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Estimates of invariant metrics on pseudoconvex
domains with comparable Levi form

By
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Abstract

Let Ω be a smoothly bounded pseudoconvex domain in C
n and let

z0 ∈ bΩ be a point of finite type. We also assume that the Levi form of
bΩ is comparable in a neighborhood of z0. Then we get a quantity which
bounds from above and below the Bergman metric, Caratheodory metric
and Kobayashi metric in a small constant and large constant sense.

1. Introduction

The purpose of this paper is to estimate from above and below the values
of the Bergman, Caratheodory and Kobayashi metrics for a vector X in a
neighborhood of a boundary point z0 of finite type with comparable Levi-form.
In the rest of this paper, we let Ω be a smoothly bounded pseudoconvex domain
in Cn with smooth defining function r, i.e., Ω = {z ∈ Cn : r(z) < 0}, and let
λ1(z), . . . , λn−1(z) be the eigenvalues of the Levi-form ∂∂r of bΩ near a point
z0 ∈ bΩ.

We say Ω has comparable Levi-form near z0 if there are a constant c > 0
and a neighborhood U of z0 such that

λk(z) ≥ c ·
n−1∑
i=1

λi(z), k = 1, 2, . . . , n− 1, z ∈ U.(1.1)

For example, let r(z) = 2 Re z3 + (|z1|2 + |z2|2)2 be a defining function for a
domain Ω in C3 near the origin. Then the Levi-form of bΩ satisfies (1.1) near
the origin.

We first give the definition of each of the above metrics. Let X be a
holomorphic tangent vector at a point z in Ω. Denote the set of holomorphic
functions on Ω by A(Ω). Then the Bergman metric BΩ(z;X), the Caratheodory
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338 Sanghyun Cho

metric CΩ(z;X) and the Kobayashi metric KΩ(z;X) are defined by

CΩ(z;X) = sup{|Xf(z)| : f ∈ A(Ω), ‖f‖L∞(Ω) ≤ 1},

KΩ(z;X) = inf
{

1/r : ∃ f : Dr ⊂ C
1 → C

n such that f∗

(
∂

∂t
|0
)

= X

}
,

BΩ(z : X) = bΩ(z;X)/(KΩ(z, z))1/2,

where Dr denotes the disc of radius r in C1, and

KΩ(z, z) = sup{|f(z)|2 : f ∈ A(Ω), ‖f‖L2(Ω) ≤ 1},
bΩ(z;X) = sup{|Xf(z)| : f ∈ A(Ω), f(z) = 0, ‖f‖L2(Ω) ≤ 1}.

Let z0 ∈ bΩ be a point of finite type m in the sense of D’Angelo [8].
Assuming that |∂r/∂zn(z)| ≥ c1 > 0 in a neighborhood U of z0, set

Lj =
∂

∂zj
−
(
∂r

∂zn

)−1
∂r

∂zj

∂

∂zn
, j = 1, 2, . . . , n− 1, and

Ln =
∂

∂zn
.

Then {L1, . . . , Ln} form a basis of CT (1,0)(U) provided U is sufficiently small.
For any integer j, k > 0, set

Lj,k∂∂r(z) = L1 · · ·L1︸ ︷︷ ︸
(j−1)times

L1 · · ·L1︸ ︷︷ ︸
(k−1)times

∂∂r(z)(L1, L1)(z),(1.2)

and define

Cl(z) = max{|Lj,k∂∂r(z)| : j + k = l}.(1.3)

Let X = b1L1 + · · · + bnLn := X ′ + bnLn be a holomorphic tangent vector at
z and set

M(z;X) = |X ′|
m∑

l=2

|Cl(z)|1/l|r(z)|−1/l + |bn||r(z)|−1,(1.4)

where |X ′| = |b1| + · · · + |bn−1|. Then we can state our main result as follows

Theorem 1.1. Let Ω be a smoothly bounded pseudoconvex domain in
C

n. Let z0 ∈ bΩ be a point of finite type m and assume that the Levi-form of
bΩ is comparable in a neighborhood of z0. Then there exist a neighborhood U
about z0 and positive constants c and C such that for all X = b1L1 + · · ·+bnLn

at z ∈ U ∩ Ω,

cM(z;X) ≤ BΩ(z;X), CΩ(z;X), KΩ(z : X) ≤ CM(z;X).(1.5)
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Remark 1.2. Because |Cm(z)| ≥ c′ > 0 for all z ∈ U ∩Ω, (1.5) says, in
particular, that

BΩ(z;X), CΩ(z;X),KΩ(z;X) � (|X ′||r(z)|−1/m + |bn||r(z)|−1)

for a holomorphic vector field X = b1L1 + · · · + bnLn at z.

Several authors found some results about these metrics for some pseudo-
convex domains in Cn, but in each case the lower bounds are different from the
upper bounds [1], [5], [9], [10], [13], [14]. In [2], Catlin got a result similar to
above theorem in C2, and Herbort [12] and the author [6] got the similar result
independently for the domains of finite type with one degenerate eigenvalue.

To prove Theorem 1.1, we must get a complete geometric analysis of bΩ
near z0 as Catlin has employed in [2]. Then we construct a family of “maximal
plurisubharmonic functions” which is a crucial ingredient to get a weighted
estimates for ∂ Neumann problem (Section 3).

2. Special coordinates and polydiscs

In this section we want to show that about each point z′ in U , there
is a special coordinates about z′ and a polydisc of maximal size on which the
function r(z) changes by no more than some prescribed small number δ > 0. We
then construct a family of plurisubharmonic functions with maximal Hessian
to push out the boundary of Ω.

Let α, β be multi-indices and let α′ = (α1, . . . , αn−1, 0), α′′ = (0, α2, . . . ,
αn−1, 0), etc. Also let ∂α denote the holomorphic differential operator of order
|α|. We first construct special coordinates centered at z′ ∈ U .

Proposition 2.1 ([7, Proposition 2.1]). For each z′ ∈ U and positive
integer m, there is a biholomorphism Φz′ : Cn −→ Cn, Φ−1

z′ (z′) = 0, such that

(2.1) ρ(ζ) := r(Φz′(ζ)) = r(z′) + Re ζn +
∑

j+k≤m
j,k≥1

ajk(z′)ζj
1ζ

k

1

+
∑

|α′+β′|≤m
|α′|,|β′|≥1

1≤|α′′+β′′|≤m

bα′β′(z′)ζα′
ζ

β′
+ O(|ζ̃|m+1 + |ζ||ζn|),

where ζ̃ = (ζ1, . . . , ζn−1, 0).

We now show how to define a polydisc around z′ in ζ-coordinates. Set

Al(z′) = max{|ajk(z′)| : j + k = l},
Bl′(z′) = max{|bα′β′(z′)| : |α′ + β′| = l′}, 2 ≤ l, l′ ≤ m.

For each δ > 0, we define τ (z′, δ) by:

τ (z′, δ) = min{(δ/Al(z′))
1
l , (δ/Bl′(z′))

1
l′ : 2 ≤ l, l′ ≤ m}.(2.2)
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Then the author showed that there are some constant b0 > 0 and integers
j0, k0 ≤ m such that |aj0k0 | ≥ b0 · δ · τ (z′, δ)−j0−k0 and hence

τ (z′, δ)−1 ≈
m∑

l=2

(δ/Al(z′))−
1
l .(2.3)

Define

Rδ(z′) = {ζ ∈ C
n : |ζk| ≤ τ (z′, δ), 1 ≤ k ≤ n− 1, |ζn| ≤ δ}, and

Qδ(z′) = {Φz′(ζ) : ζ ∈ Rδ(z′)}.

In order to study how τ (z′, δ) depends on z ∈ Qδ(z′), it is convenient to intro-
duce an analogous quantity η(z, δ) that is defined more intrinsically. We take
the frame {L1, . . . , Ln} defined on U , and let Lj,k∂∂r(z) and Cl(z) be defined
as in (1.2) and (1.3) respectively. Define

η(z, δ) = min{(δ/Cl(z))
1
l ; 2 ≤ l ≤ m}.(2.4)

Then we have the following important relations between η(z, δ) and τ (z, δ) ([7,
Section 2]).

Proposition 2.2. Let z ∈ Qδ(z′). Then

τ (z′, δ) � η(z, δ) � τ (z′, δ),
τ (z′, δ) ≈ τ (z, δ).

(2.5)

For ε > 0, we let Ωε = {z; r(z) < ε} and set

S(ε) = {z : −ε < r(z) < ε}.

The following theorem reflects the local geometry of the boundary of Ω near z0,
and shows the existence of one parameter family of plurisubharmonic functions
with maximal Hessian.

Theorem 2.3 ([7, Theorem 3.2]). For all small δ > 0, there is a pluri-
subharmonic function λδ ∈ C∞(Ωδ) with the following properties,

(i) |λδ(z)| ≤ 1, z ∈ U ∩ Ωδ,
(ii) For all L =

∑n
j=1 bjLj at z ∈ U ∩ S(δ),

∂∂λδ(z)(L,L) ≈ τ (z, δ)−2
n−1∑
k=1

|bk|2 + δ−2|bn|2,

(iii) If Φz′ is the map associated with a given z′ ∈ U ∩ S(δ), then for all
ζ ∈ Rδ(z′) with |ρ(ζ)| < δ,

|∂α∂
β
(λδ ◦ Φz′)(ζ)| � Cα,βδ

−αn−βnτ−|α′+β′|.
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With this family of functions λδ, we shall construct for each z′ ∈ U ∩ bΩ
and each small δ > 0, a domain (locally defined in U) Ωz′,δ which contains
Ω such that the boundary of Ωz′,δ is pushed out as far as possible, given the
constraints that d(z′, bΩz′,δ) < δ and that bΩz′,δ is pseudoconvex. Since z′ will
be fixed, we will work in ζ-coordinates defined by Φz′(ζ) = z.

Let Al(z′) be the quantities defined after Proposition 2.1. Set ρ(ζ) =
r(Φz′(ζ)) and set U ′ = {ζ : Φz′(ζ) ∈ U}. For all small s and δ > 0, define

Jδ(z′, ζ) =

[
δ2 + |ζn|2 +

m∑
l=2

Al(z′)2|ζ̃|2l

]1/2

,(2.6)

where ζ̃ = (ζ1, . . . , ζn−1, 0), and set

Ws,δ(z′) = {ζ ∈ U ′ : |ρ(ζ)| < sJδ(ζ)}.(2.7)

Set Jδ(z′, ζ) = Jδ(ζ) for a convenience. By adding up the weight functions in
Theorem 2.3, we have the following theorem.

Proposition 2.4. For each z′ ∈ U ∩ bΩ and each small δ > 0, there
exists a small real-valued function Hz′,δ(ζ) defined in Ws,δ(z′) (where s is a
small constant independent of z′ and δ) such that

(i) −Jδ(ζ) ≈ Hz′,δ(ζ),
(ii) for any L = b1L

′
1 + b2L

′
2 + · · · + bnL

′
n at ζ,

∂∂Hz′,δ(L,L)(ζ) ≈ Jδ(ζ)
[ |bn|2
(Jδ(ζ))2

+
|b′|2

τ (z′, Jδ(ζ))2

]
, and

|LHz′,δ| � Jδ(ζ)
( |bn|
Jδ(ζ)

+
|b′|

τ (z′, Jδ(ζ))

)
,

where |b′| = |b1| + · · · + |bn−1|, and L′
k = (Φ−1

z′ )Lk, k = 1, 2, . . . , n.

Proof. Set N1 = [log2(1/δ)]. Let DR = {ζ ∈ Cn : |ζi| < R, i =
1, 2, . . . , n}, and let ψ ∈ C∞

0 (D2 −D1/4) be a function that satisfies ψ(ζ) = 1
for ζ ∈ D1 −D1/2. For all k, 1 ≤ k

ψk(ζ) = ψ
(
τ (z′, 2−k)−1ζ1, . . . , τ(z′, 2−k)−1ζn−1, 2kζn

)
,

and for k = N1, set

ψN1(ζ) = φ
(
τ (z′, 2−N1)−1ζ1, . . . , τ(z′, 2−N1)−1ζn−1, 2N1ζn

)
,

where φ ∈ C∞
0 (D2) satisfies φ(ζ) = 1 for ζ ∈ D1. Combining (2.2) and (2.6),

one obtains that

Jδ(ζ) ≈ 2−k, ζ ∈ suppψk.(2.8)
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For each δ > 0, set λ′δ = λδ ◦ Φz′ , where λδ is the plurisubharmonic function
as in Theorem 2.3. Choose N0 so that λ2−kt is well-defined for all ζ ∈ suppψk

whenever k ≥ N0, and set

Hz′,δ(ζ) =
N1∑

k=N0

2−kψk(ζ) (λ′2−kt(ζ) − 2) .

Then Hz′,δ is well-defined (fixed finite sum independent of z′ and δ). From
(2.7), (2.8) and from the fact that Hz′,δ(ζ) ≈ −2−k for ζ ∈ suppψk, property
(i) follows. Also the major part of the Hessian of Hz′,δ will be ∂∂λ2−kt(ζ) and
other error terms will be absorbed into ∂∂λ2−kt(ζ) for sufficiently small t. This
fact together Theorem 2.3 prove property (ii).

Set Ωz′ = Φ−1
z′ (Ω) and set Ωz′,ε = {ζ ∈ C

n : ρ(ζ) < ε}. Set λ′δ = λδ ◦ Φz′ .
Then there is a fixed constant b > 0 (independent of z′, δ) such that λ′δ is defined
and plurisubharmonic on Ωz′,bδ and satisfies all the properties of Theorem 2.3
on Ωz′ instead of Ω.

Proposition 2.5. For each sufficiently small δ > 0, there is one param-
eter family of “maximal pushed-out” pseudoconvex domains {Ωε

z′,δ}ε>0 which
contain Ωz′ near the origin.

Proof. Let U ′
1 be a small neighborhood of the origin with U ′

1 ⊂⊂ U ′ =
Φ−1

z′ (U). Then one has |dHz′,δ(ζ)| � 1 for ζ ∈ Ws,δ(z′) by the property (ii) of
Proposition 2.4. Hence for all small ε > 0, the function

ρε
z′,δ(ζ) = ρ(ζ) + εHz′,δ(ζ)

satisfies ∂ρε
z′,δ/∂ζn �= 0 in U ′

1 and therefore form a family of defining functions
of hypersurfaces {ζ : ρε

z′,δ(ζ) = 0} in Ws,δ(z′). If we use the properties (i),
(ii) of Proposition 2.4, it follows that the hypersurfaces defined by ρε

z′,δ(ζ) are
pseudoconvex.

Now we choose ε0 > 0 (independent of z′ and δ) so that

sup{ρ(ζ) : ζ ∈ Rδ(z′) and ρε0
z′,δ(ζ) ≤ 0} < bδ,

where b is the small number before Proposition 2.5. Set ρz′,δ(ζ) = ρε0
z′,δ(ζ).

For ζ ′ near 0, define a polydisc Pa(ζ ′) by

(2.9) Pa(ζ ′) = {ζ ∈ C
n : |ζn − ζ ′n| < aJδ(ζ ′),

|ζk − ζ ′k| < τ (z′, aJδ(ζ ′)), 1 ≤ k ≤ n− 1}.

Proposition 2.6. There exist constants a > 0 and d1 > 0 (independent
of z′, ζ ′ and δ) so that if ζ ′ ∈ Ωz′ and |ζ ′| < d1, then ρz′,δ(ζ) < 0 for ζ ∈ Pa(ζ ′).
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Proof. We may assume that ζ ′ ∈ bΩz′ (this will be the worst case). If a
is sufficiently small (independent of z′ and δ), then by virtue of (2.3)–(2.7), it
follows that

Jδ(ζ) ≈ Jδ(ζ ′), ζ ∈ Pa(ζ ′).(2.10)

By (2.10) and from the property (i) of Proposition 2.4, it follows that there
exists a small constant c > 0, such that

Hz′,δ(ζ) ≤ −cJδ(ζ ′), ζ ∈ Pa(ζ ′).(2.11)

By a simple Taylor’s theorem argument, we then obtain that

|ρ(ζ)| ≤ CaJδ(ζ ′), ζ ∈ Pa(ζ ′).(2.12)

Since ρz′,δ(ζ) = ρ(ζ) + ε0Hz′,δ(ζ), it follows from (2.11) and (2.12) that,
ρz′,δ(ζ) < 0 provided a is chosen so that a < cε0/C. This completes the
proof.

The existence of the following two-sided bumping family of pseudoconvex
domains was shown by the author in [3], [4].

Theorem 2.7. Let Ω be a smoothly bounded pseudoconvex domain and
let z0 ∈ bΩ be a point of finite type. Then there is a neighborhood V of z0 and
a family of smoothly bounded pseudoconvex domains {Ωt}−1≤t≤1 satisfying the
following propoerties ;

(i) Ω0 = Ω,
(ii) Ωt1 ⊂ Ωt2 if t1 < t2,
(iii) {∂Ωt}−1≤t≤1 is a C∞-family of real hypersurfaces in C

n and the points
of ∂Ωt ∩ V are finite type,

(iv) Dt −D−t ⊂ V for all t.

Remark 2.8. By virtue of the construction of Φz′ and ρz′,δ(ζ), we can
choose d1 > 0 and a neighborhood U ⊂⊂ V of z0 (independent of z′) so that
ρz′,δ is defined in {ζ : |ζ| < d1} and satisfies all the properties in this section
for each z′ ∈ bΩ ∩ U .

Set Ωt,z′ = {ζ ∈ Cn : Φz′(ζ) ∈ Ωt}, where {Ωt} is the family of domains
as in Theorem 2.7. Set

Ωz′,δ = {ζ : |ζ| < d1 and ρz′,δ(ζ) < 0}.
The construction of ρz′,δ in this section shows that if ζ ∈ Ωz′ and if d1/2 <
|ζ| < d1, then d(ζ, bΩz′,δ) � Jδ(ζ, z′). Since Am(z′)+Bm(z′) � 1 for all z′ ∈ U ,
it follows from (2.3) and (2.4) that Jδ(ζ, z′) � 1, and hence there is a constant
c1 > 0 so that d(ζ, bΩz′,δ) ≥ c1, for ζ ∈ U ∩ bΩ and d1/2 < |ζ| < d1. Choose
t = t0 sufficiently small so that

d(ζ, bΩt0,z′) < c1/2 if d1/2 < |ζ| < d1.
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Now define a domain Ω̃z′,δ by

Ω̃z′,δ = {ζ ∈ Ωt0,z′ : |ζ| ≥ d1} ∪ {Ωt0,z′ ∩ Ωz′,δ}.

Since pseudoconvexity is a local condition, Ω̃z′,δ is a pseudoconvex domain. By
combining the properties of Ωz′,δ and Ωt0,z′ , we obtain

Proposition 2.9. For all z′ near z0 and all δ, 0 < δ < δ0, the domain
Ω̃z′,δ has the following properties;

(i) Ω̃z′,δ is a bounded pseudoconvex domain that contains Ωz′ ,
(ii) there is a constant a > 0 so that for all ζ ′ ∈ Ωz′ with |ζ ′| < d1,

Pa(ζ ′) ⊂ Ω̃z′,δ,
(iii) in the region |ζ| > d1/2, the boundaries bΩ̃z′,δ are independent of δ

and depend smoothly on z′,
(iv) in the region {ζ : d1/2 < |ζ| < d1}, the boundaries bΩ̃z′,δ are of finite

type, uniformly in z′, and δ.

3. Metric estimates

In [11], K. T. Hahn got the following inequalities

CΩ(z;X) ≤ BΩ(z;X), KΩ(z;X).

Therefore the estimates for the lower bounds of CΩ(z;X) will suffice for the
lower bounds of BΩ(z;X) and KΩ(z;X).

Assume that r(z) = −bδ/2 and let z′ be the projection of z onto bΩ, and
Φz′ be its associated map. Here b > 0 is the number before Proposition 2.5.
Set ζδ = (0, . . . , 0,−bδ/2) = (ζδ

1 , ζ
δ
2 , . . . , ζ

δ
n). Then by virtue of (2.2), there is

a small constant c ≤ b such that the polydisc

Bc = {ζ : |ζn + bδ/2| < cδ, |ζk| < cτ(z′, δ), 1 ≤ k ≤ n− 1},

is contained in Ωz′ . Let Y = (Φ−1
z′ )∗X = b1L

′
1 + · · · + bnL

′
n be a vector at ζδ,

where L′
i = (Φ−1

z′ )∗Li for i = 1, 2, . . . , n.
Set τn = δ and τk = τ (z′, δ), 1 ≤ k ≤ n − 1. Let k0 be the minimum

number such that

|bk0 |τ−1
k0

= max{|bk|τ−1
k : k = 1, 2, . . . , n}.(3.1)

Set v(ζ) = δ−1(ζn + bδ/2) if k0 = n, and v(ζ) = τ (z′, δ)−1ζk0 otherwise. Since
we may assume that c ≤ 1, we have the inequality supB |v| ≤ 1. From the
expansion in (2.1), one can see that (∂ρ/∂ζj)(ζδ) = 0, j = 2, . . . , n, and hence
from (3.1), it follows that

|Y v(ζδ)| = max{|bk|τ−1
k : k = 1, 2, . . . , n},(3.2)

provided that δ is sufficiently small.
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Set φ(ζ) = λ′δ(ζ) + |ζ|2 and set λ(ζ) = χ(φ(ζ)), where χ(t) is a smooth
convex increasing function with χ′(t) ≥ 1. Using the standard ∂-estimates on
Ω̃z′,δ with weight e−λ(ζ), and from the estimate

∑n
i,j=1(∂

2φ/∂ζi∂ζj)(ζ)titj �∑n
j=1 |ti|2τ−2

i for ζ ∈ B, one has for any g =
∑n

i=1 gidζi satisfying Sg = 0,
there is u ∈ L2

0,0(Ω̃z′,δ, λ) such that ∂u = g (in weak sense) and,

‖u‖2
λ �

∫
Ω̃z′,δ−B

|g|2e−λ +
∫

B

n∑
i=1

τ2
i |gi|2e−λdV.(3.3)

For c ≥ d > 0, set Bd = {ζ : |ζi − ζδ
i | < dτi, i = 1, 2, . . . , n}. Since∑n

i,j=1(∂
2φ/∂ζi∂ζj)titj �

∑n
i=1 τ

−2
i |ti|2 on Bc, there is a small constant 0 <

d ≤ c (independent of τ1, . . . , τn) so that

φ(ζ) ≥ Reh(ζ) + d

n∑
i=1

τ−2
i |ζi − ζδ

i |2, ζ ∈ Bd,

where

h(ζ) = 2
n∑

i=1

∂φ

∂ζi
(ζδ)(ζi − ζδ

i ) +
n∑

i,j=1

∂2φ

∂ζi∂ζj
(ζδ)(ζi − ζδ

i )(ζj − ζδ
j ).

Let ψ ∈ C∞
0 (B), where B is the unit polydisc in Cn such that ψ(ζ) = 1 if

|ζi| ≤ 1/2, i = 1, 2, . . . , n. From (3.3), we conclude that if

ψd(ζ) = ψ

(
ζ1

dτ (z′, δ)
, · · · , ζn−1

dτn−1
,
ζn + bδ/2

dδ

)
,

and if a = nd3/8, then

Reh(ζ) ≤ −a, for ζ ∈ {ζ : φ(ζ) ≤ a} ∩ supp ∂ψd.

Let χ be a smooth convex increasing function that satisfies χ(t) = 0 for t ≤ a/2
and χ′′(t) > 0 for t > a/2. Now define

λs(ζ) = φ(ζ) + s2χ(φ(ζ)).

Then λs does not depend on s in Be, for some fixed 0 < e ≤ d. Set

αs = ∂(ψdve
sh) = vesh∂ψd =

n∑
i=1

αs,idζi.

Following the standard weighted L2 estimates for ∂ as in [2], [6], it follow that
for any ε0 > 0, there exists independent s0 > 0 and a function us0 so that
∂us0 = αs0 and

|us0(ζ
δ)| � ε0,

∣∣∣∣∂us0

∂ζk
(ζδ)

∣∣∣∣2 � ε0τ
−2
k , 1 ≤ k ≤ n.(3.4)
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Therefore it follows from (3.1) and (3.4) that

|Y us0(ζ
δ)| � √

ε0

n∑
k=1

|bk|τ−1
k ≤ n

√
ε0 max {|bk|τ−1

k : k = 1, 2, . . . , n}.

Set f = vψde
s0h − us0 . Then f is holomorphic and it follows from (3.2) that

|Y f(ζδ)| � max {|bk|τ−1
k : k = 1, 2, . . . , n},(3.5)

provided that ε0 is sufficiently small.
Let us assume, for a moment, that supΩz′ |f | ≤ C, where C is independent

of z′ and δ. Then (3.5) and the definition of Caratheodory metric shows that

CΩz′ (Y ; ζδ) ≥ CΩ̃z′,δ
(Y ; ζδ) � max {|bk|τ−1

k : k = 1, 2, . . . , n}.(3.6)

On the other hand, the polydisc B about ζδ lies in Ωz′ . So one can easily obtain
that

CΩz′ (ζδ;Y ) ≤ CB(ζδ;Y ) = max{|bk|τ−1
k : k = 1, 2, . . . , n}.(3.7)

Set Φz′(ζδ) = z. Then by (1.3), (1.4) and (2.3)–(2.5), it follows that

τ (z, δ)−1 ≈ η(z, δ)−1 ≈
m∑

l=2

|Cl(z)| 1l · |r(z)|− 1
l ,

and hence one obtains that

max{|bk|τ−1
k : k = 1, 2, . . . , n} ≈

n∑
k=1

|bk|τ−1
k ≈M(z;X).(3.8)

From the invariant property of Caratheodory metric, and from (3.6)–(3.8), one
obtains that

CΩ(z;X) = CΩz′ (ζδ;Y ) ≈M(z;X).(3.9)

To show that supΩz′ |f | ≤ C, we use the fact that f is holomorphic in a larger
domain Ω̃z′,δ. Assuming ζ ∈ Ωz′ and |ζ| < d1, it follows from Proposition
2.6 that Pa ⊂ Ω̃z′,δ. Since |vψde

s0h| � 1, the estimate (3.3) shows that∫
Pa(ζ)

|f |2dV �
∏n

j=1 τ
2
j . Hence it follows that

|f(ζ)|2 � (V ol(Pa(ζ))−1

∫
Pa(ζ)

|f |2dV � 1,

because V ol(Pa(ζ)) �
∏n

j=1 τ
2
j . When |ζ| ≥ d1, we use the Kohn’s global

regularity theory and some cut-off functions as Catlin did in [2]. Therefore we
obtain that supΩz′ |f | � 1 and hence (3.9) follows.
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To obtain an upper bound for the Bergman metric, we note that Ωz′ con-
tains the polydisc Bc about ζδ. Thus by elementary estimates one has, for any
f ∈ L2(Ωz′) ∩A(Ωz′), that∣∣∣∣ ∂f∂ζk (ζδ)

∣∣∣∣ � τ−1
k

n∏
j=1

τ−1
j ‖f‖L2(Ωz′ ),

for k = 1, 2, . . . , n. From (2.1) and (2.2), it follows that the coefficient b(ζ)
of ∂/∂ζn in L′

1 satisfies |b(ζδ)| � δ and |(∂ρ/∂ζj)(ζδ)| � τ (z′, δ), for j =
1, . . . , n− 1. Therefore, if Y =

∑n
k=1 bkL

′
k is a vector at ζδ, then

bΩz′ (ζδ;Y ) �
(

n∑
k=1

|bk|τ−1
k

)
n∏

j=1

τ−1
j .(3.10)

In [7], the author showed that

KΩz′ (ζδ, ζ
δ
) ≈

n∏
j=1

τ−2
j ≈

m∑
l=2

Cl(z)
2(n−1)

l |r(z)|−2− 2(n−1)
l .(3.11)

Combining (3.10), (3.11) and the definition of BΩ(z;X), one obtains that

BΩ(z;X) = BΩz′ (ζδ;Y ) �
n∑

k=1

|bk|τ−1
k ,

and hence it follows that

CΩ(z;X) ≈ BΩ(z;Y ) ≈M(z;X).(3.12)

Set
R = min{d2cτk|bk|−1 : k = 1, 2, . . . , n}.

Then

f(t) =
(
b1t, . . . , bn−1t,−bδ2 + bnt

)
defines a map f : DR −→ B with f∗((∂/∂t|0) = X. Hence

KΩz′ (ζδ;Y ) ≤ KB(ζδ;Y ) ≤ R−1 ≤ max{|bk|(cτk)−1 : 1 ≤ k ≤ n}
� max{|bk|τ−1

k : k = 1, 2, . . . , n}

�
n∑

k=1

|bk|τ−1
k � CΩz′ (ζδ;Y ) = CΩ(z;X).

Again from the invariant property of KΩ(z;X) and (1.4), it follows that

KΩ(z;X) = KΩz′ (ζδ;Y ) ≈ CΩ(z;X).(3.13)

If we combine (3.12) and (3.13), it follows that

CΩ(z;X) ≈ BΩ(z;X) ≈ KΩ(z;X) ≈M(z;X),

and this proves our main theorem.
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