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The Atkin inner product for Γ0(N)
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1. Introduction

Let H be the complex upper half plane and M the C-vector space of
SL2(Z)-invariant functions which are holomorphic on H and meromorphic at
i∞. The space M can be identified with the polynomial ring C[j] via j = j(τ ),
where j(τ ) is the elliptic modular invariant:

j(τ ) =
1
q

+ 744 + 196884q + 21493760q2 + 864299970q3 + . . . , q = e2πiτ .

On the space M act the Hecke operators {Tn}n∈N, and on C[j] too, through
the above identification.

A.O.L Atkin defined an inner product ( , ) on M by

(f , g) = constant term of f · g E2 as Laurent series in q = e2πiτ ,

where E2(τ ) is the Eisenstein series of weight 2 for SL2(Z):

E2(τ ) = 1 − 24
∞∑

m=1


∑

d|m
d


 qm.

Atkin showed:

1. The Hecke operators Tn are self-adjoint with respect to this inner product;

(f |Tn, g) = (f , g|Tn), ∀f, g ∈ M, ∀n ≥ 1.

2. The inner product is non-degenerate and the associated orthogonal poly-
nomials are connected to the j-invariants of supersingular elliptic curves.
(For precise statement, see the article [5].)
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Figure 1: Fundamental domain of SL2(Z) and ΩY

Atkin’s inner product is uniquely determined up to scalar multiple by the
self-adjointness of the Hecke operators and by requiring the value (f , g) which
depends only on the product fg.

From the self-adjointness with the Hecke operators, one may think the
Atkin inner product as an analogue of the Petersson inner product on the
space of cusp forms of positive weight. In fact, Borcherds, suggested by work
of physicists, showed that the Atkin inner product can be given by an integral
similar to the Petersson product.

Theorem (Borcherds [1]). We use the notation ( , ) as the Atkin inner
product, then

(f , g) =
1

vol(SL2(Z)\H)
lim

Y →∞

∫
ΩY

f · g dxdy

y2
, (τ = x + iy)

where �(τ ) is the imaginary part of τ ∈ H, �(τ ) the real part and

ΩY =
{

τ ∈ H

∣∣∣∣−1
2
≤ �(τ ) ≤ 1

2
, |τ | ≥ 1,�(τ ) ≤ Y

}
.

(See Figure 1.)

In this paper, we shall define a generalization of this inner product for
SL2(Z) to the one for cungruence subgroups

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 (modN)
}

.
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Then we prove the self-adjointness of the Hecke operators (Theorem 1) and a
theorem of Borcherds’s type (Theorem 2).

We note that, for cungruence subgroups, the self-adjointness of the Hecke
operators does not ncessarily determine the inner product uniquely. So Theo-
rem 2 claims the “properness” of our definition of the inner product. We shall
give our definition and theorems in Section 2. The proof for Theorems 1 and 2
will be given in Section 4 and 5 respectively. In these proofs, a transformation
formula of the Eisenstein series of weight 2 for Γ0(N) at i∞ playes an essential
role. Although it is derived by a standard method, we shall give a detailed
account of the transformation formula and related matters in Section 3.

In the final section, we study the new inner product from the function-
theoretical view point. In particular the representation theory of the holomor-
phic functional on the open Riemann surface.

2. Definition and main theorems

We start from the definiton of the Atkin inner product for Γ0(N).

Definition. Let M(N) be the set of modular functions for Γ0(N) which
are holomorphic on H and at all cusps except for i∞, and meromorphic at i∞.
For f, g ∈ M(N), we define “the Atkin inner product for Γ0(N) at i∞” by

(f , g)(N) = constant term of f · g E
(N)
2 as Laurent series in q,

where E
(N)
2 is the Eisenstein series of weight 2 for Γ0(N) at i∞ defined by the

following q-expansion:

E
(N)
2 (τ ) =

∏
p|N

p:prime

p2

p2 − 1

∑
e|N

µ(e)
e2


1 − 24

∞∑
m=0


∑

d|m
d


 q

N
e m


 ,(1)

where µ is the Möbius function.

For k ≥ 3, the Eisenstein series of weight k for Γ0(N) at i∞ is defined by,

E
(N)
k (τ ) =

1
2

∑
c,d∈Z

(cN,d)=1

1
(cNτ + d)k

.(2)

The above q-expansion of E
(N)
2 is the series which is obtained by putting k = 2

of the q-expansion of E
(N)
k (k ≥ 3) formally. Since |q| < 1, it is easy to see that

the formal power series (1) is absolutely convergent.
Next, the two Theorems generalize Atkin’s Theorem (1) and Borcherd’s

theorem.

Theorem 1. Let {T (N)
n }n≥0 be the Hecke operators for Γ0(N). Suppose

n and N are relatively prime integers. Then, for f, g ∈ M(N),

(f |T (N)
n , g)(N) = (f , g|T (N)

n )(N).
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Figure 2: Fundamental domain of Γ0(N) and Ω

Theorem 2. For f, g ∈ M(N), the Atkin inner product for Γ0(N) at
i∞ has the following relation with the Poincaré metric.

(f , g)(N) =
1

vol (Γ0(N) \ H)
lim

Ω→F

∫
Ω

f · g dxdy

y2
,

where F is a special fundamental domain of Γ0(N) which is symmetrical with
respect to the imaginary axis, Ω is the subdomain of F which we get by cutting
down from F neighborhoods of cusps bounded by the line the parallel to the real
axis and the small circles with center at each finite cusp, and Ω → F means
bringing the line parallel to the real axis near to i∞ and the radiuses of circles
near to zero. (See Figure 2.)

The following formula is the transformation formula of the Eisenstein series
E

(N)
2 which playes an essential role in proofs of above theorems.

Proposition. Let τ ∈ H, and
(

a b
c d

)
∈ Γ0(N), then,

E
(N)
2

(
aτ + b

cτ + d

)
= (cτ + d)2E(N)

2 (τ ) +
6c(cτ + d)

πi[SL2(Z) : Γ0(N)]
.
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3. Transformation formula of the Eisenstein series of weight 2 for
Γ0(N) at i∞

In this section, we study the Eisenstein series of weight k ≥ 2 for Γ0(N) at
i∞ which is necessary for the definition and study of the Atkin inner product
for Γ0(N) at i∞.

The series E
(N)
k is a modular form of weight k for Γ0(N). We define

another series G
(N)
k by

G
(N)
k (τ ) =

∑
c,d∈Z

(d,N)=1

1
(cNτ + d)k

.(3)

Because k ≥ 3, the series G
(N)
k converges absolutely and uniformly on any

compact subsets of H and we have

∑
c,d∈Z

(d,N)=1

1
(cNτ + d)k

=


 ∞∑

n=1
(n,N)=1

1
nk


 ∑

(cN,d)=1

1
(cNτ + d)k

=
∏
p|N

p:prime

(
1 − 1

pk

)
ζ(k)

∑
(cN,d)=1

1
(cNτ + d)k

,

where ζ is the Riemann zeta function. Hence we get

G
(N)
k (τ ) = 2

∏
p|N

(
1 − 1

pk

)
ζ(k)E(N)

k (τ ).(4)

We also call this G
(N)
k the Eisenstein series of weight k for Γ0(N) at i∞.

Since
(

1 1
0 1

)
∈ Γ0(N), the E

(N)
k is periodic with period 1 and has a

Fourier expansion. We now compute an explicit Fourier expansion for E
(N)
k in

the following.

Proposition 3.1. Let k be an even integer greater than 2, p be a prime
number, and τ ∈ H. Then the Eisenstein series of weight k for Γ0(N) at i∞
has the following q-expansion.

E
(N)
k (τ ) =

∏
p|N

p:prime

pk

pk − 1

∑
d|N

µ(d)
dk

(
1 − 2k

Bk

∞∑
m=1

σk−1(m)q
N
d m

)
,(5)

where µ is the Möbius function, Bk is the Bernoulli number and σk is the
power-sum of divisors:

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
,

σk(n) =
∑
d|n

dk.
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Proof. By the equality (4),

E
(N)
k (τ ) =

1
2ζ(k)

∏
p|N

pk

pk − 1
G

(N)
k (τ )(6)

=
1

2ζ(k)

∏
p|N

pk

pk − 1

∑
d|N

µ(d)
∑′ 1

(mNτ + dn)k
(7)

=
1

2ζ(k)

∏
p|N

pk

pk − 1

∑
d|N

µ(d)
dk

Gk(
N

d
τ ).(8)

Here Gk is the Eisenstein series of weight k for SL2(Z). It is well known that
the Eisenstein series Gk has a q-expansion,

Gk(τ ) = 2ζ(k) + 2
(2iπ)k

(k − 1)!

∞∑
m=1

σk−1(m)qm.

Substituting this to (8), we complete the proof.

When k = 2, the series (2) and (3) are not absolutely convergent. However,
if we specify the order of summation of (3) as

2
∏
p|N

p:prime

(
1 − 1

p2

)
ζ(2) + 2

∑
c≥1

∑
d∈Z

(d,N)=1

1
(cNτ + d)2

,(9)

then this series defines a holomorphic function on H. Moreover, because the
series

1 − 24
∞∑

m=1

σ1(m)qm(10)

is absolutely convergent for |q| < 1, we find that the series (5) defines a holo-
morphic function on H for k = 2 (B2 = 1

6 ). We adopt this series to define the
Eisenstein series of weight 2 for Γ0(N) at i∞, and write it as E

(N)
2 . This is

the definition which we introduced in Section 2. At this point, we do not know
whether the right hand side of (4) equals (9) when k = 2, because the sum in
(4) is not absolutely convergent.

It is easy to see that the functions E
(N)
2 and G

(N)
2 are periodic of period

1, and E
(N)
2 is holomorphic at infinity. These functions are not modular for

Γ0(N) but “nearly” modular. Now, we introduce a new function G
(N)∗

k to show
the nearly modular property of these functions.

Let p be a prime number and τ ∈ H, we now define

G
(N)∗
2 (τ ) = G

(N)
2 (τ ) − π

�(τ )N

∏
p|N

(
1 − 1

p

)
.

This function is not holomorphic on H, but we can show that it is modular of
weight 2.
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Theorem 3.1. For γ ∈ Γ0(N) and τ ∈ H,

G
(N)∗

2 (γτ ) = (cτ + d)2G(N)∗

k (τ ), γ =
(

a b
c d

)
.(11)

i.e. G
(N)∗
2 is a nonholomorphic modular form of weight 2 for Γ0(N).

Proof. The series

Φ(N)(τ, s) =
∑
c,d∈Z

(d,N)=1

1
(cNτ + d)2|cNτ + d|s , �(s) > 0(12)

converges absolutely and uniformly in s for �(s) ≥ ε > 0 and for fixed τ with
�(τ ) > 0. Hence for fixed τ , Φ(N)(τ, s) is holomorphic in s for �(s) > 0. We
write

Φ(N)(τ, s) =
∑
c,d∈Z

(d,N)=1

1
(cNτ + d)2|cNτ + d|s

=
∑
h|N

µ(h)
h2+s

∑′ 1
(cN

h τ + d)2|cN
h τ + d|s

=
∑
h|N

µ(h)
h2+s

Φ(
N

h
τ, s),

where µ is the Möbius function and Φ(τ, s) = Φ(1)(τ, s). By Hecke [2], Φ(τ, s)
continues holomorphically to a neighborhood of s = 0 for �(τ ) > 0. We define
G∗

2(τ ) as the value of Φ(τ, s) at s = 0:

G∗
2(τ ) := Φ(τ, 0).

It is well known that G∗
2(τ ) = G

(1)∗
2 (τ ). Therefore, we get

Φ(N)(τ, 0) =
∑
h|N

µ(h)
h2

G∗
2

(
N

h
τ

)

=
∑
h|N

µ(h)
h2

(
G2

(
N

h
τ

)
− hπ

N�(τ )

)

=
∑
h|N

µ(h)
h2

G2

(
N

h
τ

)
− π

�(τ )N

∏
p|N

p:prime

(
1 − 1

p

)
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=
∑
h|N

µ(h)
h2


2ζ(2) − 8π2

∑
m≥1


∑

d|m
d


 e2πi N

h mτ




− π

�(τ )N

∏
p|N

p:prime

(
1 − 1

p

)

= 2
∏
p|N

p:prime

(
1 − 1

p

)
ζ(2) − 8π2

∑
h|N

µ(h)
h2

∑
c≥1

∑
d≥1

de2πic N
h dτ

− π

�(τ )N

∏
p|N

p:prime

(
1 − 1

p

)

= 2
∏
p|N

p:prime

(
1 − 1

p

)
ζ(2) + 2

∑
c≥1

∑
h|N

µ(h)
h2

∑
d∈Z

1
(cN

h τ + d)2

− π

�(τ )N

∏
p|N

p:prime

(
1 − 1

p

)

= 2
∏
p|N

p:prime

(
1 − 1

p

)
ζ(2) + 2

∑
c≥1

∑
d∈Z

(d,N)=1

1
(cNτ + d)2

− π

�(τ )N

∏
p|N

p:prime

(
1 − 1

p

)

= G
(N)∗

2 (τ ).

Here we have used the following formula which is valid for k ≥ 2.

∑
m∈Z

1
(m + τ )k

=
(−2πi)k

(k − 1)!

∑
n≥1

nk−1e2πinτ .

Since for γ =
(

a b
c d

)
∈ Γ0(N),

Φ(N)(γτ, s) = Φ(N)(τ, s)(cτ + d)2|cτ + d|s,

we get

G
(N)∗

2 (γτ ) = (cτ + d)2G(N)∗

2 (τ ),

and we complete our proof of the theorem.

Using the equation (11), we can calculate the transformation formula of
G

(N)
2 (τ ).
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Corollary 3.1.1. Let γ =
(

a b
c d

)
∈ Γ0(N) and τ ∈ H. Then we have

G
(N)
2 (γτ ) = (cτ + d)2G(N)

2 (τ ) − 2πi

N

∏
p|N

p:prime

(
1 − 1

p

)
c(cτ + d).(13)

Proof. For γ =
(

a b
c d

)
∈ Γ0(N), we have

G
(N)
2 (γτ ) = G

(N)∗

2 (γτ ) +
π

�(γτ )N

∏
p|N

(
1 − 1

p

)

= (cτ + d)2G(N)∗

2 (τ ) + 2πi
|cτ + d|2

τ − τ̄

1
N

∏
p|N

(
1 − 1

p

)

= (cτ + d)2G(N)∗
2 (τ ) + 2πi

(
(cτ + d)2

τ − τ̄
− c(cτ + d)

)
1
N

∏
p|N

(
1 − 1

p

)

= (cτ + d)2G(N)
2 (τ ) − 2πi

N

∏
p|N

(
1 − 1

p

)
c(cτ + d).

The proof is completed.

Moreover, in the course of our proof of Theorem 3.1, it is shown that the
equality (4) also holds for k = 2.

Corollary 3.1.2. We have

G
(N)
2 (τ ) =

π2

3

∏
p|N

p:prime

(
1 − 1

p2

)
E

(N)
2 (τ ).

Moreover, for γ =
(

a b
c d

)
∈ Γ0(N),

E
(N)
2 (γτ ) = (cτ + d)2E(N)

2 (τ ) +
6c(cτ + d)

πi[SL2(Z) : Γ0(N)]
.(14)

Proof. It follows from ζ(2) = π2

6 and

[SL2(Z) : Γ0(N)] = N
∏
p|N

(
1 +

1
p

)
.

From the “nearly modular” property of E
(N)
2 , we can construct a new

modular form of weight k + 2 for Γ0(N) from a modular form of weight k for
Γ0(N) in the following way.
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Corollary 3.1.3. Let f(τ ) be a modular form of weight k for Γ0(N).Then

df

dτ
(τ ) − kπi[SL2(Z) : Γ0(N)]

6
E

(N)
2 (τ )f(τ )(15)

is a modular form of weight k + 2 for Γ0(N). Moreover,

dE
(N)
2

dτ
(τ ) − πi[SL2(Z) : Γ0(N)]

6
E

(N)
2 (τ )2(16)

is a modular form of weight 4 for Γ0(N).

Proof. The modular property of weight k+2 can be checked directly from
the equation (14). For relatively prime integers a, c, if a

c is not Γ0(N)-equivalent
to i∞, then

lim
τ→i∞

1
(cτ + d)2

E
(N)
2

(
aτ + b

cτ + d

)
= 0

for
(

a b
c d

)
∈ SL2(Z) (We will prove this fact in Section 4), this fact shows

that the functions of (15) and (16) are holomorphic at cusps for Γ0(N).

Example. Since the dimension of the space of modular forms of weight
k for Γ0(N) is finite, we can prove the equality between two modular forms by
chekin agreement of sufficiently many their coefficients of the Fourier expan-
sions. For example, we have the following equalities:

1
2νπi

dE
(2ν)
4

dτ
(τ ) − E

(2ν)
2 (τ )E(2ν)

4 (τ ) = −E
(2ν)
6 (τ ),

1
2ν−2πi

dE
(2ν)
2

dτ
(τ ) − E

(2ν)
2 (τ )2 = −E

(2ν)
4 (τ ),

3
2πi

dE
(3)
2

dτ
(τ ) − E

(3)
2 (τ )2 = −E

(3)
4 (τ ),

where ν is an arbitrary positive integer.

4. Self-adjointness of the Hecke operators

In this section, we prove Theorem 1. First, we review the Hecke operator
for Γ0(N). For simplicity, we give the definition of the Hecke operator for m ∈ N

which is relatively prime to N . Let M(N)
k be the set of modular functions of

weight k for Γ0(N) which are holomorphic on H and at all cusps except for i∞,
and write M(N) = M(N)

0 .
Let k ∈ Z and m be an integer relatively prime to N . For f ∈ M(N)

k , we
define the action of the Hecke operator Tn by

(f |kTm)(τ ) = m
k
2

∑
γ∈Γ0(N)\Mm

1
(cτ + d)k

f

(
aτ + b

cτ + d

)
, γ =

(
a b
c d

)
,
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where

Mm =
{(

a b
c d

)
∈ GL2(Z)

∣∣∣∣det
(

a b
c d

)
= m

}
.

This definition is from Kaneko-Zagier [5, p110]
If f does not have modularity, the value 1

(cτ+d)k f
(

aτ+b
cτ+d

)
depends on the

choise of a coset representative. So this definition is well-defined only for f ∈
M(N)

k . However the following definition works for any 1-periodic function.
Let k ∈ Z and m be a relatively prime integer for N . For a 1-periodic

function f , we define “the Hecke operator at ∞” T∞
k by

(f |kT∞
m )(τ ) = m

k
2

∑
ad=m
a,d>0

∑
b(mod d)

d−kf

(
aτ + b

d

)
.

Because the set of matrices
(

a b
0 d

)
with ad = m and 0 ≤ b < d = m

a

forms a complete set of coset representatives for Γ0(N)\Mm, both f |kTm and
f |kT∞

m coincide for f ∈ M(N)
k . We now start a proof of Theorem 1.

Proof. We claim that

Res∞ ((f |kT∞
m ) · h) = Res∞ (f · (h|2−kT∞

m ))(17)

for Laurent serieses f, h in q and

(gE
(N)
2 )|2T∞

m ≡ (g|0Tm) · E(N)
2 mod M(N)

2 (g ∈ M(N)),(18)

where Res∞(F ) for a 1-periodic holomorphic function F on H denotes the
residue at infinity of 2πiF (τ )dτ , i.e. the constant term of F as Laurent series in
q. Theorem 1 then follows from (17) and (18) using the fact that M(N)M(N)

2 ⊂
M(N)

2 and that Res∞ vanishes on M(N)
2 :

(f |0Tm, g) = Res∞((f |0Tm) · g · E(N)
2 )(19)

= Res∞(f · (gE
(N)
2 )|2T∞

m )(20)

= Res∞(f · (g|0Tm) · E(N)
2 ) = (f, g|0Tm) (f, g ∈ M(N)).(21)

We prove the equation (17). Let f(τ ) =
∑

r Arq
r (q = e2πiτ ). Then,

(f |kT∞
m )(τ ) = m

k
2

∑
ad=m
a,d>0

∑
b(mod d)

d−kf

(
aτ + b

d

)

= m
k
2

∑
r

∑
ad=m
a,d>0

Ar

dk
e2πir a

d τ
∑

b(mod d)

e2πir b
d

= m
k
2

∑
ad=m
a,d>0

d1−k
∑

r

Ardq
ar.
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If we put h(τ ) =
∑

s Bsq
s (q = e2πiτ ),

((f |kT∞
m )(τ ))h(τ ) = m

k
2

∑
ad=m
a,d>0

d1−k
∑

r

∑
s

ArdBsq
ar+s

= m
k
2

∑
n

∑
ad=m
a,d>0

d1−k
∑

r

ArdBn−arq
n.

Hence,

Res∞((f |kT∞
m ) · h) = m

k
2

∑
ad=m
a,d>0

d1−k
∑

r

AdrB−ar

= m1− k
2

∑
ad=m
a,d>0

ak−1
∑

s

BasA−ds

= Res∞(f · (g|2−kT∞
m )).

For (18), we use the transformation formula of E
(N)
2 (τ ). If we put

E
(N)
2 (τ ) = E

(N)∗

2 (τ ) +
3

π�(τ )[SL2(Z) : Γ0(N)]
,

then the non-holomorphic function E
(N)∗

2 transforms like a modular form of
weight 2 for Γ0(N). Denoting by M(N)∗

2 the space of functions with the last
property, and observing that M(N)M(N)∗

2 ⊆ M(N)∗

2 and that |2Tm preserves
M(N)∗

2 , we have

(gE
(N)
2 )|2T∞

m − (g|0Tm)E(N)
2

= (gE
(N)∗
2 )|2T∞

m − (g|0Tm)E(N)∗
2

+
3

π[SL2(Z) : Γ0(N)]

{(
g

�(τ )

)∣∣∣∣
2

T∞
m − g|0Tm

�(τ )

}

≡ 3
π[SL2(Z) : Γ0(N)]

{(
g

�(τ )

)∣∣∣∣
2

T∞
m − g|0Tm

�(τ )

}
(modM(N)∗

2 ).

The right-hand side of this formula vanishes by the following calculation.

((
g

�(τ )

)∣∣∣∣
2

T∞
m

)
(τ ) = m

∑
ad=m
a,d>0

∑
b(mod d)

1
d2

g

(
aτ + b

d

)
�
(

aτ + b

d

)−1

(22)

=
(g|0Tm)(τ )

�(τ )
.(23)

So the left-hand side, which is holomorphic, belongs to M(N)
2 as claimed.
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Remark. 1) The Hecke operator for Γ0(N) can be defined for any inte-
ger m. But for m which is not relatively prime to N , the Atkin inner product
for Γ0(N) does not have the self-adjointness of the Hecke operator Tm.
2) As we remarked earlier, the self-adjointness of the Hecke operators does not
uniquely determine the inner product. If we replace E

(N)
2 with E

(N)
2 + f for

any f ∈ M(N)
2 , the self-adjointness still holds true. (The proof is similar.)

5. Relation with the Petersson type inner product

In this section, we give a proof of Theorem 2. We first study fundamentals
domain of Γ0(N).

Lemma 5.0.1. Let

Γ∞ = {σn
0 |n ∈ Z}, σ0 =

(
1 1
0 1

)
,

and

Cσ = {τ ∈ H | |cτ + d| ≥ 1} for σ =
(

a b
c d

)
∈ Γ0(N).

Then the region

F =




⋂
σ∈Γ0(N)−Γ∞

Cσ



⋂{

τ ∈ H

∣∣∣∣|�(τ )| ≤ 1
2

}

is a fundamental domain of Γ0(N).

Proof. See [4, p. 39 Theorem 3].

Corollary 5.0.4. There exists a fundamental domain F of Γ0(N) which
is symmetrical with respect to the imaginary axis and F ⊆ {τ ∈ H| |�(τ )| ≤
1/2}.

Proof. F in Lemma 5.0.1 is the required domain. In fact, if σ =
(

a b
c d

)

∈ Γ0(N), then σ′ =
(

a −b
−c d

)
∈ Γ0(N) and the regions Cσ and Cσ′ are

symmetric with respect to imaginary axis.

Let F be the special fundamental domain given in Lemma 5.0.1 and Ω the
subdomain of F which we get by cutting down from F neighborhoods of cusps
bounded by the line parallel to the real axis and the small circles with center
at each finite cusp. For f ∈ M(N), we calculate∫

∂Ω

f · E(N)∗

2 dτ,



�

�

�

�

�

�

�

�

766 Hiroyuki Tsutsumi

where ∂Ω is the boundary of Ω, and E
(N)∗
2 is the nonholomorphic Eisenstein

series of weight 2 for Γ0(N) at i∞ which was defined in Section 2. By the
Stokes theorem, ∫

∂Ω

f · E(N)∗

2 dτ =
∫

Ω

∂
(
f · E(N)∗

2 dτ
)

= −
∫

Ω

d

dτ̄

(
f · E(N)∗

2

)
dτdτ̄ .

We apply the following equation to the above.

(4π�(τ ))2

2πi

d

dτ̄

(
f · E(N)∗

2

)
(τ ) =

12
[SL2(Z) : Γ0(N)]

f(τ ).

Then we get,∫
∂Ω

f · E(N)∗

2 dτ =
−3

π[SL2(Z) : Γ0(N)]

∫
Ω

f(τ ) · dxdy

y2
(τ = x + iy).

Because

vol(Γ0(N)\H) =
π

3
· [SL2(Z) : Γ0(N)],

we must show

lim
Ω→F

∫
∂Ω

f · E(N)∗

2 dτ = −(f , 1)(N)

= −constant term of fE
(N)
2 as Laurent series in q

= −Res
(

f(q)E(N)
2 (q)

dq

q
, q = 0

)
, q = e2πiτ .

To calculate the above integral, we mark the boundary of Ω in the following
way. L, L0 and L1 are straight lines on �(τ ) = Y >> 0, �(τ ) = 1

2 and
�(τ ) = −1

2 respectively. The points at which the fundamental domain F
touches the real axis are labelled from left to right by c1, c2, . . . , cµ and the
chords on the circle with center ci (i = 1, 2, . . . , µ) are labelled l1, l2, . . . , lµ
respectively. The rest of the boundary Ω is denoted by C. (See Figure 3)

Here, we study the way of pasting the edges of the fundamental domain
F . This comes from next lemma.

Lemma 5.0.2 (Poincaré [3]). Let F be a fundamental domain of Γ0(N),
then the boundary F divides two parts which are congruent about Γ0(N). That
is, we can divide the boundary of F into sub-boundaries λ1, λ2, . . . , λk and
µ1, µ2, . . . , µk which satisfies µj = σj(λj), σj ∈ Γ0(N) (j = 1, 2, . . . , k).

By the above lemma, we can divide the boundary F into two parts which
are equivalent for some σ ∈ Γ0(N). The straight lines on �(τ ) = 1

2 and

�(τ ) = −1
2 are equivalent by

(
1 1
0 1

)
∈ Γ0(N). Because �(σ(τ )) > 0
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L0

L

L1

l1

l1 lµ

c1

c1 cµ

Ω
C

Y

Figure 3: Boundary Ω

for σ ∈ Γ0(N) and τ ∈ H, the chords touching real axis are equivalent in
themselves. For all ci, (i = 1, 2, · · · , l), there exist two chords of touching ci,
then there exist σ, σ

′ ∈ Γ0(N) which paste the chords touching ci onto the
chords touching cj . If ci = cj , then σ

′
= σ−1. Since the fractional linear

transformation transforms a circle to a circle, σ transforms a small circle with
the center ci to a small circle with the center cj . (See Figure 4)

Because fE
(N)∗
2 dτ is invariant for σ ∈ Γ0(N) and L0, L1, and the edges

in C are pasted by some σ ∈ Γ0(N), we have

∫
L0

fE
(N)∗

2 dτ +
∫

L1

=
∫

C

fE
(N)∗

2 dτ = 0.

Hence we get

∫
∂Ω

f · E(N)∗

2 dτ =
∫

L

fE
(N)∗

2 dτ +
∫

l1

+
∫

l2

+ . . . +
∫

lµ

.(24)
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P Q

σ

σ
′

ci cj

σ(Q) σ
′
(P )

Figure 4: Neighborhood of cusp

We calculate the first term of the right side of the above equation,∫
L

fE
(N)∗

2 (τ )dτ

=
∫

L

f(τ ) ·
(

E
(N)
2 (τ ) − 3

π�(τ )[SL2(Z) : Γ0(N)]

)
dτ

=
∫

L

fE
(N)
2 (τ )dτ − 3

π[SL2(Z) : Γ0(N)]

∫
L

f(τ )
�(τ )

dτ, q = e2πiτ .

For the first term of the above equation, we change the variable τ to q =
e2πiτ , and we get

lim
y→∞

∫
L

fE
(N)
2 (τ )dτ = −Res

(
f(q)E(N)

2 (q)
dq

q
, q = 0

)
.

For the integral of the second term, we have

∫
L

f(τ )
�(τ )

dτ =
1
Y

∫ − 1
2

1
2

f(x + iY )dx −→ 0 as Y → ∞.

Hence, if we show

lim
∫

li

fE
(N)∗
2 dτ = 0,

then, by the equation (24), we complete the proof. Here the limit means that
the radius of circle li tends to 0.

Because all cusps except for i∞ belong to Q, we can put ci=a
c , (a, c ∈ Z

and (a, c) = 1). Then there exists σ =
(

a b
c d

)
∈ SL2(Z). The map σ
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transforms i∞ to ci. Let w = σ−1(τ ), then,

∫
li

f(τ )E(N)∗

2 (τ )dτ =
∫

σ−1(li)

f

(
aw + b

cw + d

)
E

(N)∗

2

(
aw + b

cw + d

)
d

(
aw + b

cw + d

)

=
∫

σ−1(li)

f

(
aw + b

cw + d

)
E

(N)
2

(
aw + b

cw + d

)
dw

(cw + d)2

+
∫

σ−1(li)

6if
(

aw+b
cw+d

)
π[SL2(Z) : Γ0(N)](w − w̄)

|cw + d|2
(cw + d)2

dw.

If li places on the circle with the center a
c and radius r, then σ−1(li) places on

the circle with the center −d
c and radius 1

rc2 , and if the direction li is positive,
then the direction σ−1(li) is negative. (See Figure 5)

Here we put the two chords Ci1 , Ci2 which belong in the boundary of
F and touch ci = a

c . A is the intersection point of Ci1 and li and B is the
intersection point of Ci2 and li. Moreover, r1 is the radius of Ci1 and r2 is the
radius of Ci2 , and the centers of Ci1 and Ci2 are a

c − r1 and a
c + r2 respectively.

(See Figure 5) Then, we can representate

A =
a

c
− r2

2r1
+ i

√
r2 − r4

4r2
1

,

B =
a

c
+

r2

2r2
+ i

√
r2 − r4

4r2
2

,

and

σ−1(A) =
1
c2

(
1

2r1
− cd + i

√
1
r2

− 1
4r2

1

)
,

σ−1(B) =
1
c2

(
− 1

2r2
+ cd + i

√
1
r2

− 1
4r3

2

)
.

This means,

lim
r→0

∣∣∣∣∣
∫

σ−1(li)

dw

∣∣∣∣∣ =
1

2c2

(
1
r1

+
1
r2

)
− 2

d

c
< ∞.(25)

Because f is holomorphic except for i∞, there exists M > 0 which satisfies

∣∣∣∣f
(

aw + b

cw + d

)∣∣∣∣ ≤ M < ∞(26)
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Ci1(radius r1)

Ci2(radius r2)

li

li

A

A

B

B

ci = a
c

a
c − r a

c + r

σ−1

1
2c2r1

− d
c

d
c − 1

2c2r2
−d

c

1
c2r

Figure 5: Change the variable

for the neighborhood of w = i∞. Hence,

lim
r→0

∣∣∣∣∣∣
∫

σ−1(li)

6if
(

aw+b
cw+d

)
π[SL2(Z) : Γ0(N)](w − w̄)

|cw + d|2
(cw + d)2

dw

∣∣∣∣∣∣
≤ 6

π[SL2(Z) : Γ0(N)]
lim
r→0

∫
σ−1(li)

∣∣∣∣f
(

aw + b

cw + d

)∣∣∣∣ |dw|
|w − w̄|

≤ 6M

π[SL2(Z) : Γ0(N)]
lim
r→0

∣∣∣∣∣
∫

σ−1(li)

dw

∣∣∣∣∣ c2r = 0.

So we can see

lim
r→0

∫
li

f(τ )E(N)∗

2 (τ )dτ = lim
r→0

∫
σ−1(li)

f

(
aw + b

cw + d

)
E

(N)
2

(
aw + b

cw + d

)
dw

(cw + d)2
.

Here if we show

lim
w→i∞

1
(cw + d)2

E
(N)
2

(
aw + b

cw + d

)
= 0,(27)

then we can easily see

lim
r→0

∫
σ−1(li)

f

(
aw + b

cw + d

)
E

(N)
2

(
aw + b

cw + d

)
dw

(cw + d)2
= 0(28)

by the equations (25) and (26), and complete the proof of the theorem.
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For k ≥ 3,

lim
w→i∞

1
(cw + d)k

E
(N)
k

(
aw + b

cw + d

)
= 0

is valid because E
(N)
k is one of the Poincaé series of weight k for Γ0(N). (See

Gunning [6, 28–34]) The equation (27) is for the case k = 2. To show (27), we
put a new series

Ψ(N)(τ, s) =
∑

γ∈Γ∞\Γ0(N)

1
(c′τ + d′)2|c′τ + d′|s , γ =

(
a′ b′

c′ d′

)

where

Γ∞ =
{(

1 1
0 1

)n∣∣∣∣ n ∈ Z

}
⊂ Γ0(N).

This series converges absolutely and uniformly on any compact subset in H for

�(s) ≥ ε > 0. We put ρ =
(

a b
c d

)
∈ SL2(Z)\Γ0(N), then

Ψ(N)(ρτ, s) · 1
(cτ + d)2|cτ + d|s =

∑
γ∈Γ∞\Γ0(N)ρ

1
(c′τ + d′)2|c′τ + d′|s .(29)

Let h is the width of the cusp a
c : i.e. the smallest integer h > 0 which satisfies

Γ∗
∞ =

{(
1 h
0 1

)∣∣∣∣n ∈ Z

}
⊂ ρ−1Γ0(N)ρ,

then we can get the double coset representation Γ∞\Γ0(N)ρ/Γ∗
∞, and we divide

the summation of (29) by this double coset representation, that is

∑
γ∈Γ∞\Γ0(N)ρ

1
(c′τ + d′)2|c′τ + d′|s

=
∑

γ∈Γ∞\Γ0(N)ρ/Γ∗∞

∑
l

1
(c′τ + c′hl + d′)2|c′τ + c′hl + d′|s ,

where l runs over Z or 1, 2, . . . , k according to the number of representative
elements of

(
Γ∞ ∩ γΓ∗

∞γ−1
) \Γ∞ That is, if the number of representative ele-

ments of
(
Γ∞ ∩ γΓ∗

∞γ−1
) \Γ∞ is infinity, then l runs over Z, and if the number

of representative elements is k, then l runs over 1, 2, . . . , k. If we assume there
exists γ ∈ Γ0(N) such that

Γ∞ ∩ (γρ)Γ∗
∞(γρ)−1 =

{(
1 0
0 1

)}
,
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then γ
(

a
c

)
= i∞. But this is contradiction, because a

c is not Γ0(N)-equivalent
to i∞. Hence we get,

Ψ(N)(ρτ, s) · 1
(cτ + d)2|cτ + d|s

=
∑

γ∈Γ∞\Γ0(N)ρ/Γ∗∞

∞∑
l=−∞

1
(c′τ + c′hl + d′)2|c′τ + c′hl + d′|s .

This implies that the representative element γ =
(

a′ b′

c′ d′

)
∈ Γ∞\Γ0(N)ρ/

Γ∗
∞ is not equal to

( ∗ ∗
0 ∗

)
, i.e c′ = 0. So we get

lim
τ→i∞

∞∑
l=−∞

1
(c′τ + c′hl + d′)2|c′τ + c′hl + d′|s = 0.

It is showed by the same way with the equation (4) that

Ψ(N)(τ, s) = 2
∏
p|N

p:prime

(
1 − 1

p2+s

)
ζ(2 + s)Φ(N)(τ, s),

where Φ(N) is defined in Theorem 3.1. This indicates that Ψ(N) is an entire
function of s, so Ψ(N) can continuous holomorphically to a neighborbood of
s = 0 and E

(N)∗

2 (τ ) = Ψ(N)(τ, 0). Thus we get

lim
τ→i∞

E
(N)∗

2 (ρτ )
1

(cτ + d)2

= lim
τ→i∞

lim
s→0

Ψ(N)(ρτ, s) · 1
(cτ + d)2|cτ + d|s

= lim
s→0

lim
τ→i∞

Ψ(N)(ρτ, s) · 1
(cτ + d)2|cτ + d|s

= lim
s→0

lim
τ→i∞

∑
γ∈Γ∞\Γ0(N)ρ/Γ∗∞

∑
l

1
(c′τ + c′hl + d′)2|c′τ + c′hl + d′|s = 0.

Because

E
(N)∗

2 (τ ) = E
(N)
2 (τ ) − 3

π�(τ )[SL2(Z) : Γ0(N)]
,

we get

Proposition 5.1. Let a
c be the cusp for Γ0(N) which is not equal i∞,

and ρ ∈ SL2(Z) which satisfies ρ(i∞) = a
c . Then, for k ≥ 2,

lim
τ→i∞

1
(cτ + d)k

E
(N)
k (ρτ ) = 0.
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From this proposition and (28), we complete the proof of Theorem 2.

6. The view from the theory of the open Riemann surface

In this section, we observe the Atkin inner product for Γ0(N) from the
view point of the open Riemann surface theory. We deal with the open Rie-
mann surface (Γ0(N)\H)∗ \{i∞}, where (Γ0(N)\H)∗ is the compactification of
Γ0(N)\H.

Let H(N) be the space of all holomorphic functions on (Γ0(N)\H)∗ \{i∞}.
If we put LA(f) = (f , 1)(N), then LA is a linear functional on M(N). Because
∆ = {τ ∈ F |�(τ ) > y >> 0} is a neighborhood of i∞, {∆, q = e2πiτ} is a local
coordinate around i∞ ∈ (Γ0(N)\H)∗ and ∂∆ ∈ (Γ0(N)\H)∗ \{i∞}. Then we
can write

LA(f) =
∫

∂∆

f(q)E(N)
2 (q)

dq

q
.

Because the right hand side of the above equation is well-defined for f ∈ H(N),
we can think of LA as a linear functional on H(N).

Because E
(N)
2 is not quite modular, E

(N)
2 (q)dq

q is not a holomorphic dif-
ferential on (Γ0(N)\H)∗. But it is a holomorphic differential on ∆ from the
property E

(N)
2 (τ + 1) = E

(N)
2 (τ ). From this property and the holomorphicity

of f on (Γ0(N)\H)∗ \{i∞}, if ∆1, ∆2 ⊂ ∆ are neighborhoods around i∞ which
have the Jordan closed curves ∂∆i(i = 1, 2) as boundaries, then∫

∂∆1

f(q)E(N)
2 (q)

dq

q
=
∫

∂∆2

f(q)E(N)
2 (q)

dq

q
.

Let {Ωi}i∈N be the sequence of open sets of (Γ0(N)\H)∗ \{i∞} which satisfy

1. The closures Ω̄i are compact sets in (Γ0(N)\H)∗ \{i∞}.
2. The boundaries ∂Ωi consist of finite connected components each of which

is a Jordan curve.

3. The connected components of (Γ0(N)\H)∗ \ ({i∞} ∪ Ω̄i

)
are not compact

in (Γ0(N)\H)∗ \{i∞}.
4. Ω̄i ⊂ Ωi+1 (i ∈ N) and ∪i∈NΩi = (Γ0(N)\H)∗ \{i∞}.

Then there exists a large number i ∈ N such that Ω̄i contains ∂∆. For j ≥ i,
(Γ0(N)\H)∗ \Ω̄j have the same property with ∆i, thus we get

LA(f) = −
∫

∂Ωj

f(q)E(N)
2 (q)

dq

q
.

for j ≥ i. We call the domain Ω which satisfies the above conditions 1, 2 and 3
a normal region in (Γ0(N)\H)∗ \{i∞}, and a sequence of normal regions which
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satisfies the above condition 4 a canonical exhaustion of (Γ0(N)\H)∗ \{i∞}.
Thus we get the expression

LA(f) = − lim
n→∞

∫
∂Ωn

f(q)E(N)
2 (q)

dq

q
.(30)

Moreover, if the sequence {fn}n∈N (fn ∈ H(N)) converges to 0 absolutely
and uniformly on any compact subset of (Γ0(N)\H)∗ \{i∞}, then

|LA(fn)| ≤
∫

∂∆

∣∣∣fn(q)E(N)
2 (q)

∣∣∣ ∣∣∣∣dq

q

∣∣∣∣
≤
∫

∂∆

|dq|max
∂∆

{
fn(q)

E
(N)
2 (q)

q

}
−→ 0 as n → ∞.

Then we call LA a holomorphic functional.
Thus we can think of the Atkin inner product for Γ0(N) as one of the

holomorphic linear functional on the open Riemann surface (Γ0(N)\H)∗ \{i∞}.
This is the reason of calling the Atkin inner product for Γ0(N) “at i∞”.

Next, we see that the Atkin inner product for Γ0(N) is one of the examples
of the representative theory of the holomorphic functional. Let H(N)(i∞) be
the set of all functions which are holomorphic on (Γ0(N)\H)∗ \({i∞}∪C), where
C is an arbitrary compact set of (Γ0(N)\H)∗ \{i∞}. Then H(N) ⊂ H(N)(i∞)
is clear. The representative theory is the following.

Theorem 6.1. Let L be a holomorphic functional on (Γ0(N)\H)∗ \{i∞},
{Ωn}n∈N a canonical exhaustion of (Γ0(N)\H)∗ \{i∞} and ω an Abelian dif-
ferential of the first kind on (Γ0(N)\H)∗ \{i∞} which has no zero point. Then
there exists a function h ∈ H(N)(i∞) which satisfies

L(f) = lim
n→∞

∫
∂Ωn

fhω

for all f ∈ H(N). Moreover the function h is unique modulo H(N).

We remark that

lim
n→∞

∫
∂Ωn

fhω

is well-defined for all h ∈ H(N)(i∞) because of the same reason of the Atkin’s
one. This theory says that

H(N)(i∞)/H(N) ∼= All holomorphic functional on (Γ0(N)\H)∗ \{i∞}.
This is called the Köthe duality theorem.

We compare the above theory with the expression (30), then we get

hω = −E
(N)
2 (q)

dq

q

(
modulo H(N)ω

)
.
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Thus the Atkin inner product for Γ0(N) is one of the example of the above
theorem.

We have so far studied the Atkin inner product for Γ0(N) at i∞. However,
these arguments are valid for other cusps = i∞. These cusps are special points
which make Γ0(N)\H the compact Riemann surface (Γ0(N)\H)∗, but, viewed as
points on the Riemann surface of (Γ0(N)\H)∗, cusps have no special meaning.
Thus, we have the following questions.

1. Does there exist a holomorphic functional on (Γ0(N)\H)∗\{p = cusp}
which is equivalent to the Atkin inner product for Γ0(N)?

2. If such holomorphic function exists, then there exists a differential which
is equivalent to hω in Theorem 6.1. How do we write this differential
concretely?
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