ 2

■
1

/1
=

0  2 m i r = 0
2

< 2 1135.

Thus, in Case 2), also  (3.1) holds.

(2) By the inequality

<  EE i r4 - h ± r= i , r=1 r=0

Z■1 4=0 R

(2) is obtained by the same way as (1).

(3) and (4) are the immediate consequences of Lemma 3.1 (1) and (2) respectively,
applying Lemma 2.1 (2), (3) a n d  (6 ) . (See also the proof of Lemma 2.2 (2)). 0

3.2. Operator product a n d  in v erse . Corresponding to the asymptotic expansion of
the symbol of the product of pseudo-differential operators, we introduce the operator
product of formal symbols.
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Definition 3 . Let a=E;10 a  and b=E7-0  b 1 be form al sym bols. W e set

(3.2) a O b =  E i = 0  c i , c1(t,x4) E h + i , ± 1 , 1 = i  11» aV)(t,x,6)bia(7)(4x4)

and call it the operator product of a and b.

The following is the direct consequence of Lemma 3.1 (3).

Proposition 3.2 (Operator P ro d u c t) . W e assume th at R '>2IR 2 a n d  that form al
symbols a l =Er= 0 a( t ,x 4 )  satisfy  the following ( j= 1, 2):

lagi(4x,6)I CT R' lM  + 1 - 3 L — 3 ) L ' o n  F,

( iE Z ± , aE Z I F
± ', f l E Z ) .

Then, the operator product a' 0 a 2 =E r- 0 a 1(t,x 4 ) satisfies

lan)(4x,4)1<c0C1C2R' lI  A d  i+61-3L i+1131-3(i — 3)! - '161"'± "z- o n  F,

( iE Z + , cyE Z I
+
+ 1 ,  f lE Z 1

± ).

Now, let us consider the inverse form al sym bol. For the inverse of a  as the
formal symbol by the operator product, we denote it by and for the inverse of
cio  a s  a  function by 1/a0 or (ao)

Proposition 3.3 (Inverse). (1 ) W e assume th at a form al sy m bol a=E r= 0 a 1(t,x 4)
satisf ies the estim ate (2.1) and

lao (t,x4)1 on r, (cm >o).
Then, the inverse a - '=E r- o bi (t,x ,6) satisfies

lb < C 3 R :Y R1
3' 1+1f il Mi+61-31,o n  I',

where R 3 = R (2 )= c [3 ] 2 CR/c m , 1:6=-(c 2
0 C1c„,) max {R ', 2/4 an d  C3

=
 C (2 /C m .

(c [3 ], co and R (2) are those in Lem m a 2.2, 3.1 and Proposition 2.4, respective-
ly.)

(2) Let .A r(t,x4) be an N X N m atrix  w hose entries satisfy  (2.1). If

Idet ./r0 (t,x4)I c„,16I" on F ,  (cm >0),

there ex ists the inverse Ilf - '(t,x ,6)=(h")1,,,,,N , h Er=o hli'l and
it satisfies

Ih/MNtx,6)1 mi+1.1-3Li+1,31-3(i - 3 )! - '161- "- i - I f l i  o nHal F,
(3.3) 

( iE Z ± , c rE Z I
+

+1 ,  gE z),

w here C2 an d  R2 are  those in Proposition 2.5 an d  R;=-(Nc0) 2 CC2 max {R',
2 1 4  and C;=N c0C2.
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As we need to make attention to  the choice of R5, we introduce the following
norm of a matrix A=(aP q (t,x4 )) 1 „,, q 5 N  with x  in R , i  in  Z+ , a positive number R
and a conic set F

=  max i p ,  q 5 ry  max a z y-, f l Ev, max(1,,,,)Er

I a Pq ((/:,;( x ,  
6 )1{R icri+101m — 3)! '161" - i- 1 /31-1 - 1

P ro o f  As the proofs of (1) and (2) are similar, we give only the latter.
(S tep 1) By Proposition 2.5, every entry of (./1(0) - 1  satisfies the estimate (2 .9 ) . As
(N o) i t s e l f  i s  a  formal symbol, we take the product of ./17. a n d  (N o ) '. Let us set
KO (No )  =  F=E7- 0 F i. F o  becomes IN . By Proposition 3.2, F i satisfies

11F1110,4,(2)R,r C"R" I ,

where C"=Nco CC2 a n d  R"=max{R', 21(R2) 2).

(Step 2 )  We set F - '=  G =E7, 0 G 1.  G o  is also IN . We show the following estimate
by the induction on i

(3.4) 11G 1110,4,(2)RJ,

where ,R = N c o C"R".
A s Go = (3.4) is satisfied for i =0.
Assuming (3.4) for i 2 < i ,  we consider Gi . By the relation Gi =

(1/ 7!)Fi,( 7 ) G„( ) a n d  Lemma 3.1 (4), we see

11G,110,,,,(2)Rx N 0 C" (R" / < 2 •

Thus, (3.4) holds for arbitrary i  in  Z+ .

(S tep 3 )  As ./V- 1 =(./r0 ) - 1  0 G , by Proposition 3.2, we obtain (3.3).

3.3 Block Diagonalization and Arnold-Petkov's normal form. In this subsection,
we consider the following matrix ;

( 3 .5 )  P(t,x,D„6) A  — .4(t,x,6), .4 = E7= 0 41(t,x,6) E  M N (S ')  (x N).

From now on, for simplicity, we assume tha t C  and R  in  (2.1) are greater than or
equal to one.

Theorem 1 (Perfect Block D iagonalization ). W e assum e that ev ery  entry  o f  A'
satisfies (2.1) an d  th at the eigenvalues U i d{A.k.i ( t , x 4 ) } 7 1  o f  .540 ( =, mk = N )
satisfies

lAki(t,x,6) —  k if(t,x4 )1> on F  (c > 0 , k * lc ',1 < j ‹m k ,1 -< i '

Then, for every point (t0,x0,60) in F, there ex ist a conically compact neighborhood
F", N0(t,x,6)=E7= 0i n  G L(N ;S ° (r)), Ari. =(h )isp ,,rs , and 2k(t,x,6)=E7=0 201
in  M ,,* (S "(r )), 2

ki
=

 ( b l
ic1)1 p, q 5 a ,  su ch  tha t
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fro 1( t,x, 0 P(t,x,D„6) 0 ./1(0 (t,x4) = C.)1‹ dPk ,
(3.6)

Pk(t,x,Dt,6) = 1m ,Dt — k(t,X4),

where .53ko has the eigenvalues {L ki (t,x,4")}71,. Further the following estimates hold

onIbM(t,x4)1 < C4K/ R I: 1HO m
i +1,31-3(i

3 ) ! 1 - Hfl1r ' ,1"-
(3.7)

le n (t ,x ,6 )1 ‹ 161 - " M  on r',
( i E z + , fiEZ'+),

where the constants C z CZ R 4  and 1:?:, are determ ined only  by  P.
In case o f  meromorphic f orm al symbol, Jr. and .B k belong to G L (N ;4 (0 ))

and  M „,,(S (0)), respectively.

P ro o f  Essentially the proof is similar to that of Proposition 3.3.
(S t e p p  The projection to  the generalized eigenspace of {A.k,(4x,e)}7, is given by

(3.8) Pk(4x4 )-=  
2

7 r 7
1

- 1 Sc (r/N— J40(4x4/161) - I dr,

where C is a simple closed path encircling only {2Lk i (t,x4)}71,.
As min rEc Idet(2- by Proposition 2.5 (2), we have the esti-
mate:

4114.1)1->, c„,>0,

(3.9) 11(TIN—.40(t,x4/ 161)-1 10,0,c(2)R,P C2.

Let us take in k linearly independent column vectors of P k  at (to,x040) (1<k <d).
./Vo ( t ,x 4 )  is constituted by them  and  satisfies the  estimate (3.9) replacing C 2  by
another e z .  As det ./ro does not vanish on a conically compact neighborhood of
(t 0 ,x 0 4 0 )  in  F, we have Idet cm' >0  o n  F '.  In case of meromorphic formal
symbols, there exists a  conic subvariety Z' and det.N.

0* 0  on  r\ E '. For F 'c r \ ' ,
applying Proposition 2.5 (2) once again, we obtain

(3.10)M  (11(0(4 4.)) - 1 110,0,r( 2)c(2)'R,r

It is seen that ( A ( 0 ) - 1 , 5 4 o A r o = e l k d - B k o ,  w here  Y3k0 h a s  eigenvalues
(l < k  <d ) . Thus, by Proposition 2.3 (2), we have

(3.11) 11(2ko( t5x, 6))11,60,c(2)N2YR,p' C'.

Let us set

33 =  (Afo) l oPo ./1(0 =  / N D, ±  (K J -  0 Xo(t) (1 (0) 1 0  .54 0  Jiro
(3.12)

=  / N D, — 33,

where .730=Cli d.8ko and /17.0(1)= A (J (0 ) .  Regarding JV-
0( ,) as the second element of

a first order operator, the following estimate follows by Proposition 3.2.



Perfect diagonalization o f  systems o f  ultra-d. class 557

(3.13) 11(53/(t,x,e))11
where R"=max{./r, 21c(2) 2c(2)'R 21.

(Step 2 )  L e t u s  seek  fo r ./r(t,x 4)=E 7=0,/r1  i n  GL (N ;S °(r ) ) ,  So= iN and
2k(t,x4)=E7-0 Y 3 k i i n  M ,( S " ( r ) )  ( 1 < k < d )  for which the follwing relation
holds :

(3.14) /V' 0 /3  0 =  G i < k < a P k ,  P k  = 2 k •

The relation (3.14) is written as

(3.15)
( D 151c5d 2 ki ( 2 0 - i ) = Eh + ,2+ ,y,„ 0<4<4

 < i y ! . R. h ( - 4 - 4 & ( y ) )

where .,30 = e , „ , d 2 k o .  Let us decompose Jr; d + ; i
1Ye ic:riareisp y lo ::: : :  to (DI 5 d 2 k 0:+

1  4-7 
y 

(y)

= (./7. " ) . )15p, q 5 d ,  A —(.73 )15p, q5d•

We take A 7 k k >  =  0  for i 1 and l k d. The relation (3.15) becomes

1 (3.16) . ( y )  /rt. v < k k >
12(0 17 1

<Pq>(Y )55qh(y )

- E 4+ &-f-ly1=i, &(y) -I
1  r  „

<Pq> ( p q ) .LB Nv'N

Lemma 3 .4 . For i> 1 ,  C5
=  C" R" , C-

5 =M c[3] 2 C" I?" (M =max i ‹ p , d { m  n  q }),
R 4 =  c(2)c(2)' c(2 )"R  and a positiv e number R'4 determined by P ,  the following
estimate hold :

IY3k i i R , r ' ,
(3.18)

C 5 1?  •

P r o o f  We denote the transposed matrix of A by AT. L e t A = (a 4 ) be a k X 1 matrix
and B  be an m X n  matrix. We set vec A = (a l l , azi, "•, ak l , a i2 ,  • " ,  a k 2 ,  • - ,  alb •••,
a k l ) T  a n d  A 0B=(a,B)15151c, km X 1n matrix and call them  the associated
vector of A  and the Kronecker product of A  and B, respectively.

By (3.16) and (3.17), 2k, and J(7̀ Pq> are determined step by step on i, respective-
ly. Especially, on J r  q >  , we need solve the equation 2,,o X — X 2q 0 = H, where X
and H  are an unknown and a given m, X mg  matrices. This is a linear equation on
vec X  and is written as the Kronecker form : [(.1 O2p0) — (53q

T00/avec X =  vec H.
Its coefficient matrix has the eigenvalues (See
R.A. H o rn  a n d  C.R. Johnson  [4] 4.4.5.) T h en , 11[(/„,,,CD2,0) — ( 2,17-00 / ,)]

iz< i

(3.17)
po q> Pq> 2 q0 =  E
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II — x,0,c(2)c(2)'02)"R,r C ; holds by suitable constants e(2)" a n d  C '2  b y  Proposition 2.5
replacing N by m p m g .  We set R4 = c(2)c(2)' c(2)" R.

C ase  o f  i = 1 )  By (3.16) w ith  1=1, 53k1=
j 3 < k k > .  

Then, tak ing  C 5=  C"R", the
former of (3.18) holds for 1=1 because c(2 )"> 1. The right-hand side of (3.17) with
1= 1  becomes — " >  and the latter estimate o f (3.18) holds fo r i = 1 for
Mc[3] 2 C"C;./2" by Proposition 2.3 (2).

Case o f  1> 1 )  We assume (3.18) for r  less than i.
First, we consider Y3k i • We divide the sum in the right-hand side of (3.16) to P :

12=0 and 1 2 : 1 2 > 1 . O n P, as ./V7),) =  0 for y*O , we have I'= .,3 k k >  and

11/111,3,R.,r

On /2 , as 12 < 1 -1  in the right-hand side of (3.16), by virtue of Proposition 3.2 with
R - =max{R", 21c(2)c(2)' RR 41, we have

11/2 11,,,Ra- N co C"C;(R"71r4 )R r ' .

Thus, we arrive at

(3.19) ( C"R" Nc 0 C"C'5 )(R"/

As we take R ( 1 - FMNc[3] 2 c 0 C 2"C")R", the former of (3.18) holds also for i.
Now, we consider ./(7 Pg> .  On the first sum in  (3.17), we divide it to I ' :  i 2 =0

and /4 : On
 j 3 ,

 as i - 1 ,  we have

mco CC"5 (R "/ K4

where m is max i k‹d m k .  O n /4 , also as i i —1, it follows that

11/4 11x4Rar MC 0 C5 C5R ,r 1

Thus, we arrive at

1113 ±/ 4 11„,i,R.,r m co(C 'R "  ±  C5)/ 1V ,{  • C R r I

The second sum has the same estimate as (3.19).
On the last term in  (3.17), we have

C(R3-"K ;i-1.

Therefore, setting the right-hand side of (3.17) as 1(1), we can see

(3.20) 11/(1)1L,R.,r ( C(5)/K4 ) C ;R 1 - 1 ,

where C (5)= [c o (mC'±NC")± C"R"/ C'5 ]1?"+ m c. C5+ 1. Finally, we obtain

(3.21) 11/(7 Pq>110,i,R.,r' (Mc[3] 2 CX(5)//?;

and  tak ing  ./?:= [Mc[3] 2 c 0  Cam C'±N  C")+  l]R '"±M c[3] 2 C"(mc a  C"R"-F 1), the
second estimate of (3.17) holds for i.

Then, (3.18) holds for arbitrary i  in N and Lemma 3.4 has been shown. 0
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(Step 3 )  We se t C4 =max{C', C 5/R4 } a n d  C 4 =Nc 0  m a x { 1 ,  ( / C .  A s X .=
K 0 0 i7 , w e obtain the  estimate (3.7) and  then Theorem 1.

Now, we give a norm al form of Arnold-Petkov of systems in  ultradifferentiable
classes.

Theorem 2 (N orm al form of Arnold-Petkov). W e assume that every  entry  of  .4
satisfies (2.1) and that each eigenvalue X k (t ,x 4 ) (1 < k < d ) o f  .4 has the constant
multiplicity m i,,, th at  is, EZ-, ink=N and

1,14(t,x4) — A. k
,(t,x4 )1>  c in 0 (c > 0 , k *k ')

Then, there exist finite disjoint open conical sets {0, }, such that U,O, is dense in
O. On each 0 ,, there exist natural numbers d k an d  {nk,} L I  (EILI nig = m k ). For
every point (t 0 )  in  0 ,  there ex ist a  conically com pact neighborhood F ,

./V° (t,x4)=E7= 0 IV; in  GL (N ;S °
(F)) and 6k(t,x ,6)=E7=o ek l in M „,AS '(F )), kl

= C i nkpXnk g  such that

(3.22) I(t,x4 )  O P (tx ,D „6 )  O Jr  (t,x ,6) =  — I5 k 5 d P k

fik (t,x,D ,,6) = I„„(D, — Àk(t,x4)) 6k(t,x4 )

0 1

k o  =  '0 1 5 jS r a  (n k j )1 6 1 ',  J (n )= : nXn

•

(p< q), 0 ( p > q )  f o r i >1.

The entries o f  IV, a n d  k , satisfy  the same estimates as (3.7) on P, replacing
C 4 , C q , R 4  and k 4  by other positive constqants. They are also determined only by
P.

In case of  meromorphic form al symbol, {0, }, is composed by only one element
and 0,= 0\E' f or a subvariety i r  and  6 k belong to GL (N; S ',,,f ( 0 )) and A 1„„
(S ( 0 ) ) ,  respectively.

P ro o f  The proof is almost same as that of Theorem 1 and all estimates are of same
type replacing the  constan ts by other ones. F o r  th e  simplicity, we u se  th e  same
notation.
(Step 1) We can find finite open conic sets {Okh}h such that the Jordan structure of
the generalized eigenspace of A . k ( t , x , 6 )  is stable on each 0 kh and each U h O k h  is dense
in  0  (1 < k < d). We can find Jordan chains on each 0 kh using only the addition,
subtraction a n d  m u ltip lic a tio n . (See Propositions 2.4 a n d  2.5 in  W . Matsumoto
[12].) Let us set {0 1 } { fl , S k S d O k h k } (  hL, • -, hd). Then, for every p o in t (t0,x0,60) in  0,,
there exists a conically compact neighborhood r on which we can find invertible Aro
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which satisfies (A( 0) - 1 .540.N0=C d(iik(t,x,6)/m„ - I-  60), 6 k 0 = 0 , d,l(n k .i)1 6 1 x  and
KCI and ( A( 0) I satisfy similar estimates as (3.9) and (3.10), respectively. We set (Afa)
O P  01Y0 = fi= 6. g i satisfies similar estimates as (3.11) for i = 0  and (3.13)
for on F, respectively.
(Step 2 )  Let us seek for . / r( t ,x 4 ) = E7_, c,./r i in  G L (N ;S ° (P)), o = IN and 6 k ( t ,x 4 )
=E7=06ki in  M . , ( S 'a l )  ( l <  k  <  d ) .  We decompose Jr, a n d  e, corresponding to
e i , k , d 6 k o :

= .1
P q > )15 p, q5d• =  ( 6 " > )15p,

We have the relations

e k i  _ ( 6kois„- ;<kk>  _ j r <  k k >  k o )

(3.23) = - E h+0 - 1- 1y1=i, 0 < iz< i 

1< k k > ( , ) 6 k i z ( 7 )

( e  (y) i f7Y \ < k k > 17<k k >+ <i "  1 2 (  y ) ) i —  x ( t )

if7<pg> / < p q >  yeie EpOdY q0 h+i2-1-iyi=40<h<i3O<i2<i

I
y !  

[ (y)irbtyd<P4> ( p * q ) .
12<i 

We can show the similar estimate o n  6 k ,  and ./rPq >  a s  in  Lemma 3.4 also by the
induction on i .  In this case, as if i' k k >  does not vanish, the differences from Lemma
3.4 are that we need to estimate the first sum and the third element in the right-hand
side of (3.23) and that the decision of 6 k , and . / r k k >  . Let us decompose ./r kk>, ek ,
and the right-hand side I-W k >  o f  (3.23) corresponding to 6k 0=@ 1‹,‹d,J(nk ,)161':

6 k i = ( 6 < P g > )! S p , qS da =  (C l/1 'g  ( U M ) IS  u S P b p ,  IS v nk q

i r k k >  =  ( i r < P q > ) 1 5 p , (n /f Pq (U •V ))1 „S n ,,, 1
5

1, , ,ka •

H <kk> 
=  ( W < P q > )15p, =  ( 11/fP q (U•V ))15115,1,, 1<vn,.., •

The relation (3.23) becomes

(3.25) 6 '̀ `Pq > — (.1(n k p )./r if < P q > J r i l‘< " ›  J ( n k g ) ) 1 e  =  1 1 1,5 < " >

For p<q , this has the solution

{ 0 (1 < u < n k p - 1 )ePq(u,v ) =
E".7=10  0 1)q (nkp —  w, v — w )  (n= nk p),

(3.24) - z
y !

P q >(7 )6 0 ( ,)

and
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' O( u = 1 )

En — 11  l eP q  (14 — —  1 , V  (1
)
)1 n< n

where v runs from  1 to  nk,, and for p>q,

eN u,v)=
{ E';:l- ouhl/Pq(u+w, i+w) (v=1)

o (2 v nkg),

and

/1 Pq(u,v) =
v+w+1)16h

O( v = n k g ) ,

where u  runs from  1 t o  nkp.
Using the above expressions of the solution of (3.25), we obtain the estimates of same
type as (3.18).

(S tep 3 )  The last step is just sam e as the proof of Theorem  I.

3.4. Normal form  o f s y s te m s . A s w e show ed  in  W.Matsumoto [12], applying
Theorem 2 and changing order by /,14 /N_, or /re i -,-,161 , ( >0) finite times, we
arrive at the fo llow ing theorem . For the simplicity, we assume the differentiability
condition on {M„} and { L , } .  Under this, we can say always the true order is its order.

Theorem 3 (Normal form of system in  ultradifferentiable class, [12]). W e assume
that ev ery  en try  o f  .4  satisf ies (2.1) a n d  th a t  th e  e ac h  eigenvalue A. k (t,x4 )
(1 <k < d) o f  4  h a s  the constant multiplicity mk . Then, there ex ist f inite disjoint
open conical sets { Oh} ,, such that U 1,0 1, is  dense in O .  O n each  °h  there ex ist
natural num bers d k a n d  {n k ,} f , (  f I  n k, = m k ). For every point (t0,x0,60) in
O h ,  th e re  e x is t  a  conically  com pact neighborhood F ,  .Ar(t,x4)=E7- 0 .Ar, in
G L (N ;S (F )) an d  oN ((,X ,6 )

=
E7=0 Zkp in M ,(S x (F )), such that

./11- 1 (t,x,6)0 P(t,x,D,4)0 .111 . (t,x,e) = 0 ,

Qki(t,x,D14)=I,,jDr —  A4(1 -,x 4 )) Zki(4x4),

(3.26)

*•••  * )
0 kj o —  (n D kp = (i > 1).

T he entries o f  ./V, an d  oDk j , satisfy  the sam e estim ates as  (3.7) on F, replacing
C4 , C ,  R4 an d  It, by  other positive constants. Here, on Jr and  J r  ' , the orders of
those entries m ay  be positive and the pow er i n  (3.7) m ust be replaced by
Xo

—
i
-

1131 f o r  a  suitable  non-negativ e  num ber c). T hese constan ts are  also
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determined only by P.
In case of meromorphic formal symbol, {0„}„ is composed by only one element

and  0 ,=0\E ' f or a subv arie ty  . / I r  a n d  g) kJ belong to GL (N ;S  m (0 ) )  and
M „„(S (0 )), respectively.

Remark 3.1. Of course, the above dk , n k p  O h  and Z' are different from those in
Theorem 2. Further, in  Theorem 3, dk a n d  n k j o n  each O h  may be different each
other.

Now, we consider the formal symbols which are partially ultradifferentiable.
F o r  th e  sim plicity , w e treat only  form al sym bols o f  C ° '  c lass o n  t a n d  o f
ultradifferentiable class on x.

Definition 4 (Formal symbol of class { co, M„, L „} ). We say that the formal sum
a(t,x ,6)=E7=0(11(t,x4) i s  a  fo rm al sym bol o f  c la ss  {o o , M „, L „) o n  0 =
U t E [T„ T,1{t} X 0 ( t ) ,  0 ( t )  is  an  open  conic s e t  in  T*12.1,  when there exists a  real
number x such that
1) a 1(t,x 4) belongs to C ( 0 )  and positively homogeneous of degree x— i o n  6,

( ie Z + ).
2) For arbitrary conically compact subset F in  0 , there are positive constants { C I

R  and R' and we have

la i n t , x , e ) 1 CaoR'i R Ial+1,61m i+ 1 0  3 L i +1,613 ) ! - 1 1 4 - r i - 1 / 3 1

(3.27)
on I', (iE Z + ,  a E z + H-1 , gE z + ),

w here a= (ao, a').

We consider also holomorphic formal symbol and a meromorphic one in C -  on
t.

Definition 5 (Meromorphic and holomorphic formal symbols of class on t).
I. W e  sa y  th a t  the formal sum a(t,x,6)=E7= 0 a 1 (t,x4 ) is  a  meromorphic formal
symbol o f  C -  c lass o n  t  o n  0=U  r E[ T ,, Td{t} X 0 ( t ) ,  0 ( t )  is  an open conic set in
T *C , when there exist a conic subvariety (t) for t  in  [T ,, T2 ] and a real number
X such that
1) For each fixed t, a , (t ,x 4 ) is meromorphic in  0 (t ) ,  holomorphic in  0(0\1(0

and positively homogeneous of degree x— i on  6, (iE Z ± ).
2) F o r arbitrary conically compact set F  i n  U, E [T,, T,i{t) X(0(t)\M (t)), there are

positive constants IC „  R and R' and we have

I a 1 ( t ,x ,4 -)1 < G oR' i R61+1131 (i+ I 3)!Ii 3 ) ! t i  3 r 11611"-
t

(3.28)
o n  F, ( iE Z +, aE Z ± I ± `, I3 Z+

1 ).

II. The formal sum E71 0 a, is called a holomorphic formal symbol of C ° class on
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t on  0 =  U t e[ T ,, T ,i{t} X OM when it is a  meromorphic formal symbol with 1(0=0
for arbitrary t  in  [ T1, T2].

W e denote  th e  s e t  o f  th e  form al sym bols o f  class {co, M ,,, L,} o n  0 =
U teirr, ni{t} X 0 (t )  by  C '( [T i ,  T2] ;  S {M," L ,)(0 (t ) ) ,  that of the meromorphic for-
mal symbol o f C -  class in  t by  C '( [T ,  T 2 ]  ;  Sm(0(t))), etc.

We regard the estimate (3.28) is a  special case of (3.27).

Theorem 4 (Normal form of system of C 's class on t and of u.d.'ble class in x). We
assum e th at  e v e ry  e n try  o f  .54 satisf ies (3 .27 ) a n d  t h a t  th e  e ac h  eigenvalue
/14(4x4) (1<k<d) o f  .40 h as  the constant multiplicity m l,. Then, the assertion in
Theorem 3 also holds except the estim ates. For arbitrary  i 0  in  Z + ,  the entries of
./V, and  A i , satisf y  the sam e estim ates as (3.27) on F f o r 0 < i< i 0 , replacing C„„
R  and  R ' by  other positive constants. T hey  are determ ined only  by  P  and  i..

In  case o f  C - ([TI, T2]; S 114(0M)),  {Oh}  becomes the following ;  There exist
f inite disjoint open sets {oh }  in  [T i , T 2]  su c h  th at U h oh i s  dense in [ T,, T2]  and
ex is ts  a  subvariety 1(0 i n  0 ( t )  f o r  e a c h  t i n  U  h O h .  O h  is  g iv en  by
U ,„ ( t )X (0 ( t )\ 1 (t ) ) .  Further, .Ar and A y  belong to G L(N ;C - ( U o h ; Sm ( 0 (t ) ) ) )
and M , (C ' s ( U oh; S V O (M )),  respectively.

P ro o f  Applying Theorerm 2 and changing order by W=/,.14- 1- eIN -r or =ireiN_,
14-1- (iii > 0 , 1 j< r )  alternately, we arrive at the normal from. We can assume that
{C,} is logarithmically convex and non-decreasing. Let us set g = (r  + 1 )i o+ E ',=,/,u,
and C,' = C„ + ,  for n in Z .  O n  each conically compact r  in  0, every entries of .54'
satisfies

o} R
, i R i.'h ifii m i + 0  

3L1+11-3(i - 3
) !

- 161 — t - I f i l

(3.29)
on [ T I ,  T d X F ,  ( iE Z + , a pEz+1).

After we transform P  b y  Jr ° i n  Theorem 2 , th e  entries o f  th e  transformed
operator satisfy  a  sim ila r estim ate  a s  (3 .2 9 )  f o r  0 < i< i o

- FE5=u4, replacing
C„,,,„i„,+, 0 1 by  Cmax1.- q % g'= ri 0 +E5.- .2( j — 1)j.4,. Further, after the transformation
by W I , it holds for 0< i< io  +E;= 2 ,u,. Repeating this r  times, the estimate of the
entries are like (3.29) for 0-< i i 0  replacing Cm,,,,6- q,0) by Cm.1.0-1., 0 ). At last, once
again we may apply Theorem 2  and the estimates of the entries in the normal form
of type (3.27) hold for 0 < i ‹ i 0 .

4. Appendix :  Product and Division, Reconsideration

From now on, we assume the following :

A ssum ption'. {(M „/n!')}  is logarithm ically  convex  an d  non-decreasing f o r some
s>1.

Gevrey weight ( n !')  and many more rapidly increasing { M„} than n!' for s>1
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satisfy this but {it!} does not. The following proposition is easily obtained by virtue
of Lemma 2.1 (8).

Proposition 4 .1  (Product (2 ) ) .  W e pose Assumption'. I f  t h e  followings are
satisfied on a com pact set K  by positive constants R and C 1,2)

Iff(x)(..)1

the product o f  f i  an d  f 2 satisfies

IV I)(x)f2(x))(.)1 esCiC2R IM1.1

where aE Z +
i an d  c , is that in Lemma 2.1 (8).

Further, B{M,} R (K ) is also closed on the division by non - zero element.

Proposition 4.2 ( Division (2) ). We pose A ssum ption'. I f  f o r some positive C, R
and  cm , f  (x )  satisfies the following on K

(x)(eol C R M i

and

If(x)1
then 11 f (x) satisfies

1(1/ f (O w !

f o r c's in  Lemma 2.1 (9), c '(s)=E c;,(c",.C /c„,)q /q ! ' an d  C'= c'(s)C  I c„,2.

P ro o f  We use the m ajorant. We follow the proof for the composed function in
H. Komatsu [6 ].  F or tw o form al sum  G3 (x )=E „,e z , , G x ' ( j =  1,2). We denote

<< G 2 when it holds that 10  G2, for a ll a . F o r  f  (x ) of C -  class, we identify
it with its formal Taylor expansion. Let us set a formal sum F(X )=E7,0 P„X "/ n!
of one variable X  and take arbitrary point x . in  K .  The relations Ifw(x0)1 F11
for a  in  Z +

1 is equivalent to the relation f  ( x ) < < F ( a = ,  (x i -  x 0 ,)). As

1 1 . f ( x ) - f ( x . ) ) q
f  (x  0 )11+ (f  (x)- f  (x  0))/ f  (x  0)} f  (x  0 ) L - 1 ,1=0f  ( x  0 )

cm c m )< <  11  qc . (F(X )- F(0))1x=xi-x .i+

setting the coefficient of X " as G„In!, we have 1(1/f (x))(a)I<G1.1.
Let us calculate the following

-  C ) q ( F ( X ) F(0))q = (   1  y( c,R, m„xiip!)q
g = 0  c„,
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(  c= 1 + YEq=i, cm/
M  

••• rt, p; I
13 1! A!!

A s  {(M n /n!s) 1 I } is  non -decreasing  by lem m a 2 .1  (7 ) and {(M ,/ n!)} is logarith -
m ica lly  convex, it is seen

Mn-14n  ) ( ' ' ' )/ ( "- q)- 1 <
p , !  - ( ( n - q + 1 ) ! '  I

 M,,,  <  M ,,_ ,,+ 1P i ! - P a !  
P ! ! ( n - q + 1 ) ! \ ( n - q + 1 ) !  I

<  M u ( q - 1 )!  (  A ! - - p a !  )s - 1

- n! A/4_ 1 \ ( n - q + 1 ) !

<  
M „ 1 P I ! * - P Q !  

- n !  ( q - 1 ) ! ' \ ( n - q + 1 ) !

On the other hand, app ly ing  L em m a 2.1(9), fo r  q > 2 , w e can see

p l ! " . p a !   y—,

E P , + - + P o ( n - q + 1 ) !  I

= 7 , - , " (p A n -9 + 2 -P IY s - in - a +  1 - PI  PAn - 9 + 3 - 13 1- 132)! 
p = i  \ (n -q+  1 )! ) I ( n - q + 2 - A ) !

q+ 1 p ,P q - A n - 1 3 1 - • • • - 1 3 0 - 1 ) ! Y - I
I j

c r i .

T hus, w e arrive at

C   )qV M „, M „ ,   <   M „  C  
q = \ —  p.+ ± P a =  1, ■ 1 A ! p g ! n! c m  z -lq= c)

c ' ( s ) C  M „  
- cm n !
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