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Extension of Thomas’ result and upper bound
on the spectral gap of d(≥ 3)-dimensional

Stochastic Ising models

By

Nobuaki Sugimine

1. Introduction

Let us consider the Glauber dynamics at low temperature (large β) which
evolves on a cube

Λ(l, d) =
(
− l

2
,
l

2

]d

∩ Zd

whose side-length is l ∈ N with a boundary condition ω. By gap(Λ(l, d), ω), we
will denote the spectral gap corresponding to a boundary condition ω. Espe-
cially, By gap(Λ(l, d), φ) and gap(Λ(l, d), +), we will mean spectral gaps corre-
sponding to free and + boundary conditions, respectively. When β > βc(d), it
is known that gap(Λ(l, d), ω) shrinks to zero as l ↗ ∞. For d = 2, it is known
that the speed at which gap(Λ(l, d), +) shrinks to zero as l ↗ ∞ is different
from the one at which gap(Λ(l, d), φ) does (see [Mar94]). It is known (Theorem
5 in Section 3 of [Sch94]) that the spectral gap has the following general lower
bound for any d ≥ 2 and any β > 0:

c(β, d)l−d exp
(
−4β

d−1∑
i=1

li
)
≤ inf

ω∈Ωb.c.

gap(Λ(l, d), ω) for any l ∈ N.(1.1)

On the other hand, L. E. Thomas proved in [Tho89] that

gap(Λ(l, d), φ) ≤ B exp(−βCld−1) for any l ∈ N(1.2)

for any d ≥ 2 and sufficiently large β, where B = B(β, d) > 0 and C =
C(d) > 0. In this note we will make an attempt to extend the class of boundary
conditions in the case that d ≥ 3 (see [HY97] and [AY99]) for which the estimate

gap(Λ(l, d), ω) ≤ B exp(−βCld−1) for any l ∈ N
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142 Nobuaki Sugimine

holds for sufficiently large β and some B = B(ω, β, d) > 0, C = C(ω, d) > 0.
In order to do this, we want to maximize kλ for which the estimate

|γ ∩ intΛ(l, d)|
|γ| ≥ λ for any γ ∈ C(l, d), |γ| ≤ kld−1

holds (see Sections 3 and 5). But it is difficult if we consider all contours in
C(l, d). For this reason, by introducing the notion of simple contours (see the
final paragraph of Sections 1 and 3), we will refine the Thomas’ argument on
contour.

For example, we will consider the boundary conditions ωδ ∈ Ω+
b.c. which

are defined for all δ ∈ [0, 1] by

ωδ(x) =


 +1 if xd =

[
l

2

]
and

−δl

2
< xi ≤ δl

2
(i �= d),

0 otherwise.
(1.3)

From the consequences for d = 2 (see [Mar94]), we can expect not only that
gap(Λ(l, d), ωδ) for each δ < 1 behaves like (1.2) as l ↗ ∞, but also that the
behavior of gap(Λ(l, d), ω1) as l ↗ ∞ is different from that of gap(Λ(l, d), ωδ)
for any δ < 1. Unfortunately, we can not prove it. But we can show that for
example, for d = 3, gap(Λ(l, d), ωδ) for each δ < 3/4 shrinks to zero as l ↗ ∞
like (1.2).

Basic Definitions

The lattice. For x = (xi)d
i=1 ∈ Zd, we will use the l1-norm ‖x‖1 =∑d

i=1 |xi| and l∞-norm ‖x‖∞ = max1≤i≤d |xi|. We will also use the partial
order x ≥ y if and only if xi ≥ yi for all i ≤ d. Let p = 1 or p = ∞. A set
Λ ⊂ Zd is said to be lp-connected if for each distinct x, y ∈ Λ, we can find some
{z0, . . . , zm} ⊂ Λ with z0 = x, zm = y and ‖zi−zi−1‖p = 1 for any i ≤ m. The
interior and exterior boundaries of a set Λ ⊂ Zd will be denoted respectively
by

∂inΛ = {x ∈ Λ; ‖x − y‖1 = 1 for some y /∈ Λ},
∂exΛ = {y /∈ Λ; ‖x − y‖1 = 1 for some x ∈ Λ}.

The number of points contained in a set Λ ⊂ Zd will be denoted by |Λ|. We
will use the notation Λ ⊂⊂ Zd to indicate that Λ ⊂ Zd and |Λ| < ∞ at the
same time.

The configurations and the Gibbs states. In addition to the usual spin
configuration spaces

ΩΛ = {σ = (σ(x))x∈Λ; σ(x) = +1 or −1}, Λ ⊂ Zd,

we will introduce a configuration space Ω+
b.c. for boundary conditions

Ω+
b.c. = {ω = (ω(x))x∈Zd ; ω(x) = +1 or 0}.
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d(≥ 3)-dimensional Stochastic Ising models 143

We define φ, + ∈ Ω+
b.c. by

φ(x) = 0 for all x ∈ Zd and +(x) = +1 for all x ∈ Zd, respectively.

The set of all real functions on ΩΛ will be denoted by CΛ. For Λ ⊂⊂ Zd and
ω ∈ Ω+

b.c., the Hamiltonian Hω
Λ ∈ CΛ is defined by

Hω
Λ(σ) = −1

2

∑
x,y∈Λ

‖x−y‖1=1

σ(x)σ(y) −
∑

x∈Λ, y /∈Λ
‖x−y‖1=1

σ(x)ω(y).

A Gibbs state on Λ ⊂⊂ Zd with a boundary condition ω ∈ Ω+
b.c. and

inverse temperature β > 0 is the probability distribution µω
Λ such that the

probability of each configuration σ ∈ ΩΛ is given by

µω
Λ({σ}) =

1
Zω

Λ

exp{−βHω
Λ(σ)},

where Zω
Λ is the normalization constant.

Stochastic Ising models. For Λ ⊂⊂ Zd and β > 0, we consider a function
cΛ : Λ × ΩΛ × Ω+

b.c. −→ (0,∞) which satisfies the following conditions:
(i) Boundedness. There exist constants c(β, d) > 0, c(β, d) > 0 such that

c(β, d) ≤ cΛ(x, σ, ω) ≤ c(β, d)

for all Λ ⊂⊂ Zd and all (x, σ, ω) ∈ Λ × ΩΛ × Ω+
b.c..

(ii) The detailed balance condition. It holds that

cΛ(x, σ, ω) exp{−βHω
Λ(σ)} = cΛ(x, σx, ω) exp{−βHω

Λ(σx)}(1.4)

for all Λ ⊂⊂ Zd and all (x, σ, ω) ∈ Λ × ΩΛ × Ω+
b.c., where σx is the

configuration obtained from σ by replacing σ(x) with −σ(x).
An example of functions cΛ is given by

cΛ(x, σ, ω) = exp
{
−β

2
(Hω

Λ(σx) − Hω
Λ(σ))

}

= exp
{
−βσ(x)

( ∑
y∈Λ:‖x−y‖1=1

σ(y) +
∑

y/∈Λ:‖x−y‖1=1

ω(y)
)}

.

The generator of a stochastic Ising model is a linear operator Aω
Λ : CΛ −→ CΛ

for Λ ⊂⊂ Zd and ω ∈ Ω+
b.c. given by

Aω
Λf(σ) =

∑
x∈Λ

cΛ(x, σ, ω)[f(σx) − f(σ)], f ∈ CΛ.

It can be seen by (1.4) that for any f, g ∈ CΛ

−µω
Λ(fAω

Λg) = −µω
Λ(gAω

Λf)

=
1
2

∑
x∈Λ

∑
σ∈ΩΛ

µω
Λ(σ)cΛ(x, σ, ω)[f(σx) − f(σ)][g(σx) − g(σ)].
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Finally, we define

gap(Λ, ω) = inf
{ −µω

Λ(fAω
Λf)

µω
Λ(|f − µω

Λ(f)|2) ; f ∈ CΛ

}
,(1.5)

which is the smallest positive eigenvalue of −Aω
Λ and hence it is called the

spectral gap.

Main Result

Theorem 1.1. Let d ≥ 3. Consider a stochastic Ising model on the
square Λ(l, d). Suppose that a boundary condition ω ∈ Ω+

b.c. is such that

lim sup
l→∞

|F+
l (ω)|
ld−1

< δ <
27
16d

,(1.6)

where
F+

l (ω) = {y ∈ ∂exΛ(l, d); ω(y) = +1}.
Then, there exists β0 = β0(δ, d) > 0 such that for any β ≥ β0 and any l ∈ N

gap(Λ(l, d), ω) ≤ B exp(−βCld−1),(1.7)

where B = B(ω, β, δ, d) > 0 and C = C(δ, d) > 0. Especially, if there exists
some δ ∈ (0, 27/16d) such that |F+

l (ω)| ≤ δld−1 for any l ∈ N, then we can
take B in (1.7) as a constant independent of ω.

A better bound can be obtained for d = 3 case by a slight modification of
the argument in the proof of Theorem 1.1.

Theorem 1.2. Suppose that a boundary condition ω ∈ Ω+
b.c. is such

that

lim sup
l→∞

|F+
l (ω)|
l2

< δ <
3
4
.(1.8)

Then, there exists β′
0 = β′

0(δ) > 0 such that (1.7) holds for any β ≥ β′
0 and any

l ∈ N. Especially, if there exists some δ ∈ (0, 3/4) such that |F+
l (ω)| ≤ δl2 for

any l ∈ N, then we can take B in (1.7) as a constant independent of ω.

For d = 4 or 5, we have a little better result than Theorem 1.1. We will
present it in Appendix with its proof (see Theorem A.1).

Contours, l∞-Contours and Simple Contours

Here we will introduce the notion of simple contours which will play an
important role in this note. The set B of bonds in Zd is defined by

B = {{x, y} ⊂ Zd; ‖x − y‖1 = 1}.
For Λ ⊂ Zd, we also define

∂Λ = {{x, y} ∈ B; (x, y) ∈ Λ × Λc}.
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For a bond b = {x, y}, we will consider a (d − 1)-dimensional unit cell b∗ =
Q(x) ∩ Q(y), where Q(x) =

∏d
i=1[xi − (1/2), xi + (1/2)] ⊂ Rd. For a finite set

V ⊂ Rd, we put
Q(V ) = ∪x∈V Q(x) ⊂ Rd

and ∂Q(V ) will indicate the set of (d−1)-dimensional unit cells constituting the
boundary of Q(V ). Two bonds b1 and b2 are said to be adjacent if b∗1 ∩ b∗2 �= φ.
A set E ⊂ B is said to be connected if for each distinct b, b′ ∈ E, we can find
some {b0, . . . , bm} ⊂ E such that bi and bi−1 are adjacent for any i ≤ m with
b0 = b and bm = b′.

Clusters. For σ ∈ ΩΛ(l,d), we define

Λ(l, d)(σ, +) = {x ∈ Λ(l, d); σ(x) = +1},
Λ(l, d)(σ,−) = {x ∈ Λ(l, d); σ(x) = −1},

and let {Λ+
i (σ)} and {Λ−

i (σ)} be the decomposition of Λ(l, d)(σ, +) and Λ(l,
d)(σ,−) into l1-connected components, respectively. We will call an element of
{Λ+

i (σ)} and {Λ−
i (σ)} a (+)-cluster at σ and a (−)-cluster at σ, respectively.

When σ(x) = +1, there exists the unique (+)-cluster including x ∈ Λ(l, d),
which will be denoted by C+

x (σ). We define C−
x (σ) similarly.

Contours and l∞-Contours. A contour (an l∞-contour) γ is a union
of (d − 1)-dimensional unit cells with the following properties: There exists
Θ ⊂⊂ Zd such that

(i) Θ is l1(l∞)-connected and Θc is l∞-connected, and
(ii) γ = ∪b∈∂Θb∗.

The set Θ ⊂⊂ Zd is uniquely determined by a contour (an l∞-contour) γ and
hence will be denoted by Θ(γ). We can see that γ = ∂Q(Θ(γ)). The (d − 1)-
dimensional Lebesgue measure of an l∞-contour γ will be denoted by |γ| and
the d-dimensional Lebesgue measure of Q(Θ(γ)) will be denoted by |Q(Θ(γ))|.
Since an l∞-contour corresponds to a connected set of bonds, it follows that
for each b ∈ B and each n ∈ N,

	{γ; γ is an l∞-contour with |γ| = n and γ � b∗} ≤ κ(d)n−1,(1.9)

where κ(d) > 0 is a constant which depends only on d ((4.24) in [Gri89]). If
Θ(γ) is a subset of Λ ⊂ Zd, γ is said to be a contour (an l∞-contour) in Λ.
The set of all contours in Λ(l, d) will be denoted by C(l, d). The set of all
l∞-contours in Λ(l, d) will be denoted by C(l, d). For σ ∈ ΩΛ(l,d), a contour γ
is said to be a (+)-contour at σ if it satisfies the following properties:

(i) There exists a (+)-cluster Λ+
i (σ) ⊂ Θ(γ), and

(ii) γ ∈ {∂Λ+
i,j(σ)}, where {∂Λ+

i,j(σ)} is the decomposition of ∂Q(Λ+
i (σ))

into connected components.
The (+)-cluster Λ+

i (σ) is uniquely determined by a (+)-contour γ at σ and
hence will be denoted by C+(σ, γ). Similarly, we define (−)-contours at σ. By
a contour at σ, we will mean either a (+)-contour at σ or a (−)-contour at σ.
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Simple contours in Λ(l, d). We define for i = 1, . . . , d

Ci(l, d) =
{

γ ∈ C(l, d); if x ∈ Θ(γ) and y ∈ Li(l, d)(x)
with yi ≤ xi, then y ∈ Θ(γ)

}
,

where Li(l, d)(x) = {y = (yj)d
j=1 ∈ Λ(l, d); yj = xj for any j �= i}. A contour

γ ∈ ∩d
i=1Ci(l, d) is said to be a simple contour in Λ(l, d). The set of all simple

contours in Λ(l, d) will be denoted by S(l, d). The main idea of this note is to
reduce analysis of contours to that of simple contours.

2. Outline of the proof of Theorems 1.1 and 1.2

Our proof of Theorems 1.1 and 1.2 is based on the ways in [Tho89], [HY97]
and [AY99]. First, we will explain an outline of the proof of Theorem 1.1.

For σ ∈ ΩΛ(l,d), we define

Cl(σ) = {γ; γ is a (+)-contour in Λ(l, d) at σ with |γ| ≥ 9ld−1/2}.(2.1)

Let χl : ΩΛ(l,d) −→ {0, 1} be the indicator function of the event Γl which is
defined by

Γl = {σ ∈ ΩΛ(l,d); Cl(σ) �= φ}.(2.2)

Then, we have by (1.5) that

gap(Λ(l, d), ω) ≤
−µω

Λ(l,d)(χlA
ω
Λ(l,d)χl)

µω
Λ(l,d)(|χl − µω

Λ(l,d)(χl)|2)(2.3)

≤ c(β, d)
µω

Λ(l,d)(Γl)µω
Λ(l,d)(Γ

c
l )

∑
x∈Λ(l,d)

∑
σ∈Γl, σx /∈Γl

µω
Λ(l,d)(σ).

To bound the RHS of (2.3) from above, we will use the following two lemmas.

Lemma 2.1. Suppose that ω ∈ Ω+
b.c.. Then, there exist β1 = β1(d) > 0

and l1 = l1(d) > 0 such that for any β ≥ β1

inf
l≥l1

µω
Λ(l,d)(Γl) ≥ 1

3
.(2.4)

Lemma 2.2. Suppose that a boundary condition ω ∈ Ω+
b.c. satisfies

(1.6). Then, there exist β2 = β2(δ, d) > 0 and l2 = l2(ω, δ, d) > 0 such that for
any β ≥ β2 and any l ≥ l2∑

x∈Λ(l,d)

∑
σ∈Γl, σx /∈Γl

µω
Λ(l,d)(σ) ≤ µω

Λ(l,d)(Γ
c
l )B exp(−βCld−1),(2.5)

where B = B(β, δ, d) > 0 and C = C(δ, d) > 0.



�

�

�

�

�

�

�

�

d(≥ 3)-dimensional Stochastic Ising models 147

From (2.3), (2.4) and (2.5), we have that for any β ≥ max{β1, β2} and any
l ≥ max{l1, l2}

gap(Λ(l, d), ω) ≤ 3c(β, d)B exp(−βCld−1),

which proves Theorem 1.1.
To prove Theorem 1.2, we have only to use the following lemma instead of

Lemma 2.2.

Lemma 2.3. Let d = 3. Suppose that a boundary condition ω ∈ Ω+
b.c.

satisfies (1.8). Then, there exist β3 = β3(δ) > 0 and l3 = l3(ω, δ) > 0 such that
(2.5) holds for any β ≥ β3 and any l ≥ l3.

3. Simple contours

To reduce analysis of contours to that of simple contours, we will introduce
a lemma which asserts that

inf
γ∈C(l,d)

|γ ∩ intΛ(l, d)|
|γ| ≥ min

{1
2
, inf

γ∈S(l,d)

|γ ∩ intΛ(l, d)|
|γ|

}
,(3.1)

where γ ∩ intΛ(l, d) = γ\∂Q(Λ(l, d)). From now on, we will use the notations

b±i(x) = {x, x ± ei}, i = 1, . . . , d

to specify 2d bonds including x ∈ Zd, where {ei}d
i=1 are the canonical unit

vectors in Zd. We also define the following notations to specify 2d sides of
Q(Λ(l, d)):

F±i(l, d) = {b∗ ∈ ∂Q(Λ(l, d)); b = b±i(x) for some x ∈ ∂inΛ(l, d)},
i = 1, . . . , d.

Lemma 3.1. For each i = 1, . . . , d, consider the map ϕi : C(l, d) �
γ 
−→ ϕi(γ) ∈ Ci(l, d) which satisfies that for any x̄ ∈ Λ(l, d)

|Θ(γ) ∩ Li(l, d)(x̄)| = |Θ(ϕi(γ)) ∩ Li(l, d)(x̄)}|.(3.2)

Then, for each i = 1, . . . , d and any γ ∈ C(l, d) with |γ ∩ intΛ(l, d)|/|γ| ≤ 1/2
it holds that

|γ| ≥ |ϕi(γ)|,(3.3)
|γ ∩ intΛ(l, d)|

|γ| ≥ |ϕi(γ) ∩ intΛ(l, d)|
|ϕi(γ)| .(3.4)

Proof . It suffices to prove (3.3) and (3.4) for i = d. From the definition
of the map ϕd, we can see that for any x̄ ∈ Λ(l, d)∣∣∣∣

{
b∗ ∈ γ;

b = b+d(x) or b = b−d(x)
for some x ∈ Θ(γ) ∩ Ld(l, d)(x̄)

}∣∣∣∣(3.5)

≥
∣∣∣∣
{

b∗ ∈ ϕd(γ);
b = b+d(x) or b = b−d(x)

for some x ∈ Θ(ϕd(γ)) ∩ Ld(l, d)(x̄)

}∣∣∣∣ .
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For j = 1, . . . , d − 1, we can also see that for any x̄ ∈ Λ(l, d) and ȳ = x̄ + ej

(3.6) ∣∣∣∣
{

b∗ ∈ γ ∩ intΛ(l, d);
b = b+j(x) for some x ∈ Θ(γ) ∩ Ld(l, d)(x̄) or
b = b−j(y) for some y ∈ Θ(γ) ∩ Ld(l, d)(ȳ)

}∣∣∣∣
= |{x ∈ Θ(γ); x ∈ Ld(l, d)(x̄)}| + |{y ∈ Θ(γ); y ∈ Ld(l, d)(ȳ)}|

− 2|{x ∈ Θ(γ); x ∈ Ld(l, d)(x̄) and x + ej ∈ Θ(γ)}|
≥
∣∣∣|{x ∈ Θ(γ); x ∈ Ld(l, d)(x̄)}| − |{y ∈ Θ(γ); y ∈ Ld(l, d)(ȳ)}|

∣∣∣
=

∣∣∣∣∣∣∣∣


b∗ ∈ ϕd(γ) ∩ intΛ(l, d);

b = b+j(x) for some
x ∈ Θ(ϕd(γ)) ∩ Ld(l, d)(x̄) or

b = b−j(y) for some
y ∈ Θ(ϕd(γ)) ∩ Ld(l, d)(ȳ)




∣∣∣∣∣∣∣∣
,

and that for any x̄ ∈ ∂inΛ(l, d)

(3.7)∣∣∣∣
{

b∗ ∈ γ ∩ ∂Q(Λ(l, d));
b = b+j(x) or b = b−j(x)

for some x ∈ Θ(γ) ∩ Ld(l, d)(x̄)

}∣∣∣∣
=
∣∣∣∣
{

b∗ ∈ ϕd(γ) ∩ ∂Q(Λ(l, d));
b = b+j(x) or b = b−j(x)

for some x ∈ Θ(ϕd(γ)) ∩ Ld(l, d)(x̄)

}∣∣∣∣ .
From (3.5), (3.6) and (3.7), we have that

|γ| ≥ |ϕd(γ)|.(3.8)

Moreover, note that

(3.9)
|ϕd(γ) ∩ ∂Q(Λ(l, d))| = |γ ∩ ∂Q(Λ(l, d))|

+
∣∣∣∣
{

x ∈ Λ(l, d);
b∗−d(x) /∈ γ ∩ F−d(l, d) and
b∗−d(x) ∈ ϕd(γ) ∩ F−d(l, d)

}∣∣∣∣
−
∣∣∣∣
{

x ∈ Λ(l, d);
b∗+d(x) ∈ γ ∩ F+d(l, d) and
b∗+d(x) /∈ ϕd(γ) ∩ F+d(l, d)

}∣∣∣∣ ,
and that

(3.10)
1
2

(
|γ| − |ϕd(γ)|

)
≥
∣∣∣∣
{

x ∈ Λ(l, d); xd = [ l
2 ] and there exist x′, x′′ ∈ Θ(γ) ∩ Ld(l, d)(x)

such that b∗−d(x
′), b∗+d(x

′′) ∈ γ ∩ intΛ(l, d)

}∣∣∣∣
≥
∣∣∣∣
{

x ∈ Λ(l, d);
b∗+d(x) ∈ γ ∩ F+d(l, d) and
b∗+d(x) /∈ ϕd(γ) ∩ F+d(l, d)

}∣∣∣∣
−
∣∣∣∣
{

(x ∈ Λ(l, d);
b∗−d(x) /∈ γ ∩ F−d(l, d) and
b∗−d(x) ∈ ϕd(γ) ∩ F−d(l, d)

}∣∣∣∣ .



�

�

�

�

�

�

�

�

d(≥ 3)-dimensional Stochastic Ising models 149

Therefore, we have from (3.8), (3.9) and (3.10) that for any γ ∈ C(l, d) with
|γ ∩ intΛ(l, d)|/|γ| ≤ (1/2)

|γ ∩ intΛ(l, d)|
|γ| ≥ |ϕd(γ) ∩ intΛ(l, d)|

|ϕd(γ)| ,

since the following inequality holds:

t1
t2

≥ t1 − p1

t2 − p2
for any t1, t2, p1, p2 > 0 with t1 > p1, t2 > p2 and

p1

p2
≥ t1

t2
.

4. Proof of Lemma 2.1

For γ ∈ C(l, d) at σ ∈ ΩΛ(l,d), we set

∆γHω
Λ(l,d)(σ) = Hω

Λ(l,d)(σ) − Hω
Λ(l,d)(Tγσ)(4.1)

= 2
(
|γ ∩ intΛ(l, d)| − |∂exΘ(γ) ∩ F+

l (ω)|
)
,

where the map Tγ : ΩΛ(l,d) −→ ΩΛ(l,d) is defined by

Tγσ(x) =
{ −σ(x) if x ∈ Θ(γ),

σ(x) if x /∈ Θ(γ).

For γ ∈ S(l, d) and i = 1, . . . , d, we put

S+i(γ) = γ ∩ F+i(l, d) and S−i(γ) = γ ∩ F−i(l, d).

Note that there exists im such that

|S−im
(γ)| ≤ 1

2d
|γ|.(4.2)

Lemma 4.1. Let ρ ∈ (0, 1/2) and γ ∈ C(l, 3) be a contour with |Θ(γ)| <
(1 − 2ρ)l3. Then, there exists l0 > 0 such that for any l ≥ l0

|γ ∩ intΛ(l, 3)|
|γ| ≥ ρ

6
.(4.3)

Lemma 4.2. Let ρ′ ∈ (0, 3) and γ ∈ C(l, d) be a contour at σ ∈ ΩΛ(l,d)

with |Θ(γ)| < ρ′ld/d. Then, there exist ε = ε(ρ′, d) > 0 and l0 = l0(d) > 0 such
that for any l ≥ l0

∆γHφ
Λ(l,d)(σ) ≥ ε|γ|.(4.4)

Proof of Lemma 4.2. Since we can see from (4.1) that (4.4) holds for any
γ ∈ C(l, d) with |γ ∩ intΛ(l, d)|/|γ| ≥ 1/2, we have only to show that

|γ ∩ intΛ(l, d)|
|γ| ≥ min{ρ′, 3 − ρ′}

2d2(d − 1)
(4.5)
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for any γ ∈ S(l, d) with |Θ(γ)| < ρ′ld/d by (3.1) and (3.2). Assuming that
Lemma 4.1 is true, we will prove (4.5) by induction. For d = 3, (4.5) holds
from (4.3). Thus, we assume that (4.5) holds for d = n ≥ 3 and consider
γ ∈ S(l, n + 1) with |Θ(γ)| < ρ′ln+1/(n + 1). From the definition of simple
contours we can see that |S+i(γ)| · l < |Q(Θ(γ))| = |Θ(γ)| for i = 1, . . . , n + 1,
which implies that

|S+i(γ)| < ρ′ln/(n + 1), i = 1, . . . , n + 1.(4.6)

If there exists some i0 such that |S−i0(γ)| ≥ ρ′ln/n, then, we have that

|γ ∩ intΛ(l, n + 1)|
|γ| ≥ 1

2(n + 1)ln
(ρ′

n
− ρ′

n + 1

)
ln(4.7)

=
ρ′

2(n + 1)2n
,

since |γ ∩ intΛ(l, n + 1)| ≥ |S−i0(γ)| − |S+i0(γ)|. Otherwise, we have that
|S−i(γ)| < ρ′ln/n for i = 1, . . . , n + 1. We consider the n-dimensional hyper-
planes H(t) of integer height, which are defined by

H(t) = {z ∈ Rn+1; zim
= t}, t ∈ Z.

Here im satisfies (4.2). Then, for any integer t ∈ (−l/2, l/2] we can regard the
intersection of γ and H(t) as a simple contour in S(l, n). Let γ′(t) = γ ∩ H(t)
and Q′(t) = Q(Θ(γ)) ∩ H(t). By |S−im

(γ)| < ρ′ln/n, we have that |Q′(t)| <
ρ′ln/n. Then, by the hypothesis of the induction, we have that for any integer
t ∈ (−l/2, l/2]

|γ′(t) ∩ intΛ(l, n + 1)|
|γ′(t)| ≥ min{ρ′, 3 − ρ′}

2n2(n − 1)
.(4.8)

Therefore, we have from (4.2) and (4.8) that

|γ ∩ intΛ(l, n + 1)|
|γ| ≥ 1

|γ|
(
(|γ| − 2|S−im

(γ)|) · min{ρ′, 3ρ′}
2n2(n − 1)

)
(4.9)

≥ n

n + 1
· min{ρ′, 3 − ρ′}

2n2(n − 1)

=
min{ρ′, 3 − ρ′}

2(n + 1)n(n − 1)
.

From (4.7) and (4.9), we can show that (4.5) holds for d = n + 1.

Proof of Lemma 4.1. By the same reason as in the proof of the previous
lemma, we have only to show that (4.3) holds for any γ ∈ S(l, 3) with |Θ(γ)| <
(1 − 2ρ)l3 by (3.1) and (3.2). Thus, we assume that γ ∈ S(l, 3) with |Θ(γ)| <
(1 − 2ρ)l3. Note that

|S+i(γ)| < (1 − 2ρ)l2, i = 1, 2, 3.(4.10)
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If |S−im
(γ)| ≥ (1 − ρ)l2, then we have from (4.10) that

|γ ∩ intΛ(l, 3)|
|γ| ≥ ρ

6
.(4.11)

Otherwise, we consider the 2-dimensional hyper-planes H(t) of integer height
and γ′(t) = γ ∩ H(t) in the same way as in the proof of Lemma 4.2. Then, by
|S−im

(γ)| < (1 − ρ)l2, we have that for any integer t ∈ (−l/2, l/2]

|γ′(t) ∩ intΛ(l, 3)|
|γ′(t)| ≥

√
ρ

2
.(4.12)

Therefore, we have from (4.2) and (4.12) that

|γ ∩ intΛ(l, 3)|
|γ| ≥ 1

|γ|
(
(|γ| − 2|S−im

(γ)|) ·
√

ρ

2

)
(4.13)

≥
√

ρ

3
.

From (4.11) and (4.13), we can show that (4.3) holds.

Proof of Lemma 2.1. We define a set Γ′
l ⊂ ΩΛ(l,d) by

Γ′
l = {σ ∈ ΩΛ(l,d); there exists some (+)-contour γ at σ with |Θ(γ)| ≥ 9ld/4d}.

We can see that Γ′
l ⊂ Γl as follows. From (3.2) and (3.3), we have only to show

that |γ| ≥ 9ld−1/2 for any γ ∈ S(l, d) with |Θ(γ)| ≥ 9ld/4d. Take such a simple
contour γ ∈ S(l, d), and then we will prove that

|S−i(γ)| ≥ 9ld−1/4d, i = 1, . . . , d,(4.14)

which implies that |γ| ≥ 9ld−1/2. To see (4.14), we assume for example that
|S+1(γ)| < 9ld−1/4d. Then, by the definition of simple contours we have that
|Q(Θ(γ))| = |Θ(γ)| < 9ld/4d, which contradicts |Θ(γ)| ≥ 9ld/4d.

By FKG inequality, we have that

µω
Λ(l,d)(Γl) ≥ µω

Λ(l,d)(Γ
′
l)(4.15)

≥ µφ
Λ(l,d)(Γ

′
l)

≥ µφ
Λ(l,d)({σ(0) = +1} ∩ Γ′

l)

=
1
2
− µφ

Λ(l,d)({σ(0) = +1} ∩ Γ′
l
c).

At a configuration σ ∈ {σ(0) = +1} ∩ Γ′
l
c, the origin is enclosed by a (+)-

contour γ with |Θ(γ)| < 9ld/4d. Therefore, we have by Lemma 4.2 with ρ′ =
9/4 that

∆γHφ
Λ(l,d)(σ) ≥ ε|γ| for any l ≥ l0.(4.16)
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By this and the standard Peierls’ argument, we have that for any l ≥ l0

(4.17)

µφ
Λ(l,d)({σ(0) = +1} ∩ Γ′

l
c) ≤

∑
γ

µφ
Λ(l,d){γ appears and ∆γHφ

Λ(l,d)(σ) ≥ ε|γ|}

≤
∑

γ

exp(−βε|γ|),

where
∑

γ stands for the summation over all contours γ with Θ(γ) � 0. By
using the counting inequality (1.9), it is not difficult to see that for sufficiently
large β

lim
β↗∞

∑
γ

exp(−βε|γ|) = 0,

which together with (4.15) and (4.17) implies Lemma 2.1.

Remark 4.3. At a configuration σ ∈ {σ(0) = +1} ∩ Γc
l , the origin is

enclosed by a (+)-contour γ with |γ| < 9ld−1/2, which does not necessarily
imply that the estimate

∆γHω
Λ(l,d)(σ) ≥ ε|γ|

holds. Therefore, we replace the boundary conditions ω with φ by using FKG
inequality for Γ′

l ⊂ Γl. For this reason, boundary conditions ω are restricted to
ones belonging to Ω+

b.c..

5. Proof of Lemmas 2.2 and 2.3

For α ∈ (0, 1] and k ∈ (0, 6), we say that the condition P(k, l, α; d) holds if
it holds that

|γ ∩ intΛ(l, d)|
|γ| ≥ α

d
for any γ ∈ C(l, d) with |γ| < kld−1.

Lemma 5.1. If P(k, l, α; d) holds, then P(k, l, α ∧ d/(2(d + 1)); d + 1)
holds.

Proof . Since we have only to show that

|γ ∩ intΛ(l, d + 1)|
|γ| ≥ 1

d + 1

(
α ∧ d

2(d + 1)

)
(5.1)

for any γ ∈ C(l, d + 1) with |γ ∩ intΛ(l, d + 1)|/|γ| < 1/2, we can suppose by
(3.1) and (3.3) that γ ∈ S(l, d + 1) with |γ| < kld. Note that

|S−im
(γ)| < kld/2(d + 1).(5.2)

For any integer t ∈ (−l/2, l/2], we consider γ′(t) = γ∩H(t), Q′(t) = Q(Θ(γ))∩
H(t) in the same way as in the proof of Lemma 4.2. We can define S+j(γ′(t))



�

�

�

�

�

�

�

�

d(≥ 3)-dimensional Stochastic Ising models 153

for any j ≤ d + 1, j �= im in the same way as the definitions of S+j(γ′) for
γ′ ∈ S(l, d). If |γ′(t)| < kld−1, we have by the hypothesis of the induction that

|γ′(t) ∩ intΛ(l, d + 1)|
|γ′(t)| ≥ α

d
.(5.3)

Otherwise, from (5.2) we can suppose that |γ′(t)| ≥ kld−1 and |Q′(t)| <
kld/2(d + 1). Then, we can see that∑

j 
=im

|S+j(γ′(t))| < kdld−1/2(d + 1).

Therefore, we have that

|γ′(t) ∩ intΛ(l, d + 1)|
|γ′(t)| ≥ 1

|γ′(t)|
( |γ′(t)|

2
−
∑

j 
=im

|S+j(γ′(t))|
)

(5.4)

≥ 1
2
− d

2(d + 1)
=

1
2(d + 1)

.

From (4.2), (5.2), (5.3) and (5.4), we can conclude that

|γ ∩ intΛ(l, d + 1)|
|γ| ≥ 1

|γ|
(

(|γ| − 2|S−im
(γ)|) ·

(
α

d
∧ 1

2(d + 1)

))

=
1

d + 1

(
α ∧ d

2(d + 1)

)
,

which implies that P(k, l, α ∧ d/(2(d + 1)); d + 1) holds.

Lemma 5.2. Let γ ∈ C(l, 3) be a contour with |γ| < 9l2/2. Then, it
holds that

|γ ∩ intΛ(l, 3)|
|γ| ≥ 1

6
.(5.5)

Proof . Let ρ ∈ (0, 1). Since we have only to show that (5.5) holds for
any γ ∈ C(l, 3) with |γ ∩ intΛ(l, 3)|/|γ| < 1/2, we can suppose by (3.1) and
(3.3) that γ ∈ S(l, 3) with |γ| < 6(1 − ρ)l2. Then, we have from (4.2) that
|S−im

(γ)| < (1 − ρ)l2. For any integer t ∈ (−l/2, l/2], we consider γ′(t) =
γ ∩H(t) and Q′(t) = Q(Θ(γ))∩H(t) in the same way as in the proof of Lemma
4.2. We can see that

|γ′(t) ∩ intΛ(l, 3)|
|γ′(t)| ≥ min

{
1
4
,

√
ρ

2

}
,(5.6)

since we have that |Q′(t)| < (1 − ρ)l2. Therefore, we have from (4.2) that

|γ ∩ intΛ(l, 3)|
|γ| ≥ 1

|γ|
(

(|γ| − 2|S−im
(γ)|) · min

{
1
4
,

√
ρ

2

})

≥ 2
3
· min

{
1
4
,

√
ρ

2

}
,

which with ρ = 1/4 implies (5.5).
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Corollary 5.3. Let d ≥ 3 and γ ∈ C(l, d) be a contour at σ ∈ ΩΛ(l,d)

with |γ| < 9ld−1/2. Then, it holds that

∆γHω
Λ(l,d)(σ) ≥ 2

( 3
8d

|γ| − |∂exΘ(γ) ∩ F+
l (ω)|

)
.(5.7)

Proof . Since P(9/2, l, 1/2; 3) holds from (5.5), P(9/2, l, 3/8; d) holds for
any d ≥ 3 by Lemma 5.1. From this and (4.1), we can obtain (5.7).

Corollary 5.4. Let γ ∈ C(l, 3) be a contour at σ ∈ ΩΛ(l,3) with |γ| <
9l2/2. Then, it holds that

∆γHω
Λ(l,d)(σ) ≥ 2

(1
6
|γ| − |∂exΘ(γ) ∩ F+

l (ω)|
)
.(5.8)

Proof . (5.8) follows from (4.1) and (5.5).

Proof of Lemma 2.2. We will prove Lemma 2.2 in the following four steps
for sufficiently large l. Before we proceed to the first step, we will introduce
definitions and notations. For m ≤ 3d − 1, let γ = {γi}m

i=1 be a set of l∞-
contours in Λ(l, d) such that γi and γj have no common (d − 1)-dimensional
unit cells for i �= j. We set

∆γHω
Λ(l,d)(σ) = Hω

Λ(l,d)(σ) − Hω
Λ(l,d)(Tγ1 ◦ · · · ◦ Tγm

σ),

where the map Tγi
: ΩΛ(l,d) −→ ΩΛ(l,d) for each i ≤ m is defined by

Tγi
σ(x) =

{ −σ(x) if x ∈ Θ(γi),
σ(x) if x /∈ Θ(γi).

For a (+)-contour γ at σ, we define the map T cluster
γ : ΩΛ(l,d) −→ ΩΛ(l,d) by

T cluster
γ σ(x) =

{ −σ(x) if x ∈ C+(σ, γ),
σ(x) if x /∈ C+(σ, γ).

First, we will prove that if σ ∈ Γl, σx /∈ Γl for some x ∈ Λ(l, d) and σ(x) =
+1, then there exist a (+)-contour γ ∈ C(l, d) at σ with |γ| ≥ 9ld−1/2 and at
most (3d − 2) l∞-contours {αi}m

i=1 ⊂ C(l, d) (we understand that {α}0
i=1 = φ)

such that

Cl(σ) = {γ} and Q(γ) � x,(5.9)
Q(αi) � x for any i ≤ m,(5.10)

∆γHω
Λ(l,d)(σ) ≥ ε|γ| = ε

(
|γ| +

m∑
i=1

|αi|
)

,(5.11)

where ε = ε(δ, d) > 0 and γ = {γ} ∪ {αi}m
i=1. (5.9), (5.10) and (5.11) can

be seen as follows. Flipping σ(x) to −1 does not change the shapes of (+)-
clusters at σ not including x. Thus, the case where the transition from σ ∈ Γl
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to σx /∈ Γl occurs is the one where there exists the unique (+)-contour γ such
that {γ} = Cl(σ) and the flipping of σ(x) shortens γ or makes γ break into
contours which do not belong to Cl(σx). This is possible only when (5.9) is
satisfied. Let {Ci}n

i=1 be the decomposition of C+
x (σ)\{x} into l1-connected

components. Then, there exist (+)-contours {γ′
i}n

i=1 ⊂ C(l, d) at σx such that
Ci = C+(σx, γ′

i) for each i ≤ n. Since σx /∈ Γl, we can see that |γ′
i| < 9ld−1/2

for any i ≤ n. Note that

(5.12)
{b ∈ B; b ∈ ∂C+

x (σ)} � {b ∈ B; b ∈ ∂Ci for some i ≤ n} ⊂ {b±i(x)}d
i=1,

where � stands for the symmetric difference of two sets. Let {ηi} and {ξi} be
the decomposition of {∂Q(C+

x (σ))} and {∂Q(Ci)}n
i=1 into connected compo-

nents, respectively. Then, we can show that

{ηi; ηi ∩ ∂Q(x) = φ} = {ξi}\{γ′
i}n

i=1(5.13)

as follows. Let us suppose that η ∈ {ηi; ηi ∩ ∂Q(x) = φ}. For any b∗ ∈ η, there
exist u, v ∈ Zd such that b = b(u, v), u ∈ Cx(σ), σ(v) = −1 and ‖v−x‖∞ ≥ 2.
Then, there exists ξ ∈ {ξi}\{γ′

i}n
i=1 such that b∗ ∈ ξ. Therefore, we have from

the definitions of {ηi} and {ξi} that

{ηi; ηi ∩ ∂Q(x) = φ} ⊂ {ξi}\{γ′
i}n

i=1.(5.14)

Let us suppose that ξ ∈ {ξi}\{γ′
i}n

i=1. For any b∗ ∈ ξ, there exist u, v ∈ Zd

such that b = b(u, v), u ∈ Ci for some i ≤ n, σx(v) = −1 and ‖v − x‖∞ ≥ 2.
Then, there exists η ∈ {ηi; ηi ∩Q(x) = φ} such that b∗ ∈ η. Therefore, we also
have that

{ηi; ηi ∩ ∂Q(x) = φ} ⊃ {ξi}\{γ′
i}n

i=1.(5.15)

From (5.14) and (5.15), we can conclude that (5.13) holds. Therefore, putting
γ = {ηi; ηi ∩ Q(x) �= φ}, we have that

Hω
Λ(l,d)(T

cluster
γ σ) − Hω

Λ(l,d)(Tγσ)

= Hω
Λ(l,d)(T

cluster
γ′
1

◦ · · · ◦ T cluster
γ′

n
σx) − Hω

Λ(l,d)(Tγ′
1
◦ · · · ◦ Tγ′

n
σx),

which implies that

Hω
Λ(l,d)(σ) − Hω

Λ(l,d)(Tγσ)(5.16)

= Hω
Λ(l,d)(σ) − Hω

Λ(l,d)(σ
x) + Hω

Λ(l,d)(T
cluster
γ σ) − Hω

Λ(l,d)(Tγσ)

+ Hω
Λ(l,d)(T

cluster
γ′
1

◦ · · · ◦ T cluster
γ′

n
σx) − Hω

Λ(l,d)(T
cluster
γ σ)

+ Hω
Λ(l,d)(Tγ′

1
◦ · · · ◦ Tγ′

n
σx) − Hω

Λ(l,d)(T
cluster
γ′
1

◦ · · · ◦ T cluster
γ′

n
σx)

+ Hω
Λ(l,d)(σ

x) − Hω
Λ(l,d)(Tγ′

1
◦ · · · ◦ Tγ′

n
σx)

= Hω
Λ(l,d)(σ) − Hω

Λ(l,d)(σ
x)

+ Hω
Λ(l,d)(T

cluster
γ′
1

◦ · · · ◦ T cluster
γ′

n
σx) − Hω

Λ(l,d)(T
cluster
γ σ)

+ Hω
Λ(l,d)(σ

x) − Hω
Λ(l,d)(Tγ′

1
◦ · · · ◦ Tγ′

n
σx)

≥ Hω
Λ(l,d)(σ

x) − Hω
Λ(l,d)(Tγ′

1
◦ · · · ◦ Tγ′

n
σx) − 4d.
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From (5.12) and (5.13), we also have that

|γ| − 2d ≤
n∑

i=1

|γ′
i| ≤ |γ| + 2d.(5.17)

Since each contour in {γ′
i}n

i=1 satisfies the condition for (5.7), we have from
(5.16) and (5.17) that

Hω
Λ(l,d)(σ) − Hω

Λ(l,d)(Tγσ) ≥ 2
n∑

i=1

( 3
8d

|γ′
i| − |∂exΘ(γj) ∩ F+

l (ω)|
)
− 4d(5.18)

≥ 2
( 3

8d
(|γ| − 2d) − δld−1

)
− 4d

≥ 2
(

3
8d

− 2
9
δ

)
|γ| − 3

2
− 4d,

which implies (5.10) and (5.11).

Second, we will prove that if σ ∈ Γl, σx /∈ Γl for some x ∈ Λ(l, d) and
σ(x) = −1, then there exist a (+)-contour γ ∈ C(l, d) at σ with |γ| ≥ 9ld−1/2
and at most (3d−2) contours {αi}m

i=1 ⊂ C(l, d) (we understand that {αi}0
i=1 =

φ) such that

Cl(σ) � γ and Q(γ) � x,(5.19)
Q(αi) � x for any i ≤ m,(5.20)

∆γHω
Λ(l,d)(σ) ≥ ε|γ|,(5.21)

where ε = ε(δ, d) > 0 and γ = {γ} ∪ {αi}m
i=1. If Q(γ) �� x, flipping σ(x) to

+1 does not change the shape of the (+)-contour γ. Thus, we can see that
(5.19) holds. (5.20) and (5.21) can be seen by similar argument in the first
step. There exist (+)-contours {γi}n

i=1 at σ and a (+)-contour γ′ ∈ C(l, d) at
σx with |γ′| < 9ld−1/2 such that

C+(σ, γ) ∪ (∪i≤nC+(σ, γi)) ∪ {x} = C+(σx, γ′).

Hence, we can see that there exist at most (3d − 2) l∞-contours {α′
i}r

i=1C(l, d)
(we understand that {α′

i}0
i=1 = φ) such that

(5.22)
Hω

Λ(l,d)(σ
x) − Hω

Λ(l,d)(Tγ′σx) ≤ Hω
Λ(l,d)(σ) − Hω

Λ(l,d)(Tγ1 ◦ · · · ◦ Tγn
◦ Tγσ) + 4d,

where γ′ = {γ′} ∪ {α′
i}r

i=1. Since Θ(α′
i) ⊂ Θ(γ′) for each i ≤ r, α′

i satisfies the
condition for (5.7). Thus, we can prove (5.21) by the same argument in (5.18).

Third, we will prove that if σ ∈ Γl and Cl(σ) � γ for some γ ∈ C(l, d),
then it follows that

Tγσ ∈ Γc
l or

{
Cl(Tγσ) = {γ̃i}m

i=1 with Θ(γ̃i) ⊂ Λ(l, d)\∂inΛ(l, d)
for any i ≤ m and Tγ̃m

◦ · · · ◦ Tγ̃1 ◦ Tγσ ∈ Γc
l

,(5.23)
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where γ is the one defined in (5.11) or (5.21). To see (5.23), let us suppose
that Tγσ ∈ Γl. Then, by Cl(σ) � γ there exists some γ̃ ∈ Cl(Tγσ) such
that Θ(γ̃) ⊂ Θ(γ) and γ̃ is a (−)-contour at σ. Moreover, we can see that
Tγ̃m

◦· · ·◦Tγ̃1 ◦Tγσ ∈ Γc
l as follows. If γ′ is a (+)-contour at Tγ̃m

◦· · ·◦Tγ̃1 ◦Tγσ,
then we can see that γ′ is a (+)-contour at either σ or Tγσ. Therefore, we can
see that |γ′| < 9ld−1/2. Hence, (5.23) holds.

Fourth, we will prove (2.5) to finish the proof of Lemma 2.2. From (5.9),
(5.10), (5.11), (5.19), (5.20) and (5.21), we have that

(5.24)∑
x∈Λ(l,d)

∑
σ∈Γl, σx /∈Γl

µω
Λ(l,d)(σ)

≤
∑

x∈Λ(l,d)

∑
γ

l1{Q(γ)�x}µω
Λ(l,d){Cl(σ) = {γ} and ∆γHω

Λ(l,d)(σ) ≥ ε|γ|}

+
∑

x∈Λ(l,d)

∑
γ

l
3d−2∑
m=1

∑
{γi}m

i=1

1{Q(γ)�x}
m∏

i=1

1{Q(γi)�x}

×µω
Λ(l,d)

{
Cl(σ) � γ, {γi}m

i=1 ⊂ C(l, d), ∆γHω
Λ(l,d)(σ) ≥ ε|γ|

for γ = {γ} ∪ {γi}m
i=1 and Tγσ ∈ Γc

l

}
,

where
∑l

γ and
∑

{γi}m
i=1

stand for the summation over all contours γ ∈ C(l, d)
with |γ| ≥ 9ld−1/2 and the summation over all sets {γi}m

i=1 ⊂ C(l, d), re-
spectively. By the standard Peierls’ argument and (5.23), we have for fixed
γ ∈ C(l, d) that

(5.25)
µω

Λ(l,d){Cl(σ) = {γ} and ∆γHω
Λ(l,d)(σ) ≥ ε|γ|}

≤ e−βε|γ|
(

µω
Λ(l,d)(Γ

c
l )

+
∞∑

n=1

∑
{γi}n

i=1

lµω
Λ(l,d)

{
Cl(σ) = {γ}n

i=1, Tγn
◦ · · · ◦ Tγ1σ ∈ Γc

l and
∆γi

Hω
Λ(l,d)(σ) ≥ 2|γi| for any i ≤ n

})

≤ µω
Λ(l,d)(Γ

c
l )e

−βε|γ|
(
1 +

∞∑
n=1

n∏
i=1

∑
γi

le−2β|γi|
)
,

where
∑l

{γi}n
i=1

and
∑l

γi
stand for the summation over all sets {γi}n

i=1 ⊂ C(l, d)
such that |γi| ≥ 9ld−1/2 for any i ≤ n and the summation over all contours
γi ∈ C(l, d) with |γi| ≥ 9ld−1/2 for any i ≤ n, respectively. By using the
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counting inequality (1.9), it is not difficult to see that for sufficiently large β

∞∑
n=1

n∏
i=1

∑
γi

le−2β|γi| ≤
∞∑

n=1

(
B1l

dκ(d)2ld−1
e−4βld−1

)n

(5.26)

≤ B2l
dκ(d)2ld−1

e−4βld−1
< ∞,

where B1 = B1(β, d) > 0 and B2 = B2(β, d) > 0. Therefore, we have from
(5.25) and (5.26) that for sufficiently large β

µω
Λ(l,d){Cl(σ) = {γ} and ∆γHω

Λ(l,d)(σ) ≥ ε|γ|} ≤ B3µ
ω
Λ(l,d)(Γ

c
l )e

−βε|γ|,(5.27)

where B3 = B3(β, d) > 0. Similarly, we have that for sufficiently large β

µω
Λ(l,d)

{
Cl(σ) � γ, {γi}m

i=1 ⊂ C(l, d), ∆γHω
Λ(l,d)(σ) ≥ ε|γ|

for γ = {γ} ∪ {γi}m
i=1 and Tγσ ∈ Γc

l

}
(5.28)

≤ B3µ
ω
Λ(l,d)(Γ

c
l )e

−βε|γ|.

From (5.24), (5.27) and (5.28), we can see that for sufficiently large β

(5.29)∑
x∈Λ(l,d)

∑
σ∈Γl, σx∈Γc

l

µω
Λ(l,d)(σ)

≤ 2dB3µ
ω
Λ(l,d)(Γ

c
l )

(∑
γ

l|γ|e−βε|γ| +
∑

γ

l|γ|e−βε|γ|
3d−2∑
m=1

∑
{γi}m

i=1

′
m∏

i=1

e−βε|γi|
)

,

where
∑′

{γi}m
i=1

stands for the summation over all sets {γi}m
i=1 ⊂ C(l, d) with

Q(γi) � 0 for any i ≤ m. Then, by using the counting inequality (1.9) again
we have that for sufficiently large β∑

γ

l|γ|e−βε|γ| ≤ B4 exp(−βCld−1),(5.30)

3d−1∑
m=1

∑
{γi}m

i=1

′
m∏

i=1

e−βε|γi| < ∞,(5.31)

where B4 = B4(β, δ, d) > 0 and C = C(δ, d) > 0. Thus, we can conclude (2.5)
from (5.29), (5.30) and (5.31).

We can similarly prove Lemma 2.3 by using Corollary 5.4 instead of Corol-
lary 5.3.

Appendix

In this section we will prove the following theorem.
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Theorem A.1. For d ≥ 3, consider a stochastic Ising model on the
square Λ(l, d). Suppose that a boundary condition ω ∈ Ω+

b.c. is such that

lim sup
l→∞

|F+
l (ω)|
ld−1

< δ < 3(d − 1)2−d.(A.1)

Then, there exists β′′
0 = β′′

0 (δ, d) > 0 such that (1.7) holds for any β ≥ β′′
0

and any l ∈ N. Especially, if there exists some δ ∈ [0, 3(d − 1)2−2) such that
|F+

l (ω)| ≤ δld−1 for any l ∈ N, then we can take B in (1.7) as a constant
independent of ω.

Note that (A.1) is a better bound than (1.6) if d = 4 or 5. The proof
of Theorem A.1 is similar to that of Theorem 1.1. We replace definitions of
Cl(σ), Γl and Γ′

l with

Cl(σ) = {γ; γ is a (+)-contour in Λ(l, d) at σ with |γ| ≥ 3d · 2−(d−2)ld−1},
Γl = {σ ∈ ΩΛ(l,d); Cl(σ) �= φ},
Γ′

l = {σ ∈ ΩΛ(l,d); there exists some (+)-contour γ at σ with |Θ(γ)|
≥ 3 · 2−(d−1)ld}.

Since we can still use Lemma 4.2, we can obtain the same estimate in (2.4).
We use the following lemma instead of Lemma 2.2.

Lemma A.2. Suppose that a boundary condition ω ∈ Ω+
Λ(l,d) satisfies

lim sup
l→∞

|F+
l (ω)|
ld−1

< δ < 3(d − 1)2−d.(A.2)

Then, there exist β4 = β4(δ, d) > 0 and l4 = l4(ω, δ, d) > 0 such that (2.5) holds
for any β ≥ β4 and any l ≥ l4.

Proof . We assume that for γ ∈ C(l, d) with |γ| < adl
d−1,

|γ ∩ intΛ(l, d)|
|γ| ≥ λd.(A.3)

Let γ ∈ S(l, d + 1) with |γ| < ad+1l
d. For any integer t ∈ (−l/2, l/2], we can

consider γ′(t), Q′(t) and S+i(γ′(t)) for any i ≤ d+1, i �= im. If |γ′(t)| < adl
d−1,

then we have from (A.3) that

|γ′(t) ∩ intΛ(l, d + 1)|
|γ′(t)| ≥ λd.(A.4)

Otherwise, we can suppose that |γ′(t)| ≥ adl
d−1 and from (4.2) that |Q′(t)| <

ad+1l
d/2(d + 1). Then, we have by |S+i(γ′(t))| < ad+1l

d−1/2(d + 1) for any
i ≤ d + 1, i �= im that

|γ′(t) ∩ intΛ(l, d + 1)|
|γ′(t)| =

1
|γ′(t)|


 |γ′(t)|

2
−
∑
i 
=im

|S+i(γ′(t))|

(A.5)

≥ 1
2
− dad+1

2(d + 1)ad
.
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Therefore, from (4.2), (A.4) and (A.5), we have that

|γ ∩ intΛ(l, d + 1)|
|γ| =

d

d + 1
min

{
λd,

1
2
− dad+1

2(d + 1)ad

}
,(A.6)

from which we can obtain an estimate like (5.11). Thus, we can prove Lemma
A.2 in the similar way to that of the proof of Lemma 2.2.
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