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The integral cohomology ring of F;/T

By

Masaki NAKAGAWA

1. Introduction

Let G be a compact connected Lie group and T be its maximal torus. The
quotient space G/T is called a flag manifold and plays an important role in
topology, representation theory, etc. Since G has a finite covering group which
is a direct product of a torus and compact 1-connected simple Lie groups, G/T is
homeomorphic to a direct product of quotients of compact 1-connected simple
Lie groups by maximal tori. On the other hand each factor has no torsion
according to [3]. Therefore in order to determine the integral cohomology ring
of G/T, it suffices to consider the case when G is 1-connected simple by the
Kiinneth formula. For G = SU(n), Sp(n), Spin(n), G2, Fy and Eg, the integral
cohomology ring of G/T is known ([1], [4], [9]). The purpose of this paper is
to determine the integral cohomology ring of E7/T. The method used here is
quite similar to that in [9], [10].

The paper is organized as follows: In Section 2 we discuss the action of
the Weyl groups on H*(BT;Q) and compute the invariant subalgebras of the
Weyl groups. The rational cohomology rings of E7/Cy,Cy = Tt - Spin(12) and
E;/T are determined in Section 3. Section 4 is a preparation for Section 5.
In the final section, Section 5 we determine the integral cohomology rings of
E7/Cl and E7/T

Throughout this paper H*(-) denotes the integral cohomology ring and
oi(x1,- - ,x,) denotes the i-th elementary symmetric function in the variables
T, Ty

I would like to thank Professor Akira Kono for his various advice and
ceaseless help.

2. The rational invariant subalgebras of the Weyl groups

Let T be a maximal torus of E7. According to [5] the Dynkin diagram of
E7 is
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where «;’s are the simple roots. As usual we may regard each root as an element
of HY(T) = H?(BT).

Let C be the centralizer of the one dimensional torus determined by «; =
0 (i # 1). Then the Weyl groups W (-) of Er,C; are given as follows:

W(E7) = (R (1<i<T)), W(C)=(R(i#1)),

where R; denotes the reflection to the hyperplane defined by a; =0 .
Note that ([6])

Cy =T"- Spin(12), T'NSpin(12) = Z, .

Let {w;}1<i<7 be the fundamental weights of E; corresponding to the
system of the simple roots {«; }1<;<7. We also regard each weight as an element
of H?(BT) and then {w;}1<i<7 forms a basis of H?(BT). The action of R;’s
on {w; }1<i<7 is given as follows:

 2(a, )
Ri(w;) = w; — Z %w]— and R;(wg) =wp for k#1i.
j=1

Qj, O
Following [10] we define

tr=wr, ti=Rip1(tiz1) 2<i<6), t1=Ri(t2),
1

¢ =oi(ty, - ,t7), t= 501-

Then t and ¢; (1 < i < 7) span H?(BT) since each w; is an integral linear
combination of ¢ and ¢; (1 <4 < 7) and we have the following isomorphism:

H*(BT) = Z[tl,-'- ,t7,t]/(3t— Cl) .

Furthermore the action of R;’s on these elements is given by the following
table:

Ry Ry Ry Ry Rs R¢ Ry
tl tz t— t2 - t3
to | 1 t—1t, —t3 t3
t3 t—t1 —to to ty
ty t3 ts
ts ty s
te ts  tr
t7 te
t —t+ty+ts+tg+ 17
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where blanks indicate the trivial action.
Putting

1
t():t—t1 and €i=t7‘,+1—§t0 (ISZSG),

we have

H*(BT;Q) = Q[t1, -+ ,t7] = Q[to, €1, €2, , €]

and the following table of the action:

Ry Ry Ry Rs Re Iy
€1 —€9 €2
€9 —€1 €1 €3
€3 €9 €4
€4 €3 €5
€5 €4 €6
€6 €5
to
From this table
Lemma 2.1.  The invariant subalgebra of W(C4) is given as follows:

IT[*(BT'7 Q)W(Cl) = Q[tO;ppra 6,p3,p4,p5] P

where
6
2 2
p; = oi(€e1, - ,€) and e:Hei.
=1

We can compute p;’s in the following way: Put

by = oi(er, - ,€6)
so that
6 6
S =JJa-e)=T[a+e) [J1—¢))
>0 j=1 Jj=1 j=1
= by (D' | = > (=1)'biby -
k>0 1>0 k1>0

Therefore
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More precisely
p1 =02 —2by, po =03 —2biby +2by, p3=Db3— 2boby + 2b1bs — 2bg ,
P4 = b3 — 2bgbs + 2bobs ,  ps = b2 — 2bsbs, ps = b .

On the other hand since

6

6
1
(1—§to+t1)2bn=(1——to+t1>H1+ez
n=0 =1
- L4t II(1+¢ _ L *H 1= Yt
2O 1 . 1+1 20 *-1 20 7

=1 i=

7 1\
. 1- 5750 Ci
0

=

we have

n

1 T-i\ [ 1, \""
bn+< 2t0+t1>bn =) (n_)( 2to> ¢ (1<n<6)

=0

and then

15
b1:2t1, b2202—2t§—8t1t0—z

by = c3 — (t1 + 2tg)co + 263 + Tt3tg + 11t1t3 + 55,

2
to,

3 3 3 , 15 ,
by=cqs— (t1+=to ) es+ (12 + Stito + =t2 | co — 2t] — 613ty — —t3t2
2 2 2 2
45
— Ttity — 161&3 ,
2 3 2 3 2 3 2 1 3
b5 = C5 — (tl + tO)C4 + tl + t1t0 + Zto C3 — tl + t1t0 + Ztlto + 51'0 C2
9 13 17 3 5
+ 2t3 + 5tito + 5#}‘1&3 + —2t3 + < — ity + 4t0 :

1 , 1 1, L 1, 1,
bs = c¢ — t1+§to cs + t1+§t1t0+1t0 cq — t1—|—§t1t0+1t1t0

1 1 1 1 1
+ §t3> c3 + (t‘{ + §t§t0 + tht?) + gtltg + 16t4> —2t% — 4%,
1 1 5
— 2ttt — 1313 — §t§t3 - Ztltg — 6—4t8 .

By these relations we can compute p;’s.
Next we put

2, =2t; —t(1<i<7) and zg=t.
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Then we have the following W (E7)-invariant subset
S ={zi+z;,—x; —x; (1<i<j<8)}C H*(BT;Q).
Thus we have W (Er)-invariant forms
I, =Y y" € H*™(BT;Q)" 5.
yes
As in [10] Section 2 I,, is computed by the formula:
I, =(16 —2")s, + Z (n) $iSn—; for m even,
0<i<n !

where s, = 27 + .-+ + zg and s, is written as a polynomial in d;’s, d; =
oi(z1,- -+ ,x8) by use of the Newton formula:

Sy = Z (-1 sy _ydi + (=1)""'nd, (d,=0 for n>8).

1<i<n

Moreover we rewrite d; in terms of ¢ and ¢;’s by the formulae:

di:ei—l-tei_l (1§’L§8),
n (T = .
en = iz_;(—l)"—zzl (n B} Z) at"t (1<n<7),
where e; = o;(x1,- -+ ,x7). Therefore I,, can be written as a polynomial in ¢

and ¢;’s. Then the next lemma is proved in [10] Lemma 2.1.
Lemma 2.2.  The invariant subalgebra of W(E7) is given as follows:
H*(BT;Q)VF") = Q[Iy, Is, Is, o, 12, 14, T1s] -
Consider the following elements (J; € H?(BT;Q)):
Jy = co — 4t2,
Jo = c2 + 8cg — dest — dezt® + 4t°,
Jg = 2¢2 — 3czes + 12¢7t — 3ezeqt — 30c6t 4 24cest® + 2c4t* + 248,
Jio = cg — 4cger — 2cq4c5t + 20305t2 + cﬁt2 — 20304t3 + 1207153 — 8c6t4 + 4C4t6,
Jiz = —6t5u + 9tpu® + 28 — 1262uv + u® + 302,

Jia = 15t — 6t5%u — 3tdu® + 4thv — 6tguv — 3uPv + 3t3v?,

Jis = —8tptu + 24t5u® + 9tZut — 8thuv — 48tgutv — 12uv — 4tdv?
+ 24t2uv? — 80,
where
fo—t—t1, = py— Dy U—e+§t2u—4—3t6
0T, U g2 T agto, PEET ot T Gt
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Put
A=H*(BT; Q)0
A is a subalgebra of H*(BT;Q) containing H*(BT;Q)"(“1). Denote by
a; C A (resp. by C H*(BT;Q)V()

the ideal of A (resp. of H*(BT;Q)"(“1)) generated by Iy’s for j <4, j €
{2,6,8,10,12,14,18}. Then we have the following

Lemma 2.3.
(i) Iy=-2°-3Jo, Is =28 .32 mod ag ,
Is =22 .57 mod ag, Ijo= 212.32.5.7J10 mod a,, .
In H*(BTa Q)W(Cl) = @[t07p17p27 eap3ap4ap5] we have

(i) I, =24(2p; +13), Is = 28 - 3%ps +2° - 3% . 5e + decomp.
Is =21 3. 5py + decomp., Iip=2'2-3%.5.Tps + decomp. .

(iii) I;p = —2'9-3%. 509 mod b, ,
I1,=2"-3-7-11-29Jy, mod b, ,
s =220 .3%.1229.J,4 mod b, ,

where decomp. means decomposable elements.

Proof. (i) Using the previous notations it is verified directly that
Iy = —24d, ,
Is = 36(d3 +8ds) mod ag ,
Iy = 80(2d? — 3dsds + 24dg) mod ag ,
Io = 1260(d? — 4d3d;) mod a,, .
Rewriting d;’s in terms of ¢ and ¢;’s we have the required results.

(11) Since IlO € H*(BTaQ)W(E7) - H*(BTaQ)W(Cl) = Q[t()vplvp%e,pi%
P4, ps] We may put

Iio = aps + decomp. for some o€ Q.

Take the following values of variables; tg = 0,¢; = ¢* for i = 1,2,3,4,5 and
es = 0 where ¢ = exp(2m/—1/10). Then we have easily that p; = p; = e =
p3=ps=0, ps =1 and

x1=t=%(c+<2+c3+<“—1),xi=2ci‘1—t (2<i<6),

1‘7:—t,.’178:t.
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Then

o 2¢0(0<i<9),2¢"(0<i<9), 2¢" (0<d
Tl 201 +¢?) (0<i<9),2¢(1+¢Y) (0 <

<9),0,0,0,0,0,0,
<9) '

Therefore

a=> y0=2"5{3+ 1+ 0+ (1+¢H"
yeSs

H.5(3+123)=212.32.5.7.

For Iy, take tg = 0, ¢; = ¢ (1 <i

< 4), es = ¢ = 0 for ¢ = exp(2mv/—1/8).
For Ig, take tg = 0, ¢ = ¢ (1 < i < 3), &4 = €5 = ¢ = 0 for ( =
exp(2my/—1/6) and furthermore to = 0, ¢; = ¢* (1 < i < 6) for ( = exp(27
V/—1/6). I, is computed directly.

(111) First note that H*(BT Q) ) = Q[thplaPQa eap33p4ap5} = Q[th I,
u, v, Ig, I, I10] by (ii).

Since Is € H*(BT;Q)"(“) = Q[to, p1,p2, €, 3, pa, p5) = Qlto, Iz, u, v,
Ig, Is, I1o] we may put

%) Tg = 222311220\ t88 + Notp u + Aatt0u® + MtSu® + Nst2ut + Netd?v
0 0 0
+ )\7tguu + Agtéu% + Mudv + )\mtou + )\utouv + )\127)3) mod b, ,

for some \; € Q.
Here we assume the following lemma which will be proved later.

Lemma 2.4.
A/(t,a12) = A/(t, I, I, Ig, I10)
3
= Qlto, c3,c4,¢5,¢6)/ (Cg + 8cg, c3 — 56365

cg + 4tgcscg + 4t36365 + 4t363c4 — 3225366 + 4t803 ) .

In particular (i) the following relations hold in A/(t, a12):

2

2
c3 = —8cs, Cj= -C3C5,

2
Cg = —4tgczce — 47%6305 — 4t%C3C4 + 32t§06 — 4t563 .

(i) A/(t,a12) has a basis {thchchcke® (0 < i,m,0 < j,k,1 < 1)} as a
Q-vector space.
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We consider the relation () in A/(¢,a;2). Then

1 2
Lig =2%2.3%.1229 (——883646506 ~cp +tocscs — 9t08406 Atdesck

3

9 3 11 , 32 - 32 649 14 o
+ §tOC4C5CG — Et0C3C5CG — §t083C466 + —tgcg + —tgcscacs — —tpCs5C6

3 9 3
244 76 4 2 4 64 2
9 tOC4CG 3 tgc;),CG - §th4C5 — 57%00365 + §t(1)10364 —gt(l)ZCG —57%404) .
On the other hand since
9,9
by = —2tp mod (t,I5), by= ito mod (¢, I2) ,
B 3 B 1 11
bs=c3—t; mod (t,1z), byi=cy— 2t003 + — 16 mod (¢, Is) ,
_ 3 9 3.5
bs = c5 + Zt003 + gto mod (t, I2),
3, 5 3
b =e=ce+ 2t005+ 4t004+ 8t003+ 64 mod (¢, I2) ,
we have
1 13, 1
N e Z I
u 6p2 32t0 3C4+ toC3 mod (t, 2),
3 43 1
v=-e+ Zt% 6—4158 =cs+ 275065 +ties +tges mod (t, 1) .

Therefore in A/(t, a12) we have

1 1 1
8, totu= <tites + to ez, tp0u? = —t30czes + —toteseq — 2th%cs

3 2 6 3

1
t8u3 = 18t063C4C5 — 2t06566 — 2t004c6 — tOC3CG y
2ut = 3¢ B3 - =t — =t Bz S
o = 9 08366 9 0€4C5Cq 9 0C3C5Cq 9 0C3C4C — 9 066 + 9 06366,
1

t(l)zv = t(l)zcg + —té365 + t(1)404 + té583 ,

2

3 )
11%06365 + étélc;ga; — 4t(%206 s

2
gtgcg +

tduv = 1tgc ltg 1t9
oV = glo 4C6 1 6 ()C4C5Jr2 0C3C6 +

1 1
téu% = 6153030506 + §t803c406 +

+gtgcc +§
3707 g

1 11
§t80304c5 — ?tS%CG — 2t80406

12
tO Cg ,
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1 0 17 23
wo = E03C4C5CG — 2tocsc§ — ?tgcz;c% + 3 t003 67 th4C5CG
S 4 41 4 136 6 o 8¢ 20 4
+ §t0030506 + Et00304c6 — TtOCG + §t00406 + ?toC?)CG ,

3
t6112 = t066 + t8C5CG + 2t86486 + t86306 + tgc465 + §t(1]06305 + t(l)lcgc4 — t(1)503 ,

3 4
—téC3C5C6 + §t(5)830466 + 12t80§

t8046506 + 5

1
3 5t8636§ + g

1
+ t883C4C5 + 6t565c6 + 127586406 + 167586306 — 37%10304 + 20t(1)2c6 ,

1
tguUQ = —t%c;;c% +
3 . 3
v’ = + 2toc506 + 3toc406 + 3t004c506 + 4t003c506 + 8Ot006 + t00304c5
1
+ 72tSC5CG + 80t80406 + 69t80306 - 515300305 - 31%10304 + 80t6206 .

Using Lemma 2.4, as the solution of (x) we obtain

2 3
Alzoa )\2:__7 A3:Oa A4:2a A5:_a )‘6207

3 4

2
A7__57 >\8:_47 A9__17 )\10__77 >\11:23 >\12__7
Thus

— 922 4 214 3 2 3
Iig =27-3"-1229 f§t0u+2t0u +4t0u fgtouvféltou v — uv

— %tSUQ + 2t2uv? —§v3>

= 220331229 (—8t5*u + 24t5u® + 9t2u* — 8tduv — 48tguv — 12u3v
— 4t50% + 24t2uv? — 8v®)

=2%0.3%.1229J;5  mod by, .

Similar direct computations give the required results for I15, I14 .

Proof of Lemma 2.4. Put

Ci = oi(ta, -, t7).

Since

7 7

ch:H1+t) 1+ t) [JA+t) =1 +t) ch,

=1 =2

we have
Cn =0 +t1én1 (0<n<T).

Conversely

Cn=Cp—t1Cpn_1+ 1t o — -+ (=17 (0<n<6).
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In particular the following relation holds:
C7:t166—t%C5+"'+tI.
Therefore by the previous table we see that

A= H*(BT;Q) fsr £

= Q[t1,¢1, 62, , Ce]
= Q[t1,c1,¢0, - ,c7)/(er — tice + ties — -+ —t])
= Q[tlaclaCQa e 706] .

On the other hand since
cy =ticg — t%c5 + t?c;; — t‘llc;g + t‘?cz — t?cl + tI

—toce — tics — tacy — thcs — thco — t§ mod (t)

= —toce — tics —tocy — téc;g — tg mod (¢, J2),
we have
Jo =co mod (t),
Js =c2 +8cs mod (t),
Jg = 2¢3 — 3czes mod (1),
Jio = ¢2 — 4ezer mod (1)
= cg + 4tpcsce + 4t(2)0305 + 4t80304 — 3275306 + 4t803 mod (¢, J2, Jg) .

Therefore

A/(t,a12) = A/(t, J2, Js, Js, J10)

3
= @[tl, C1,C2,C3,C4,Cs, CG]/ <t, Co, Cg, + 866, Ci — 56365,
2 2 3 4 7
cs + Atgescg + 4t06365 + 4tOC3C4 — 32tyce + 4t063 )
2 2 3
:@[tO,C3,C4,C5,C6]/ 03+806,C4 - 503057

Cg + 4t06306 + 41%0365 + 4t(3)0304 - 32t366 + 4t503 ) .

Consequently Lemma 2.3 is established. 1

3. The rational cohomology rings of E;/T and E;/C,

Let G be a compact connected Lie group and T" be a maximal torus of G.
According to Borel [1] rational cohomology spectral sequence for the fibration

G/T *% BT 2% BG
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collapses. In particular
ph : H*(BG;Q) — H*(BT;Q) is injective,
1y H*(BT;Q) — H*(G/T;Q) is surjective
and Keriy = (pgH(BG;Q)),

where HT(-) = @,.oH'(-) and (A) denotes an ideal generated by A. Fur-
thermore the image of pf coincides with the subalgebra of H*(BT;Q) which
consists of the elements invariant under the action of the Weyl group W(G).
Thus

o
H*(BG;Q) —H"(BT; Q)"
%
H*(G/T;Q) «—H"(BT;Q)/(pH ' (BG; Q))
=H*(BT;Q)/(H* (BT;Q)"™?).
Let U be a closed connected subgroup of G of maximal rank and consider
the fibration

G/U - BU % BG .

Since H*(G/U;Q) has vanishing odd dimensional part by Borel [1] again, ratio-
nal cohomology spectral sequence for this fibration also collapses. In particular

¥

H*(G/U;Q) «—H*(BU;Q)/(p"H" (BG; Q))
~H*(BT; Q)" /(H*(BT; Q)"9)
and the homomorphism
p*: H(G/U;Q) — H*(G/T;Q)

induced by the projection p : G/T — G/U is equivalent to the natural inclu-
sion

H*(BT; Q)W) — H*(BT;Q).

Apply these results to the fibrations

(3.1) E;/T - BT 2% BF;,
(3.2) E;/C, - BC, % BE; .

Then since (12, Ig, Is, I10, L12, I14, I1g) = (J2, Js, Js, Ji0, J12, J14, J1s) as ideals
by Lemma 2.3 (i), (iii) we have
H*(E:/T;Q) = H*(BT;Q)/(H" (BT; Q)" #7))
= Qlt1,- - ,t7]/U2, I, I8, 10, 112, T14, I18)
= Q[t1,--- ,t7]/(J2, J6, Jg, J10, J12, J14, J18) -
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Since H*(BT; Q)" () = Qlto, p1,p2. €, 3, pa, ps] = Qlto, Iz, u, v, Ig, Is, I10] by
Lemma 2.3 (ii) we have
H*(B-/Cy;Q) = H*(BT; Q)" (@) /(HH(BT; Q)" *7)
= Qlto, I2,u, v, I, Is, 110}/ (2, Is, I3, I10, 112, I14, I18)
= Q[to, u,v]/ (112, [, I1s)
= Q[to, u, v]/(J12, J14, J18) by Lemma 2.3 (iii).

Thus we have the following

Lemma 3.1.

(i) H*(E7/T;Q)=Qlt1,--- ,t7]/(J2, J6, I3, J10, J12, J14, J18) -
(i) H*(E7/C:1;Q) = Qlto, u,v]/(Ji2, J14, J13) -

4. The mod p cohomology ring of E,;/Cy
The purpose of this section is to prove the following

Proposition 4.1. H*(E,;/C4) is generated as a ring by elements of de-
gree < 18.

Proof. Since E;/C1 has no torsion it is sufficient to prove the mod p case
of the proposition for each prime p.

For p > 5; since E7 and C; = T! - Spin(12) have no p- torsion the mod
p spectral sequence for the fibration (3.2) collapses ([1]). Therefore the mod p
version of Lemma 3.1(ii) is valid and the result follows.

For p = 3; Since C; = T' - Spin(12) has no 3-torsion H*(BC1;Zs3) is
a polynomial ring generated by elements of even degree ([1]). Therefore the
analogous arguments to the proof of [8] Theorem 2.1 can be applied to the
fibration

Er 7 By/Cy - BC .

Then H*(E7/C1;Z3) is generated by elements of degree < 12 and the result
follows.
For p = 2; according to [7]

H*(E7/C1;Zo) = Zalto, u, v, w]/(tou?, u® +v? t5* + u?v, w? + v*) |

where deg o = 2, deg u = 8, deg v = 12, deg w = 18. Therefore the result
follows. O

5. The integral cohomology rings of F;/C, and E;/T
Consider the fibration

C,/T -5 E.)T -2 E7/Cy .
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Since H*(E/Cy) and H*(Cy/T) are torsion free and have vanishing odd di-
mensional part by Bott [3] the following sequence
Z — H*(E:/C1) 5 HY(By/T) - H'(C/T) — Z
is co-exact; that is
p* is injective, ¢ is surjective
and Keri* = (p*H"(E;/CY)).

Note that p* is a split monomorphism so that Imp* is a direct summand of
H*(E;/T).

Therefore we will know about the generators of H*(E7/C1) by considering
Keri*. In order to investigate Ker i* we will determine H*(E7/T) up to degree
< 20.

Lemma 5.1.
H* (E7/T) :Z[tla R t7a tv V3,74, 75, 79]
/(p17 P25 P35 P4, P55 P65 P8y L9, plO) fO?" degree S 20 5
where ty,--- t7,t € H? as in Section 2, v; € H* (i = 3,4,5,9) and

pr=c1—3t, pr=co—4t>, py=c3— 2y, pa=cq+2t" 3y,
ps = c5 — 3ty + 26793 — 295, pe = 73 + 26 — 2ty5 — 3t7ya + ¢°,
P8 = 373 — 29375 + 2tcy — 6tyzys — Mieg + 126345 + 15t1 vy — 6t595 — 15,
Po = 2c67y3 + t207 — 3t306 — 279, pio= 752 — 2¢77y3 + 3t307 .

Proof. The most part of the lemma is proved in [10] Theorem 4.1. The

only part to prove is to determine the relation pig, but this follows immediately
by definition of p;o and Lemma 2.3 (i). O

Remark 5.2.  Our 7y is slightly different from that in [10]

On the other hand since C;/T is homeomorphic to SO(12)/T%,T¢ the
canonical maximal torus of SO(12), we have ([9] Corollary 2.2)

Proposition 5.3.
H*(C,/T) = H*(SO(12)/T°)

= Z[tllu e 7téj7 €2, €6, 610]/(T17T27T37 T47T57T67Té7r/87 TJlO) )
where {t;}1<i<e is the canonical basis of H*(SO(12)/T°) determined by T°,
ea; € H*(i = 1,3,5) are elements such that 2eq; = ¢, for ¢ = o;(th, -+ ,t§)
and

/ / 2 / U 4

Ty =c] —2e, Toa=cCy—26e;, T3=Cy3—2p, Ti=Cq+ 25— 4eses,
/ / / 2 6 3

s =cs —2e10, Te=Cg, Tg= —€5— 2exe10— 2e5+ 4e5es,

/ 8 5 22 / 2
Ty = €5 — 4eses + deseg — 2ese10, Tio = —€lo -
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Next we consider the homomorphism * : H*(E;/T) — H*(C1/T)
H*(S0(12)/T*®). By comparing the Dynkin diagram of C; with that of SO(12)
([2]) we see easily that

*(t) =€y, () =th; (2<i<T).

Therefore
7 7 6 6
S it(en) = [+ t) = Q+ex) J[JA+) =Q+ex) > c
n=0 i=1 i=1 n=0

and we have
i*(cn) =¢), +eac,_; (0<n<T).
In particular
3i*(t) =i*(3t) = i*(c1) = | + e2 = ey .
Thus
i (t) = ey

since H*(SO(12)/T°) is torsion free. Moreover we can compute i*-images of
Y3, V4, Vs and g from the relations ps, p4, p5s and pg. Thus we have the following

Lemma 5.4.  The homomorphism * : H*(E;/T) — H*(Cy/T)
H*(SO(12)/T%) is given as follows:

)=, (t) =t 2<i<T), () =e,
i*(y3) = es + €3, i*(14) = 2eze6, i*(75) = €10,

-k 4
(3 (’}/9) = 26266610 — €5€10 -

Lemma 5.5.  Kernel of the homomorphism i* : H*(E7/T) — H*(C1/
T) = H*(S0(12)/T°) is an ideal generated by to =t —t1,v4 — 2t1v3 + 21, cg —
2t1y5, 79 — 2t17375 + 3t175 -

Proof. Put

I = (to,v4 — 2t173 + 2t1, 6 — 2t175, 70 — 2t17375 + 3tivs) C H*(E7/T).

By Lemma 5.4 we see easily that the ideal I is contained in Keri*. Therefore
1" induces a map

H*(E;/T)/I—H*(Cy/T) = H*(SO(12)/T%).
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Since pg = 2cg7y3 + t2cr — 3t3cg — 279 € I we have from Lemma 5.1

H*(E7/T)/1 =Lt1," - 7,8, 73, 74: V5, 9]
/(t —t1, p1, p2, p3, pa, p5, 4 — 2t1ys + 21, c6 — 2t17y5
Yo — 2t1v374 + 3t1vs, pe, pss P10)
=Zt1," - ,t7,73,75)
/(p1, P2, P3; pa, P5; C6 — 2t17s5, P, ps, pro)  for degree < 20.

On the other hand by Lemma 5.4 it is verified directly that
i"(pi) =ri (1 <i<5), i"(ce —2t175) =76, 1"(ps) =7,
i"(ps) =15, 1"(pr0) = —1g -

Therefore this map is an isomorphism for degree < 20. Thus

Keri* =1 for degree < 20.

Since Keri* is generated by elements of degree < 18 from Proposition 4.1 the
above equality holds without restriction on degree. O

From this lemma we see that H*(E7/C}) is generated by some four ele-
ments to € H2, % € H8 o € H'? and w € H'® such that

(to,7a — 2t173 + 2t1, ¢ — 2t175,79 — 2t17375 + 3t175) = (fo, @, T, )
as ideals. So we must identify these generators.

Remark 5.6. As is well known W(E;) acts on H*(E7/T), so dose
W(C1) as the subgroup of W(E7) and the image of p* : H*(E;/C1) —
H*(E;/T) is contained in the invariant subalgebra H*(E;/T)"(€1). In this
case, as is proved in [6] Proposition 3.2 Imp* coincides with H*(E;/T)W (1)
and we can identify H*(E;/C}) with H*(E;/T)" (€. Therefore finding the
generators tg, i, D, W is equivalent to finding W (C})-invariant elements includ-
ing to,v4 — 2t17y3 + 2t‘1*, cg — 2t175, Y9 — 2t17Y37Y5 + 3t‘1175 respectively.

Hereafter we may identify H*(FE;/C4) with Im p* and regard it as a sub-
algebra of H*(E;/T).
First note that in H*(BT;Q)

103
P2 = 2¢4 — 3(2t; + to)cs + 16t] + 5285t + 66t1t5 + 341ty + —t; mod (I2),

16
— 1 2 1 1 2
e=cg— t1+§t0 cs + t1+§t1t0+1t0 Cyq
3 1 2 1 2 1 3 6 5 4,2 7 343 v 2,4
—(t] + §t1t0 + Ztlto + étO ca + 2t7 + 6tto + Tt ity + §t1t0 + Ztlto
3 11
+ ng + 6—4t8 mod (1) .
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On the other hand in H*(E;/T) — H*(E;/T;Q) we have

C3 = 273 ’
ey = 3y — 2t* = 3y — 27 — 8tity — 126313 — 8t ty — 2t5
c5 = 275 + 3tyg — 2t2’}/3 =275 + 3(t1 + to)’}/4 — Q(t% + 2t1tp + t(z))’y;), .

Therefore in H*(E7/T;Q)
4 3 2,2 3, 394
p2 = 6y4 — 6(2t1 + to)ys + 127 + 36t + 42t7t5 + 18t1t; + 1_6t0 ’

3 7 3
e=ce— (2t1 +to)ys — (3t1t0 - Zt%) Y4 + (4t§to - §t1t§ + 1t§> v3

19 25 29 9 21
— 35ty — 7t§*t§ — 7t§’t8 — Zt%té — Ztltg - 6—4t8 .

Now let us determine our generators t, @, ¥ and . Obviously we can take
to =t —t; as our generator tyo. By Lemma 3.1 (ii) we may write

i =apy+ Pty in H (E7/C1;Q)
for some «, 8 € Q. On the other hand by Lemma 5.5 we may write
U=y —2t1y3+2t1 + f in Im p* C H*(E7/T)
for some f € H3(E;/T) N (to). Hence in H*(E7/T;Q)
Y4 — 2t1y3 + 2t1 + f = apa + Bt}
=a {674 — 6(2t; + to)ys + 12t] + 365t + 42713 + 18t1t5 + %té} + Bt
= 6a(ys — 2t1y3 + 2t1) — 6atoys + 36atity + 42atity + 18at,t)

39 5
+ (Ea + 6) tO

and we may take

1 13
a=z, B = —3; and f = —toys + 6t5tg 4 732 + 3t t .
Thus
1 13 4 4 3 2,2 3
(5.1) U = 6p2 — 3—2t0 =4 — (2t1 + to)’y;), + 2t7 + 6t7to + 7t1t0 + 3t1ty

can be chosen as our generator .
Similarly we may write

b= ae+ ftiu+tS  in H*(FB;/C1;Q)
=c—2t175+¢9 in Imp* C H(E;/T)
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for some «, 3, € Q and some g € H'2(E7/T) N (ty,u). Hence

3
ce — 2t175 + g = alcg — 2t175) — atoys + {—3at1to + (—Za + 5) t%} Y4

7 3
+ {4at§t0 - (§a - 2ﬁ> tt + (Za - ﬁ) t%} 73 — 3atity

19 25 29
+ (—504 + 26) it + (—Ea + 65) 3t + (—Za + 76) 23

9 21
+ (4a + 36> tty + (64a + 7) ts
and we may take

3 43
Oé—l, /B_Zv 7—_6—4»

g = —toys — 3titoys + (4t3tg + 2t115)ys — 3tTte — Stit2 — 8tity — 245ty — 1§
= —toys — Btitou + (—2tTto — t1tg)ys + 3tito + 10t1¢5 + 1355 + 7eTtg — t5 .
Thus

43y By
v=e+ —tju — —
4°7 64"
_ 2 2 5 4,2 3,43
=cg — (2t1 + to)ys — titoya + (4tito + 2t1t5)vs — 3t5to — 8tits — 8ty
4
— 26315 — 5
can be chosen as our generator v.
Next consider the element

1
w = §t0u2 in H"(E7/C1;Q).

Then direct computation yields

w =y — cgy3 + (£ + 3t3to + 8t1t3 + 5t3)c + (t] + 2t3tg — TtIt2 — 1313
— 5t8)vs + toysys — tos + (tito + 2t2)ysya + (2t1te — 14833 — 18t tg
— 6t5)ya + (—3tTtg — Stitd + 14tTta + 12t1t5 + 3t3)ys + 245t + 12t]t3
+ 28t5t5 + 32715 + 1615 — 33t — it .

Here we used (5.1) and the relations pg, ps, pg. This shows that w is contained
in H*(E7/Cy). Then

w = v9 — 2t17375 + 315 mod (to,u,v) .
Therefore

w = —tou
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can be chosen as our generator w. Using w
Jig = — Stgtu + 24t5u® + 36w? — Stduv — 48tquv — 12uPv — 4tdv?
+ 24t3unv? — 8v®

=4(=2t3* + 6t5u> 4 Jw? — 2duv — 12t5uv — 3udv — t5v? + 6t2uv? — 20%) .
Therefore in view of Lemma 3.1 (ii) we have the following

Theorem 5.7.

H*(E;/C1) = Zto, u,v,w]/ (09, 012,014, 018) ,
where degty = 2, degu = 8, degv = 12, degw = 18 and
09 = 2w — touz,

019 = —6tSu + tgu® + 2t5v — 12t2uv + u® + 302,
014 = 1t — 6t°u — 3tdu* + 4tdv — 6tguv — 3uv + 3tie?,
018 = 265 + 6tiu 4+ 9w? — 25uv — 12tguv — 3ubv — t5v? + 6t3uv? — 20°.

Remark 5.8. (i) We have chosen our tg,u,v,w so that their mod 2
reductions coincide with tg,w, v, w in [7].

(ii) Our 75, v9 are slightly different from those in [7]. If we denote those in
[7] by 7,74, the following relations hold:

Vs = b+ (t +to)es + 8] + it + titg +t3  mod 2,
Yo = V6 +eavh + (1 + i)y mod 2.

Next consider the integral cohomology ring of E7/T. General description
of H*(E7/T) is given in [8] Proposition 3.2. We need only to determine the
relations pis2, p14 and pig. As remarked earlier Im p* is a direct summand of
H*(E;/T) so that 012,014 and o015 are not divisible in H*(E7/T). Hence we
can take 019,014 and o013 as our relations pio, p14 and pig respectively. Thus
we have the following

Theorem 5.9.
H*(E7[T) =Z[t1,- - ,t7,t,73, 74,75, Y]
/(p1, P25 P3; Pas P55 P65 P35 P9, P10, P12, P14, P18) 5
where ty,--+ ,t7,t € H? as in Section 2, v; € H* (i = 3,4,5,9) and
pr=c1—3t, pr=co—4t%, p3=c3—2v3, pa=cs+2t" =3y,
ps = €5 — 3tya+2t°y3 — 275, pe = 73 + 2c6 — 2ty5 — 3P +1°
ps = 37 — 27375 + 2ter — 6tysya — 9ties + 126%y5 + 15ty — 6173 — ¢,
po = 2c¢y3 + tcr — 3t3ce — 279, pro =5 — 2crys + 3tcr
pr2 = —6t5u + 9tgu? 4 2tSv — 12t2uv 4 u® + 3v? |
pra = tp* — 6t50u — 3tdu® + dthv — 6tguv — 3uv + 3tiv?

P18 = —2t64u + 6t3u® + 9w? — 2tSuv — 12tgu*v — 3uv — tiv? + 6t2uv? — 20°



for

The integral cohomology ring of E7/T 321

to =t —1ty1,
_ 4 3 2,2 3
U =Yg — (2t1 + to)’)/3 + 2t7 4 6t7to + 7t1t0 + 3ty ,
v =ce— (2t; +to)Vs — Stitoya + (4t3to + 2t1t3)ys — 3tite — Stit2 — Stit]

- 2t§té - tg ’

w = —t0u2

2
= Y9 — co7y3 + (13 + 3tTto + St1td + 5td)ce + (t1 + 2t5t0 — TH32 — 13t .t
— 5t8)ys + toysys — toys + (tito + 2t2)ysya + (2t1te — 14833 — 18t1t,
— 6t3)ya + (—3t5tg — Stit2 + 14t5ta + 12185 + 3td)ys + 265t + 12t]t3
+ 28t5t5 + 325ty + 16t1t) — 33t — it .
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