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A bifurcation phenomenon
for the periodic solutions

of a semilinear dissipative wave equation

By

Yukie Komatsu

1. Introduction and main result

In this paper, we consider the time periodic solutions of a following semi-
linear dissipative wave equation

utt − c2uxx + µut + u3 = f(t, x), t, x ∈ R,(1.1)

with periodic boundary condition

u(t, x) = u(t, x+ L), t, x ∈ R.(1.2)

Here c and µ are positive constants and f(t, x) is a given external force, which
is T -periodic in t. It is known that for any periodic external force, there ex-
ists at least one T -periodic solution of (1.1) with (1.2). Moreover, if f(t, x)
is suitably small, then any time periodic solution of (1.1) with (1.2) is unique
and asymptotically stable. It was basically proved by P. H. Rabinowitz [7],
[8]. However, in the case of relatively large external force, the numerical com-
putations suggest not only the non-uniqueness of T -periodic solution, but also
the existence of 2T -periodic solution. In order to investigate these phenomena,
we give one-parameter family of external force {fλ}λ≥0, where f0 = 0, and
consider the structure of periodic solution in the product space λ× u. Here, λ
is a positive parameter which somewhat represents the magnitude of external
force. Then, as λ increase from 0, various bifurcation phenomena are observed
by numerical computations. In particular, we can observe the period-doubling
bifurcations which are known as very important phenomena along the route
toward a so called “Chaos”. However, for the nonlinear dissipative wave equa-
tion (1.1), there has been no rigorous proof on the existence of these bifurcation
phenomena.

In order to attack this basic problem, we take the following strategy. At
first, we construct a specific one parameter family of functions {uλ}λ>0. Next,
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670 Yukie Komatsu

we give the one parameter family of external forces {fλ(t)}λ>0 so that {uλ}
become the exact solution of (1.1). It means that we insert the “probe” {uλ}
from the origin in the product space. In this paper, we deal with more specific
case and consider the structure of solution around the “probe”.

Let’s define {uλ(t)}λ>0 and {fλ(t)}λ>0 as follows{
uλ(t) := λU(t), U(t) : given T -periodic smooth function,

fλ(t) := u′′λ(t) + µu′λ(t) + u3
λ(t).

(1.3)

Here we note that if the solution of (1.1) is uniform with respect to x, the
solution satisfies the ordinary differential equation so called Duffing equation.
For Duffing equation, we investigated the bifurcation phenomena by the same
strategy [4], [5], and succeeded in showing the existence of bifurcation points.
In particular, for some {fλ}λ>0, we proved the existence of countably many
period-doubling bifurcation points. Since the solution of Duffing equation is
also the solution of (1.1), we see that the bifurcation points of Duffing equation
also become the bifurcation points of (1.1). Therefore we do focus our attention
on the existence of spatially non-homogeneous bifurcation.

Now, we show the numerical results computed for the case c = µ = 1,
L = 2π, and U(t) = sin 2πt+0.5, by the second order central difference scheme,
putting a suitable initial data. (See Figs. 1 through 4, details in Section 6) These
numerical results indicate that when λ = 1 (Figs. 1 and 2), the trivial vibration
uλ(t) is asymptotically stable, but when λ = 1.5 (Figs. 3 and 4), the 2T -periodic
solution (which is L/2-periodic for x) appears. The aim of this paper is giving
a rigorous proof on the existence of a period-doubling bifurcation phenomenon
from the time periodic vibration uλ(t). In order to describe main result, we
prepare notations. For positive constants T̃ and L̃, H1

per((0, T̃ )×(0, L̃)) denotes
the Banach space:

H1
per((0, T̃ ) × (0, L̃)) = {u;u(0, ·) = u(T̃ , ·), u(·, 0) = u(·, L̃), ‖u‖H1

per
<∞},

(1.4)

with the norm

‖u‖2
H1

per
=
∫ eT

0

∫ eL

0

|u|2 + |ut|2 + |ux|2dxdt.(1.5)

Main result of this paper is the following.

Theorem 1.1. Suppose that the specific function and coefficients of
(1.1) are given by

uλ(t) = λ(sin 2πt+ 0.5), µ = 1,
2πc
L

= 1.(1.6)

Then there exists a period-doubling bifurcation point λ0 = 1.45 · · · such that
(1) uλ(t) is asymptotically stable for any λ(0 < λ < λ0),
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(2) There is a neighborhood V of (λ0, uλ0) in R+×H1
per((0, 2T )×(0, L)),

and an interval (−δ, δ) such that the solution of (1.1) with (1.2) in V is given
by

{(λ, uλ(t)) : (λ, uλ) ∈ V } ∪ {(λ̃(ε), uλ(t) + λ̃(ε)(εv(t, x) + εψ(ε)) : |ε| < δ)}
(1.7)

where v is belonging to H1
per((0, 2T ) × (0, L/2)) and T -anti periodic, λ̃ and ψ

are continuous functions λ̃ : (−δ, δ) → R, ψ : (−δ, δ) → H1
per((0, 2T )×(0, L/2))

which satisfy that λ̃(0) = λ0, ψ(0) = 0.

In the next section, we show the existence of periodic solution of (1.1)
with (1.2), applying Leray-Schauder’s fixed point Theorem. In Section 3, we
reformulate the problem in order to apply Crandall-Rabinowitz’s Theorem [2]
on bifurcation theory. In this process, the eigenvalue problem of linearized
equation plays an essential role. To study it, we expand the solution by Fourier
series in the space valuable. Because we consider the problem around uλ(t)
which is uniform with respect to the space valuable, we can reduce to a linear
system of ordinary differential equations. Since all of these equations have the
same form of linearized Duffing equation, we can make use of the idea employed
in the study of Duffing equation [4], [5]. Then we see the fundamental solutions
of the corresponding Hill’s equation are crucial, and we give a criterion of the
existence of bifurcation points in Section 4. In Section 5, to check this criterion,
we make a computer assisted proof by using softwares of the interval arithmetics
made by Prof. H. Yosihara. Finally, we show the results of the numerical
computations in Section 6.

2. Existence of the periodic solution

In this section, we show the existence of a T -periodic solution of (1.1)
with periodic boundary condition (1.2) for any external force f with period T ,
applying Leray-Schauder’s fixed point Theorem. In order to do it, we reduce
(1.1) to an integral equation. Let’s define the operator L−1 : L2

per((0, T ) ×
(0, L)) → H1

per((0, T ) × (0, L)) by

L−1 : g → u,(2.1)

where u ∈ H1
per((0, T ) × (0, L)) is a solution of the equation

utt − c2uxx + µut + u = g.(2.2)

Then L−1 is well defined and a compact operator L2
per((0, T ) × (0, L)) →

Lp
per((0, T ) × (0, L)) (p ≥ 2). In fact, we expand g and u by Fourier series

as

g(t, x) =
∑
m

∑
n

gm,ne
i2πmx/Lei2πnt/T ,

u(t, x) =
∑
m

∑
n

um,ne
i2πmx/Lei2πnt/T .

(2.3)
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Then it satisfies∑
m

∑
n

{{
−
(

2πn
T

)2

+ c2
(

2πm
L

)2

+
i2πµn
T

+ 1

}
um,n − gm,n

}
× ei2πmx/Lei2πnt/T = 0.

(2.4)

Since it holds

|um,n|2 =
|gm,n|2

(−( 2πn
T )2 + c2( 2πm

L )2 + 1)2 + ( 2πµn
T )2

,(2.5)

we have that if g belongs to L2
per((0, T )×(0, L)), then u belongs toH1

per((0, T )×
(0, L)). From the embedding relation H1

per((0, T ) × (0, L)) ↪→ Lp
per((0, T ) ×

(0, L)) (p ≥ 2), we can see that L−1 is a compact operator L2
per((0, T )× (0, L))

→ Lp
per((0, T ) × (0, L)) (p ≥ 2). Here we note that (1.1) is rewritten by

u = L−1(u− u3 + f),(2.6)

where L−1(u−u3+f) is a compact operator in L6
per((0, T )×(0, L)). Therefore,

in order to apply Leray-Schauder’s fixed point Theorem, we only have to show
that for any ε ∈ [0, 1], there exists M such that any solution of the equation

u = εL−1(u− u3 + f)(2.7)

satisfies

‖u‖L6
per

< M,(2.8)

where M is a positive constant independent of ε. Note that (2.7) is rewritten
by

utt − c2uxx + µut + (1 − ε)u+ εu3 = εf.(2.9)

Since we can easily have the following estimates from (2.9)∫ T

0

∫ L

0

µu2
tdxdt ≤

∫ T

0

∫ L

0

f2dxdt(2.10)

and ∫ T

0

∫ L

0

c2u2
x + (1 − ε)u2 +

3
4
εu4dxdt ≤

∫ T

0

∫ L

0

3ε
4
|f |4/3 + u2

tdxdt,(2.11)

we see ‖u‖H1
per

< M̃ , where

M̃ =max

(∫ T

0

∫ L

0

4f2 +
9
4
|f |4/3dxdt,

∫ T

0

∫ L

0

2f2 +
3
2
|f |4/3dxdt+

√
TL

(∫ T

0

∫ L

0

8
3
f2 + 2|f |4/3dxdt

)1/2
 .

(2.12)
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Using the fact ‖u‖L6
per

≤ C‖u‖H1
per

, we have the estimates corresponding to
(2.8). Thus we can show the existence of periodic solution of (1.1) with (1.2).

3. Reformulation of the problem

We first note that any periodic solution of (1.1) should have the period
T̃ = mT for an m ∈ N. Hence, for any fixed m ∈ N , we look for the periodic
solution of (1.1) in the form:

u(t, x) = uλ(t, x) + λv(t, x),(3.1)

where v(t, x) is a T̃ -periodic in t. Then v(t, x) must satisfy the periodic problem vtt − c2vxx + µvt + Λ
(
U2v + Uv2 +

1
3
v3

)
= 0,

v(t+ T̃ , x) = v(t, x), t, x ∈ R,

(3.2)

where we set Λ = 3λ2. To study the bifurcation problem to (3.2) around
the trivial solution v = 0, we make use of a following bifurcation Theorem in
Crandall-Rabinowitz [2].

Theorem 3.1 (Crandall and Rabinowitz). Let X, Y be Banach spaces,
V a neighborhood of 0 in X and

F : (0,∞) × V → Y

have the properties for a Λ0 > 0
(a) F (Λ, 0) = 0 for Λ ∈ (0,∞),
(b) The partial derivatives FΛ, Fx and FΛx exist and are continuous,
(c) N(Fx(Λ0, 0)) and Y/R(Fx(Λ0, 0)) are one dimensional,
(d) FΛx(Λ0, 0)x0 	∈ R(Fx(Λ0, 0)), for a non trivial x0 ∈ N(Fx(Λ0, 0)).

Let Z be any complement of N(Fx(Λ0, 0)) in X. Then there is a neighborhood U
of (Λ0, 0) in R×X, an interval (−δ, δ), and continuous functions ϕ : (−δ, δ) →
R, ψ : (−δ, δ) → Z such that ϕ(0) = Λ0, ψ(0) = 0 and

F−1(0) ∩ U = {(ϕ(ε), εx0 + εψ(ε)) : |ε| < δ} ∪ {(Λ, 0) : (Λ, 0) ∈ U}.(3.3)

That is, (ϕ(ε), εx0 + εψ(ε)) is the solution of the equation F (Λ, v) = 0, and the
solution v = εx0 + εψ(ε) bifurcates from trivial solution v = 0 at Λ = Λ0.

Similar to the previous section, we define the operator L̃−1 : L2
per((0, T̃ )×

(0, L)) → H1
per((0, T̃ ) × (0, L)) by

L̃−1 : g → u,(3.4)

where u ∈ H1
per((0, T̃ ) × (0, L)) is a unique solution of the equation

utt − c2uxx + µut + u = g.(3.5)
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Using this operator, (3.2) is rewritten by

v = L̃−1

(
v − Λ

(
U2v + Uv2 +

1
3
v3

))
,(3.6)

where Λ = 3λ2. Let’s define the operator F : (0,∞) ×H1
per((0, T̃ ) × (0, L)) →

H1
per((0, T̃ ) × (0, L)) by

F (Λ, v) = v − L̃−1

(
v − Λ

(
U2v + Uv2 +

1
3
v3

))
.(3.7)

Then we have next lemma.

Lemma 3.2. In the problem (3.7), the hypotheses (a)–(d) of Theorem
3.1 reduce the following three conditions.

(i) Λ = Λ0 is a positive eigenvalue of the following linearized eigenvalue
problem of (3.2) at v = 0:


vtt − c2vxx + µvt + ΛU2v = 0,
v(t, x+ L) = v(t, x),

v(t+ T̃ , x) = v(t, x).

(3.8)

(ii) The eigenspace of (3.8) is one dimensional.
(iii)

∫ L

0

∫ eT

0

v0(t, x)v∗0(t, x)U2(t)dtdx 	= 0,(3.9)

where v0(t, x) is an eigenfunction of (3.8) with Λ = Λ0 and v∗0(t, x) is a non-
trivial solution of the adjoint problem to (3.8) with Λ = Λ0

vtt − c2vxx − µvt + ΛU2v = 0,
v(t, x+ L) = v(t, x),

v(t+ T̃ , x) = v(t, x).

(3.10)

Proof. It’s clear that F (Λ, 0) = 0 for any Λ ∈ (0,∞). Moreover, Fv(Λ, 0),
FΛv(Λ, 0) are given by

Fv(Λ, 0)w = w − L̃−1(w − ΛU2w),(3.11)

FΛv(Λ, 0)w = −L̃−1(−U2w).(3.12)

Therefore, we have N(Fv(Λ0, 0)) coincides with the eigenspace of (3.8) with
Λ = Λ0. Since it holds from the Fredholm’s alternative Theorem that

codim(R(Fv(Λ0, 0))) = dim(N(F ∗
v (Λ0, 0)) = dim(N(Fv(Λ0, 0))),
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we see that the condition (c) in Theorem 3.1 reduces to the condition (ii).
Finally, we consider the condition (d). If FΛv(Λ0, 0)v0 ∈ R(Fv(Λ0, 0)), then
there exists w such that

wtt − c2wxx + µwt + Λ0U
2w = U2v0,

which implies
∫ L

0

∫ eT

0
v0(t, x)v∗0(t, x)U2(t)dtdx = 0. Therefore the condition (d)

reduces to the condition (iii). Thus the proof is completed.

The condition (iii) means that the eigenvalue Λ = Λ0 is simple. Since our
problem here is not self-adjoint, its condition is not trivial at all.

4. Eigenvalue problem of the linearized equation

In this section, we investigate the eigenvalue problem (3.8) in details. We
expand the solution by Fourier series as

w(t, x) =
∞∑

n=−∞
wn(t)e

i2πnx
L ,

then wn(t) satisfies

w′′
n(t) + µw′

n(t) +
(

2πnc
L

)2

wn(t) + ΛU2(t)wn(t) = 0, for n = 0, 1, 2, . . . .

(4.1)

We set wn(t) = e−µt/2yn(t), then (4.1) becomes

y′′n(t) +

(
−µ

2

4
+
(

2πnc
L

)2

+ ΛU2(t)

)
yn(t) = 0,(4.2)

which is a type of so called Hill’s equation. The equation (4.2) also has the
matrix form (

yn

y′n

)′
=
(

0, 1
µ2

4 − ( 2πnc
L )2 − ΛU2(t), 0

)(
yn

y′n

)
.(4.3)

To consider the original problem (3.8), we may seek the solution of (4.2) in
the form eµt/2ỹ(t), where ỹ is periodic of period T̃ = mT. Let Φn(Λ, t) be a
fundamental matrix for (4.3),

Φn(Λ, t) =
(
φ1(Λ, n, t) φ2(Λ, n, t)
φ′1(Λ, n, t) φ′2(Λ, n, t)

)
(4.4)

where {φi(Λ, n, t)}2
i=1 are given by the solutions of initial value problem to

(4.2) with initial data Φn(Λ, 0) = E. By the Floquet’s Theory, we can see that
the equation (4.1) has an mT -periodic solution if and only if Φn(Λ, T ) has a
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characteristic root eµT/2ωm, where ωm is a primitive m-th root of 1. Note that
det Φn(Λ, t) = 1 for t ≥ 0, because the trace of the coefficient matrix of (4.3)
is zero. Then, the characteristic roots of Φn(Λ, T ) are given by the roots of
characteristic equation

σ2 − ∆(Λ, n)σ + 1 = 0,(4.5)

where ∆(Λ, n) is a trace of Φn(Λ, T ), that is, ∆(Λ, n) = φ1(Λ, n, T ) + φ′2(Λ, n,
T ). Therefore, we can divide the characteristic roots {σi} into the following
three types:

|σi|i=1,2 ≤ 1

σ1 = ez(Λ,n)T , σ2 = e−z(Λ,n)T

σ1 = −ez(Λ,n)T , σ2 = −e−z(Λ,n)T

if |∆(Λ, n)| ≤ 2,
if ∆(Λ, n) > 2,
if ∆(Λ, n) < −2.

(4.6)

Here z(Λ, n) is explicitly given by the formula for |∆(Λ, n)| > 2

z(Λ, n) =
1
T

cosh−1 ∆(Λ, n)
2

=
1
T

log
|∆| +√|∆|2 − 4

2
.(4.7)

We also define z(Λ, n) = 0 for |∆(Λ, n)| ≤ 2. Then, z(Λ, n) coincides with so
called “Lyapunov exponent” of the solution of (4.1). By these consideration
above, we have next lemma.

Lemma 4.1. For the linearized equation (3.8), it holds the followings.
(i) mT (m ≥ 3)-periodic solution does not exist.
(ii) T -periodic solution exists at Λ = Λ0 if and only if there exists n0

such that ∆(Λ0, n0) = eµT/2 + e−µT/2.
(iii) 2T -periodic solution exists at Λ = Λ0 if and only if there exists n0

such that ∆(Λ0, n0) = −(eµT/2 + e−µT/2). This 2T -periodic solution is T -anti-
periodic solution, i.e. u(t, x) = −u(t+ T, x) for t, x ∈ R.

Now, we further investigate the properties of ∆(Λ, n) and z(Λ, n). Define

Σ = {Λ ∈ R; |∆(Λ)| ≤ 2},
and let K be a operator in L2

U2(R) defined by

K =
1
U2

(
− d2

dt2
+

(
µ2

4
−
(

2πnc
L

)2
))

,

where L2
U2 denotes the weighted L2-space defined by

L2
U2(R) =

{
h(t);

∫
R

|h(s)|2U2(s)ds <∞
}
.

Then, we can see that K is a self-adjoint operator in L2
U2 , the spectrum of K

coincides with Σ, and the resolvent set coincides with R \ Σ. In particular, if
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Λ /∈ Σ, by the above argument on ΦΛ(T ) and ∆(Λ), there are two independent
solution of (4.2) w±

Λ (t) (t ∈ R) such that w+
Λ (t) (resp. w−

Λ (t)) decays at the
rate e−z(Λ)t (resp. ez(Λ)t) as t → +∞ (resp. t → −∞), and t(w±

Λ (0), w±′
Λ (0))

is an eigenvector of ΦΛ(T ). Then, the solution of

(K − ΛI)g = f in L2
U2(4.8)

which is equivalent to

−d
2g

dt2
+

(
µ2

4
−
(

2πnc
L

)2

− ΛU2

)
g = U2f(4.9)

is concretely constructed by the Green function in the form

g(t) =
∫

R

GΛ(t, s)U2(s)f(s)ds,(4.10)

where

GΛ(t, s) = GΛ(s, t) =
w+

Λ (t)w−
Λ (s)

[w+
Λ , w

−
Λ ]

; t ≥ s,

and [w+
Λ , w

−
Λ ] is the Wronskian.

In [5], the Lyapunov exponent z(Λ, n) were investigated precisely. In our
case, the same property holds.

Lemma 4.2. For Λ /∈ Σ, dz/dΛ can be represented in the form

dz

dΛ
= − 1

T

∫ T

0

GΛ(τ, τ )U2(τ )dτ.(4.11)

According to the expansion theory by generalized eigen-functions estab-
lished by Weyl, Stone, Titschmarsh and Kodaira, GΛ(s, t) has the following
representation;

GΛ(s, t) =
∫

Σ

Σ1≤i,j≤2φi(s, ξ)φj(t, ξ)σij(dξ)
ξ − Λ

,(4.12)

where {σij} is a matrix valued Stieltjes measure which is nonnegative definite.
From 4.2 and (4.12), we have following two lemmas.

Lemma 4.3.

d2z

dΛ2
= −

∫
Σ

σ(dξ)
(ξ − Λ)2

< 0(4.13)

for Λ 	∈ Σ, that is, z(Λ, n) is a convex function on R \ Σ.

Lemma 4.4. For any eigenvalues Λ = Λ0 of (4.1) with n = n0, it holds
that

dz

dΛ
(Λ0, n0) 	= 0 ⇐⇒

∫ T

0

wn0(t)w
∗
n0

(t)U2(t)dt 	= 0,(4.14)

where wn0 is a solution of (4.1) with n = n0 and w∗
n0

is a solution of the adjoint
equation of (4.1) with n = n0.
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By these lemmas, we have the following Theorem.

Theorem 4.5. (I) Suppose that there exists (Λ0, n0) satisfying the next
conditions :

(i) ∆(Λ0, n0) = eµT/2 + e−µT/2 (resp.− (eµT/2 + e−µT/2)),
(ii) ∆(Λ0, n) 	= ±(eµT/2 + e−µT/2) for n 	= n0,
(iii) (d∆/dΛ)(Λ0, n0) 	= 0.

Then T -periodic (resp. 2T -periodic) solution bifurcates at Λ = Λ0. Moreover,
there is a neighborhood V of (Λ0, 0) in R+ × H1

per((0, T̃ ) × (0, L)), and an
interval (−δ, δ) such that the solution of (3.2) in V is given by

{(Λ, 0) : (Λ, 0) ∈ V } ∪ {(Λ̃(ε), εv0(t, x) + εψ(ε)) : |ε| < δ}.(4.15)

Here Λ̃ and ψ are continuous functions Λ̃ : (−δ, δ) → R, ψ : (−δ, δ) →
H1

per((0, T̃ ) × (0, L) which satisfy that

Λ̃(0) = Λ0, ψ(0) = 0,(4.16)

Furthermore, we have

v0(t+ T, x) = v0(t, x) (resp.− v0(t, x)),
v0(t, x+ L/n0) = v0(t, x).

(4.17)

(II) If Λ = Λ0 is the smallest eigenvalue of (3.8), which satisfys the above
conditions (i)–(iii), then trivial solution alternates the asymptotic stability at
Λ = Λ0.

Proof. From Lemmas 4.1 and 4.4, if it holds the condition (i)–(iii), then all
hypotheses of Lemma 3.2 are satisfied. Therefore, if it holds the condition (i)–
(iii), T -periodic (resp. 2T -periodic) solution bifurcates at Λ = Λ0. Considering
the problem in H1

per((0, T̃ )× (0, L/n0)) instead of H1
per((0, T̃ )× (0, L)), we get

(4.17). Moreover, we see that the sign of z(Λ, n0)−µT/2 changes from negative
to positive at Λ = Λ0, which implies that the stability of uλ(t) alternates at
Λ = Λ0.

Remark 1. Concerning the function Λ̃ : (−δ, δ) → R, where Λ̃(0) = Λ0,
we have the following properties.

sign

{
dΛ̃
dε

|ε=0

}
= sign

− ∫ L

0

∫ T̃

0
U(t)v2

0(t, x)v∗0(t, x)dtdx∫ L

0

∫ T̃

0
U2(t)v0(t, x)v∗0(t, x)dtdx

(4.18)

sign

{
d2Λ̃
dε2

|ε=0

}
= sign

 − ∫ L

0

∫ T̃

0
v3
0(t, x)v∗0(t, x)dtdx∫ L

0

∫ T̃

0
U2(t)v0(t, x)v∗0(t, x)dtdx

(4.19)

Here, we note that if Λ = Λ0 is a period-doubling bifurcation point, then
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(dΛ̃/dε)|ε=0 = 0, because we have

∫ L

0

∫ 2T

0

U(t)v2
0(t, x)v

∗
0(t, x)dtdx

=
∫ L

0

∫ T

0

U(t)v2
0(t, x)v∗0(t, x)dtdx

+
∫ L

0

∫ T

0

U(t+ T )v2
0(t+ T, x)v∗0(t+ T, x)dtdx

= 0.

(4.20)

5. Proof of Main Theorem

In the previous section, we have a criterion of the existence of bifurcation
points, which is given by a trace of fundamental solution. In this section,
we show the existence of λ0 which satisfies a criterion, analyzing a trace of
fundamental solution for a system of the following equations:

dΦ
dt

= A(t)Φ, Φ(0) = I,(5.1)

where

A(t) =
(

0, 1
µ2

4 − ( 2πnc
L )2 − ΛU2(t), 0

)
, n = 0, 1, 2, . . . .(5.2)

To prove the existence of bifurcation point, we take the following steps.
(1) We decide the interval (0, λ) and look for the bifurcation point in this

interval. This λ is properly picked up by observation of rather rough numerical
computations.

(2) We determine n0 ∈ N depending on λ such that if n > n0 then the
equation (4.1) does not have nontrivial solution for λ ∈ (0, λ). Then, we inves-
tigate the fundamental solutions of (5.1) only for 0 ≤ n ≤ n0.

(3) We decide the target interval [λ1, λ2] ⊂ (0, λ), and make a detailed
numerical computations of (5.1), in particular on the trace ∆(λ, n), at λ = λ1

and λ = λ2. Because we’ll show in Lemma 5.2 that |∆(λ, n) − ∆(λ0, n)| ≤
C|λ − λ0|, for any λ, λ0 ∈ [λ1, λ2]. For numerical computations, we use the
following fourth order Taylor finite difference scheme

Φk+1 = R(k)Φk k = 0, 1, 2, · · · ,K

:= Φk + ∆tAkΦk +
(∆t)2

2
BkΦk +

(∆t)3

6
CkΦk +

(∆t)4

24
DkΦk,

Φ0 = I,

(5.3)

where ∆t = T/K, Ak = A(k∆t), Bk = B(k∆t), Ck = C(k∆t), Dk = D(k∆t),
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and

B(t) =
dA(t)
dt

+A2(t),

C(t) =
d2A(t)
dt2

+ 2
dA(t)
dt

A(t) +A(t)
dA(t)
dt

+A3(t),

D(t) =
d3A(t)
dt3

+ 3
d2A(t)
dt2

A(t) + 3
(
dA(t)
dt

)2

+ 3
dA(t)
dt

A2(t)

+ 2A(t)
dA(t)
dt

A(t) +A(t)2
dA(t)
dt

+A(t)
d2A(t)
dt2

+A4(t).

(5.4)

(4) We estimate the difference ||Φ(T ) − ΦK ||, where ΦK is a value of
fundamental solution by the numerical computation using the scheme (5.3).
The estimate will be given by Proposition 5.4, Lemmas 5.5 and 5.6. To do
that, we have to prepare some softwares which perform the interval arithmetics
for the computations. Here, we used softwares for computations of double
precision by the Sun Workstation, supported by Prof. Hideaki Yosihara.

Taking the step (1)–(4), we prove the existence of bifurcation point λ0 ∈
(λ1, λ2). Moreover, in order to prove that λ0 is a first bifurcation point, we
need to add the following step.

(5) We show that ∆(λ, n) 	= ±(e1/2 + e−1/2) for 0 < λ < λ1, 0 ≤ n ≤ n0.

Proof of Main Theorem.

Preparation. At first, we determine λ, n0, and the target interval as
follows.

(1) λ = 1.5,
(2) n0 = 8 (see Fig. 5),
(3) Target interval is [1.4525, 1.4550].

Next, we compute the fundamental solution using (5.3) with double precision.
The number of mesh-points is K = 1024, that is, ∆t = 1/1024.

(4) We estimate the difference

||Φ(T ) − ΦK || < 0.0000041,(5.5)

from Proposition 5.4, Lemmas 5.5 and 5.6. The details are postponed until the
end of this section.

Verification. Here, we verify the hypotheses of Theorem 4.5.
(I) (i) From the numerical computation and (5.5), we have

∆(λ, 2) > −2.2540897 + 0.0000082, λ = 1.4525,(5.6)
∆(λ, 2) < −2.2571220 − 0.0000082, λ = 1.4550.(5.7)

From the fact 2.25525193 − 10−10 < e1/2 + e−1/2 < 2.25525193 + 10−10, and
the Intermediate theorem, we can see that there exists an eigenvalue of the
linearized equation λ0(λ0 ∈ (1.4525, 1.4550)) such that ∆(λ0, 2) = −(e1/2 +
e−1/2).
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(I) (ii) Computing the fundamental solution for n = 0, 1, 3, · · · 8, we have

sup
λ∈[1.4525,1.4550],n�=2

|∆(λ, n)| < 2.006967 + 0.000021,(5.8)

which implies that ∆(λ0, n) 	= ±(e1/2 + e−1/2) for n 	= 2.
(I) (iii) Suppose that (d∆/dλ)(λ0, 2) = 0. According to the convexity of

z(Λ, n) by Lemma 4.3, there exist λ̃ ∈ (λ0, 1.4550) and ˜̃λ ∈ (λ̃, 1.4550) such
that ∆(λ̃, 2) = 2 and ∆(˜̃λ, 2) = −2. Then we have

max
λ

|∆(λ, 2) − ∆(λ̂, 2)| > 2 + e1/2 + e−1/2, λ̂ = (λ1 + λ2)/2.(5.9)

On the other hand, by Lemma 5.2 and (5.54),

max
λ

|∆(λ, 2) − ∆(λ̂, 2)| < 1.(5.10)

It contradicts (5.9). Therefore we have (d∆/dλ)(λ0, 2) 	= 0.
Thus, we can obtain the existence of the period-doubling bifurcation point

λ0(λ0 ∈ (1.4525, 1.4550)).
(II) By Lemma 5.3, we see that ∆(λ, n) 	= ±(e1/2 + e−1/2) for any λ ∈

(0, 0.068], n ∈ N . And we have

sup
λ∈[0.068,1.4525],n=2

|∆(λ, n)| < 2.2540897 + 0.0000082,(5.11)

sup
λ∈[0.068,1.4525],n�=2

|∆(λ, n)| < 2.2481613 + 0.0000366,(5.12)

which imply that ∆(λ, n) 	= ±(e1/2 + e−1/2) for 0 < λ < 1.4525, 0 ≤ n ≤ 8.
Therefore, λ0 is the first bifurcation point.

Thus, we can verify all hypotheses of Theorem 4.5.

From here, we show some lemma needed in the proof of main theorem.
First, we show the lemma used in step (2), which is important for reductions
to the problem of finite number of ordinary differential equations.

Lemma 5.1. For any fixed Λ, if it holds

n >

√
ΛL

4πcµ
sup

t
|U ′(t)|,(5.13)

then wn(t) ≡ 0 for 0 < Λ ≤ Λ.

Proof. From (4.1), we have the equalities∫ T

0

µ(w′
n)2dt =

∫ T

0

ΛUU ′w2
ndt,(5.14)
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and ∫ T

0

(
c2πn
L

)2

w2
n + ΛU2w2

ndt =
∫ T

0

(w′
n)2dt.(5.15)

Combining (5.14) and (5.15), we have∫ T

0

(
c2πn
L

)2

w2
ndt ≤

Λ
4µ

(sup
t

|U ′(t)|)2
∫ T

0

w2
ndt.(5.16)

Therefore, if c2πn/L >
√

Λ supt |U ′(t)|/(2µ), then wn(t) ≡ 0 for 0 < Λ ≤
Λ.

From this lemma, we know the relation between n and λ such that the
equation (4.1) does not have a non-trivial solution. Especially, in the case
µ = 1, 2πc/L = 1, U(t) = sin 2πt + 0.5, we obtain that if n > 3

√
3π/2

(8.162 · · · ) then wn(t) ≡ 0 for 0 < Λ ≤ 1.5. The following figure shows the
relation n and λ.

Figure 8

We see that (4.1) does not have a non-trivial solution in the area (B). Therefore,
we only have to consider the eigenvalue problem in the area (A). In order to
compute the fundamental solution of (5.1) in the area (A), we prepare the
following lemma relating the mesh size of Λ.

Lemma 5.2. Let ∆(Λ, n) and ∆(Λ0, n) be the trace of the fundamental
solutions for A(t,Λ, n) and A(t,Λ0, n). Then we have

|∆(Λ, n) − ∆(Λ0, n)| ≤ C3|Λ − Λ0|,(5.17)

where C3 is a positive constant, depend on n.
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In fact, C3 is explicitly given by Lemma 5.6.
Now, we consider the case (Λ, n) = (0, 0). In this case, the linearized

equation (4.1)

w′′
n + w′

n = 0(5.18)

has nontrivial solution wn ≡ C, where C is a nonzero constant. Since ∆(0, 0) =
eµT + e−µT , we can’t use the computer aided proof for the neighborhood of
(Λ, n) = (0, 0). As concerns the behavior for the neiborhood of Λ = 0, we have
following lemma.

Lemma 5.3. If it holds

0 < Λ ≤ µ2

32(supt |U(t)|)2 ,(5.19)

then (1.1) has no periodic solution except for uλ(t).

Proof. Instead of (3.1), we set u(t, x) = uλ(t) + p(t, x). Then p(t, x)
satisfies

ptt − c2pxx + µpt + 3λ2U2p+ 3λUp2 + p3 = 0.(5.20)

Multiplying pt or p and integrated by parts, we have∫ L

0

∫ T

0

µp2
tdtdx = −

∫ L

0

∫ T

0

3λ2U2ppt + 3λUp2ptdtdx,(5.21)

and ∫ L

0

∫ T

0

p2
tdtdx =

∫ L

0

∫ T

0

c2p2
x + 3λ2U2p2 + 3λUp3 + p4dtdx.(5.22)

Combining (5.21) and (5.22), we have∫ L

0

∫ T

0

3
16

(λ2U2 + p2)p2dtdx ≤
∫ L

0

∫ T

0

p2
tdtdx

≤
∫ L

0

∫ T

0

18
µ2
λ2U2(λ2U2 + p2)p2dtdx.

(5.23)

Therefore, if 18λ2 supt |U(t)|2/µ2 ≤ 3/16, then p(t, x) ≡ 0. In the case µ = 1,
2πc/L = 1, U(t) = sin 2πt+ 0.5, we obtain that if λ ≤ √

6/36 (0.068 · · · ) then
p(t, x) ≡ 0.

At the step (4), we have to estimate ||Φ(T ) − ΦK ||. To do that, we need
the theory of pseudo trajectory. Let {Φk}K+1

k=0 be the computed value using the
scheme (5.3) which is so called a pseudo trajectory of (5.3) which contains the
round-off error at each step:

||Φk+1 − R(k)Φk|| ≤ α, k = 0, 1, 2, . . .K,(5.24)



�

�

�

�

�

�

�

�

684 Yukie Komatsu

where the round-off error α depends on the complexity computation (5.3) and
also on the computer and its software of floating point arithmetics. To estimate
the round-off error, we have to have prepared some softwares which perform
the interval arithmetics for the computations.

Proposition 5.4 (Nishida, Teramoto and Yosihara [6]). We have the
estimate for the difference between Φ(k∆t) and Φk:

||Φ(k∆t) − Φk|| ≤ C1k∆tC10(∆t)3,(5.25)

where

C1 = max
0≤s≤t≤T

||L(t, s)||,(5.26)

C10 =
α

(∆t)4
+ C1

β

(∆t)3

(
1 +

∆t
2

+
(∆t)2

6
+

(∆t)3

24

)
+

(∆t)
120

C1C5 exp(A∆t),

(5.27)

C1 = max
0≤j≤k

||Φj ||,(5.28)

C5 = max
0≤t≤k∆t

||E(t)||, d5Φ
dt5

= E(t)Φ(t),(5.29)

β = max
0≤j≤k

{||A(j∆t) −Aj ||, ||B(j∆t) −Bj ||, ||C(j∆t) − Cj ||, ||D(j∆t) −Dj ||}.
(5.30)

Here, we see that C5 is the cut off error of the scheme (5.3), β is the error
of the coefficients of (5.1).

Proof. Let’s set Qk = Φk − Φ(k∆t). First, we show the equality:

Qk =
k∑

j=0

L(k∆t, j∆t)Vj , where Vj = Φj − L(j∆t, (j − 1)∆t)Φj−1.

(5.31)

Suppose that the above equality is true. Then it follows that

Qk+1 = Φk+1 − Φ((k + 1)∆t)

= Φk+1 − L((k + 1)∆t, k∆t)Φk + L((k + 1)∆t, k∆t){Φk − Φ(k∆t)}

= Φk+1 − L((k + 1)∆t, k∆t)Φk +
k∑

j=0

L((k + 1)∆t, j∆t)Vj

=
k+1∑
j=0

L((k + 1)∆t, j∆t)Vj .

(5.32)
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From an induction, we show the equality (5.31). Therefore, we have only to
estimate Vk.

||Vk|| ≤ ||Φk −R(k)Φk−1|| + ||R(k)Φk−1 − L(k∆t, (k − 1)∆t)Φk−1||
≤ α+ ||R(k)Φk−1 − L(k∆t, (k − 1)∆t)Φk−1||.

(5.33)

The second term of right hand side has the following estimate:

||R(k)Φk−1 − L(k∆t, (k − 1)∆t)Φk−1||

≤ ∆t||Φk−1||
{
||A(j∆t) −Aj || + ∆t

2
||B(j∆t) −Bj ||

+
(∆t)2

6
||C(j∆t) − Cj || +

(∆t)3

24
||D(j∆t) −Dj ||

}
+

(∆t)5

120
max

t
||E(t)|| max

(k−1)∆t≤s≤k∆t
||L(s, (k − 1)∆t)Φk−1||

≤ C1β∆t
(

1 +
∆t
2

+
(∆t)2

6
+

(∆t)3

24

)
+

(∆t)5

120
C1C5 exp(||A||∆t).

(5.34)

Therefore, we have

Qk ≤ C1k{α+ C1β∆t
(

1 +
∆t
2

+
(∆t)2

6
+

(∆t)3

24

)
+

(∆t)5

120
C1C5 exp(||A||∆t)}.

(5.35)

Thus the proof of Proposition 5.4 is completed.

Now, we have the relation between C1 and C1 by the following lemma.

Lemma 5.5. C1, C1 satisfy the estimate

C1 ≤ (exp(2||A||∆t) + αT/∆t)C1

1 − C1T (β(1 + ∆t) + (∆t)4C5 exp(||A||∆t)/120)
.(5.36)

Proof. For any (s, t), we take (l, k) ∈ N ×N such that (l − 1)∆t < s ≤
l∆t ≤ k∆t ≤ t < (k + 1)∆t. Then it holds that

L(t, s) = L(t, k∆t)L(k∆t, l∆t)L(l∆t, s).(5.37)

According to Proposition 5.4, we have

||L(t, s)|| ≤ exp(−||A||∆t)(C1 − C1C10k(∆t)4) exp(−||A||∆t).(5.38)

Dividing C10 into two parts: C10 = I1 + I2C1, where

I1 =
α

(∆t)4
, I2 =

β

(∆t)3

(
1 +

∆t
2

+
(∆t)2

6
+

(∆t)3

24

)
+

∆t
120

C5 exp(||A||∆t),
(5.39)
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we have

C1 ≤ (exp(2||A||∆t) + I1k(∆t)4)C1

1 − I2C1k(∆t)4
.(5.40)

Moreover, C1 is explicitly given by the following lemma.

Lemma 5.6. Suppose that µ = 1, 2πc/L = 1. Let yn be the solution of
the equation (4.2). Then it follows for any ε > 0, r2 ≥ 0 that

((y′n + εyn)2 + (n2 + r2)y2
n + ΛU2y2

n)(t)

≤ eν(t−s)((y′n + εyn)2 + (n2 + r2)y2
n + ΛU2y2

n)(s),
(5.41)

where

ν = max
{

2ε, ε+
1 + 4r2

4ε
,
ε/2 − 2εn2 + Λ maxt |U ′|

(ε2 + n2 + r2)
,max

t
|U ′| − 2ε

}
.(5.42)

Proof. From (4.2), we have(
(y′n)2

2
+ n2 y

2
n

2
+

ΛU2y2
n

2

)′
=

1
4
yny

′
n + ΛUU ′y2

n,(5.43)

(yny
′
n)′ = (y′n)2 +

1
4
y2

n − n2y2
n − ΛU2y2

n.(5.44)

Combining (5.43) and (5.44), we have(
(y′n)2

2
+ εyny

′
n +

n2y2
n

2
+

ΛU2y2
n

2

)′

=
1
4
yny

′
n + ΛUU ′y2

n + ε(y′n)2 +
ε

4
y2

n − εn2y2
n − εΛU2y2

n.

(5.45)

Therefore, it holds for any r2 ≥ 0 that

((y′n + εyn)2 + (n2 + r2)y2
n + ΛU2y2

n)′

= 2ε(y′n)2 +
(

1
2

+ 2ε2 + 2r2
)
yny

′
n +

( ε
2
− 2εn2

)
y2

n − 2εΛU2y2
n + 2ΛUU ′y2

n

≤ 2ε(y′n)2 +
(

1
2

+ 2ε2 + 2r2
)
yny

′
n

+ (ε/2 − 2εn2 + max
t

Λ|U ′|)y2
n + (max

t
|U ′| − 2ε)ΛU2y2

n

≤ ν((y′n + εyn)2 + (n2 + r2)y2
n + ΛU2y2

n),

(5.46)

which implies (5.41).
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Putting s = 0 in this lemma, we have

{
((φ′1 + εφ1)2 + (n2 + r2)φ2

1 + ΛU2φ2
1)(T ) ≤ eνT (ε2 + (n2 + r2 + ΛU2(0)),

((φ′2 + εφ2)2 + (n2 + r2)φ2
2 + ΛU2φ2

2)(T ) ≤ eνT ,

(5.47)

which gives the bound of C1 and C3,

C1 ≤ eνT/2

√√√√{1 + ε2 + n2 + r2 + ΛU2(0)}
{

1
n2 + r2

+
(

1 +
ε√

n2 + r2

)2
}
,

C3 ≤ eνT

(√
ε2 + n2 + r2 + ΛU2(0) + ε

n2 + r2
+

1√
n2 + r2

)
.

(5.48)

Now recall the basic numerical data c = µ = 1, L = 2π, λ = 1.5, K = 1024,
∆t = 1/1024, U(t) = sin 2πt+0.5. In our numerical computations with double
precision, the round off error is known to satisfy

α < 1.0 × 10−14,(5.49)

and we performed the computations so that the error of coefficients satisfy

β < 1.0 × 10−10.(5.50)

Then Lemma 5.6 gives

C1 ≤ eε

√√√√(1 + ε2 + n2 + r2 +
9
4

27
4

)(
1

n2 + r2
+
(

1 +
ε√

n2 + r2

)2
)
,

(5.51)

C3 ≤ 9
4
e2ε


√
ε2 + n2 + r2 + 9

4
27
4 + ε

n2 + r2
+

1√
n2 + r2

 ,(5.52)

where 
ε = 2.25,
ε = 2.15,
ε = 1.65,
ε = π/2,

r2 = ε2 − 1/4,

r2 = ε2 − 1/4,

r2 = ε2 − 1/4,

r2 = 0,

n = 0,
n = 1,
n = 2,
n ≥ 3.

(5.53)

Especially, in the case n = 2, we have

C1 < 44.5, C1 < 46.3,

C3 < 87, C5 < 2.5 × 105.
(5.54)
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Thus, we can estimate the difference

||Φ(T ) − ΦK || < 0.0000041,(5.55)

by Proposition 5.4, and can obtain all concrete value used in the proof of Main
Theorem.

6. Numerical computations

In this section, we show some results of numerical computations. First,
we made the numerical computations for the equation (1.1) with (1.2), by the
second order central difference scheme, putting a suitable initial data. In the
case c = µ = 1, L = 2π, and U(t) = sin 2πt+ 0.5(T = 1), the numerical results
are given in Figs. 1 through 4. When λ = 1, Fig. 1 shows the trajectory of
(x, u(t, x)−0.5) from t0 until t0 +T , where t0 is sufficiently large time, and the
trajectory (t, u(t, x) − 0.5) at x = 3L/8 is given in Fig. 2. These trajectories
indicate that the trivial vibration uλ(t) is asymptotically stable. On the other
hand, when λ = 1.5, the trajectory (x, 1.5(u(t, x) − 0.5)) from t0 until t0 + T
is given in Fig. 3, and the trajectory (t, 1.5(u(t, x)− 0.5)) at x = 3L/8 is given
in Fig. 4. Figure 3 shows that the solution is not uniformly and L/2-periodic
for x, moreover Fig. 4 shows that the solution is 2T -periodic. In fact, we know
the existence of a period-doubling bifurcation point λ0(λ0 ∈ (1.4525, 1.4550)),
from Example 1.

However, we mathematically studied that the conditions for the existence
of bifurcation points reduct the condition for ∆(λ, n), which is a trace of the
fundamental solution of (5.1). Therefore we made the numerical computations
of ∆(λ, n), using the forth order Taylor finite difference scheme, but not using
the software of floating point arithmetics. The graph of (λ,∆(λ, n)) for 0 ≤
λ ≤ 5 is given in Fig. 6. The curve of n = 0 shows that ∆(0, 0) = eT/2 + e−T/2,
which is consistent with the fact (5.18). The curve of n = 2 intersects the line
∆ = −(eT/2 + e−T/2) at λ0(λ0 ∈ (1.4, 1.5)), and the other curve don’t intersect
the line ∆ = −(eT/2 + e−T/2) in λ ∈ (0, 1.5).

Finally, we investigated the relations between the bifurcation points and
the amplitude of periodic vibrations uλ(t) = λ(sin 2πt + ε) 0 ≤ ε ≤ 1. We
made a numerical computations of ∆(λ, n), using the forth order Taylor finite
difference scheme, (not using the software of floating point arithmetics) and
plot the points which satisfy the condition of Proposition 3.5. Figure 7 shows
the relation (λ, ε) for 0 ≤ λ ≤ 3, 0 ≤ ε ≤ 1, where the mesh sizes of λ, ε are
respectively 0.01, 0.0125. This picture point out as follows.

(i) When 0 ≤ ε ≤ 0.1375, the solution which is T -periodic and L/5 periodic
for x, bifurcates at first.

(ii) When 0.15 ≤ ε ≤ 0.1625, the solution which is 2T -periodic and uniform
in x, bifurcates at first.

(iii) When 0.175 ≤ ε ≤ 0.2, the solution which is 2T -periodic and L-
periodic for x, bifurcates at first.

(iv) When 0.2125 ≤ ε ≤ 1.0, the solution which is 2T -periodic and L/2-
periodic for x, bifurcates at first.
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(v) The bifurcation occurs at smaller λ as ε becomes large.
In particular, in the case ε = 0, we can prove that the period-doubling

bifurcation point does not exist at all. Since the period of U2(t) is T/2, the
argument of Lemma 4.1 implies the period of any bifurcation points is T/2 or
T .

Figure 1 Figrure 2

Figure 3 Figrure 4
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Figure 5

Figure 6
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Figure 7
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