Estimates of invariant metrics on pseudoconvex domains with comparable Levi form

By

Sanghyun Cho[∗]

Abstract

Let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^n and let $z_0 \in b\Omega$ be a point of finite type. We also assume that the Levi form of $b\Omega$ is comparable in a neighborhood of z_0 . Then we get a quantity which bounds from above and below the Bergman metric, Caratheodory metric and Kobayashi metric in a small constant and large constant sense.

1. Introduction

The purpose of this paper is to estimate from above and below the values of the Bergman, Caratheodory and Kobayashi metrics for a vector X in a neighborhood of a boundary point $z⁰$ of finite type with comparable Levi-form. In the rest of this paper, we let Ω be a smoothly bounded pseudoconvex domain in \mathbb{C}^n with smooth defining function r, i.e., $\Omega = \{z \in \mathbb{C}^n : r(z) < 0\}$, and let $\lambda_1(z),\ldots,\lambda_{n-1}(z)$ be the eigenvalues of the Levi-form $\partial\overline{\partial} r$ of $b\Omega$ near a point $z^0 \in b\Omega$.

We say Ω has comparable Levi-form near z^0 if there are a constant $c > 0$ and a neighborhood U of z^0 such that

(1.1)
$$
\lambda_k(z) \ge c \cdot \sum_{i=1}^{n-1} \lambda_i(z), \quad k = 1, 2, ..., n-1, \quad z \in U.
$$

For example, let $r(z) = 2 \operatorname{Re} z_3 + (|z_1|^2 + |z_2|^2)^2$ be a defining function for a domain Ω in \mathbb{C}^3 near the origin. Then the Levi-form of $b\Omega$ satisfies (1.1) near the origin.

We first give the definition of each of the above metrics. Let X be a holomorphic tangent vector at a point z in Ω . Denote the set of holomorphic functions on Ω by $A(\Omega)$. Then the Bergman metric $B_{\Omega}(z;X)$, the Caratheodory

¹⁹⁹¹ *Mathematics Subject Classification(s)*. 32H15

Key words and phrases: Invariant metrics, Bergman kernel function, finite 1-type

[∗]Partially supported by Korea Research Foundation D00055, 1998, and by R01-1999-0001 from KOSEF.

metric $C_{\Omega}(z; X)$ and the Kobayashi metric $K_{\Omega}(z; X)$ are defined by

$$
C_{\Omega}(z;X) = \sup\{|Xf(z)| : f \in A(\Omega), \|f\|_{L^{\infty}(\Omega)} \le 1\},
$$

\n
$$
K_{\Omega}(z;X) = \inf\left\{1/r : \exists f : D_r \subset \mathbb{C}^1 \to \mathbb{C}^n \text{ such that } f_*\left(\frac{\partial}{\partial t}|_0\right) = X\right\},
$$

\n
$$
B_{\Omega}(z:X) = b_{\Omega}(z;X)/(K_{\Omega}(z,\overline{z}))^{1/2},
$$

where D_r denotes the disc of radius r in \mathbb{C}^1 , and

$$
K_{\Omega}(z,\overline{z}) = \sup\{|f(z)|^2 : f \in A(\Omega), \|f\|_{L^2(\Omega)} \le 1\},
$$

$$
b_{\Omega}(z;X) = \sup\{|Xf(z)| : f \in A(\Omega), f(z) = 0, \|f\|_{L^2(\Omega)} \le 1\}.
$$

Let $z^0 \in b\Omega$ be a point of finite type m in the sense of D'Angelo [8]. Assuming that $|\partial r/\partial z_n(z)| \geq c_1 > 0$ in a neighborhood U of z_0 , set

$$
L_j = \frac{\partial}{\partial z_j} - \left(\frac{\partial r}{\partial z_n}\right)^{-1} \frac{\partial r}{\partial z_j} \frac{\partial}{\partial z_n}, \quad j = 1, 2, \dots, n-1, \text{ and}
$$

$$
L_n = \frac{\partial}{\partial z_n}.
$$

Then $\{L_1,\ldots,L_n\}$ form a basis of $\mathbb{C}T^{(1,0)}(U)$ provided U is sufficiently small. For any integer $j, k > 0$, set

(1.2)
$$
\mathcal{L}_{j,k} \partial \overline{\partial} r(z) = \underbrace{L_1 \cdots L_1}_{(j-1) \text{times}} \underbrace{\overline{L}_1 \cdots \overline{L}_1}_{(k-1) \text{times}} \partial \overline{\partial} r(z) (L_1, \overline{L}_1)(z),
$$

and define

(1.3)
$$
C_l(z) = \max\{|\mathcal{L}_{j,k}\partial \overline{\partial} r(z)| : j+k=l\}.
$$

Let $X = b_1 L_1 + \cdots + b_n L_n := X' + b_n L_n$ be a holomorphic tangent vector at z and set

(1.4)
$$
M(z;X) = |X'| \sum_{l=2}^{m} |C_l(z)|^{1/l} |r(z)|^{-1/l} + |b_n||r(z)|^{-1},
$$

where $|X'| = |b_1| + \cdots + |b_{n-1}|$. Then we can state our main result as follows

Theorem 1.1. *Let* Ω *be a smoothly bounded pseudoconvex domain in* \mathbb{C}^n . Let $z_0 \in b\Omega$ be a point of finite type m and assume that the Levi-form of $bΩ$ *is comparable in a neighborhood of* $z₀$ *. Then there exist a neighborhood* U *about* z_0 *and positive constants* c *and* C *such that for all* $X = b_1L_1 + \cdots + b_nL_n$ $at z \in U \cap \Omega$,

$$
(1.5) \qquad cM(z;X) \leq B_{\Omega}(z;X), \quad C_{\Omega}(z;X), \quad K_{\Omega}(z;X) \leq CM(z;X).
$$

Remark 1.2. Because $|C_m(z)| \ge c' > 0$ for all $z \in U \cap \Omega$, (1.5) says, in particular, that

$$
B_\Omega(z;X), C_\Omega(z;X), K_\Omega(z;X) \gtrsim (|X'||r(z)|^{-1/m} + |b_n||r(z)|^{-1})
$$

for a holomorphic vector field $X = b_1L_1 + \cdots + b_nL_n$ at z.

Several authors found some results about these metrics for some pseudoconvex domains in \mathbb{C}^n , but in each case the lower bounds are different from the upper bounds $[1]$, $[5]$, $[9]$, $[10]$, $[13]$, $[14]$. In $[2]$, Catlin got a result similar to above theorem in \mathbb{C}^2 , and Herbort [12] and the author [6] got the similar result independently for the domains of finite type with one degenerate eigenvalue.

To prove Theorem 1.1, we must get a complete geometric analysis of $b\Omega$ near z_0 as Catlin has employed in [2]. Then we construct a family of "maximal" plurisubharmonic functions" which is a crucial ingredient to get a weighted estimates for $\overline{\partial}$ Neumann problem (Section 3).

2. Special coordinates and polydiscs

In this section we want to show that about each point z' in U, there is a special coordinates about z' and a polydisc of maximal size on which the function $r(z)$ changes by no more than some prescribed small number $\delta > 0$. We then construct a family of plurisubharmonic functions with maximal Hessian to push out the boundary of Ω .

Let α , β be multi-indices and let $\alpha' = (\alpha_1, \ldots, \alpha_{n-1}, 0), \alpha'' = (0, \alpha_2, \ldots, \alpha_n)$ α_{n-1} , 0), etc. Also let ∂^{α} denote the holomorphic differential operator of order | α |. We first construct special coordinates centered at $z' \in U$.

Proposition 2.1 ([7, Proposition 2.1]). For each $z' \in U$ and positive integer m, there is a biholomorphism $\Phi_{z'} : \mathbb{C}^n \longrightarrow \mathbb{C}^n$, $\Phi_{z'}^{-1}(z') = 0$, such that

$$
(2.1) \quad \rho(\zeta) := r(\Phi_{z'}(\zeta)) = r(z') + \text{Re}\,\zeta_n + \sum_{\substack{j+k \le m \\ j,k \ge 1}} a_{jk}(z')\zeta_1^j\overline{\zeta}_1^k + \sum_{\substack{|\alpha' + \beta'| \le m \\ |\alpha'|, |\beta'| \ge 1 \\ 1 \le |\alpha'' + \beta''| \le m}} b_{\alpha'\beta'}(z')\zeta^{\alpha'}\overline{\zeta}^{\beta'} + \mathcal{O}(|\tilde{\zeta}|^{m+1} + |\zeta||\zeta_n|),
$$

where $\tilde{\zeta} = (\zeta_1, \ldots, \zeta_{n-1}, 0).$

We now show how to define a polydisc around z' in ζ -coordinates. Set

$$
A_l(z') = \max\{|a_{jk}(z')| : j + k = l\},
$$

\n
$$
B_{l'}(z') = \max\{|b_{\alpha'\beta'}(z')| : |\alpha' + \beta'| = l'\}, \qquad 2 \le l, l' \le m.
$$

For each $\delta > 0$, we define $\tau(z', \delta)$ by:

τ (z-, δ) = min{(δ/Al(z-)) 1 *^l* , (δ/Bl- (z-)) ¹ *l*- : 2 ≤ l,l-(2.2) ≤ m}.

Then the author showed that there are some constant $b_0 > 0$ and integers $j_0, k_0 \leq m$ such that $|a_{j_0 k_0}| \geq b_0 \cdot \delta \cdot \tau(z', \delta)^{-j_0 - k_0}$ and hence

(2.3)
$$
\tau(z',\delta)^{-1} \approx \sum_{l=2}^{m} (\delta/A_l(z'))^{-\frac{1}{l}}.
$$

Define

$$
R_{\delta}(z') = \{ \zeta \in \mathbb{C}^n : |\zeta_k| \le \tau(z', \delta), 1 \le k \le n - 1, |\zeta_n| \le \delta \},
$$
 and

$$
Q_{\delta}(z') = \{ \Phi_{z'}(\zeta) : \zeta \in R_{\delta}(z') \}.
$$

In order to study how $\tau(z',\delta)$ depends on $z \in Q_{\delta}(z')$, it is convenient to introduce an analogous quantity $\eta(z, \delta)$ that is defined more intrinsically. We take the frame $\{L_1,\ldots,L_n\}$ defined on U, and let $\mathcal{L}_{i,k}\partial\overline{\partial}r(z)$ and $C_l(z)$ be defined as in (1.2) and (1.3) respectively. Define

(2.4)
$$
\eta(z,\delta) = \min\{(\delta/C_l(z))^{\frac{1}{l}}; 2 \le l \le m\}.
$$

Then we have the following important relations between $\eta(z,\delta)$ and $\tau(z,\delta)$ ([7, Section 2]).

Proposition 2.2.)*. Then*

(2.5)
$$
\tau(z',\delta) \lesssim \eta(z,\delta) \lesssim \tau(z',\delta),
$$

$$
\tau(z',\delta) \approx \tau(z,\delta).
$$

For $\epsilon > 0$, we let $\Omega_{\epsilon} = \{z; r(z) < \epsilon\}$ and set

$$
S(\epsilon) = \{ z : -\epsilon < r(z) < \epsilon \}.
$$

The following theorem reflects the local geometry of the boundary of Ω near z^0 , and shows the existence of one parameter family of plurisubharmonic functions with maximal Hessian.

Theorem 2.3 ([7, Theorem 3.2]). For all small $\delta > 0$, there is a pluri*subharmonic function* $\lambda_{\delta} \in C^{\infty}(\Omega_{\delta})$ *with the following properties,*

- (i) $|\lambda_{\delta}(z)| \leq 1, z \in U \cap \Omega_{\delta},$
- (ii) For all $\overline{L} = \sum_{j=1}^n b_j L_j$ at $z \in U \cap S(\delta)$,

$$
\partial \overline{\partial} \lambda_{\delta}(z)(L, \overline{L}) \approx \tau(z, \delta)^{-2} \sum_{k=1}^{n-1} |b_k|^2 + \delta^{-2} |b_n|^2,
$$

(iii) If $\Phi_{z'}$ is the map associated with a given $z' \in U \cap S(\delta)$, then for all $\zeta \in R_{\delta}(z')$ with $|\rho(\zeta)| < \delta$,

$$
|\partial^{\alpha}\overline{\partial}^{\beta}(\lambda_{\delta}\circ\Phi_{z'})(\zeta)|\lesssim C_{\alpha,\beta}\delta^{-\alpha_{n}-\beta_{n}}\tau^{-|\alpha'+\beta'|}.
$$

With this family of functions λ_{δ} , we shall construct for each $z' \in U \cap b\Omega$ and each small $\delta > 0$, a domain (locally defined in U) $\Omega_{z',\delta}$ which contains Ω such that the boundary of $\Omega_{z',\delta}$ is pushed out as far as possible, given the constraints that $d(z', \delta\Omega_{z',\delta}) < \delta$ and that $\delta\Omega_{z',\delta}$ is pseudoconvex. Since z' will be fixed, we will work in ζ -coordinates defined by $\Phi_{z'}(\zeta) = z$.

Let $A_l(z')$ be the quantities defined after Proposition 2.1. Set $\rho(\zeta)$ = $r(\Phi_{z'}(\zeta))$ and set $U' = \{\zeta : \Phi_{z'}(\zeta) \in U\}$. For all small s and $\delta > 0$, define

(2.6)
$$
J_{\delta}(z',\zeta) = \left[\delta^2 + |\zeta_n|^2 + \sum_{l=2}^m A_l(z')^2 |\tilde{\zeta}|^{2l}\right]^{1/2},
$$

where $\tilde{\zeta} = (\zeta_1, \ldots, \zeta_{n-1}, 0)$, and set

(2.7)
$$
W_{s,\delta}(z') = \{\zeta \in U': |\rho(\zeta)| < sJ_{\delta}(\zeta)\}.
$$

Set $J_{\delta}(z',\zeta) = J_{\delta}(\zeta)$ for a convenience. By adding up the weight functions in Theorem 2.3, we have the following theorem.

Proposition 2.4. For each $z' \in U \cap b\Omega$ and each small $\delta > 0$, there exists a small real-valued function $H_{z',\delta}(\zeta)$ defined in $W_{s,\delta}(z')$ (where s is a $small constant independent of z' and δ such that$

(i)
$$
-J_{\delta}(\zeta) \approx H_{z',\delta}(\zeta)
$$
,
(ii) for any $L = b_1 L'_1 + b_2 L'_2 + \cdots + b_n L'_n$ at ζ ,

$$
\partial \overline{\partial} H_{z',\delta}(L,\overline{L})(\zeta) \approx J_{\delta}(\zeta) \left[\frac{|b_n|^2}{(J_{\delta}(\zeta))^2} + \frac{|b'|^2}{\tau(z',J_{\delta}(\zeta))^2} \right], \text{ and}
$$

$$
|L H_{z',\delta}| \lesssim J_{\delta}(\zeta) \left(\frac{|b_n|}{J_{\delta}(\zeta)} + \frac{|b'|}{\tau(z',J_{\delta}(\zeta))} \right),
$$

 $where |b'| = |b_1| + \cdots + |b_{n-1}|, and L'_k = (\Phi_{z'}^{-1})L_k, k = 1, 2, \ldots, n.$

Proof. Set $N_1 = [\log_2(1/\delta)]$. Let $D_R = \{\zeta \in \mathbb{C}^n : |\zeta_i| < R, \quad i =$ $1, 2, \ldots, n$, and let $\psi \in C_0^{\infty}(D_2 - D_{1/4})$ be a function that satisfies $\psi(\zeta) = 1$ for $\zeta \in D_1 - D_{1/2}$. For all $k, 1 \leq k$

$$
\psi_k(\zeta) = \psi\left(\tau(z', 2^{-k})^{-1}\zeta_1, \ldots, \tau(z', 2^{-k})^{-1}\zeta_{n-1}, 2^k\zeta_n\right),
$$

and for $k = N_1$, set

$$
\psi_{N_1}(\zeta) = \phi\left(\tau(z', 2^{-N_1})^{-1}\zeta_1, \ldots, \tau(z', 2^{-N_1})^{-1}\zeta_{n-1}, 2^{N_1}\zeta_n\right),
$$

where $\phi \in C_0^{\infty}(D_2)$ satisfies $\phi(\zeta) = 1$ for $\zeta \in D_1$. Combining (2.2) and (2.6), one obtains that

(2.8)
$$
J_{\delta}(\zeta) \approx 2^{-k}, \quad \zeta \in \mathrm{supp} \, \psi_k.
$$

³⁴² *Sanghyun Cho*

For each $\delta > 0$, set $\lambda'_{\delta} = \lambda_{\delta} \circ \Phi_{z'}$, where λ_{δ} is the plurisubharmonic function as in Theorem 2.3. Choose N_0 so that $\lambda_{2^{-k}t}$ is well-defined for all $\zeta \in \text{supp } \psi_k$ whenever $k \geq N_0$, and set

$$
H_{z',\delta}(\zeta) = \sum_{k=N_0}^{N_1} 2^{-k} \psi_k(\zeta) \left(\lambda'_{2^{-k}t}(\zeta) - 2\right).
$$

Then $H_{z',\delta}$ is well-defined (fixed finite sum independent of z' and δ). From (2.7), (2.8) and from the fact that $H_{z',\delta}(\zeta) \approx -2^{-k}$ for $\zeta \in \text{supp } \psi_k$, property (i) follows. Also the major part of the Hessian of $H_{z',\delta}$ will be $\partial \partial \lambda_{2^{-k}t}(\zeta)$ and other error terms will be absorbed into $\partial \overline{\partial} \lambda_{2-k}(\zeta)$ for sufficiently small t. This fact together Theorem 2.3 prove property (ii).

Set $\Omega_{z'} = \Phi_{z'}^{-1}(\Omega)$ and set $\Omega_{z',\epsilon} = \{\zeta \in \mathbb{C}^n : \rho(\zeta) < \epsilon\}.$ Set $\lambda'_{\delta} = \lambda_{\delta} \circ \Phi_{z'}$. Then there is a fixed constant $b > 0$ (independent of z', δ) such that λ'_{δ} is defined and plurisubharmonic on $\Omega_{z',b\delta}$ and satisfies all the properties of Theorem 2.3 on $\Omega_{z'}$ instead of Ω .

Proposition 2.5. For each sufficiently small $\delta > 0$, there is one param*eter family of "maximal pushed-out" pseudoconvex domains* $\{\Omega_{z',\delta}^{\epsilon}\}_{{\epsilon}>0}$ *which contain* $\Omega_{z'}$ *near the origin.*

Proof. Let U'_1 be a small neighborhood of the origin with $U'_1 \subset\subset U'$ $\Phi_{z'}^{-1}(U)$. Then one has $|dH_{z',\delta}(\zeta)| \lesssim 1$ for $\zeta \in W_{s,\delta}(z')$ by the property (ii) of Proposition 2.4. Hence for all small $\epsilon > 0$, the function

$$
\rho_{z',\delta}^{\epsilon}(\zeta) = \rho(\zeta) + \epsilon H_{z',\delta}(\zeta)
$$

satisfies $\partial \rho_{z',\delta}^{\epsilon}/\partial \zeta_n \neq 0$ in U'_1 and therefore form a family of defining functions of hypersurfaces $\{\zeta : \rho_{z',\delta}^{\epsilon}(\zeta)=0\}$ in $W_{s,\delta}(z')$. If we use the properties (i), (ii) of Proposition 2.4, it follows that the hypersurfaces defined by $\rho_{z',\delta}^{\epsilon}(\zeta)$ are pseudoconvex. \Box

Now we choose $\epsilon_0 > 0$ (independent of z' and δ) so that

$$
\sup\{\rho(\zeta): \zeta \in R_{\delta}(z') \text{ and } \rho_{z',\delta}^{\epsilon_0}(\zeta) \le 0\} < b\delta,
$$

where b is the small number before Proposition 2.5. Set $\rho_{z',\delta}(\zeta) = \rho_{z',\delta}^{\epsilon_0}(\zeta)$.

For ζ' near 0, define a polydisc $P_a(\zeta')$ by

$$
(2.9) \quad P_a(\zeta') = \{ \zeta \in \mathbb{C}^n : |\zeta_n - \zeta_n'| < aJ_\delta(\zeta'), \\ |\zeta_k - \zeta_k'| < \tau(z', aJ_\delta(\zeta')), \ 1 \le k \le n - 1 \}.
$$

Proposition 2.6. *There exist constants* $a > 0$ *and* $d_1 > 0$ (*independent of* z', ζ' *and* δ *) so that* if $\zeta' \in \Omega_{z'}$ *and* $|\zeta'| < d_1$ *, then* $\rho_{z',\delta}(\zeta) < 0$ for $\zeta \in P_a(\zeta').$

Proof. We may assume that $\zeta' \in b\Omega_{z'}$ (this will be the worst case). If a is sufficiently small (independent of z' and δ), then by virtue of (2.3) – (2.7) , it follows that

(2.10)
$$
J_{\delta}(\zeta) \approx J_{\delta}(\zeta'), \quad \zeta \in P_a(\zeta').
$$

By (2.10) and from the property (i) of Proposition 2.4, it follows that there exists a small constant $c > 0$, such that

(2.11)
$$
H_{z',\delta}(\zeta) \leq -cJ_{\delta}(\zeta'), \quad \zeta \in P_a(\zeta').
$$

By a simple Taylor's theorem argument, we then obtain that

(2.12)
$$
|\rho(\zeta)| \leq C a J_{\delta}(\zeta'), \quad \zeta \in P_a(\zeta').
$$

Since $\rho_{z',\delta}(\zeta) = \rho(\zeta) + \epsilon_0 H_{z',\delta}(\zeta)$, it follows from (2.11) and (2.12) that, $\rho_{z',\delta}(\zeta) < 0$ provided a is chosen so that $a < c\epsilon_0/C$. This completes the proof. \Box

The existence of the following two-sided bumping family of pseudoconvex domains was shown by the author in [3], [4].

Theorem 2.7. *Let* Ω *be a smoothly bounded pseudoconvex domain and let* $z_0 \in b\Omega$ *be a point of finite type. Then there is a neighborhood* V *of* z_0 *and a family of smoothly bounded pseudoconvex domains* $\{\Omega_t\}_{-1 \leq t \leq 1}$ *satisfying the following propoerties*;

(i) $\Omega_0 = \Omega$,

(ii) $\Omega_{t_1} \subset \Omega_{t_2}$ *if* $t_1 < t_2$,

(iii) $\{\partial \Omega_t\}_{-1 \leq t \leq 1}$ *is a* C^{∞} -family of real hypersurfaces in \mathbb{C}^n and the points $of \partial \Omega_t ∩ V$ *are finite type,*

(iv) $D_t - D_{-t} \subset V$ *for all t.*

Remark 2.8. By virtue of the construction of $\Phi_{z'}$ and $\rho_{z',\delta}(\zeta)$, we can choose $d_1 > 0$ and a neighborhood $U \subset\subset V$ of z_0 (independent of z') so that $\rho_{z',\delta}$ is defined in $\{\zeta: |\zeta| < d_1\}$ and satisfies all the properties in this section for each $z' \in b\Omega \cap U$.

Set $\Omega_{t,z'} = \{\zeta \in \mathbb{C}^n : \Phi_{z'}(\zeta) \in \Omega_t\}$, where $\{\Omega_t\}$ is the family of domains as in Theorem 2.7. Set

$$
\Omega_{z',\delta} = \{ \zeta : |\zeta| < d_1 \text{ and } \rho_{z',\delta}(\zeta) < 0 \}.
$$

The construction of $\rho_{z',\delta}$ in this section shows that if $\zeta \in \Omega_{z'}$ and if $d_1/2$ $|\zeta| < d_1$, then $d(\zeta, b\Omega_{z',\delta}) \gtrsim J_\delta(\zeta, z')$. Since $A_m(z') + B_m(z') \gtrsim 1$ for all $z' \in U$, it follows from (2.3) and (2.4) that $J_{\delta}(\zeta, z') \gtrsim 1$, and hence there is a constant $c_1 > 0$ so that $d(\zeta, b\Omega_{z',\delta}) \ge c_1$, for $\zeta \in U \cap b\Omega$ and $d_1/2 < |\zeta| < d_1$. Choose $t = t_0$ sufficiently small so that

$$
d(\zeta, b\Omega_{t_0,z'}) < c_1/2
$$
 if $d_1/2 < |\zeta| < d_1$.

³⁴⁴ *Sanghyun Cho*

Now define a domain $\tilde{\Omega}_{z',\delta}$ by

$$
\tilde{\Omega}_{z',\delta} = \{ \zeta \in \Omega_{t_0,z'} : |\zeta| \ge d_1 \} \cup \{ \Omega_{t_0,z'} \cap \Omega_{z',\delta} \}.
$$

Since pseudoconvexity is a local condition, $\tilde{\Omega}_{z',\delta}$ is a pseudoconvex domain. By combining the properties of $\Omega_{z',\delta}$ and $\Omega_{t_0,z'}$, we obtain

Proposition 2.9. *For all* z' *near* z_0 *and all* δ , $0 < \delta < \delta_0$ *, the domain* $\tilde{\Omega}_{z',\delta}$ has the following properties;

(i) $\tilde{\Omega}_{z',\delta}$ *is a bounded pseudoconvex domain that contains* $\Omega_{z'}$,

(ii) *there is a constant* $a > 0$ *so that for all* $\zeta' \in \Omega_{z'}$ with $|\zeta'| < d_1$, $P_a(\zeta') \subset \tilde{\Omega}_{z',\delta},$

(iii) *in the region* $|\zeta| > d_1/2$, *the boundaries* $b\tilde{\Omega}_{z',\delta}$ *are independent of* δ and depend smoothly on z' ,

(iv) *in the region* $\{\zeta : d_1/2 < |\zeta| < d_1\}$, the boundaries $b\tilde{\Omega}_{z',\delta}$ are of finite $type,$ uniformly in z' , and δ .

3. Metric estimates

In [11], K. T. Hahn got the following inequalities

$$
C_{\Omega}(z;X) \leq B_{\Omega}(z;X), K_{\Omega}(z;X).
$$

Therefore the estimates for the lower bounds of $C_{\Omega}(z;X)$ will suffice for the lower bounds of $B_{\Omega}(z;X)$ and $K_{\Omega}(z;X)$.

Assume that $r(z) = -b\delta/2$ and let z' be the projection of z onto $b\Omega$, and $\Phi_{z'}$ be its associated map. Here $b > 0$ is the number before Proposition 2.5. Set $\zeta^{\delta} = (0, \ldots, 0, -b\delta/2) = (\zeta_1^{\delta}, \zeta_2^{\delta}, \ldots, \zeta_n^{\delta}).$ Then by virtue of (2.2) , there is a small constant $c \leq b$ such that the polydisc

$$
B_c = \{ \zeta : |\zeta_n + b\delta/2| < c\delta, |\zeta_k| < c\tau(z', \delta), 1 \le k \le n - 1 \},
$$

is contained in $\Omega_{z'}$. Let $Y = (\Phi_{z'}^{-1})_* X = b_1 L'_1 + \cdots + b_n L'_n$ be a vector at ζ^{δ} , where $L'_i = (\Phi_{z'}^{-1})_* L_i$ for $i = 1, 2, \ldots, n$.

Set $\tau_n = \delta$ and $\tau_k = \tau(z', \delta), 1 \leq k \leq n-1$. Let k_0 be the minimum number such that

(3.1)
$$
|b_{k_0}|\tau_{k_0}^{-1} = \max\{|b_k|\tau_k^{-1} : k = 1, 2, \dots, n\}.
$$

Set $v(\zeta) = \delta^{-1}(\zeta_n + b\delta/2)$ if $k_0 = n$, and $v(\zeta) = \tau(z', \delta)^{-1}\zeta_{k_0}$ otherwise. Since we may assume that $c \leq 1$, we have the inequality $\sup_B |v| \leq 1$. From the expansion in (2.1), one can see that $(\partial \rho/\partial \zeta_i)(\zeta^{\delta})=0, j=2,\ldots,n$, and hence from (3.1), it follows that

(3.2)
$$
|Yv(\zeta^{\delta})| = \max\{|b_k|\tau_k^{-1} : k = 1, 2, ..., n\},\
$$

provided that δ is sufficiently small.

Set $\phi(\zeta) = \lambda_{\delta}'(\zeta) + |\zeta|^2$ and set $\lambda(\zeta) = \chi(\phi(\zeta))$, where $\chi(t)$ is a smooth convex increasing function with $\chi'(t) \geq 1$. Using the standard ∂-estimates on $\tilde{\Omega}_{z',\delta}$ with weight $e^{-\lambda(\zeta)}$, and from the estimate $\sum_{i,j=1}^n(\partial^2\phi/\partial\zeta_i\partial\overline{\zeta}_j)(\zeta)t_i\overline{t}_j \gtrsim$ $\sum_{j=1}^n |t_i|^2 \tau_i^{-2}$ for $\zeta \in B$, one has for any $g = \sum_{i=1}^n g_i d\overline{\zeta}_i$ satisfying $Sg = 0$, there is $u \in L^2_{0,0}(\tilde{\Omega}_{z',\delta}, \lambda)$ such that $\overline{\partial} u = g$ (in weak sense) and,

(3.3)
$$
||u||_{\lambda}^{2} \lesssim \int_{\tilde{\Omega}_{z',\delta} - B} |g|^{2} e^{-\lambda} + \int_{B} \sum_{i=1}^{n} \tau_{i}^{2} |g_{i}|^{2} e^{-\lambda} dV.
$$

For $c \geq d > 0$, set $B_d = \{ \zeta : |\zeta_i - \zeta_i^{\delta}| < d\tau_i$ For $c \geq d > 0$, set $B_d = \{ \zeta : |\zeta_i - \zeta_i^0| < d\tau_i, i = 1, 2, \ldots, n \}$. Since $\sum_{i,j=1}^n (\partial^2 \phi/\partial \zeta_i \partial \overline{\zeta}_j) t_i \overline{t}_j \gtrsim \sum_{i=1}^n \tau_i^{-2} |t_i|^2$ on B_c , there is a small constant $0 <$ $\sum_{i,j=1}^n\left(\frac{\partial^2\phi}{\partial \zeta_i\partial \overline{\zeta}_j}\right)t_i\overline{t}_j \gtrsim \sum_{i=1}^n\tau_i^{-2}\left|t_i\right|^2$ on B_c , there is a small constant $0 <$ $d \leq c$ (independent of τ_1, \ldots, τ_n) so that

$$
\phi(\zeta) \ge \text{Re}\, h(\zeta) + d \sum_{i=1}^n \tau_i^{-2} |\zeta_i - \zeta_i^{\delta}|^2, \qquad \zeta \in B_d,
$$

where

$$
h(\zeta) = 2\sum_{i=1}^n \frac{\partial \phi}{\partial \zeta_i} (\zeta^{\delta})(\zeta_i - \zeta_i^{\delta}) + \sum_{i,j=1}^n \frac{\partial^2 \phi}{\partial \zeta_i \partial \zeta_j} (\zeta^{\delta})(\zeta_i - \zeta_i^{\delta})(\zeta_j - \zeta_j^{\delta}).
$$

Let $\psi \in C_0^{\infty}(B)$, where B is the unit polydisc in \mathbb{C}^n such that $\psi(\zeta) = 1$ if $|\zeta_i| \leq 1/2, i = 1, 2, ..., n$. From (3.3), we conclude that if

$$
\psi_d(\zeta) = \psi\left(\frac{\zeta_1}{d\tau(z',\delta)},\cdots,\frac{\zeta_{n-1}}{d\tau_{n-1}},\frac{\zeta_n + b\delta/2}{d\delta}\right),\,
$$

and if $a = nd^3/8$, then

$$
\operatorname{Re} h(\zeta) \le -a, \quad \text{for } \zeta \in \{\zeta : \phi(\zeta) \le a\} \cap \operatorname{supp} \overline{\partial} \psi_d.
$$

Let χ be a smooth convex increasing function that satisfies $\chi(t) = 0$ for $t \leq a/2$ and $\chi''(t) > 0$ for $t > a/2$. Now define

$$
\lambda_s(\zeta) = \phi(\zeta) + s^2 \chi(\phi(\zeta)).
$$

Then λ_s does not depend on s in B_e , for some fixed $0 < e \leq d$. Set

$$
\alpha_s = \overline{\partial}(\psi_d v e^{sh}) = v e^{sh} \overline{\partial} \psi_d = \sum_{i=1}^n \alpha_{s,i} d\overline{\zeta}_i.
$$

Following the standard weighted L^2 estimates for $\overline{\partial}$ as in [2], [6], it follow that for any $\epsilon_0 > 0$, there exists independent $s_0 > 0$ and a function u_{s_0} so that $\overline{\partial} u_{s_0} = \alpha_{s_0}$ and

(3.4)
$$
|u_{s_0}(\zeta^{\delta})| \lesssim \epsilon_0, \quad \left|\frac{\partial u_{s_0}}{\partial \zeta_k}(\zeta^{\delta})\right|^2 \lesssim \epsilon_0 \tau_k^{-2}, \quad 1 \leq k \leq n.
$$

Therefore it follows from (3.1) and (3.4) that

$$
|Yu_{s_0}(\zeta^{\delta})| \lesssim \sqrt{\epsilon_0} \sum_{k=1}^n |b_k|\tau_k^{-1} \le n\sqrt{\epsilon_0} \max \{|b_k|\tau_k^{-1} : k=1,2,\ldots,n\}.
$$

Set $f = v\psi_d e^{s_0 h} - u_{s_0}$. Then f is holomorphic and it follows from (3.2) that

(3.5)
$$
|Yf(\zeta^{\delta})| \gtrsim \max \{|b_k|\tau_k^{-1} : k = 1, 2, ..., n\},\
$$

provided that ϵ_0 is sufficiently small.

Let us assume, for a moment, that $\sup_{\overline{\Omega}_z} |f| \leq C$, where C is independent of z' and δ . Then (3.5) and the definition of Caratheodory metric shows that

(3.6)
$$
C_{\Omega_{z'}}(Y;\zeta^{\delta}) \geq C_{\tilde{\Omega}_{z',\delta}}(Y;\zeta^{\delta}) \gtrsim \max \left\{ |b_k|\tau_k^{-1} : k=1,2,\ldots,n \right\}.
$$

On the other hand, the polydisc B about ζ^{δ} lies in $\Omega_{z'}$. So one can easily obtain that

$$
(3.7) \tC_{\Omega_{z'}}(\zeta^{\delta}; Y) \leq C_B(\zeta^{\delta}; Y) = \max\{|b_k|\tau_k^{-1} : k = 1, 2, \dots, n\}.
$$

Set $\Phi_{z'}(\zeta^{\delta}) = z$. Then by (1.3), (1.4) and (2.3)–(2.5), it follows that

$$
\tau(z,\delta)^{-1} \approx \eta(z,\delta)^{-1} \approx \sum_{l=2}^{m} |C_l(z)|^{\frac{1}{l}} \cdot |r(z)|^{-\frac{1}{l}},
$$

and hence one obtains that

(3.8)
$$
\max\{|b_k|\tau_k^{-1}:k=1,2,\ldots,n\}\approx \sum_{k=1}^n|b_k|\tau_k^{-1}\approx M(z;X).
$$

From the invariant property of Caratheodory metric, and from (3.6) – (3.8) , one obtains that

(3.9)
$$
C_{\Omega}(z;X) = C_{\Omega_{z'}}(\zeta^{\delta};Y) \approx M(z;X).
$$

To show that $\sup_{\overline{\Omega}_z} |f| \leq C$, we use the fact that f is holomorphic in a larger domain $\tilde{\Omega}_{z',\delta}$. Assuming $\zeta \in \overline{\Omega}_{z'}$ and $|\zeta| < d_1$, it follows from Proposition 2.6 that $P_a \subset \tilde{\Omega}_{z',\delta}$. Since $|v\psi_d e^{s_0 h}| \lesssim 1$, the estimate (3.3) shows that $\int_{P_a(\zeta)} |f|^2 dV \lesssim \prod_{j=1}^{\tilde{n}} \tau_j^2$. Hence it follows that

$$
|f(\zeta)|^2 \lesssim (Vol(P_a(\zeta))^{-1} \int_{P_a(\zeta)} |f|^2 dV \lesssim 1,
$$

because $Vol(P_a(\zeta)) \gtrsim \prod_{j=1}^n \tau_j^2$. When $|\zeta| \geq d_1$, we use the Kohn's global regularity theory and some cut-off functions as Catlin did in [2]. Therefore we obtain that $\sup_{\overline{\Omega}_{z'}} |f| \lesssim 1$ and hence (3.9) follows.

To obtain an upper bound for the Bergman metric, we note that $\Omega_{z'}$ contains the polydisc B_c about ζ^{δ} . Thus by elementary estimates one has, for any $f \in L^2(\Omega_{z'}) \cap A(\Omega_{z'})$, that

$$
\left|\frac{\partial f}{\partial \zeta_k}(\zeta^{\delta})\right| \lesssim \tau_k^{-1} \prod_{j=1}^n \tau_j^{-1} \|f\|_{L^2(\Omega_{z'})},
$$

for $k = 1, 2, \ldots, n$. From (2.1) and (2.2), it follows that the coefficient $b(\zeta)$ of $\partial/\partial \zeta_n$ in L'_1 satisfies $|b(\zeta^{\delta})| \leq \delta$ and $|(\partial \rho/\partial \zeta_j)(\zeta^{\delta})| \leq \tau(z',\delta)$, for $j =$ 1,..., $n-1$. Therefore, if $Y = \sum_{k=1}^{\infty} b_k L'_k$ is a vector at ζ^{δ} , then

(3.10)
$$
b_{\Omega_{z'}}(\zeta^{\delta}; Y) \lesssim \left(\sum_{k=1}^n |b_k| \tau_k^{-1}\right) \prod_{j=1}^n \tau_j^{-1}.
$$

In [7], the author showed that

(3.11)
$$
K_{\Omega_{z'}}(\zeta^{\delta}, \overline{\zeta}^{\delta}) \approx \prod_{j=1}^{n} \tau_j^{-2} \approx \sum_{l=2}^{m} C_l(z)^{\frac{2(n-1)}{l}} |r(z)|^{-2 - \frac{2(n-1)}{l}}.
$$

Combining (3.10), (3.11) and the definition of $B_{\Omega}(z;X)$, one obtains that

$$
B_{\Omega}(z;X) = B_{\Omega_{z'}}(\zeta^{\delta};Y) \lesssim \sum_{k=1}^{n} |b_k|\tau_k^{-1},
$$

and hence it follows that

(3.12)
$$
C_{\Omega}(z;X) \approx B_{\Omega}(z;Y) \approx M(z;X).
$$

Set

$$
R = \min\{d_2c\tau_k|b_k|^{-1} : k = 1, 2, \dots, n\}.
$$

Then

$$
f(t) = \left(b_1t, \ldots, b_{n-1}t, -\frac{b\delta}{2} + b_nt\right)
$$

defines a map $f: D_R \longrightarrow B$ with $f_*(\partial/\partial t|_0) = X$. Hence

$$
K_{\Omega_{z'}}(\zeta^{\delta}; Y) \le K_B(\zeta^{\delta}; Y) \le R^{-1} \le \max\{|b_k|(c\tau_k)^{-1} : 1 \le k \le n\}
$$

$$
\lesssim \max\{|b_k|\tau_k^{-1} : k = 1, 2, ..., n\}
$$

$$
\lesssim \sum_{k=1}^n |b_k|\tau_k^{-1} \lesssim C_{\Omega_{z'}}(\zeta^{\delta}; Y) = C_{\Omega}(z; X).
$$

Again from the invariant property of $K_{\Omega}(z;X)$ and (1.4), it follows that

(3.13)
$$
K_{\Omega}(z;X) = K_{\Omega_{z'}}(\zeta^{\delta};Y) \approx C_{\Omega}(z;X).
$$

If we combine (3.12) and (3.13) , it follows that

$$
C_{\Omega}(z;X) \approx B_{\Omega}(z;X) \approx K_{\Omega}(z;X) \approx M(z;X),
$$

and this proves our main theorem.

DEPARTMENT OF MATHEMATICS SOGANG UNIVERSITY SEQUL 121-742. KOREA e-mail: shcho@sogang.ac.kr fax : 82-2-714-6284

References

- [1] E. Bedford and J. E. Fornaess, Biholomorphic maps of weakly pseudoconvex domains, Duke Math. J., **45** (1978), 711–719.
- [2] D. W. Catlin, Estimates of invariant metrics on pseudoconex domains of dimension two, Math. Z., **200** (1989), 429–466.
- [3] S. Cho, On the extension of complex structures on weakly pseudoconvex, compact complex manifolds with boundary Dissertation, Purdue University, 1991.
- [4] S. Cho, Extension of complex structures on weakly pseudoconvex compact complex manifolds with boundary, Math. Z., **211** (1992), 105–120.
- [5] S. Cho, A lower bound on the Kobayashi metric near a point of finite type in \mathbb{C}^n , J. Geom. Anal., **2**-4 (1992), 317-325.
- [6] S. Cho, Estimates of invariant metrics on some pseudoconvex domains in \mathbb{C}^n , J. Korean Math. Soc., **32**-4 (1995), 661–678.
- [7] S. Cho, Boundary behavior of the Bergman kernel function on pseudoconvex domains with comparable Levi form, preprint.
- [8] J. D'Angelo, Real hypersurfaces, order of contact, and applications, Ann. of Math., **115** (1982), 615–637.
- [9] K. Diederich and J., Fornaess, Proper holomorphic maps onto pseudoconvex domains with real-analytic boundary, Ann. of Math., **110** (1979), 575–592.
- [10] K. Diederich, J. Fornaess and G. Herbort, Boundary behavior of the Bergman metric, Proc. Sympos. Pure Math., **41** (1982), 59–67.
- [11] K. T. Hahn, Inequalities between the Bergman metric and the Caratheodory differential metric, Proc. Amer. Math. Soc., **68** (1978), 193– 194.
- [12] G. Herbort, On the invariant differential metrics near pseudoconvex boundary points where the Levi form has corank one, Nagoya Math. J., **130** (1993), 25–54.
- [13] J. McNeal, Lower bounds on the Bergman metric near a point of finite type, Ann. of Math., **136** (1992), 339–360.

[14] R. M. Range, The Caratheodory metric and holomorphic maps on a class of weakly pseudoconvex domains, Paciffic J. Math., **78** (1978), 173–189.