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Renormalization and rigidity of polynomials of
higher degree
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Abstract

Renormalization plays a very important role in the study of the
dynamics of quadratic polynomials. We generalize renormalization to
polynomials of any degree so that a lot of known properties still hold for
the generalized renormalization. In particular, we generalize McMullen’s
result that any robust infinitely renormalizable quadratic polynomial
carries no invariant line field.

1. Introduction

Renormalization is a phenomenon that a restriction of some iterate of a
polynomial again behaves like a polynomial of lower degree. When a polynomial
is renormalizable, the dynamics of the original polynomial comes down to the
dynamics of the renormalization, which is in general simpler than that of the
original polynomial.

However, when a polynomial is infinitely renormalizable, its renormaliza-
tion is again infinitely renormalizable and it does not simplify the situation.
McMullen considered some limit of infinite renormalizations and proved that
robust infinitely renormalizable quadratic polynomial carries no invariant line
field on its Julia set [Mc].

This result is a part of the following conjecture:

Conjecture 1.1 (No invariant line fields). A rational map f carries no
invariant line field on its Julia set except when f is double covered by an integral
torus endomorphism.

An line field on a set E ⊂ C is a Beltrami differential µ = µ(z)dz/dz
supported on E with |µ| = 1 on E. We say that f carries an invariant line
field on its Julia set if there is a measurable Beltrami differential µ supported
on a set of positive Lebesgue measure in the Julia set with f∗µ = µ.

When f is double covered by an integral torus endomorphism, the Julia
set coincides with the whole sphere. Thus, in particular, this conjecture insists
that no polynomial carries an invariant line field on its Julia set.
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It is known that Conjecture 1.1 implies the density of hyperbolicity, one of
the central problems in complex dynamical systems (see [McSu] and [Mc]):

Conjecture 1.2 (Density of hyperbolicity). In the space of all rational
maps of degree d, the set of all hyperbolic maps forms an open and dense subset.

The main theorem of this paper is the following:

Theorem 5.1 (Robust rigidity). A robust infinitely renormalizable poly-
nomial carries no invariant line field on its Julia set.

McMullen has shown this theorem for quadratic polynomials. Our theorem
is valid for polynomials of any degree. Furthermore, when the dynamics of a
polynomial consists of essentially subhyperbolic dynamics and robust infinitely
renormalizable ones, then this polynomial also carries no invariant line field on
its Julia set (Corollary 5.2).

Let f be an infinitely renormalizable polynomial of degree d > 1 with
connected filled Julia set. Roughly speaking, f is robust if infinitely many
renormalizations of f have enough space around the small postcritical sets.
(To define precisely, we must extract an infinitely renormalizable “part” of the
polynomial, by using renormalization. See Section 4.3.)

If f is robust, the small postcritical sets of renormalizations of f shrink to
a single point. So, there exists a Cantor set in the postcritical set of f which
is forward invariant and measure zero. Furthermore, we properly rescale the
renormalizations and obtain a proper map g : U → V as a limit.

However, if f carries an invariant line field on its Julia set, then g carries
a univalent line field on V . Since the degree of g is greater than one, we can
easily show g cannot carries any univalent invariant line field.

The paper follows almost the same pattern as McMullen’s book which
proves the robust rigidity in the quadratic case [Mc]. Some of the proofs in
[Mc] can be applied quite similarly to our case, but by the existence of critical
points outside the domain of renormalizations, a lot of statements and proofs
are rather complicated.

Acknowledgements. I would like to thank Akira Kono and Shigehiro
Ushiki for valuable suggestions. I would also like to thank Mitsuhiro Shishikura
and Masashi Kisaka for helpful comments.

2. Preliminaries

2.1. Hyperbolic geometry
A Riemann surface is hyperbolic if its universal covering is isomorphic to

the upper halfplane H. The Schwarz-Pick lemma implies that any holomorphic
map between hyperbolic Riemann surfaces does not increase the hyperbolic
metric.

When a Riemann surface A satisfies π1(A) ∼= Z, then A is isomorphic to
either the cylinder C/Z, the punctured disk ∆∗ = {0 < |z| < 1} or the standard
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annulus A(R) = {1 < |z| < R} for some R > 1. In the last case, the modulus
of A is defined by

mod(A) =
logR
2π

.

Otherwise, the modulus of A is defined to be infinity.
For a topological disk V ⊂ C and a subset E ⊂ V , let

mod(E, V ) = sup
{
mod(A)

∣∣ A ⊂ V is an annulus enclosing E
}
.

Theorem 2.1 (Collar theorem). Let γ be a simple closed geodesic on a
hyperbolic surface. Then,

• The collar

C(γ) =
{
x
∣∣ d(x, γ) < S (�(γ))

}
is an embedded annulus, where

S(x) = arcsinh
(

1
sinh(x/2)

)
,

d is the hyperbolic distance, and � is the hyperbolic length.
• If two simple closed geodesics γ1 and γ2 are disjoint, then C(γ1) and

C(γ2) are disjoint.
• The modulus of collars C(γ) tends from infinity to zero as the length

of γ tends to zero to infinity.

See, for example, [Bu, Chapter 4].

Lemma 2.2. Let V be a hyperbolic surface which is topologically a disk
and let E ⊂ V be a subset with compact closure. Then

diam(E) → 0 ⇔ mod(E, V ) → ∞,

diam(E) → ∞ ⇔ mod(E, V ) → 0.

See [Mc, Theorem 2.4].

Lemma 2.3. Let X be a hyperbolic surface. The logarithm of the in-
jectivity radius is uniformly Lipschitz on X.

See [Mc, Corollary 2.22].

Lemma 2.4. Let X be a hyperbolic surface, and let x be a point on a
loop δ ⊂ X which is homotopic to a geodesic γ. Then a lower bound on �(γ)
and an upper bound on �(δ) gives an upper bound on the distance from x to γ.

See [Mc, Theorem 2.23].

Lemma 2.5. Let X be a finitely connected hyperbolic surface with one
cusp, whose remaining ends are cut off by geodesics γ1, . . . , γn, n > 1. Suppose
the length of every γi is greater than L > 0. Then there are two distinct
geodesics γj and γk such that the hyperbolic distance d(γj , γk) is bounded by the
constant which depends only on L.
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See [Mc, Theorem 2.24].

2.2. Dynamics of rational maps
Let f : Ĉ → Ĉ be a rational map of degree d > 1. The Fatou set of f is

the set of all z ∈ Ĉ such that {fn
∣∣ n > 0} is normal on some neighborhood

of z. The Julia set J(f) is the complement of the Fatou set. When f is a
polynomial, the filled Julia set K(f) is defined by:

K(f) =
{
z ∈ C

∣∣ {fn(z)}n>0 is bounded
}
.

Then the Julia set is equal to the boundary of K(f).
Let C(f) be the set of all critical points of f . The postcritical set P (f) is

the closure of the set of critical values of fn, that is,

P (f) =
⋃
n>0

fn(C(f)).

Lemma 2.6. For every point x ∈ J(f) whose forward orbit does not
intersect P (f),

‖(fn)′(x)‖ → ∞

with respect to the hyperbolic metric on Ĉ \ P (f).

See [Mc, Theorem 3.6].

Lemma 2.7. Let f be a rational map satisfying #P (f) ≥ 3. Let γ be a
path joining two points x1, x2 ∈ C such that f(γ) does not intersect P (f), and
let � be the parameterized length of f(γ) in the hyperbolic metric on Ĉ \ P (f).
Then:

‖f ′(x1)‖α ≥ ‖f ′(x2)‖ ≥ ‖f ′(x1)‖1/α,

where α = exp(C1�) for a universal constant C1 > 0; and

1
C2

≤ ‖f ′(x1)‖
‖f ′(x2)‖ ≤ C2,

where C2 > 0 is a constant which depends only on � and the injectivity radius
of Ĉ \ P (f) at f(x1).

See [Mc, Theorem 3.8].

Lemma 2.8. Any rational map f of degree more than one satisfies one
of the following :

(1) J(f) = Ĉ and the action of f on Ĉ is ergodic.
(2) the spherical distance d(fn(x), P (f)) → 0 for almost every x in J(f)

as n→ ∞.
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See [Mc, Theorem 3.9].

2.3. Polynomial-like maps
A polynomial-like map is a triple (f, U, V ) such that f : U → V is a

holomorphic proper map between disks in C and U is a relatively compact
subset of V . The filled Julia set K(f, U, V ) is defined by

K(f, U, V ) =
∞⋂

n=1

f−n(V )

and the Julia set J(f, U, V ) is equal to the boundary of K(f, U, V ). We denote
by C(f, U, V ) the set of all critical points and the postcritical set P (f, U, V ) is
defined similarly as in the case of rational maps.

Every polynomial-like map (f, U, V ) of degree d is hybrid equivalent to
some polynomial g of degree d. That is, there is a quasiconformal conjugacy φ
from f to g defined near their respective filled Julia sets and satisfies ∂φ = 0
on K(f, U, V ) (see [DH]).

For m > 0, let Polyd(m) be the set of all polynomials of degree d and all
polynomial-like maps of degree d with mod(U, V ) > m. We use the Carathéodory
topology for the topology of Polyd(m).

Lemma 2.9. Polyd(m) is compact up to affine conjugacy. Namely, any
sequence (fn, Un, Vn) ∈ Polyd(m) which is normalized so Un ⊃ {|z| < r} for
some r > 0 and so the Euclidean diameter of K(fn, Un, Vn) is equal to one, has
a convergent subsequence.

See [Mc, Theorem 5.8].
Moreover, if (f, U, V ) ∈ Polyd(m) has no attracting fixed point, then

diamK(f, U, V ) ≤ C diamP (f, U, V )

for some C depending only on d and m in the Euclidean metric [Mc, Corol-
lary 5.10].

The following two lemmas are used repeatedly in the next section.

Lemma 2.10. For i = 1, 2, let (fi, Ui, Vi) be polynomial-like maps of
degree di. Assume f1 = f2 = f on U = U1 ∩ U2. Let U ′ be a component of U
with U ′ ⊂ f(U ′) = V ′. Then f : U ′ → V ′ is a polynomial-like map of degree
d ≤ min(d1, d2) and

K(f, U ′, V ′) = K(f1, U1, V1) ∩K(f2, U2, V2) ∩ U ′.

Moreover, if d = di, then K(f, U ′, V ′) = K(fi, Ui, Vi).

See [Mc, Theorem 5.11].

Lemma 2.11. Let f be a polynomial with connected filled Julia set.
For any polynomial-like restriction (fn, U, V ) of degree greater than one with
connected filled Julia set Kn,
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(1) the Julia set of (fn, U, V ) is contained in the Julia set of f .
(2) For any closed connected set L ⊂ K(f), L ∩Kn is also connected.

See [Mc, Theorem 6.13].
We also need the following results:

Lemma 2.12. Let f : U → V be a critically compact proper map of
degree d > 1. There is a constant Md (depending only on d) such that when
mod(P (f), V ) > Md, then one of the following holds:

• f has an attracting fixed point in U .
• there is a restriction f : U ′ → V ′ which is a polynomial-like map of

degree d with connected Julia set.
Here P (f) ⊂ U ′ ⊂ U , and U ′ can be chosen so that

mod(U ′, V ′) > md(mod(P (f), V )) > 0

where md(x) → ∞ as x→ ∞.

See [Mc, Theorem 5.12].

Lemma 2.13. Let (Un, un) and (Vn, vn) be sequences of pointed disks
converging to (U, u) and (V, v) respectively. Assume neither U nor V are equal
to C. Let fn : (Un, un) → (Vn, vn) be a sequence of proper maps of degree d.
Then after passing to a subsequence, fn converges to a proper map f : (U, u) →
(V, v) of degree less than or equal to d.

Furthermore, if there is a compact set K ⊂ U such that the critical points
C(fn) ⊂ K for all n sufficiently large, then f has degree d.

See [Mc, Theorem 5.6].

2.4. External rays
Let K be a connected compact subset of C which does not disconnect the

plane. By the Riemann mapping theorem, there exists a unique conformal map

φ :
(
C \ ∆

)→ (C \K)

with φ(z)/z → λ > 0 as z → ∞. An external ray for K is a path

Rt =
{
φ(r exp(2πit))

∣∣ 1 < r <∞} .
t is called the angle of the ray Rt.

We say Rt lands at some point x ∈ K if limr↘1 φ(r exp(2πit)) = x. x is
called a landing point and t is called an external angle or a landing angle for x.

It can be easily verified that landing points are dense in ∂K. Lindelöf’s
theorem implies that if some path γ in C \K converges to x ∈ ∂K, then there
exists an external ray landing at x from the same direction. Namely, if φ−1(γ)
converges to exp(2πit), then Rt lands at x.

Let f be a monic polynomial of degree d. Then the conformal map

φ : (C \ ∆) → (C \K(f))
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normalized as above gives a conjugacy between zd and f . Thus for any external
ray Rt for K(f), we have f(Rt) = Rdt. We say Rt is periodic if Rt is invariant
by fn for some n > 0. This implies that dnt ≡ t mod 1. The angle of every
periodic ray is rational and for every rational number t, the ray Rt is eventually
periodic.

Theorem 2.14. Every periodic ray land at a repelling or parabolic pe-
riodic point of f . Conversely, every repelling or parabolic periodic point x is a
landing point of some ray. Moreover, every ray landing at x is periodic with
the same period.

See, for example, [Mi3, Section 18] or [St, Section 6.1].
For k = 0, . . . , d−2, the ray Rk/(d−1) is invariant by f , so it lands at some

fixed point of f . Such fixed points are called β-fixed points and others are
α-fixed points. Note that different invariant rays may land at the same fixed
point. So the number of β-fixed points is at most d− 1.

Since every polynomial-like map with connected filled Julia set is hybrid
equivalent to some polynomial of the same degree, β-fixed points and α-fixed
points of a polynomial-like map still make sense.

3. Renormalization

3.1. Definition of renormalization
Let f be a polynomial of degree d with connected Julia set. Fix a critical

point c0 ∈ C(f).

Definition. fn is called renormalizable about c0 if there exist open
disks U, V ⊂ C satisfying the following:

(1) c0 lies in U .
(2) (fn, U, V ) is a polynomial-like map with connected filled Julia set.
(3) For each c ∈ C(f), there is at most one i, 0 < i ≤ n, such that

c ∈ f i(U).
(4) n > 1 or U 
⊃ C(f).
A renormalization is a polynomial-like restriction (fn, U, V ) as above. We

call n the period of a renormalization (fn, U, V ).

First two conditions are the same as in the quadratic case. The others
are needed to exclude trivial polynomial-like restrictions, that is, two times
iteration of a renormalization and f itself. In the quadratic case, these two
conditions are equivalent to the assumption that a renormalization is quadratic-
like and n > 1, respectively.

Note that the degree of a renormalization of f is not greater than 2d.

Notation. For a renormalization ρ = (fn, U, V ) and i = 1, . . . , n (or i
may be regarded as an element of Z/nZ),

• Let n(ρ) = n, U(ρ) = U and V (ρ) = V .
• The filled Julia set of ρ is denoted by K(ρ), the Julia set by J(ρ), and

the postcritical set by P (ρ).
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• The i-th small filled Julia set is denoted by K(ρ, i) = f i(K(ρ)) and the
i-th small Julia set J(ρ, i) = f i(J(ρ)).

• The i-th small critical set C(ρ, i) = K(ρ, i)∩C(f). Clearly, C(ρ, i) may
be empty for 0 < i < n (however, by definition, C(ρ, n) is nonempty).

• K(ρ) =
⋃n

i=1K(ρ, i) is the union of the small filled Julia sets. Similarly,
define J (ρ) =

⋃n
i=1 J(ρ, i).

• C(ρ) =
⋃n

i=1 C(ρ, i) is the set of critical points which appear in a renor-
malization ρ.

• P(ρ) =
⋃

k>0 f
k(C(ρ)) ⊂ P (f) ∩ K(ρ).

• The i-th small postcritical set is denoted by

P (ρ, i) = K(ρ, i) ∩ P(ρ).

• Let V (ρ, i) = f i(U) and U(ρ, i) be the component of f i−n(U) contained
in V (ρ, i). Then (fn, U(ρ, i), V (ρ, i)) is a polynomial-like map of the same
degree as (fn, U, V ). Moreover, it is also a renormalization of f if C(ρ, i) is
nonempty.

Let ρ and ρ′ be renormalizations. Define an equivalence relation ∼ by

ρ ∼ ρ′ ⇔ n(ρ) = n(ρ′) and K(ρ) = K(ρ′).

This implies that the dynamics of ρ and ρ′ are equal. Let

R(f, c0) = {renormalizations of some iterates of f about c0} / ∼ .

and for a subset CR ⊂ C(f) containing c0,

R(f, c0, CR) =
{
ρ ∈ R(f, c0)

∣∣ C(ρ) = CR

}
.

We confuse an element in R(f, c0) with its representative and write like as
ρ = (fn, U, V ) ∈ R(f, c0).

The next proposition shows that this equivalence class is determined only
by periods and small critical sets.

Proposition 3.1. Let ρ = (fn, U1, V 1) and ρ′ = (fn, U2, V 2) be renor-
malizations of the same period. When C(ρ, i) = C(ρ′, i) for any i (1 ≤ i ≤ n),
then their filled Julia sets are equal.

Proof. By Lemma 2.11, K = K(ρ) ∩ K(ρ′) is connected. Let U be the
component of U1 ∩ U2 containing K and let V = fn(U). Since V contains
f(K) = K, V contains U . By Lemma 2.10, (fn, U, V ) is a polynomial-like map
with filled Julia set K. By the assumption, the sets of critical points of these
three maps are equal, so we have K = K(ρ) = K(ρ′).

Proposition 3.2. Let ρn = (fn, Un, Vn) and ρm = (fm, Um, Vm) ∈
R(f, c0). Then there exists ρl = (f l, Ul, Vl) ∈ R(f, c0) with filled Julia set
K(ρl) = K(ρn) ∩K(ρm), where l is the least common multiple of n and m.
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Remark 3.3. Even when two of the n, m and l is equal, the renormal-
izations ρn, ρm and ρl should be considered to be different.

Proof. By Lemma 2.11, K = K(ρn) ∩K(ρm) is connected. Let

Ũn =
{
z ∈ Un

∣∣ f jn(z) ∈ Un for j = 1, . . . ,
l

n
− 1
}
,

Ũm =
{
z ∈ Um

∣∣ f jm(z) ∈ Um for j = 1, . . . ,
l

m
− 1
}
.

Then (f l, Ũn, Vn) and (f l, Ũm, Vm) are both polynomial-like. Let Ul be the
component of Ũn∩ Ũm which contains K. Then by Lemma 2.10, (f l, Ul, f

l(Ul))
is a polynomial-like map with filled Julia set K.

Now we should check the condition 3 of the definition of renormalization.
Suppose c ∈ C(ρl, i). Then c ∈ C(ρl, j) is equivalent to j ≡ i (mod n) and
j ≡ i (mod m), which means j ≡ i (mod l). Therefore, (f l, Ul, f

l(Ul)) is a
renormalization with filled Julia set K.

Definition. For ρ ∈ R(f, c0), the intersecting set I(ρ) is defined by

I(ρ) = K(ρ) ∩

n(ρ)−1⋃

i=1

K(ρ, i)


 .

When n(ρ) = 1, I(ρ) is defined to be empty. We say ρ is intersecting if I(ρ) is
nonempty.

Although we now define intersecting “set”, it consists of at most one point.

Proposition 3.4. If ρ = (fn, U, V ) ∈ R(f, c0) is intersecting, then I(ρ)
consists of only one point which is a repelling fixed point of fn.

Proof. Suppose I(ρ) is nonempty. Then there exists some i (1 ≤ i < n)
such that E = K(ρ) ∩K(ρ, i) is nonempty. E is connected by Lemma 2.11.

Let W be the component of U ∩ U(ρ, i) containing E. By Lemma 2.10,
fn : W → fn(W ) is polynomial-like. Furthermore, its degree is one (here we
use the third condition in the definition of the renormalization). So by the
Schwarz lemma, E consists of a single repelling fixed point x of fn. Thus I(ρ)
consists of finite number of points.

Suppose that x1, x2 ∈ I(ρ) and x1 
= x2. For each i = 1, . . . , n and
k = 1, 2, f i(xk) is contained in at least two K(ρ, j)’s. So the set

E = {f i(xk)
∣∣ i = 1, . . . , n, k = 1, 2}

consists of at most n points.
Consider the graph which consists of vertices E and edges e(i) joining

f i(x1) to f i(x2) for i = 1, . . . , n. Since the number of edges is not less than
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that of vertices, the graph contains at least one cycle 〈e(i1), . . . , e(ik)〉. Then
L = K(ρ, i2) ∪ · · · ∪K(ρ, ik) is connected. But K(ρ, i1) ∩ L is disconnected (it
consists of f i1(x1), f i1(x2) and finite number of points) and this contradicts
Lemma 2.11.

Although small Julia sets of a renormalization can meet at a repelling
periodic point, the period of such point tends to infinity as the period of renor-
malization tends to infinity.

Theorem 3.5 (High periods). For fixed p > 0, there are only finitely
many ρ ∈ R(f, c0) such that K(ρ) contains a periodic point of period p.

To prove Theorem 3.5, the next lemma is essential:

Lemma 3.6. Let ρ = (fn, U, V ) ∈ R(f, c0). Assume the filled Julia set
K(ρ) contains a fixed point x of f . Let q be the number of rays landing at x,
p be the period of the rays landing at x and qn be the number of components of
K(ρ) \ {x}. Then nqn ≤ q and n|p.

Proof. First, note that K(ρ)\{x} has exactly nqn components. Thus nqn
external rays R′

t′j
(j = 1, . . . , nqn) for K(ρ) land at x.

Let ψ : C → C be the inverse of the unique solution of Schröder’s equation

ψ(0) = x,

ψ(λz) = f(ψ(z)),
λ = f ′(x).

and let K̃ = ψ−1(K(f)) and K̃n = ψ−1(K(ρ)). By the forward invariance of
K(f) and K(ρ), we have

λK̃ = K̃,

λK̃n = K̃n.

Since q external rays for K(f) land at x, C \ K̃ has exactly q components, say
U1, . . . , Uq. Each component Ui corresponds to the ray Rti

landing at x (see
[St, Section 6.1]).

For j = 1, . . . , nqn, we denote by γ the path component of ψ−1(R′
t′j

) con-

verging to 0. Let U ′
j be the component of C \ K̃n containing γ. Each Ui lies in

U ′
j for some j. Indeed, since x is accessible from Ui, x is also accessible from

the component U ′ of C \ K̃n which contains Ui. Therefore, U ′ must be one of
U ′

j ’s. Define a map h : {1, . . . , q} → {1, . . . , nqn} by Ui ⊂ U ′
h(i).

Let F : {1, . . . , q} → {1, . . . , q} and F ′ : {1, . . . , nqn} → {1, . . . , nqn} be
the map defined by

λUi = UF (i),

λU ′
j = U ′

F ′(j).
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Note that since x is accessible from λU ′
j , this F ′ is well-defined. Since the map

z �→ λz preserves the cyclic order of Ui’s and U ′
j ’s, F and F ′ are permutations

and every element in {1, . . . , q} has the same period p for F . Similarly, let p′ be
the period of j ∈ {1, . . . , nqn} for F ′. Furthermore, by definition, h◦F = F ′◦h,
so p′|p.

We claim that h is surjective. Then we immediately obtain that nqn ≤ q.
Suppose U ′

j ⊂ K̃ for some j ∈ {1, . . . , nqn}. Take sufficiently small r > 0 so
that ψ is univalent on B(r) = {|z| < r}. Since accessible points from U ′

j are
dense in ∂U ′

j , there exists an accessible point y ∈ ∂U ′
j ∩B(r). Then we can take

a path γ : [0, 1] → B(r) ∩ U ′
j joining 0 and y such that γ((0, 1)) lies in B(r)∩U ′

j.
ψ(γ) is a path in K(f) joining x and ψ(y). Since ψ(y) lies in K(ρ, i) for some i,
this contradicts Lemma 2.11. Hence U ′

j intersects C \ K̃ = U1 ∪ · · · ∪Uq. Thus
U ′

j contains Ui for some i, so h(i) = j.
Now we will show n|p. Since p′|p, we need only show that n|p′. By the

map z �→ λz, every component E of K̃n \{0} has period p′. Since ψ is univalent
on B(r) and each component of K(ρ) \ {x} lies in a unique K(ρ, i),

ψ(B(0, λ−p′
r) ∩E) ⊂ ψ(B(0, r) ∩E) ⊂ K(ρ, i)

for some i. Thus we have

fp′
(ψ(B(0, λ−p′

r) ∩ E)) = ψ(λp′
(B(0, λ−p′

r) ∩ E))
= ψ(B(0, r) ∩E) ⊂ K(ρ, i).

Therefore, (fp′
(K(ρ, i)) ∩K(ρ, i)) \ {x} is nonempty. By Proposition 3.4, we

have fp′
(K(ρ, i)) = K(ρ, i) and n|p′.

Corollary 3.7. Let q be the number of rays landing at some fixed point
x. If ρ ∈ R(f, c0) satisfies n(ρ) > q, then K(ρ) does not contain x. In partic-
ular, if n(ρ) > 1, then K(ρ) does not contain β-fixed point of f .

Now we give the proof of Theorem 3.5.

Proof of Theorem 3.5. Since there are only finite number of critical points
and periodic points of period p, it is enough to consider renormalizations about
c0 and one periodic point w of period p.

Suppose w ∈ K(ρn) for some ρn = (fn, Un, Vn) ∈ R(f, c0) with n > p
(if such a renormalization does not exist, then we are done). Since K(ρn, p)
contains fp(w) = w, I(ρn) = {w} and w is a repelling fixed point of fn.

Let ρm = (fm, Um, Vm) ∈ R(f, c0). Assume m is greater than n. Then by
Proposition 3.2, there exists ρl = (f l, Ul, Vl) in R(f, c0) such that l is the least
common multiple of n and m and K(ρl) = K(ρn) ∩K(ρm).

Let g be a polynomial hybrid equivalent to (fn, Un, Vn). The periodic
point w of f corresponds to a repelling fixed point x of g. Let q be a number of
rays landing at x. Then ρl corresponds to a renormalization of g of period l/n.
So by Corollary 3.7, its filled Julia set does not contain x whenever l/n > q.
Thus K(ρm) does not contain w whenever m > qn.
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3.2. Simple renormalization
Since a repelling fixed point separates the filled Julia set into finite number

of components, the number of components of K(ρ) \ I(ρ) is finite. We classify
renormalizations into two types; We say a renormalization is simple if K(ρ) \
I(ρ) is connected, and crossed if it is disconnected. Let SR(f, c0) be the set
of all simple renormalizations in R(f, c0). Similarly, SR(f, c0, CR) is the set of
all ρ ∈ SR(f, c0) with C(ρ) = CR.

In the next section, we will show any infinitely renormalizable polynomial
has infinitely many simple renormalizations. So simple renormalizations play
a very important role in the case of infinitely renormalizable polynomials.

However, there even exist finitely renormalizable polynomials which is not
simply renormalizable. See [Mc, Section 7.4].

Proposition 3.8. For two renormalizations ρn = (fn, Un, Vn) ∈ R(f,
c0) and ρm = (fm, Um, Vm) ∈ SR(f, c0), either n divides m or m divides n.

Proof. Let l be the greatest common divisor of n and m. Suppose the
conclusion of the proposition is false. Then l is less than n and m.

Since K(ρn) intersects K(ρm) (both contain c0), f i(K(ρn)) intersects
f i(K(ρm)) for any i > 0. Thus K(ρn, l) intersects K(ρm, l), K(ρn) intersects
K(ρm, l) and K(ρn, l) intersects K(ρm) (note that f i+n(K(ρn)) = f i(K(ρn))).

Therefore, L = K(ρm) ∪ K(ρn, l) ∪ K(ρm, l) is connected. K(ρn) ∩ L
is also connected by Lemma 2.11. Since L is closed and K(ρn) ∩ K(ρn, l)
consists of at most one point, K(ρn) ∩ (K(ρm) ∪K(ρm, l)) is also connected.
Thus K(ρn) ∩ K(ρm) ∩ K(ρm, l) is nonempty. By Proposition 3.4, we have
K(ρm) ∩K(ρm, l) = {x} and x ∈ K(ρn).

Since ρm is simple, x is a β-fixed point of ρm. By Proposition 3.2, there
exists a renormalization ρL = (fL, U, V ) with K(ρL) = K(ρn) ∩ K(ρm) for
L = nm/l (least common multiple of n and m). But L is greater than one and
this contradicts Corollary 3.7.

Proposition 3.9. For two renormalizations ρn = (fn, Un, Vn) ∈ R(f,
c0) and ρm = (fm, Um, Vm) ∈ SR(f, c0) with n ≥ m (then m divides n by
Proposition 3.8) and C(ρn) ⊂ C(ρm), K(ρm) contains K(ρn).

Here, we should also consider ρn and ρm are different even if n = m (but
in this case, it turns out that these two renormalization are equal).

By Proposition 3.2, there exists a renormalization of period n whose filled
Julia set is contained in K(ρm). However this filled Julia set might be a proper
subset of K(ρn). This proposition asserts that K(ρn) itself is contained in
K(ρm).

Proof. Assume K(ρn) is not contained in K(ρm). By Proposition 3.2,
there exists a renormalization ρ′n = (fn, U ′

n, V
′
n) with filled Julia set K(ρ′n) =

K(ρm) ∩K(ρn), which is a proper subset of K(ρn).
If C(ρ′n) = C(ρn), then K(ρ′n) = K(ρn) by Lemma 2.10 and this is a

contradiction. Thus there exists a critical point c1 ∈ C(ρn) \ C(ρ′n). Therefore,
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there exists i0 with 1 ≤ i0 < m such that K(ρm, i) ∩K(ρn, j) is written as the
filled Julia set of some polynomial-like map of degree greater than one whenever
i− j ≡ i0 mod m.

Let k1 > 0 be the minimum number such that #(K(ρm) ∩ K(ρn, k1i0))
> 1. Such k1 exists and k1i0 
≡ 0 (mod m) because this condition is fulfilled
when k1 = m− 1.

Let

L = K(ρn) ∪
k1⋃

k=1

(K(ρm, ki0) ∪K(ρn, ki0)) .

Then L is connected and

L ∩K(ρm) =

(
k1⋃

k=0

(K(ρn, ki0) ∩K(ρm))

)
∪
(

k1⋃
k=1

K(ρm, ki0) ∩K(ρm)

)

is also connected by Lemma 2.11. Then

(K(ρn) ∩K(ρm)) ∪ (K(ρn, k1i0) ∩K(ρm))

is connected because K(ρn, ki0) ∩ K(ρm) consists of at most one point for
k = 1, . . . , k1 − 1 and so does

⋃k1
k=1K(ρm, ki0) ∩K(ρm) ⊂ I(ρm).

Thus K(ρn) ∩K(ρn, k1i0) ∩K(ρm) is nonempty. Since it is contained in
I(ρn), so I(ρn) = {x} where x is a repelling fixed point of fn and

K(ρn) ∩K(ρn, k1i0) ∩K(ρm) = {x}.
Quite similarly, there exists some k2 > 0 such that

K(ρm) ∩K(ρm,−k2i0) ∩K(ρn) = {y}
for some fixed point y of fm. Since the period of y by f is strictly less than m,
we have y = x. However, ρm is simple, so by Corollary 3.7, n must be equal to
m.

Let ρ′′n be a polynomial-like map of degree more than one such that

K(ρm) ∩K(ρn, k1i0) = K(ρ′′n).

We will deduce the contradiction by using the fact that K(ρ′n),K(ρ′′n) ⊂ K(ρm)
and that K(ρ′n)∩K(ρ′′n) = {x} = I(ρm). Let K be the component of K(f)\{x}
containing the connected set K(ρm) \ {x}. For sufficiently small r > 0, there
exists a component K ′ of K \B(x, r) which intersects K(ρ′n) and K(ρ′′n) where
B(x, r) = {|z − x| < r}. (Otherwise, there exist two rays which land at x and
which separate K(ρ′n) \ {x} and K(ρ′′n) \ {x}. Note that fm is conjugate to
z �→ (fm)′(x) · z near x.)

Let E be the union of components of K ′ \K(ρ′n) which intersect K(ρ′′n).
Then E ∩K(ρ′n) is nonempty. In fact, assume this set is empty. Then, since

F =
(
K ′ \K(ρ′′n) \ E

)
∪ (K(ρ′n) ∩K ′)
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is closed and K ′ is equal to E�F , K ′ is disconnected and this is a contradiction.
We define E′ = E ∪ K(ρ′′n). E′ is connected and contained in K(f).

Moreover, E′∩K(ρ′n) = (E∩K(ρ′n))∪{x} is disconnected and this contradicts
Lemma 2.11.

When we apply Proposition 3.9 to the case m = n and C(ρm) = C(ρn),
then we conclude that a simple renormalization ρ ∈ SR(f, c0) is completely
determined by its period n(ρ) and C(ρ). (cf. Proposition 3.1.)

For c0 ∈ CR ⊂ C(f), define

sr(f, CR) =
{
n(ρ)

∣∣ ρ ∈ SR(f, c0, CR)
}
.

Clearly, it is independent of the choice of c0. By the above two propositions,
we have:

Theorem 3.10. For CR ⊂ C(f), sr(f, CR) is totally ordered with re-
spect to division. Moreover, elements of SR(f, c0, CR) are uniquely determined
by their period, and their filled Julia sets form a decreasing sequence.

The next result will be used for constructing simple renormalizations.

Proposition 3.11. Let ρn = (fn, U, V ) a renormalization and let g be
a polynomial hybrid equivalent to ρn. Suppose gm is renormalizable. Then
f has a renormalization of period l = nm which is of the same type of the
renormalization of gm.

Proof. Let ψ : V → C be a hybrid conjugacy from ρn to g and let
ρ′m = (gm, U ′, V ′) be a renormalization of gm. We may assume V ′ ⊂ ψ(V ).
Then ρl = (f l, ψ−1(U ′), ψ−1(V ′)) is a renormalization of f l.

Now we will confirm ρl and ρ′m are of the same type. First note thatK(ρl, i)
lies in K(ρn, j) if and only if j ≡ i mod n. Suppose K(ρl) ∩K(ρl, i) = {x} for
some 0 < i < l. If i ≡ 0 mod n, then K(ρl, i) ⊂ K(ρn). Since ψ is conformal
map near K(ρn), clearly ρl and ρ′m are of the same type. Otherwise, K(ρl, i)
lies in K(ρn, j) for some 0 < j < n. Thus I(ρn) = {x} and x is a fixed point of
fn. So K(ρl) ∩K(ρl, n) = {x} and it is the previous case.

3.3. Examples
Now we present an example of finitely renormalizable polynomials. Exam-

ples of infinitely renormalizable polynomials are given in Section 4.
Let

f(z) = z3 − 3
4
z −

√
7

4
i.

Then C(f) = {±1/2} and ±1/2 are both periodic of period 2. Let W± be
the Fatou component which contains ±1/2, respectively. Each of them is a
superattracting basin of period 2.

Every renormalization (fn, U, V ) must satisfy that U contains either W−
or W+. So n ≤ 2 and by symmetry, we will consider only the case U ⊃W−.
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-1/2 1/2

Figure 1. The Julia set of f

Case I. Let K be the connected component of the closure of⋃
n>0 f

−n(W−) which contains W− and let U1 be a small neighborhood of
K and U ′

1 the component of f−1(U1) contained in U1. Then ρ1 = (f, U ′
1, U1) is

a renormalization with filled Julia set K(ρ1) = K1 which is hybrid equivalent
to z �→ z2 − 1.

Case II. Let U2,1 be a small neighborhood of W− and U ′
2,1 the compo-

nent of f−2(U2,1) contained in U2,1. Then ρ2,1 = (f2, U ′
2,1, U2,1) is a renor-

malization with filled Julia set K(ρ2,1) = W−, which is hybrid equivalent to
z �→ z2.

Case III. Let K2,2 be the connected component of

⋃
n>0

f−2n(W− ∪W+)

which contains W− and let U2,2 be a small neighborhood of K2,2 and U ′
2,2

the component of f−2(U2,2) contained in U2,2. Then ρ2,2 = (f2, U ′
2,2, U2,2)

is a renormalization with filled Julia set K2,2, which is hybrid equivalent to
z �→ −z3 + (3/2)z.
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Case IV. Let K2,3 be the connected component of⋃
n>0

f−2n(W− ∪ f(W+))

which contains W− and let U2,3 be a small neighborhood of K2,3 and U ′
2,3

the component of f−2(U2,3) contained in U2,3. Then ρ2,3 = (f2, U ′
2,3, U2,3)

is a renormalization with filled Julia set K2,3, which is hybrid equivalent to
z �→ (z2 − 1)2 − 1 = z4 − 2z2.

Similarly, we may consider⋃
n>0

f−2n(W− ∪ f(W−) ∪W+)

and construct a polynomial-like map (f2, U, V ) of degree 6. However, by def-
inition, it is not a renormalization because −1/2 is contained in both U and
f(U).

Thus R(f,−1/2) = {ρ1, ρ2,1, ρ2,2, ρ2,3} and SR(f,−1/2) = {ρ1, ρ2,1}.

4. Infinite renormalization

4.1. The Yoccoz puzzle
Let O = {x1, . . . , xl} be a repelling periodic orbit of f . Assume that each

xi does not lie in the forward orbit of any critical point and that two or more
external rays land at x1. Let Rt1 , . . . , Rtq

be the collection of all the external
rays landing at one of the points in O. Fix R > 0 and let C0 be the equipotential
curve C0 = {z |G(z) = R} where G is Green’s function for K(f). C0 is simple
closed curve enclosing K(f). Let

Γ0 =
q⋃

i=1

Rti
∪ C0 ∪O.

Then C \ Γ0 has a finite number of bounded components. Let Γn = f−n(Γ0).
The closure of a bounded component of C \Γn is called a puzzle piece at depth
n. Since

⋃
Rti

is invariant under f and f−n−1(C0) lies inside of f−n(C0), each
piece at depth n + 1 is contained in a unique piece at depth n and mapped
onto some piece at depth n by f . Every point z in K(f) \ (⋃k>0 f

−k(O)
)

is
contained in a unique puzzle piece Pn(z) at depth n. Clearly, Pn+1(z) ⊂ Pn(z)
and Pn(f(z)) = f(Pn+1(z)). The tableau of z is the two dimensional array
{Pn(fp(z))}n,p≥0.

For c0 ∈ C(f), let p1 be the minimum of such p > 0 that Pn(fp(c0)) =
Pn(c0) for any n, if exists. We call p1 the period of the tableau of c0. And let
p2 be the minimum of such p > 0 that there exists a simple renormalization
ρ about c0 of period p satisfying K(ρ) \ O is connected, if exists (note that if
p > l, this condition is automatically fulfilled). We call p2 the renormalization
period of f about c0. If such p does not exist, the corresponding value is defined
to be ∞.
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Lemma 4.1. Let p1 and p2 as above. Then p1 = p2.

The equality is understood that if p1 or p2 is finite, then the other is also
finite and these values are equal.

Proof. First, we show fp1 is simply renormalizable about c0 assuming
that p1 is finite. Then we obtain p1 ≥ p2.

There exists some n > 0 such that the pieces Pn(c0), . . . , Pn(fp1−1(c0))
have disjoint interiors and if a critical point c ∈ C(f) lies in Pn(f i(c0)) (0 ≤ i <
p1), then c lies in Pn+k(f i(c0)) for all k > 0. So, we have fk(c) ∈ Pn(f i+k(c0)).
By the assumption, Pn(fp1(c0)) = Pn(c0). Thus fp1 : Pn+p1(c0) → Pn(c0) is
a critically compact proper map (a proper map all of whose critical points do
not escape).

Then by using the method of [Mi2, Lemma 2], we thicken these pieces and
we obtain a polynomial-like map with connected Julia set. Furthermore, we
thicken so slightly that any other critical points and critical values of fk (for
1 ≤ k < p1) do not lie in the thickened parts. So this polynomial-like map is
indeed a renormalization. Since a pair of the small Julia sets can meet only
at points in O and puzzle pieces are cut by the rays landing at points in O, it
must be simple (see the proof of Corollary 3.7).

On the other hand, let ρ = (fp2 , U, V ) be a simple renormalization about
c0 with K(ρ) \ O connected. Then K(ρ) ⊂ P0(c0). Since K(ρ) is connected
and forward invariant by fp2 , f−kp2(K(ρ)) has a unique component containing
K(ρ) for any k > 0. But each component of f−n(K(ρ)) is contained in a unique
puzzle piece of depth n (because f−n(O) does not contain critical points).
Therefore K(ρ) is contained in one puzzle piece of depth kp2, which must be
Pkp2(c0) because c0 ∈ K(ρ).

Thus for any n > 0, choose k so that kp2 > n. Then we have

K(ρ) ⊂ Pkp2(c0) ⊂ Pn(c0).

Since fp2(c0) ∈ K(ρ), we have Pn(fp2(c0)) = Pn(c0) and p1 ≤ p2.

4.2. Infinite simple renormalization
We now prove that an infinitely renormalizable polynomial has infinitely

many simple renormalizations. For each ρ ∈ R(f, c0, CR), we construct a simple
renormalization near the component of K(ρ) containing c0 by using the Yoccoz
puzzle. Then the period of the new simple renormalization is equal to the
number of components of K(ρ), which tends to infinity.

First, we assume that every periodic point of f is repelling.

Theorem 4.2. Let f be a polynomial. Assume every periodic point of f
is repelling. If f is infinitely renormalizable, then f has infinitely many simple
renormalizations.

More precisely, if R(f, c0, CR) is infinite for some CR ⊂ C(f), then there
exists some C ′

R with CR ⊂ C ′
R ⊂ C(f) such that SR(f, c0, C ′

R) is also infinite.

Proof. Suppose R(f, c0, CR) is infinite. For each ρ = (fn, Un, Vn) ∈
R(f, c0, CR), let κ be the number of components of K(ρ) and let µ be the
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multiplicity of the renormalization ρ, i.e. the number of the small Julia sets
contained in each component of K(ρ). Then n is equal to κµ.

First, we claim κ tends to infinity as n → ∞. Suppose I(ρ) is nonempty
(unless, we have κ = n → ∞). By Proposition 3.4, it consists of one periodic
point. κ is equal to its period and tends to infinity by Theorem 3.5.

Next we show that fκ is simply renormalizable. Let E1, . . . , Eκ be the
components of K(ρ) indexed so that f(Ej) = Ej+1 and Eκ contains c0. Take
a repelling periodic orbit which does not disconnect any component of K(ρ)
(we can choose an α-fixed point of f as such a periodic point. Indeed, since
repelling periodic points have multiplicity one, there exist exactly d = deg f
(repelling) fixed points and at most (d− 1) of them are β-fixed points).

We construct the Yoccoz puzzle by using this periodic orbit. Since K(ρ) =
E1 ∪ · · · ∪ Eκ is forward invariant, each Ej is contained in a unique puzzle
piece of each depth m. Therefore, the period of the tableau of c0 is p, which
divides κ. By Lemma 4.1, there exists a simple renormalization (fp, U, V ) with
K(fp, U, V ) ⊃ Ep, E2p, . . . , Eκ.

Then repeating the above argument by replacing f with the polynomial
hybrid equivalent to the renormalization (fp, U, V ), we eventually obtain a
simple renormalization ρ′ of fκ (Note that even if p = 1, the degree of (f, U, V )
is less than that of f , so we can eventually obtain a simple renormalization with
p > 1). Since κ tends to infinity, we are done. Note that

⋃
Ej ∩ C(f) = CR,

but, in general, K(ρ′) is larger than
⋃
Ej so C(ρ′) may be strictly larger than

CR.

Even when f has a non-repelling periodic point, we can deduce the same
result from the preceding theorem.

Corollary 4.3. An infinitely renormalizable polynomial has infinitely
many simple renormalizations.

Proof. Suppose #R(f, c0, CR) = ∞. Take ρ ∈ R(f, c0, CR) and let g be
a polynomial hybrid equivalent to ρ.

By Proposition 3.2, g is also infinitely renormalizable. Furthermore, when
g has infinitely many simple renormalizations, then so does f by Proposi-
tion 3.11. So, by the preceding theorem, we need only show that every periodic
point of g is repelling.

Every critical point c′ ∈ C(g) corresponds to some critical point c of fn

which lies in f−n+1(CR) ∩ K(ρ). Since R(f, c0, CR) is infinite, the forward
orbit of c cannot accumulate to non-repelling periodic points or the boundary
of Siegel disks of f (if the period of a renormalization is greater than that of a
bounded Fatou component Ω, then Ω cannot lies in the filled Julia set of this
renormalization by Proposition 3.4). Thus the forward orbit of c′ also cannot
accumulate to non-repelling periodic points or the boundary of Siegel disks of
g.

However, the closure of every Fatou component must intersect the post-
critical set. Therefore, g does not have any non-repelling periodic point.
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In this case, we obtain that SR(f, c0, C̃R) = ∞ for some C̃R ⊂ CR. Indeed,
any critical point of g corresponds to some inverse image of a critical point of f
in CR. Thus the renormalization ρ̃ of f corresponding to some renormalization
of g satisfies C(ρ̃) ⊂ CR. C(ρ̃) may be strictly smaller than CR because for
ρ′ ∈ R(f, c0, CR) with n(ρ′) > n(ρ), K(ρ′) is in general not contained in
K(ρ). In such a case, to obtain a renormalization of g from ρ′, first we apply
Proposition 3.2 and construct a renormalization ρ′′ with K(ρ′′) = K(ρ)∩K(ρ′).
then ρ′′ corresponds to some renormalization of g with period n(ρ′′)/n(ρ). C(ρ′′)
is a proper subset of C(ρ′) (if not so, it contradicts Proposition 3.1). So when
we apply to ρ′′ the above construction to obtain a simple renormalization ρ̂ of
f , then C(ρ̂) may be a proper subset of CR = C(ρ) (in general, we only have
C(ρ′′) ⊂ C(ρ̂) ⊂ CR).

However, we can also see that # sr(f, C ′
R) = ∞ for some C ′

R ⊃ CR. In the
proof of Theorem 4.2, the assumption that every critical point of f is repelling
is used only to find a periodic point where two or more rays land. But by the
argument above, we can easily see that we can also find such a periodic point
even when this assumption does not hold. Thus we can apply the proof of
Theorem 4.2 to this case.

Remark 4.4. Do C ′
R and C̃R coincide with CR? If f satisfies the con-

dition (4.1) below and is robust, C ′
R is equal to CR and C̃R, see Corollary 4.14.

However, in general, we do not have an answer to this question for now.

4.3. Robust infinite renormalization
Consider the following assumption for a polynomial f with connected Julia

set and a subset CR ⊂ C(f) (note that this condition is trivially satisfied in
the case of infinitely renormalizable quadratic polynomials):

sr(f, CR) is infinite and f(CR) = f(C(f)).(4.1)

Remark 4.5. This assumption may seem rather strong and restrictive
but it is not essential at all. That is to say, it corresponds to extracting
an infinitely renormalizable “part” from an infinitely renormalizable polyno-
mial. More precisely, assume that sr(f, CR) = ∞. For any ρ = (fn, U, V ) ∈
SR(f, c0, CR), let g be a polynomial hybrid equivalent to ρ. There exist some
c′0 and C ′

R with c′0 ∈ C ′
R ⊂ C(g) such that sr(g, C ′

R) is infinite and each element
ρ′ of SR(g, c′0, C

′
R) corresponds to the renormalization in SR(f, c0, CR) with

period n(ρ′) · n. Then we obtain g(C ′
R) = g(C(g)) because the critical points

of ρ is equal to
⋃n

i=0 f
−i(C(ρ, i)) ∩ U .

Let f be a polynomial satisfying (4.1). For each n ∈ sr(f, CR), take a
corresponding renormalization ρn = (fn, Un, Vn) ∈ SR(f, c0, CR). Then we
have P(ρn) = P (f) for any n ∈ sr(f, CR), and {K(ρn)}n∈sr(f,CR) forms a
decreasing sequence by Theorem 3.10.

Proposition 4.6. Let f , CR and ρn as above. Then:
(1) All periodic points of f are repelling.
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(2) The filled Julia set of f has no interior.
(3) There exist no periodic points in

⋂
n∈sr(f,CR) K(ρn).

(4) there exist no periodic points in P (f).
(5) For any n ∈ sr(f, CR), P (ρn, i) is disjoint from K(ρn, j) if i 
= j.

Proof. By the condition (4.1), all non-repelling periodic points must lie in
K(ρn) for any n ∈ sr(f, c0, CR). However, then by Proposition 3.4, the period
of a non-repelling periodic point is greater than n. So we have (1) and (2).

(3), (4) and (5) are easily derived from Theorem 3.5. Note that non-
repelling periodic points are contained in K(ρ) and P (f) = P(ρn) ⊂ K(ρ).

For each n ∈ sr(f, CR), let δn(i) be a simple closed curve which separates
K(ρn, i) from P (f)\P (ρn, i). Note that such curve exists by the fifth conclusion
in the previous proposition. Since its homotopy class in C \ P (f) is uniquely
determined, there exists a closed hyperbolic geodesic γn(i) homotopic to δn(i)
in C \ P (f). Let γn = γn(n).

Proposition 4.7. The geodesics γn(i) (n ∈ sr(f, CR), 1 ≤ i ≤ n) are
simple and mutually disjoint.

Proof. A hyperbolic geodesic is simple if it is homotopic to some simple
curve and two distinct hyperbolic geodesics are disjoint if they are homotopic
to disjoint curves. Thus γn(i) is simple because δn(i) is simple.

Take two geodesics γa(i) and γb(j). If K(ρa, i) does not intersects K(ρb, j),
then we have nothing to prove. Suppose K(ρa, i) intersects K(ρb, j).

If a = b, thenK(ρa, i)∩K(ρa, j) consists of a single repelling periodic point,
which is not in P (f). Since ρa is simple, this periodic point does not disconnect
the filled Julia sets. Thus we can take representatives of the homotopy classes
of γa(i) and γa(j) to be disjoint.

Otherwise, we may assume a < b. Then there exists some j′ such that
K(ρa, j

′) contains K(ρb, j). the case j′ 
= i is obviously obtained from the
pervious case. So assume K(ρb, j) ⊂ K(ρa, i). Then P (ρb, j) is a proper subset
of P (ρa, i). Therefore, γa(i) 
= γb(j) and we can take disjoint representatives,
so they are disjoint.

Proposition 4.8. For n ∈ sr(f, CR) and 1 ≤ i ≤ n, f−1(γn(i)) has a
component α which is homotopic to γn(i− 1) on C \ P (f).

Furthermore, f−n(γn) also has a component ζ which is homotopic to γn

on C \ P (f).

Proof. δn(i) enclosesK(ρn, i) and is homotopic to γn(i) on C\P (f). Since
f maps the connected set K(ρn, i− 1) to K(ρn, i), there exists a component α′

of f−1(δn(i)) which encloses K(ρn, i−1). α′ does not enclose other components
of f−1(K(ρn, i−1)) because δn(i) does not enclose any critical values of f which
does not lie in P (ρn, i). Thus, by definition, α′ is homotopic to δn(i − 1) on
C \ P (f), which is homotopic to γn(i− 1).
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Let Q = f−1(P (f)). Then f : C \Q → C \ P (f) is a covering map. Thus
we can lift a homotopy between δn(i) and γn(i) on C \ P (f) to a homotopy
between α′ and some component α of f−1(γn(i)) on C \Q. Since Q ⊃ P (f), α
is homotopic to γn(i− 1).

Similar argument with fn instead of f shows the existence of a component
ζ of f−n(γn) homotopic to γn.

Let �(·) denote the hyperbolic length in C \ P (f).

Lemma 4.9. For n ∈ sr(f, CR) and 1 ≤ i ≤ n,

� (γn(i)) ≤ dn(i) � (γn(i+ 1)) ,

where dn(i) is the degree of the proper map f : U(ρn, i) → f(U(ρn, i)) and
γn(n+ 1) = γn(1). In particular,

1
2d
�(γn) ≤ � (γn(i)) ≤ �(γn).

Proof. Let Q = f−1(P (f)). The map f : (C \ Q) → (C \ P (f)) is a
covering map. So it is an isometry with respect to the respective hyperbolic
metrics. Since the inclusion (C \Q) ↪→ (C \ P (f)) is a contraction,

�(γn(i)) ≤ �(α) ≤ �C\Q(α) = dn(i) �(γn(i+ 1)),

where α is the component of f−1(γn(i + 1)) homotopic to γn(i) (see the pre-
ceding proposition) and �C\Q is the hyperbolic length on C \Q.

Since
∏n

i=1 dn(i) is uniformly bounded with respect to n (in fact, it is not
greater than 2d), the second conclusion holds.

Definition. Let f be a polynomial of degree d ≥ 2. We say f is robust
if f satisfies the condition (4.1) for some CR ⊂ C(f) and

lim inf
n∈sr(f,CR)

�(γn) <∞.

Furthermore, we say a renormalization of any polynomial is robust in-
finitely renormalizable if it is hybrid equivalent to some robust infinitely renor-
malizable polynomial. See Remark 4.5.

Theorem 4.10. Suppose f is robust. Then:
(1) the postcritical set P (f) is a Cantor set of measure zero.
(2) limn∈sr(f,CR)

(
sup1≤i≤n diamP (ρn, i)

)
= 0.

(3) f : P (f) → P (f) is topologically conjugate to σ : Σ → Σ, where

Σ = proj lim
n∈sr(f,CR)

Z/nZ,

σ
((
in
)
n∈sr(f,CR)

)
=
(
in+ 1

)
n∈sr(f,CR)

.

In particular, f |P (f) is a homeomorphism and the forward orbit of every point
in P (f) is dense in P (f).
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Proof. By the collar theorem, there exists the standard collar An(i) about
the geodesic γn(i) on the hyperbolic surface C \ P (f). Note that the collar
theorem asserts that these collars are mutually disjoint. Each annulus An(i)
separates P (ρn, i) from the rest of the postcritical set.

Consider a sequence of nested annuli

{An(in)}n∈sr(f,CR) ,

that is, for m < n, An(in) lies in the bounded component of C \ Am(im). By
Lemma 4.9, �(γn(in)) ≤ �(γn). Since mod(An(in)) is a decreasing function of
�(γn) and lim inf �(γn) is finite, the sum∑

n∈sr(f,CR)

modAn(in)

diverges to infinity. Thus the set F =
⋂
Fn is totally disconnected and of mea-

sure zero, where Fn is the union of the bounded components of C \ (
⋃

iAn(i))
(see [Mc, Theorem 2.16]). Clearly, F contains P (f). Therefore, the postcriti-
cal set has measure zero. Furthermore, since each component of Fn intersects
P (f), we have F = P (f). Each P (ρn, i) lies in a single component of Fn. Since
F is totally disconnected, the diameter of the largest component of Fn tends
to zero as n tends to infinity, and so does supi diamP (ρn, i).

For each n ∈ sr(f, CR), let φn : P (f) → Z/nZ be the map which sends
P (ρn, i) to i mod n. These maps induce a continuous map φ : P (f) → Σ.

It is easy to confirm that φ is a conjugacy between f |P (f) and σ. Since Σ
is a Cantor set, P (f) is also a Cantor set.

Corollary 4.11. Suppose f is robust. If n ∈ sr(f, CR) is sufficiently
large, then #C(ρn, i) consists of at most one point for any i.

Proof. Otherwise, we may assume C(ρn) = {c0, . . . , cr}, r > 1 for all
sufficiently large n ∈ sr(f, CR). Since diam(P (ρn, 1)) tends to zero, all f(cj)’s
are equal.

Let mj be the multiplicity of the critical point cj . Then the degree of the
proper map f : U → U(ρn, 1) is equal to (

∑
mj) + 1, but the cardinality of

f−1(f(c0)) (counted with multiplicity) is not less than
∑

(mj + 1), that is a
contradiction.

Corollary 4.12. If f is robust, then CR ⊂ P (f) and every critical point
in CR is recurrent (its forward orbit accumulates to itself).

Proof. Let n ∈ sr(f, CR) be sufficiently large so that Corollary 4.11 holds.
Then for c ∈ CR, we have C(ρn, i) = {c} for some i. Therefore, the inverse
image of f(c) by the proper map f : U(ρn, i) → f(U(ρn, i)) consists only of
c. Since f(c) ∈ P (f) and f : P (ρn, i) → P (ρn, i + 1) is a homeomorphism by
Theorem 4.10, we have c ∈ P (f).

Since the forward orbit of c is dense in P (f), c is recurrent.
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Remark 4.13. We conjecture that when sr(f, CR) is infinite (here we
do not assume that f satisfies the condition (4.1)), then every critical point in
CR is recurrent. But up to now, we have proved it only in the robust infinitely
renormalizable case.

The next corollary gives an answer of Remark 4.4 in the robust infinitely
renormalizable case.

Corollary 4.14. Suppose a renormalization ρ ∈ SR(f, c0, CR) is ro-
bust. Then every renormalization ρ′ about c0 satisfies C(ρ′) ⊃ CR.

In particular, if R(f, c0, C ′
R) is infinite for some C ′

R ⊂ CR, then C ′
R = CR.

Proof. By applying Theorem 4.10 to ρ, P(ρ) is a Cantor set and the
forward orbit of c0 is dense in P(ρ). Therefore, for any ρ′ ∈ R(f, c0), K(ρ′)
must contain P(ρ). By Corollary 4.12, K(ρ′) ⊃ CR.

If R(f, c0, C ′
R) is infinite and C ′

R ⊂ CR, then for any ρ′ ∈ R(f, c0, C ′
R), we

have C ′
R = C(ρ′) ⊃ CR, so we have C ′

R = CR.

4.4. Examples
Now we give some examples of infinitely renormalizable polynomials which

have two or more critical points.

1. f1(z) = z3 + 3c2z with c = 0.907530 . . . .
g = −f1 have two renormalization of period 1. Both of them are hybrid

equivalent to h(z) = z2 − 1.78644 . . . , which is infinitely renormalizable with
sr(h, {0}) = {3n}. (Indeed, g is regarded as a polynomial constructed by the
intertwining surgery [EY] from two h’s at their β-fixed points.)

f1 has a renormalization of period 2 which is hybrid equivalent to h2.
Since the period of every renormalization of h is odd, f1 has infinitely many
renormalization of degree 4 (each renormalization of f1 corresponds to some
renormalization of h2). The robustness of f1 is easily verified because h is
robust.
2. f2(z) = (z2 + a)2 + b with a = −1.31434 . . . and b = −0.459797 . . . .

f2 is infinitely renormalizable with sr(f, {0,√−a}) = {2n} and the renor-
malization near 0 of period 2 is hybrid equivalent to z �→ (z2 + b)2 + a and the
renormalization near 0 of period 4 is hybrid equivalent to f itself.

This fact can be shown by using some results on dynamics of interval maps
[MeSt]. When a polynomial is renormalizable in the real sense, then by using
the method in the proof of Theorem 4.2, we can obtain a renormalization of the
same period in the complex sense (in this case, we can always use an α-fixed
point to construct the Yoccoz puzzle).

Let I be an interval. A map f : I → I is k-unimodal if it is of the form
gk ◦ · · · ◦ g1 where each gi : I → I is unimodal and gi(∂I) ⊂ ∂I. We say a
family of k-unimodal maps is full if for each k-unimodal map g : I → I, there
exists a map in this family which is essentially conjugate to g (conjugate when
we “collapse” intervals with non-essential dynamics. For the precise definition,
see [MeSt, Section II.4]).
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Figure 2. The Julia set of h

Figure 3. The Julia set of f1(z)

Figure 4. The Julia set of f2
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The fullness of family of biquadratic maps

BQ = {f : I → I
∣∣ f is polynomial of degree 4 and 2-unimodal}

can be derived easily from [MeSt, Theorem 5.1]. (Note that a k-unimodal map
are regarded as a “reasonable” map in [MeSt, Section II.5].) Furthermore, the
k-unimodal version of [MeSt, Theorem 5.2] is also valid (the proof is precisely
the same). Here we restate this theorem only when a family is 2-unimodal and
a renormalization contains two turning points.

Theorem 4.15 (cf. [MeSt, Theorem 5.2]). Let (fµ : I → I)µ∈∆ be a
full family of 2-unimodal maps and let f̂ : I → I be a 2-unimodal map with
three turning point c1 < c2 < c3. Assume c2 and ci (i = 1 or 3) lies in the same
periodic orbit of period p and f̂p1(c2) = ci (0 < p1 < p). We further assume
f̂ is not renormalizable with period less than p. Then there exists a connected
subset ∆0 ∈ BQ such that for each µ ∈ ∆0 we have the following :

• There exists a restrictive interval Jµ of period p which contains the
second turning point of fµ and fp1(Jµ) contains the i-th turning point of fµ

(and no other turning points of fµ).
• The maps fµ and f̂ are ≈-combinatorially equivalent (the definition is

given in [MeSt, Section II.5.c]. Roughly speaking, it specifies the order of the
intervals Jµ, . . . , f

p−1
µ (Jµ)).

Furthermore, (fp
µ : Jµ → Jµ)µ∈∆0 is (when properly rescaled) again a full

family of 2-unimodal maps.

By applying this theorem to the biquadratic family BQ repeatedly, we
finally obtain the existence of an infinitely renormalizable biquadratic polyno-
mial. Furthermore, f2 is also robust. McMullen’s argument for infinitely renor-
malizable quadratic polynomials [Mc, Chapter 11] is also valid for k-unimodal
case.

5. Main results

In this section, we state our main results and the outline of the proof.

Theorem 5.1 (Robust rigidity). A robust infinitely renormalizable poly-
nomial carries no invariant line field on its Julia set.

Since a hybrid equivalence preserves invariant line fields on the Julia set,
we can easily apply the result to polynomials whose dynamics on its Julia set
is essentially robust infinitely renormalizable. For example:

Corollary 5.2. Let f be a polynomial of degree d ≥ 2. Suppose every
critical point c ∈ C(f) satisfies one of the following :

(1) c is preperiodic.
(2) The forward orbit of c tends to an attracting cycle.
(3) There exists some simple renormalization ρ of f and n > 0 such that ρ

is robust infinitely renormalizable and fn(c) lies in J(ρ) and the forward orbit
of c does not accumulate to I(ρ).
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Then f carries no invariant line field on its Julia set.

Remark 5.3. If every critical point satisfies the assumption (1) or (2)
of this corollary, then the polynomial is subhyperbolic. So this corollary means
if the dynamics is locally subhyperbolic or eventually robust infinitely renor-
malizable (and other kind of dynamics does not happen), then there exists no
invariant line field.

If a polynomial has only one critical point, it cannot have both sub-
hyperbolic and robust infinitely renormalizable dynamics, so we do not need
this corollary.

The corollary is an easy consequence of Theorem 5.1 and the following
lemma:

Lemma 5.4. Let f be a polynomial of degree d ≥ 2. Suppose there exist
simple renormalizations ρ1, . . . , ρl such that P(ρj)’s are pairwise disjoint and
every critical point c ∈ C(f) satisfies one of the following :

(1) c is preperiodic.
(2) The forward orbit of c tends to an attracting cycle.
(3) There exist n > 0 and j such that fn(c) lies in K(ρj) and the forward

orbit of c does not accumulate to I(ρj).
Then almost every x in J(f) eventually mapped onto

⋃J (ρj) by f .

Proof. Let PJ = J(f) ∩ P (f). Let C3 be the set of critical points which
satisfy the condition (3) and let C1 be the set of critical points which satisfy the
condition (1) and which does not satisfy the condition (3). Then PJ = P1 ∪P3

where Pi =
⋃

n>0 f
n(Ci).

By Lemma 2.8, the Euclidean distance d(fn(x), P (f)) tends to 0 for almost
every x ∈ J(f). Now we consider such x ∈ J(f). Since there exist only
countably many eventually periodic points, we may assume x is not eventually
periodic.

Then x must be accumulate to P3 because any point in P1 is eventually
mapped into a repelling periodic point of f . Thus for any ε > 0, there exists
N > 0, j and i such that d(fN (x), P3 ∩ K(ρj , i)) < ε and d(fn(x), P3) < ε
for any n ≥ N . Because P3 does not intersect I(ρj), this implies that we
have d(fn(x), P3 ∩K(ρj , n −N + i)) < ε for any n > N when ε is sufficiently
small. Therefore, the forward orbit of fN+n−i(x) by fn(ρj) does not escape
from U(ρj), so fN+n−i(x) must lie in J (ρj).

Remark 5.5. If there exists no critical point satisfying the condition
(3), then f is subhyperbolic and J(f) is measure zero (since P3 is empty, any
point x in J(f) cannot satisfy d(fn(x), P (f)) → 0).

Proof of Corollary 5.2. First we collect all renormalizations ρ1, . . . , ρl

which appear in the assumption (3) of the corollary for some c ∈ C(f). If
P(ρi) ∩ P(ρj) is nonempty, then by applying Theorem 4.10 to ρi and ρj , we
have P(ρi) = P(ρj). This implies C(ρi) = C(ρj) by Corollary 4.12. Then
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we can omit one of them by Proposition 3.9. Therefore, we assume that the
postcritical sets are pairwise disjoint, so we can apply Lemma 5.4. Thus

E =
l⋃

j=1

⋃
k>0

f−k(J (ρj))

has full measure in J(f). So we apply Theorem 5.1 to each ρj , f carries no
invariant line field on E and so does on J(f).

In the rest of this section, we state the outline of the proof of Theorem 5.1.
The proof is based on McMullen’s proof in the quadratic case [Mc].

The proof is divided into two cases, whether L = lim inf �(γn) is zero or
positive. However, both proofs goes very similarly. We pass to a subsequence
in sr(f, CR) so that after rescaling properly, fn converges to some proper map
g : U → V of degree more than one near the small postcritical set P (ρn). (We
use some proper map fn : Xn → Yn constructed from ρn ∈ SR(f, c0, CR) to
obtain good estimates. Only when the case L is sufficiently small, they are
polynomial-like.)

Now suppose f carries an invariant line field µ on its Julia set. We will
construct a g-invariant univalent line field ν on V . Then it is a contradiction
because U ∩ V contains a critical point of g.

To construct ν, we will use the following two lemmas:

Lemma 5.6. Suppose holomorphic maps fn : (Un, un) → (Vn, vn) be-
tween pointed disks converge to some non-constant map f : (U, u) → (V, v) in
the Carathéodory topology. If an fn-invariant line field µn converges in measure
to some line field µ, then µ is f-invariant.

See [Mc, Theorem 5.14].

Lemma 5.7. Suppose a measurable line field µ on C is almost continu-
ous at a point x and |µ(x)| = 1. Let (Vn, vn) → (V, v) be a convergent sequence
of pointed disks, and let hn : Vn → C be a sequence of univalent maps. Suppose
h′n(vn) → 0 and

sup
|x− hn(vn)|
|h′n(vn)| <∞.

Then there exists a subsequence such that h∗n(µ) converges in measure to a
univalent line field on V .

See [Mc, Theorem 5.16].
We take a point x ∈ J(f) having some good properties. Then for infinitely

many n ∈ sr(f, CR), we take an inverse branch hn of fk for some k which
sends some neighborhood of the small postcritical set univalently near x. Then
h∗n(µ) = µ by f -invariance, so h∗n(µ) is fn-invariant line field on Yn. We apply
Lemma 5.7 and obtain a univalent line field µ on V . By Lemma 5.6, µ is g-
invariant. However, since g has a critical point c in U ∩ V , µ(c) must be equal
to zero, and this is a contradiction.
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The rest of this paper is devoted to prove Theorem 5.1. Many estimates
in McMullen’s proof can be applied similarly to our case. However, the main
difficulty is to avoid critical points of f . For example, we need to construct a
univalent map hn by choosing an inverse branch of iterates of f , so we must
check that the forward orbit x does not pass near critical points outside CR.

6. Thin rigidity

In this section we will give the proof of Theorem 5.1 in the case lim inf �(γn)
is sufficiently small.

In this section, we always assume that a polynomial f satisfies the condition
(4.1) and use the same notations as in Section 4.

We say a renormalization ρn = (fn, Un, Vn) is unbranched if

Vn ∩ P (f) = P (ρn).

Lemma 6.1. There exists some L > 0 (depending only on d) satisfying
the following :

If �(γn) < L, then we can take an unbranched representative (fn, Un, Vn)
of ρn with mod(Un, Vn) > m(�(γn)) where m(�) is a positive function which
tends to infinity as �→ 0.

Proof. Let An be the standard collar of γn in C \P (f) and let Bn be the
component of f−n(An) which has the same homotopy class in C \ P (f). Let
Dn (resp. En) be the union of Bn (resp. An) and the bounded component of
C \Bn (resp. C \An). Then fn : Dn → En is a critically compact proper map.

Then there exists some M > 0 such that if mod(P (ρn), En) > M then we
can take U ′

n ⊂ Dn and V ′
n ⊂ En as follows: (fn, U ′

n, V
′
n) is a renormalization

and mod(U ′
n, V

′
n) > m (mod(P (ρn), En)) (see Lemma 2.12). Since En∩P (f) =

P (ρn), (fn, U ′
n, V

′
n) is unbranched.

Since mod(P (ρn), En) ≥ modAn, there exists some L > 0 such that if
�(γn) < L then we can take an unbranched renormalization (fn, U ′

n, V
′
n) with

mod(U ′
n, V

′
n) > m(�(γn)).

Therefore, we will prove the following:

Theorem 6.2 (Polynomial-like rigidity). Let f be a polynomial satisfy-
ing the condition (4.1). Suppose there exists some m > 0 such that (fn, Un, Vn)
is unbranched with mod(Un, Vn) > m for infinitely many n ∈ sr(f, CR).

Then f carries no invariant line field on its Julia set.

Corollary 6.3 (Thin rigidity). There exists some L > 0 such that if a
polynomial f satisfies the condition (4.1) and

lim inf
n∈sr(f,CR)

�(γn) < L,

then f carries no invariant line field on its Julia set.
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Now we prepare some lemmas which will be used to prove Theorem 6.2.

Lemma 6.4. Assume an unbranched renormalization ρn = (fn, Un, Vn)
satisfies that mod(Un, Vn) > m > 0. Let E be a component of f−1(J(ρn, i))
which differs from J(ρn, i− 1). Then in the hyperbolic metric on C \P (f), the
diameter of E is bounded in terms of m.

Note that E does not intersects P (f) because P (f) ⊂ J (ρn).

Proof. Since mod(J(ρn), Vn) > mod(Un, Vn) > m, mod(J(ρn, i), Vn(ρn,
i)) is greater than m/2d.

Let W be the component of f−1(V (ρn, i)) which contains E. Then f :
W → V (ρn, i) is a branched covering of degree less than d. Note that all
critical points of this map lie in E. Hence mod(E,W ) is greater than m/(2dd).
This implies that E is enclosed by an annulus whose modulus is bounded below,
so the diameter of E with respect to the hyperbolic metric on W is bounded
in terms of m by Lemma 2.2. By the Schwarz-Pick lemma, the hyperbolic
diameter of E on C \ P (f) is also bounded.

Lemma 6.5. Suppose there exists some m > 0 such that (fn, Un, Vn)
is unbranched with mod(Un, Vn) > m for infinitely many n ∈ sr(f, CR).

Then f is robust, P (f) is measure zero and

P (f) =
⋂

n∈sr(f,CR)

J (ρn).

Proof. For n ∈ sr(f, CR) with mod(Un, Vn) > m, let An be an annulus in
Vn \ Un enclosing K(ρn) with modAn > m.

The length of the core curve (unique simple closed geodesic) of An is
less than π/m in the hyperbolic metric on An. Since the core curve of An is
homotopic to γn in C \ P (f), �(γn) is also less than π/m by the Schwarz-Pick
lemma. So, f is robust. By Theorem 4.10, the postcritical set is a Cantor set
of measure zero and supi diamP (ρn, i) → 0. Since mod(Un, Vn) > m, we have

diamE J(ρn, i) < C · diamE P (ρn, i)

for some C which depends only on m and d where diamE is the diameter with
respect to the Euclidean metric. Thus sup diamJ(ρn, i) → 0 as well. Since
J(ρn, i) intersects P (f), the theorem follows.

Lemma 6.6. Under the same assumption as Lemma 6.5, almost every
x ∈ J(f) satisfies the following :

(1) The forward orbit of x does not intersects P (f).
(2) ‖(fn)′(x)‖ → ∞ with respect to the hyperbolic metric on C \ P (f).
(3) For each n ∈ sr(f, CR), there exists some k > 0 such that fk(x) ∈

J (ρn).
(4) For each k > 0, there exists some n ∈ sr(f, CR) such that fk(x) 
∈

J (ρn).
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Proof. Since P (f) is measure zero, so is
⋃
f−k(P (f)), which implies (1).

The second conclusion follows from Lemma 2.6.
By Lemma 2.8, d(fk(x), P (f)) → 0 for almost every x ∈ J(f). When

fk(x) is sufficiently close to P (ρn, i), then fk+1(x) should also be close to
P (ρn, i + 1), because P (f) =

⋃
P (ρn, i) (here we use the fifth conclusion of

Proposition 4.6). Therefore, fk+nj−i(x) lies in Un for all j > 0 and this means
that fk+n−i(x) ∈ J(ρn), so we proved (3).

By Lemma 6.5, area(J (ρn)) tends to zero. Therefore,
⋂

n f
−k(J (ρn)) is

measure zero for any k and we have now proved (4).

Proof of Theorem 6.2. Let

usr(f, CR,m) = {n ∈ sr(f, CR)
∣∣ ρn is unbranched and mod(Un, Vn) > m}.

Suppose # usr(f, CR,m) = ∞ and there exists an f -invariant line field sup-
ported on F ⊂ J(f) of positive Lebesgue measure.

Fix a point x ∈ F which satisfies the conditions in Lemma 6.6 and where
µ is almost continuous. For each n ∈ usr(f, CR,m), let k(n) ≥ 0 be the
smallest number which satisfies fk(n)+1(x) ∈ J (ρn) and assume fk(n)+1(x) ∈
J(ρn, i(n) + 1). Note that k(n) tends to infinity.

Let n0 = min(usr(f, CR,m)). Consider sufficiently large n ∈ usr(f, CR,m)
so that k(n) > k(n0). In particular, k(n) is positive so fk(n)(x) does not lie in
J (ρn).

Therefore, fk(n)(x) lies in a component E of f−1(J(ρn, i(n) + 1)), which
is different from J(ρn, i(n)). Moreover, we have fk(n)(x) ∈ J (ρn0) because
k(n) > k(n0). Hence E lies in J (ρn0) and does not contain any critical points.

Since E is disjoint from the postcritical set, there exists a univalent branch
h̃n of f−k(n)−1 on V (ρn, i(n) + 1) which sends fk(n)+1(x) to x.

Let j(n) be the smallest number which satisfies that i(n) < j(n) ≤ n, that
C(ρn, j(n)) is nonempty. Since C(ρn, i) is empty for i(n) < i < j(n), there
exists a univalent inverse branch

V (ρn, j(n))
f−1

−−→ V (ρn, j(n) − 1)
f−1

−−→ · · · f−1

−−→ V (ρn, i(n) + 1).

Let hn be the composition of the map above and h̃n. Namely, hn is a univalent
branch of f−j(n)+i(n)−k(n) on V (ρn, j(n)) which sends f j(n)−i(n)+k(n)(x) to x.
Let J∗

n = hn(J(ρn, j(n))). Then fk(n)(J∗
n) = E. By Lemma 6.4, the hyperbolic

diameter of E in C \P (f) is bounded in terms of m. Since ‖(fk)′(x)‖ tends to
infinity,

diam J∗
n → 0

with respect to the hyperbolic metric on C \ P (f), by the Koebe distortion
theorem.

There exists some c ∈ CR, such that for infinitely many n ∈ usr(f, CR,m),
c lies in J(ρn, j(n)). Furthermore,

(fn, Un(j(n)), Vn(j(n)))
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is also unbranched and satisfies

mod (Un (j(n)) , Vn (j(n))) > m/2d.

Hence by replacing c0, m, Un and Vn with c, m/2d, Un(j(n)) and Vn(j(n))
respectively, we may suppose j(n) = n for infinitely many n ∈ usr(f, CR,m).

For such n, let

An(z) =
z − c0

diam(J(ρn))
,

gn = An ◦ fn ◦A−1
n ,

yn = An(h−1
n (x)).

Then

(gn, An(Un), An(Vn)))

is a polynomial-like map with diam(J(gn)) = 1 and mod(An(Un), An(Vn)) > m.
After passing to a subsequence, gn converges to some polynomial-like map (or
polynomial) (g, U, V ) with mod(U, V ) ≥ m in the Carathéodory topology by
Lemma 2.9.

Let kn = hn ◦ A−1
n defined on An(Vn). Then we have kn(yn) = x and

νn = k∗n(µ) is gn-invariant line field on An(Vn). Since diam(J(gn)) = 1, while
diam(kn(J(gn))) = diam(J∗

n) → 0, we have k′n(yn) → 0 by the Koebe distortion
theorem.

After passing to a further subsequence, yn converges to some y ∈ V , be-
cause yn lies in J(gn), which is surrounded by an annulus of definite modulus.
By Lemma 5.7, there exists a further subsequence such that µn converges to a
univalent line field µ on V . The critical point 0 lies in J(g) ⊂ U ∩ V . How-
ever, this contradicts the fact that the univalent line field µ is g-invariant by
Lemma 5.6.

Therefore, f carries no invariant line field on its Julia set.

7. Thick rigidity

In this section, we will prove the other case of Theorem 5.1, which is the
following:

Theorem 7.1 (Thick rigidity). Let f be robust. Suppose

0 < lim inf
n∈sr(f,CR)

�(γn) <∞.

Then f carries no invariant line field on its Julia set.

In this section, we also assume a polynomial f satisfies the condition (4.1).
Let

sr(f, CR, λ) =
{
n ∈ sr(f, CR)

∣∣ 1/λ < �(γn) < λ
}
.

Assume # sr(f, CR, λ) = ∞ for some λ > 0. For n ∈ sr(f, CR, λ),



�

�

�

�

�

�

�

�

382 Hiroyuki Inou

• Let ζn be the component of f−n(γn) homotopic to γn on C \P (f) (the
existence is guaranteed by Proposition 4.8).

• Let Xn and Yn denote the disks enclosed by ζn and γn, respectively.
Then fn : Xn → Yn is a proper map whose degree is equal to deg ρn.

• Define Yn(i) = f i(Xn) for 1 ≤ i ≤ n. Then we have Yn(n) = Yn and
Yn(i) ∩ P (f) = P (ρn, i).

• Let Yn =
⋃n

i=1 Yn(i). Then P (f) lies in Yn.
• Let Bn denote the largest Euclidean ball centered at c0 which lies in

Xn ∩ Yn. Note that by Corollary 4.12, c0 ∈ P (ρn) ⊂ Xn ∩ Yn.
• Let ζn(i) be the component of f−n(γn(i)) homotopic to γn(i) on C \

P (f).
• Let Ỹn(i) be the disk enclosed by γn(i) and let X̃n(i) be the disk en-

closed by ζn(i).
In the rest of this paper, A < C(λ) means that A is bounded above in

terms of λ (and d = deg f). All C(λ)’s are independent one another. And we
denote by dE and diamE the Euclidean distance and diameter respectively.

Lemma 7.2. For n ∈ sr(f, CR, λ),

diamE(Xn) ≥ diamE(Bn) ≥ C(λ) diamE(Xn),
diamE(Yn) ≥ diamE(Bn) ≥ C(λ) diamE(Yn).

Proof. The left inequalities are trivial, so we will prove the right inequal-
ities.

By the collar theorem, there exists an annulus A in C \ P (f) whose core
curve is γn and which satisfies mod(A) > m(λ) > 0. Since c0 lies in the bounded
component of C \A,

r1 = dE(c0, γn) ≥ C1 diamE(γn) = C1 diamE(Yn),

where C1 > 0 depends only on λ.
Let Q = f−n(P (f)). Then

fn : (C \Q) → (C \ P (f))

is a covering map. Since the map fn sends ζn to γn by degree ≤ 2d, the
hyperbolic length of ζn in C\Q is not greater than 2d · �(γn), which is less than
2d · λ. So by the same reason as in the case of γn,

r2 = dE(c0, ζn) ≥ C2 diamE(ζn) = C2 diamE(Xn),

where C2 > 0 depends only on λ.
Now we show that the ratio r1/r2 is bounded above and below. If we show

this, then we are done because diamE(Bn) = 2 · min(r1, r2).
Assume r1 ≥ r2/C2(≥ diamE(ζn)). ThenB =

{
z
∣∣ r2/C2 < |z − c0| < r1

}
is an annulus enclosing ζn and enclosed by γn. B is contained in C \ P (f) and
the core curve of B is homotopic to γn on C \ P (f). By the Schwarz-Pick
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lemma, the hyperbolic length of the core curve of B on B is greater than 1/λ.
So

λ >
mod(B)

π
=

log r1 − log r2 + logC2

2π2
,

which implies r1 < C3r2 for some C3 > 0 which depends only on λ.
A similar argument shows that if r2 ≥ r1/C1, then r2 < C4r1 for some

C4 > 0.

Remark 7.3. Quite similarly, we can also show that

diamE(Yn(i)) ≥ diamE(Bn(i)) ≥ C(λ) diamE(Yn(i)),

diamE(Ỹn(i)) ≥ diamE(Bn(i)) ≥ C(λ) diamE(Ỹn(i)),

where Bn(i) is the largest Euclidean ball which lies in Yn(i)∩ Ỹn(i) and center-
ed at f i(c0).

In particular, the Euclidean diameters of Yn(i) and Ỹn(i) are comparable.

Lemma 7.4.

P (f) =
⋂

n∈sr(f,CR)

Yn.

Proof. By Theorem 4.10, supi diam(P (ρn, i)) tends to zero as n→ ∞. So,
because Yn(i) ⊃ P (ρn, i), it suffices to show that supi diam(Yn(i)) also tends to
zero. By Lemma 7.2 and Remark 7.3, it is equivalent to supi diam(Ỹn(i)) → 0.

But it is trivial since Ỹn(i) lies in some component of Fm for any m < n
in sr(f, CR), where Fm is the same as in the proof of Theorem 4.10.

Lemma 7.5. Almost every x ∈ J(f) has the following properties:
(1) The forward orbit of x does not intersect P (f).
(2) ‖(fn)′(x)‖ → ∞ with respect to the hyperbolic metric on C \ P (f).
(3) For each n ∈ sr(f, CR), there exists some k > 0 satisfying fk(x) ∈ Yn.
(4) For each k > 0, there exists some n ∈ sr(f, CR) satisfying fk(x) 
∈ Yn.

Proof. The properties (1) and (2) are the same as in Lemma 6.6. The
fact that Yn is a neighborhood of P (f) implies the property (3). The property
(4) follows from Lemma 7.4 (cf. Lemma 6.6).

Lemma 7.6. For n ∈ sr(f, CR, λ), let

An(z) =
z − c0

diam(Bn)
.

Then there exists a subsequence of sr(f, CR, λ) such that

(An(Xn), 0) → (X, 0),
(An(Yn), 0) → (Y, 0),

A−1
n ◦ fn ◦An → g,

in the Carathéodory topology where g : (X, 0) → (Y, g(0)) is a proper map,
0 ∈ X ∩ Y , and g′(0) = 0.
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Proof. Since An(Xn) and An(Yn) contain the unit ball, there exists a
subsequence such that

(An(Xn), 0) → (X, 0),
(An(Yn), 0) → (Y, 0),

Since �(γn) < λ, the diameter of P (ρn) in the hyperbolic metric on Yn

is bounded by the collar theorem. In particular, the distance between c0 and
fn(c0) in the hyperbolic metric on Yn is bounded above. Therefore, after
passing to a further subsequence, (An(Yn), An(fn(c0))) → (Y, y) for some y ∈ Y
(see [Mc, Theorem 5.2]).

By Lemma 7.2, X, Y 
= C. So passing to a further subsequence, we may
assume A−1

n ◦ fn ◦ An → g for some proper map g : X → Y by Lemma 2.13.
Clearly, we have (A−1

n ◦ fn ◦An)′(0) → g′(0) = 0.

Lemma 7.7. For n ∈ sr(f, CR),

�(γn) ≤ �(ζn) ≤ 2d�(γn),
�(γn(i)) ≤ �(∂Yn(i)) ≤ 2d�(γn).

Proof. The left inequalities follow from the fact that γn and γn(i) are
geodesics homotopic to ζn and ∂Yn(i), respectively.

The right inequalities follow from the fact that f expands the hyperbolic
metric on C\P (f). Note that fn and fn−i maps ζn and ∂Yn(i) to γn by degree
≤ 2d, respectively.

Lemma 7.8. For n ∈ sr(f, CR, λ), ζn lies in a C(λ)-neighborhood of
γn, and ∂Yn(i) lies in a C(λ)-neighborhood of γn(i) = ∂Ỹn(i) with respect to
the hyperbolic metric on C \ P (f).

Proof. This lemma is an easy consequence of Lemmas 4.9, 7.7 and 2.4.
The condition 1/λ < �(γn) < λ gives lower bounds of γn and γn(i), and upper
bounds of ζn and ∂Yn(i). Thus these bounds give upper bounds of distances
from every point on ζn and ∂Yn(i) to γn and γn(i), respectively.

Lemma 7.9. For n ∈ sr(f, CR, λ),

‖(fn)′(x)‖ ≤ C(λ) for any x ∈ ζn = ∂Xn,

‖(fn−i)′(x)‖ ≤ C(λ) for any x ∈ ∂Yn(i)

with respect to the hyperbolic metric on C \ P (f).

Proof. Since fn : ζn → γn is a proper map and its degree is at most 2d,

2d�(γn) ≥
∫

ζn

‖(fn)′(z)‖ ρ(z)|dz|,
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where ρ(z)|dz| is the hyperbolic metric on C \P (f). Because �(ζn) ≥ �(γn), we
have ‖(fn)′(x0)‖ ≤ 2d for some x0 ∈ ζn.

For x ∈ ζn, take a path η on ζn which joins x to x0. Then

�(fn(η)) ≤ 2d�(γn) ≤ 2dλ.

By Lemma 2.7, there exists some α > 0, which depends only on λ, such that

‖(fn)′(x)‖ ≤ ‖(fn)′(x0)‖α ≤ (2d)α,

which implies the first inequality.
For x ∈ ∂Yn(i), take x′ ∈ ζn with f i(x′) = x. Since f expands the

hyperbolic metric on C \ P (f),

‖(fn−i)′(x)‖ ≤ ‖(fn)′(x′))‖ ≤ (2d)α.

Lemma 7.10. For any n ∈ sr(f, CR, λ), there exist a disk Zn and pos-
itive integers an and mn with Zn ⊂ C \ P (f) and an,mn ≤ n such that

(1) C(ρn, an) is nonempty,
(2) fmn : Zn → Ỹn(an) is univalent,
(3) d(∂X̃n(an), ∂Zn) < C(λ),
(4) �(∂Zn) < λ,
(5) area(Zn) > 1/C(λ)

in the hyperbolic metric on C \ P (f).

Proof. By Lemma 2.5, there exists some i and j such that d(γn(i), γn(j))
is bounded in terms of λ independent of n. Therefore, d(∂Yn(i), ∂Yn(j)) is also
bounded above in terms of λ by Lemma 7.8. Let α be a geodesic of length
bounded above in terms of λ joining ∂Yn(i) and ∂Yn(j) in C \ P (f).

Let l > 0 be the smallest number which satisfies that either C(ρn, i − l)
or C(ρn, j − l) is nonempty. We may assume that C(ρn, i − l) is nonempty
(note that this assumption implies i < j or j ≤ i − l). Then the univalent
inverse branch f−l+1 : Yn(i) → Yn(i − l + 1) extends to a univalent map on
Yn(i) ∪ α ∪ Yn(j). Let η and W be the images of α and Yn(j) by this inverse
branch, respectively (W may be equal to Yn(j − l + 1)).

Let A be the component of f−1(Yn(i − l + 1) ∪ η ∪ W ) which contains
Yn(i− l). Then

f : A→ Yn(i− l + 1) ∪ η ∪W
is a branched covering.

We claim there exists a component Z ′ of the interior of A which does not
intersect C(f) ∪ P (f). Each component of the interior of A is mapped onto
Yn(i− l+1) or W by f . These components are joined by the collection of paths
f−1(η) ∩ A. Clearly, A cannot contain any essential loops. Since the degree
of f is finite, there exist two or more “edges”, that is, components of interior
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of A each of which touch only one component of f−1(η). They contains no
critical point. Furthermore, at most one of them can intersect the postcritical
set because P (f) ∩ A ⊂ P (ρn, i− l) ∪ P (ρn, j − l) and Yn(i− l) cannot be an
“edge”. Let Z ′ be a component of interior of A which is an “edge” of A and
which does not intersects P (f).

Since the lengths of α, ∂Yn(i) and ∂Yn(j) are bounded in terms of λ and f
is expanding with respect to the hyperbolic metric on C \P (f), the hyperbolic
distance between ∂Z ′ and ∂Yn(i− l) on C \P (f) is also bounded in terms of λ.

f l(Z ′) is equal to either Yn(i) or Yn(j). Let an and m′ as follows: if
f l(Z ′) = Yn(i) (resp. Yn(j)), then let an be the smallest number such that i ≤
an ≤ n (resp. j ≤ an ≤ n) and that C(ρn, an) is nonempty. Let m′ = an − i+ l
(resp. an−j+ l). Then m′ is the smallest integer satisfying that fm′

(Z ′)∩C(f)
is nonempty. Therefore, f−m′

: Yn(an) → Z ′ is univalent. This map can be
extended univalently to Ỹn(an) →̃ Z̃.

In the hyperbolic metric on C\P (f), ∂Yn(an) is close to ∂Ỹn(an) = γn(an)
by Lemma 7.8. So ∂Z ′ is also close to ∂Z̃ because f is expanding. Hence the
disk Z̃ is joined with Yn(i− l) by some path β′ of length bounded above. Let

m′′ =

{
(i− l) − an, if i > an,

(i− l) − an + n, if i ≤ an,

and let X be the component of f−m′′
(Yn(i − l)) which contains P (ρn, an) (X

coincide with Yn(an) if and only if i > an). Note that ∂X is close to γn(an)
in the hyperbolic metric on C \ P (f) (even if i ≤ an, the distance between ∂X
and ∂Yn(an) is not greater than the distance between ζn = fn−an(∂X) and
γn = fn−an(∂Yn(an)), since f expands the hyperbolic metric on C \ P (f)).

Let Zn be a component of f−m′′
(Z̃) which is joined with X by some path

component β of f−m′′
(β′). Then �(∂Zn) ≤ �(Yn(i)) < λ. Since β′∪Z̃ is disjoint

from the postcritical set of f , fm′′
maps β ∪ Zn univalently to β′ ∪ Z̃.

Let mn = m′+m′′. Note that since i < j or j ≤ i−l, we have 0 < mn ≤ n.
fmn sends Zn univalently to Ỹn(an). Furthermore, d(∂X̃n(an), Zn) is bounded
in terms of λ in the hyperbolic metric on C \ P (f), because ∂X̃n(an) and ∂X
are both close to γn(an), �(γn(an)) < λ and �(β) ≤ �(β′) is bounded.

Finally, we will show that area(Zn) > 1/C(λ). Let

E1 = {d(z, γn(an)) < 1} ∩ Yn

in the hyperbolic metric on C \P (f). The collar theorem guarantees the lower
bound for the injectivity radius of any point on γn(an), so it gives a lower bound
for area(E1). Since fmn : Zn → Ỹn(an) is univalent, there exists E2 ⊂ f(Z̃)
and E3 ⊂ Zn such that fm′′+1 maps E3 univalently to E2 and fm′−1 maps E2

univalently to E1.
We need only show that area(E3) is bounded below. By Lemmas 7.9 and

2.7, ‖fm′−1(z)‖ < C(λ) on E2 and ‖fm′′+1(z)‖ < C(λ) on E3. Moreover, for
any z ∈ E3, there exists a path η joining z to ∂X with the length �(fm′′+1(η)) <
C(λ). Indeed, the path consists of the geodesic joining z to ∂Zn, the arc along
∂Z̃, and f(β′) satisfies this condition.



�

�

�

�

�

�

�

�

Renormalization and rigidity of polynomials of higher degree 387

Y  (i-l+1)n

Y  (i-l)n

W

Z’

f

A

‘‘edges’’

η

Y  (i)n α Y  (j)n

f l-1
~

Figure 5. Construction of Z ′
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Figure 6. The case f l(Z ′) = Yn(j)
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Therefore, fmn is not so expanding on E3, and area(E3) is bounded below
in terms of λ.

Now we may assume an above is equal to n for infinitely many n. In-
deed, there exists some c ∈ CR such that for infinitely many n ∈ sr(f, CR, λ),
C(ρn, an) � c. So we need only replace c0, λ, Xn and Yn with c, 2dλ, X̃n(an)
and Ỹn(an) respectively and properly adjust the constants depending on λ (note
that λ/2d < �(γn(i)) < λ by Lemma 4.9). Let

sr1(f, CR, λ) =
{
n ∈ sr(f, CR, λ)

∣∣ an = n
}
.

Then # sr1(f, CR, λ) = ∞ and for any n ∈ sr1(f, CR, λ),
(1) fmn : Zn → Yn is univalent,
(2) d(∂Xn, ∂Zn) < C(λ),
(3) �(∂Zn) < λ,
(4) area(Zn) > 1/C(λ)

in the hyperbolic metric on C \ P (f).

Proof of Theorem 7.1. Suppose f admits an invariant line field µ sup-
ported on a set of positive measure E ⊂ J(f). Take a point x ∈ E of almost
continuity of µ which satisfies the properties in Lemma 7.5.

For each n ∈ sr1(f, CR, λ), let k(n) ≥ 0 be the smallest number which
satisfies that fk(n)+1(x) ∈ Yn. Then k(n) tends to infinity by the preceding
lemma. Now let n1 = min(sr1(f, CR, λ)) and we consider only sufficiently large
n such that k(n) > k(n1). In particular, we have k(n) > 0 and fk(n)(x) does
not lie in Yn.

First, we construct univalent maps hn : Ỹn(j(n)) →̃ Tn ⊂ C. Let i(n) be
the number with 0 ≤ i(n) < n and fk(n)+1(x) ∈ Yn(i(n) + 1).

Case I. i(n) > 0. Then fk(n)(x) lies in a componentWn of f−1(Yn(i(n)+
1)). Wn lies in C \P (f) because f−1(P (ρn, i(n)+1))∩P (f) = P (ρn, i(n)) and
fk(n)(x) does not lie in Yn(i(n)), which contains P (ρn, i(n)). Moreover, Wn

does not contain any critical point. Indeed, C(f) \ CR does not intersect Yn1

and fk(n)(x) lies in Yn. Thus Yn contains Wn ∩ f−1(P (ρn, i(n) + 1)).
Let j(n) be the smallest number which satisfies i(n) + 1 ≤ j(n) ≤ n and

C(ρn, j(n)) is nonempty. Define hn by choosing the univalent inverse branch

Yn(j(n))
fi(n)−j(n)

−−−−−−→Wn
f−k(n)

−−−−→ C,

which sends fk(n)+j(n)−i(n)(x) to x. Since Ỹn(j(n)) \ Yn(j(n)) does not inter-
sect the postcritical set of f , this map extends to a univalent map defined on
Ỹn(j(n)).

Case II. i(n) = 0 and fk(n)(x) 
∈ Xn \ Yn. Then fk(n)(x) 
∈ Xn. Hence
we can choose the univalent inverse branch hn as in Case I.

Case III. i(n) = 0 and fk(n)(x) lies inXn\Yn. Since Xn � c0, we cannot
take the inverse branch of f : Xn → Yn(1). But by Lemma 7.10, there exists
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an disk close to ∂Xn, which maps univalently to Yn by fmn . By Lemma 7.8,
fk(n)(x) is close to ∂Xn in the hyperbolic metric on C\P (f). Thus the distance
from fk(n)(x) to ∂Zn is also bounded in terms of λ. Take a path ζn from x to
∂Zn with �(ζn) < C(λ). Define hn by

Yn(n)
f−mn−−−−→ Zn

f−k(n)

−−−−→ C,

where the branch of f−k(n) is chosen so that its extension to Zn ∪ ζn sends
fk(n)(x) to x. Let τn be the image of ζn by this branch of f−k(n). In this case,
we set j(n) = n.

Let Tn = hn(Ỹn(j(n))). There exists some c ∈ CR such that for infinitely
many n, C(ρn, j(n)) = {c}. So just as the definition of sr1(f, CR, λ), by replac-
ing c0 by c and so on, and passing to a further subsequence, we may assume
j(n) = n.

To complete the proof, we need the following lemma.

Lemma 7.11. As n→ ∞,

diam(Tn) → 0,
d(x, Tn) ≤ C(λ) diam(Tn).

in the hyperbolic metric on C \ P (f).

Proof. In Cases I and II, fk(n) maps Tn univalently to Wn and sends
x ∈ Tn into Wn. Moreover, since �(∂Wn) < λ and Wn ⊂ C \ P (f), diam(Wn)
is bounded independent of n.

Therefore, the fact ‖(fk(n))′(x)‖ → ∞ and Lemma 2.7 implies

min
y∈∂Tn

‖(fk(n))′(y)‖ → ∞.

Hence �(∂Tn) tends to zero and so does diam(Tn). Since x ∈ Tn, the second
inequality is trivial.

In Case III, fk(n) sends Tn ∪ τn univalently to Zn ∪ ζn. First, we claim
that

1
C(λ)

≤ ‖(fk(n))′(y)‖
‖(fk(n))′(x)‖ ≤ C(λ)

for any y in Tn ∪ τn.
Let r(y) be the injectivity radius of y in C \ P (f). If z ∈ γn, then r(z)

is bounded below in terms of λ by the collar theorem. Since d(fk(n)(x), γn)
is bounded above and the logarithm of the injectivity radius is Lipschitz by
Lemma 2.3 r(fk(n)(x)) is bounded below in terms of λ. Since there exists an
arc η joining y to x such that

�(fk(n)(η)) ≤ �(ζn) + diam(Zn) < C(λ),
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the claim follows from Lemma 2.7.
Therefore, we have

d(x, y) ≤ C(λ)
‖(fk(n))′(x)‖

for any y ∈ Tn. Since ‖(fk(n))′(x)‖ tends to infinity, d(x, y) tends to zero. Thus
diam(Tn) → 0.

By Lemma 7.10, area(Zn) > 1/C(λ). So

1
C(λ)

< area(Zn) =
∫

Tn

‖(fk(n))′(y)‖2ρ(y)2|dy|2

≤ C(λ) area(Tn)‖(fk(n))′(x)‖2,

where ρ(y)|dy| is the hyperbolic metric on C\P (f). Since diam(Tn) is bounded,
area(Tn) ≤ C(λ) diam(Tn)2. Therefore,

1
‖(fk(n))′(x)‖ ≤ C(λ) diam(Tn),

and for y ∈ Tn,

d(x, Tn) ≤ d(x, y) ≤ C(λ)
‖(fk(n))′(x)‖

≤ C(λ) diam(Tn).

Now we will complete the proof of Theorem 7.1.
By passing to a further subsequence, we may also assume that Lemma 7.6

holds. Namely, An ◦ fn ◦A−1
n : (An(Xn), 0) → (An(Yn), An(fn(c0))) converges

to a proper map g : (X, 0) → (Y, g(0)) in the Carathéodory topology, 0 ∈ X∩Y
and g′(0) = 0, where An(z) = (z − c0)/ diam(Bn).

Let kn = hn ◦A−1
n : An(Yn) → Tn. Then

1 ≤ diamE(An(Yn)) ≤ C(λ)

by Lemma 7.2. Since ∂Yn = γn is a simple closed geodesic of length less than
λ in C \ P (f), kn can be extended univalently to an annulus about An(Yn)
of modulus bounded below in terms of λ. Therefore, by the Koebe distortion
theorem,

1
C(λ)

|k′n(0)| ≤ diamE(Tn) ≤ C(λ)|k′n(0)|.

Since the Euclidean and hyperbolic metrics are comparable near x and diam(Tn)
tends to 0 in the hyperbolic metric, |k′n(0)| also tends to zero.
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Similarly,

|x− kn(0)|
|k′n(0)| ≤ C(λ)

d(x, Tn) + diam(Tn)
diam(Tn)

≤ C(λ)

by Lemma 7.11. Therefore, by Lemma 5.7, there exists a further subsequence
such that µn converges to a univalent line field µ on Y . But 0 ∈ X ∩ Y is a
critical point of g : (X, 0) → (Y, g(0)) and g cannot carry any univalent line
fields. So this is a contradiction.

Thus f admits no invariant line field on its Julia set.

Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan

References

[Bu] P. Buser, Geometry and Spectra of Compact Riemann Surfaces,
Birkhauser Boston, 1992.

[DH] A. Douady and J. Hubbard, On the dynamics of polynomial-like map-
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