J. Math. Kyoto Univ. (JMKYAZ)
43-1 (2003), 125-137

Good elements and metric invariants in B;R

By
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Abstract

Let p be a prime, Q, the field of p-adic numbers and Q, a fixed
algebraic closure of Q,. By is the ring of p-adic periods of algebraic va-
rieties over p-adic fields introduced by Fontaine. For each n one defines
a canonical valuation w, on @, such that B;'R/I" becomes the comple-
tion of Q, with respect to wy, where I is the maximal ideal of B;R. An
element o € Q} is said to be good at level n if wy(a) = v(«) where v
denotes the p-adic valuation on @,. The set G,, of good elements at level
n is a subgroup of Q5. We prove that each quotient group Q5/G, is a
torsion group and that each quotient G1/G, is a p-group. We also show
that a certain sequence of metric invariants {l,,(Z)}»en associated to an
element Z € B;R, is constant.

1. Introduction

Let p be a prime number, @, the field of p-adic numbers, Qp a fixed
algebraic closure of Q, and C,, the completion of (@p with respect to the unique
extension of the p-adic valuation v on Q,. Bc'l"R denotes the ring of p-adic
periods of algebraic varieties defined over local (p-adic) fields as considered by
J.-M. Fontaine in [Fo]. It is a topological local ring with residue field C, (see
the section Notations) and it is endowed with a canonical, continuous action
of G: = Gal(Q,/Q,). Let I be its maximal ideal and let B,: = Bj,/I".
Then B;‘R (and B,, for each n > 1) is canonically a @p—algebra and moreover
@p is dense in B(J[R (and in each B, respectively) if we consider the “canonical
topology” on BJ, which is finer than the I-adic topology (see [F-C]).

In [I-Z1] a canonical sequence of valuations {wy}, on Q) is defined such
that for each n, w,, induces the canonical topology in B,,, thus B,, becomes the
completion of @p with respect to w,. Naturally, one is more interested in BjR
itself than in the B]s and for this reason it would be useful to know how the
topology on Q, induced by w,, is changing as n — oo.

Let a € (@; From the definition of the valuations w, we know that

0(@) > w1 (@) > wy(a) > -+ > wp(a) > -
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We say that a is “good” at level n if w,(a) = v(a). Let G, be the set of
good elements of Q,, at level n. We will see that each G, is a subgroup of Qj.
Therefore we have a filtration

Q261262 2G, 2.

Our object in this paper is to study how far is a given element a of Q;
from being good at various levels. With this in mind we study the structure
of the quotient groups H, := @; /Gn. We prove that one can raise any « to a
certain power to make it good at a given level n, in other words one has the
following:

Theorem 1.  For anyn > 1, H, ts a torsion group.
The structure of H; is easily described : one has a canonical isomorphism
Hi =2 Q/Z.
In what follows we are mainly concerned with the quotients
Ker(H, — H1) = G1/Gn.
We will prove the following:
Theorem 2.  For any n > 2 the quotient G1/G, is a p-group.

As an application of the above results we answer a question raised in [I-Z2]
concerning certain metric invariants for elements in Bjj,. As was pointed out
in [I-Z2], although the topology on Bc'l"R does not come from a canonical metric
the B,’s do have canonical metric structures. This shows us a way to obtain
metric invariants for elements in B;R, by sending them canonically to any B,
and recovering various metric invariants from those metric spaces.

In particular, for any element Z in B;R whose projection in C, is tran-
scendental over @@, one defines at each level n > 1 a certain metric invariant
I.(Z) € RU{oo} of Z (see Section 4 below). The question is to describe for a
fixed Z the behavior of the sequence {l,,(Z)},en. One has the following rather
surprising:

Theorem 3.  For any element Z in B(J[R whose projection in C,, is tran-
scendental over Q, the sequence {1,,(Z)}nen is constant:

WZ)=1(2)==1,(Z)=---.

We obtain in this way a metric invariant {(Z) = [,,(Z) for any n > 1 which
depends on Z only.

Acknowledgements. We are very grateful to the referee who provided
us with the simpler approach described in the last section of the paper.
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2. Notations, Definitions and Results

Let p be a prime number, K = Q" the maximal unramified extension of
Qp, K a fixed algebraic closure of K and C,, the completion of K with respect
to the unique extension v of the p-adic valuation on Q, (normalized such that
v(p) = 1). All the algebraic extensions of K considered in this paper will be
contained in K. Let L be such an algebraic extension. We denote by Gr: =
Gal(K /L), L the (topological) closure of L in C,, Oy, the ring of integers in L
and my, its maximal ideal. If K ¢ L ¢ F C K, and F is a finite extension of
L, Ag/r, denotes the different of F" over L.

If A and B are commutative rings and ¢: A — B is a ring homomorphism
we denote by Qp,4 the B-module of Kahler differentials of B over A, and
d: B — Qp/4 the structural derivation.

Let A be a Banach space whose norm is given by the valuation w and
suppose that the sequence {a,,} converges in A to some «. We will write this:
Um — a.

We now recall some of the main results and definitions from [Fo|, [F-C] and
[I-Z1]. We first recall the construction of B}, which is due to J.-M. Fontaine
in [Fo]. Let R denote the set of sequences xz = (m("))nzo of elements of Oc,
which verify the relation (z(™*tV)P = 2™ Let’s define: vg(z): = v(z®),
r +y = s where s = lim,, o (z("+™) + y(*Tm))P" and zy = t where t(") =
My With these operations R becomes a perfect ring of characteristic p
on which vg is a valuation. R is complete with respect to vg. Let W(R)
be the ring of Witt vectors with coefficients in R and if z € R we denote by
[z] its Teichmiiller representative in W(R). Denote by 6 the homomorphism
0: W(R) — Oc, which sends (g, 21,...,%n,...) to > " p”x%n). Then 0 is
surjective and its kernel is principal. Let also 6 denote the map W (R)[p~!] —
Cp. We denote Bj,: = lim. W(R)[p~']/(Ker(#))". Then 6§ extends to a
continuous, surjective ring homomorphism 6 = 0,5 : B;R — C, and we denote
I: =Ker(qr) and I.: = I W(R). Let e = (¢/™),>¢ be an element of R,
where (™ is a primitive p”-th root of unity such that ¢ = 1 and e®) # 1.
Then the power series

=D N =)t /n
n=1

converges in B;R, and its sum is denoted by ¢t: = logle]. It is proved in
[Fo] that t is a generator of the ideal I, and as Gx: = Gal(K/K) acts on
t by multiplication with the cyclotomic character, we have I"/I"T! = C,(n),
where the isomorphism is Cp-linear and G k-equivariant. Therefore for each
integer n > 2, if we denote by B, : = BJR /I we have an exact sequence of
G k-equivariant homomorphisms

0= Jos1 — Bug1 73 B, — 0,

where J,41 = ["/I"T! = C,(n). This exact sequence is called “the funda-
mental exact sequence”. We denote by 6, : B;R — B,: = B;R/I "™ and by
M : By, — C, the canonical projections induced by 6.
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Let us now review Colmez’s differential calculus with algebraic numbers as
in the Appendix of [F-C]. We should point out that as our K is unramified over
Q, and so W(R) is canonically an Ok as well as an O -algebra, we’ll work
with W(R) instead of A;,s. For each nonnegative integer k, we set Afnf: =

W(R)/ I_’f_“. We define recurrently the sequences of subrings O%) of O and
of Op-modules Q) setting: O(?O) =Opandif k> 1 Q). = Ox ®pt-1
K

Q and O%C) is the kernel of the canonical derivation d(® : 0%671) —

1
0=V j0
Q&) Then we have

Theorem 4 (Colmez, Appendice of [F-C], Théoreme 1). (i) If k € N,
then O%) = KN(W(R) + I*1) and for all n € N the inclusion of O%) in
W (R) + I**! induces an isomorphism

n ~ k n k
Al /0" Al = O [p" O

(ii) If k > 1, then d™®) is surjective and QF) = (K /a*)(k), where a is the
fractional ideal of K whose inverse is the ideal generated by eV —1 (recall e
is a fized primitive p-th root of unity).

Some consequences of this theorem are gathered in the following

. lim n i (1 ~
Corollary 5. (i) A}, = (O(?)/pZO(?)) and Af, ; ®z, Qp = By for
alln > 0.
(i) QM is a p-divisible and a p-torsion Oz-module.

In [I-Z1] a sequence {wy,}, of valuations on K is defined. We recall the
definition and their main properties. For each n > 1 let O(?") be the subring of
O defined above. For a € K" we define

wp(a): = max{m € Zla € me%_l)}.

In particular when n = 1 one has wj(a) = [v(a)], where [ ] denotes the
integer part function.

Properties of w,,.

a) wp(a + b) > min(wy(a), w, (b)) and if wy,(a) # w,(b) then we have
equality, for all a,b € K.

b) wy(ab) > wy(a) + w,(b) for all a,b.

¢) wy(a) = oo if and only if a = 0.

d) v(a) > w,_1(a) > wy,(a) for all @ € K and n > 2.

e) For each n > 1 the completion of K with respect to w,, is canonically
isomorphic to B,,.

f) For each n > 1, 0 € Gal(K/K) and a € K we have w,(c(a)) = w,(a).
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Remark. If we define the norm ||all,,: = p~*“~(®) for all a € K, then
w, and || - ||, extend naturally to B, which becomes a Banach algebra over
K. Furthermore the canonical maps ¢,: B,+1 — B, are continuous Banach
algebra homomorphisms of norm 1. As mentioned before, B;‘R = lim_ B,,
with transition maps the ¢’s. The canonical topology on B(J[R is the projective
limit topology, with topology on each B,, induced by w,,.

3. Good elements

We'll work with a slightly more general definition than the one from the
introduction, when we only considered good elements « from Qj.

Definition.  An element z € B, is called good if w,(z) = v(n,(2)). An
element Z in B;‘R is said to be good at a given level n if its image in B,, is a
good element of B,,.

We have the following

Proposition 6. (i) If z,y € B, are good then xy is good.
(ii) If 2 € By, is good then ¢n(2) is a good element of Bp_1.
(iii) For each n > 1, G, is a subgroup of Q;.

Proof.  For (i) note that w, (xy) > wy(z) +w,(y) = v(ne(z)) +v(na(y)) =
v(nn(zy)) but wy(zy) < v(ne(2y)).

For (ii) note that wy,—1(¢n(2)) > wn(2) = v(Ne(2)) > wp—1(dn(2))).

In order to prove (iii) it remains to show that for any element « € @;
which is good in B,,, a~! is also good in B,.

We prove this by induction on n. For n = 1 the statement is clear: « is
good if and only if v(a) € Z, in which case a~! will have the same property.

Let us assume that the statement holds true for n — 1 and let us prove it
for n. Assume « is good at level n. By (ii) we know that « is also good in
B,_1 and from the induction hypothesis it follows that o~ ! is good in B, _.
By multiplying « if necessary by a power of p we may assume that w,(a) = 0.
Then

0=v(a) =v(a™) =w,_1(a™t).

This shows that o and o~ ! lie in O(fn_g). We can then differentiate the equality
1 =a-a"! to obtain:

0=ad™ Yo +a td" V().
We multiply this equality by a=! € O%l_z) to put it in the form:
0=d" V(™) +a 2d" V().

Since wy, (o) = 0 we have a € O(Fn_l), thus d®~Y(a) = 0. Therefore d™ Y (a~1)

= 0 from which it follows that a=! € O%_l), wy(a™!) = 0 and hence a1 is
good in B,. d

In order to prove Theorem 1 we also need the following:
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Lemma 7. Letn > 2. For any y € B,_1 there exists x € B, with
On(x) =y such that w,(x) = wp—1(y).

This is Proposition 5.2 (i) from [I-Z1]. We use it to derive:

Lemma 8. For anyn > 2 and any z € B, there exists i € J, such that

W (2 — 1) = Wp—1(dn(2)).

This follows immediately by applying the above lemma to ¢,(z): there
exists € B, with ¢, (x) = ¢,(z) such that w,(x) = w,_1(¢n(2)). If we now
write x = z — ¢ then we have ¢,(i) =0, so i € J,, and the lemma is proved.

By a repeated application of this lemma we obtain the following:

Corollary 9. For any n > 2 and any z € B, there exists i € I, such
that wy(z — 1) = wy(ne(2)).

Corollary 10. Let n > 2 and z € By, such that v(n,(z)) € Z. Then
there exists © € I, such that z — i is good in B,,.

Corollary 11.  Letn > 2 and z € B,, such that ¢,,(z) is good in By,_1.
Then there exists i € Jy, such that z —1i is good in B,.

We now prove the following

Lemma 12.  Letz € B,, withn,(z) € Oc,. Then the sequence {2™ }men
18 bounded in B,,.

The proof is by induction on n. The case n = 1 follows from the hypothesis
of the Lemma. Assume now that the statement holds true for n — 1 and
prove it for n. The sequence {¢,(z™)} is bounded in B,,_; thus there exists r
(which depends on (n — 1) and on ¢,(2)) such that w,—1(p"¢,(2)"™) > 0 for
every m. Let’s now fix an m. We choose a sequence {ay}ren in K such that
Qg —>E‘;€"_)OO) z. Then o} —>E‘;€"_)OO) 2™ and in particular w, (a}") = w, (™) for k
large enough. Since oy = 1, (k) —k—oo Nn(z) we also have oy € O for large
k. Similarly ar = ¢n(ar) — ¢n(2) 50 We—1(p" ) = Wn—1 (" ¢n(2)™) > 0.

We now know how to compute w, (8 k) where B, 1 = p"aj.

We have: 01 10m.x = D" Bm+1,k- Since wp_1(Bix) > 0, Wn—1(Bmk) >0

and wy—1(Bm+1,k) > 0 we can differentiate the above equality and obtain:

(3.1) Bk dB1k + B1kdBm.kx = P dBmi1,k-

It now follows that for each m and the corresponding chosen large enough
k we either have:
D" dBm+1,1x = 0 and then for this m we have

2rzm+1)

0< wn(prﬁm—&-l,k) = wn(p « = wn(p

3

27 ZH_l)

which implies w,, (2™*1) > —2r, or we have:
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P"dBm+1,k # 0 and then at least one of the two terms from the Left Hand
Side of (3.1) is nonzero and moreover we have:

(3.2)

74wy (p"2™ )

=T+ wn(ﬂm-&-l,k)

> min{v (B k) + wn(B1k), v(B1k) + W (Bmx) }

= min{v(p"n(2)") + wn(p"2), v(P M (2)) + wn(P"2™)}
= 2r + min{v (N, (2)™) + wn(2),v(N(2)) + wp (2™)}.

Since v(n,(2)) > 0 from (3.2) we get:
wy (2™ > min{w, (2), w, (2™)}.
It is now clear by induction on m that:
wy (2™) > min{w,(z), —2r}
for any m > 1 and this completes the proof of the lemma. O
Theorem 1 is implied by the following more general:

Theorem 13.  For any z € B, there exists m € N* such that 2™ is
good.

Proof. Our proof is by induction on n. The case n = 1 is clear: here one
only needs to choose an m such that v(z™) € Z, then wy (™) = v(z™) and 2™
is good.

Let us assume that the statement holds true for n — 1 and let us prove it
for n. Let z € B,. From the induction hypothesis we know that there exists
mgo > 1 such that ¢,(z)™ is good in B,,_1. Then Corollary 11 can be applied
to z™o. It follows that there exists ¢ € J,, such that y = 2™° — i is good in B,,.

As a consequence, y™ is good in B,, for any m > 1, so:

wn(y™) = v(na(y)™) = mo(me(y)) = momo(ne(2)) = v(na(z")).

On the other hand since i2 = 0 one has:

from which it follows:
Wy, (2™0™) > min{w, (y™), wy, (miz™e MDY},
We derive:

(3.3) 0= wn(z"") = v(na(2"))

mo(m—l))

> min{0, w, (miz — momu(nn(2))}
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Here one has:

(3.4)  wy(miz™ ™YY — memu(n,(2))
> v(m) + wn (i) + wn(zmo(mil)) — momv(n,(2)).
We set | = mov(n,(2)) and u = z™p~!. Note that y being good, | =
V(7 (y)) = wn(y) € Z. Note also that n,(u) € Oc,. From Lemma 12 it follows
that the sequence {u™},en is bounded in B,. In other words, the sequence
{wn (™) }men is bounded from below.
Now the point is that the Right Hand Side of (3.4) equals:

v(m) + wn (1) — mov(nn(2)) + w, (W™ 1)

3

and this quantity can be made positive by choosing an m with v(m) large
enough.

The Left Hand Side of (3.4) will then be positive and hence for such an m
the inequalities in (3.3) become equalities. Thus z™°™ is good in B,, and this
completes the proof of the theorem. O

Proof of Theoerm 2. 1In order to prove the theorem we need to show that
for each n > 2 the quotient G,,_1/G, is a p-group.
We start with a remark: If z € B,, is good and i € I,, then

wy (2 + 1) = min{w, (z), w,(7)}.
Indeed, if wy, (z + ) > min{w, (), w, (i)} then
wWn(2) = wn (i) < wp(z +1).
Since z is good one has

wy(2) = v(M(2)) = V(1 (2 +19)) > wn(z +1).

We obtained a contradiction and the remark is proved.

Now let us fix an n > 2 and assume that G,,_1/G, is not a p-group. Then
there will be an element z € B,, N Q; and a positive integer ¢ which is not a
multiple of p, such that ¢,(z) is good in B,_1, 29 is good in B,, but z is not
good in B,. By multiplying if necessarily z by a power of p we may assume
that v(n,(2)) = 0. Thus w,—1(Pn(2)) = 0,w,(29) =0 and w,(z) < 0.

From Corollary 11 we know that there exists ¢ € J,, such that y = z — i is
good in B,,. Hence wy,(y) = 0.

Now 29 = (y +1i)? = y? + giy?~!. From the above remark applied to y4
which is good and to giy?~! which belongs to I,,, it follows that:

0 = wp(2?) = min{w, (y?), wn(qiyq_l)}

so wy(qiy?=t) > 0. As g was not a multiple of p we get w,, (iy? 1) > 0. On
the other hand note that y is invertible in B,,, more precisely since z € Q;, and
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i? = 0 in B,, we find that y=! = 271(1 + 27%). Then from v(n,(y)) = 0 and
the fact that y is good in B, it follows as in the proof of Proposition 6 (iii)
that y~! is also good. Then y'~? will be good and hence:

wn(y' ™) = v(na(y' ") = 0.
From this we derive:
wn (i) = w (iy? 1y 7)) > wn(iy? ) + wa(y' ) > 0.
This in turn implies:
wn(2) = wy(y + i) > min{w, (y), wn (i)} = 0.

We obtained a contradiction, which completes the proof of Theorem 2. O

4. Metric invariants

Let z be an element of B, which is transcendental over QQ,. For any
positive integer m we set:

8(m, 2) = sup{wn(£(2)) : f € Qy[X], monic, deg f = m}.

It is shown in [[-Z2] that the sup above is attained, and any polynomial for
which the sup is attained is called “admissible”. An “admissible sequence of
polynomials for 2” is a sequence { fi,(X)}m>0 of polynomials with coefficients
in Q, suct that fo(X) =1 and f,,(X) is an admissible polynomial of degree m,
for any m > 1. The importance of such sequences lies in the fact that they can
be used to construct orthonormal bases for the topological closure E of Q,[z]
in B,,. More precisely, if { f,(X) }m>0 is an admissible sequence of polynomials
for z and if we denote 7, = Wy (fim(2)), My (z) = p~™™ f1,(z) then the sequence
{M;,(2) }m>0 is an integral, orthonormal basis of E as a Banach space over Q,,.
In particular if z is a so called generating element of B,, over Q,, i.e. if Qp[z]
is dense in B,,, then the above procedure will exhibit bases of B, over Q,. For
more details and various related questions see [I-Z2], [A-P-Z] and [P-Z].

Returning to the metric invariants §(m, z), let us note that for any my,ms
> 1 one has:

(4.1) o0(my +ma,z) > d(ma, z) + 6(ma, 2).

Indeed, if f,, (X) and f,,(X) are admissible polynomials for z of degrees
m1 and my respectively, then

6(ma,2) + 0(ma, 2) = wn(fin, (2)) + wa(fm, (2))
< Wy (frny fma (7)) < 0(ma +ma, 2).

It is easy to see that the sequence {(d(m,z))/m}.,>1 has a limit I(2) in
R U {oo}. In fact one has:

(4.2) I(z) = sup {%g(;));g € Q,[X], monic,deg g > 0} .
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Indeed, let us define I(z) by (4.2) and let us show that

_0(m,z)
lim ———= =1(2).
)
Clearly one has
m
for any m > 1 and
o(m, z)
sup ——= = 1(2).
m>1 m

We need to show that for any real number ! < [(z) one has

d(m, z)

>

for all m large enough. Fix such an | < [(z) and choose mg > 1 such that

d(mo, 2)
mo

> .

Now take a large m and write it in the form m = kmg+r with 0 < r < my.
By a repeated application of (4.1) we have

8(m, z) > kd(myg, z) + 8(r, 2)
from which we obtain:
6(mo,2) 1 (r, 2)

6(m, Z) > 6(m0, Z) +
m mo mimo m

(4.3)

The Right Hand Side of (4.3) is > [ for m large enough and this proves
the claim.

Now let Z be an element of B}, whose projection §(Z) in C,, is transcen-
dental over Q,. Then for each n the image 6,,(Z) of Z in B,, is transcendental
over Q, and one can define the metric invariants I,,(Z) := 1(0,(2)).

The inequalities between the valuations w,, in combination with (4.2) show
that

W(Z) > () 2> 1,(2) > -

In order to prove Theorem 3 let us fix an element Z as above and an integer
n > 2. We want to show that for any | < [1(Z) one has [,,(Z) > [.
Fix such an I < [3(Z) and choose a nonconstant polynomial g(X) such

that: o7
We02) _,
degg
Here we don’t have any control on the magnitude of w,(g(0(Z))), which
might be much smaller than v(g(6(Z))). Now the idea is to consider the con-
tribution in (4.2) of the powers of g. On one hand we have for any m > 1:

v(g™(0(2))) _ v(9(6(2)))
deg g™ degyg

> [
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On the other hand we know from Theorem 13 applied to the element
9(0.(2)) of B, that there exists an integer m; > 1 such that ¢™(6,(Z)) is
good in B,,. In other words one has w,(¢™*(0,(2))) = v(g™ (0(Z2))).

In conclusion we have:

wn (g™ (6n(2))) _ v(g™ (6(2)))

. (Z) > = >
(2) 2 deg g™ deg g™

and this completes the proof of Theorem 3.

5. A new proof of the results in Section 3

One can prove the results of Section 3 on good elements more easily without

using the differential modules of the rings O(?"). The proofs below were kindly
provided to us by the referee.

Notation.

AL = W(R)/IP = lim_,, O /pmO®) (n > 0)

A" . is p-torsion free and p-adically complete and separated.
inf

By, = Bip/I" = AL @ Q, (n>1)

wp(z) := max{m € Z|z € jr)“Ul?n_f1 ,2€ B, (n>1)
M @ Bp — Cp

v : the valuation on C, normalized by v(p) = 1.

z € B,, is good if and only if wy(2) = v(n,(2)).

Lemma 14. Forz ¢ A”n_fl, z € (A" N* if and only if n,(2) € Og, -

3 inf

Proof. This follows from the fact that 7, : A;Ln_fl — Oc, is surjective and
its kernel is a nilpotent ideal. O

Corollary 15.  For a non-zero element z of By, z is good if and only if
N (2) # 0, v(n,(2)) € Z and p~ (=) 2 € (Afn_fl)*

Proof. The sufficiency is trivial. If z € B, is good and z # 0, then
v((2)) = wp(z) € Z. Hence n,(z) # 0 and p~ vy ¢ A;Ln_fl. Since
a(p~ () 2) = p=vmE)y () ¢ Ot pvm(2)) 5 ¢ (A?n_fl)* by Lemma

14. O
Corollary 16.  The set of non-zero good elements of By, is a subgroup
of By
Proof. Obvious from Corollary 15. O

Lemma 17. Forz € By, n > 2, if the image Z of z in B,,_1 is contained

in (A;ﬁ:f)*7 then there exists an integer M > 0 such that zP" € (A?n_fl)*

Proof. Let w € AZ;I be a lifting of Z. By Lemma 14, w € (Afn}l)* Set
a := zw~'—1, which is contained in I"~1/I" and let M be an integer such that
pMa € I"! /7. Then, we have (zw )" = 14pMa € L+I77 1 C (A?n_fl)*

Hence 2P € (Afn_fl)* O
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Corollary 18. (1) For any z € By = C,, there exists an integer m > 1
such that 2™ is good.
(2) For any z € B, such that its image in By is good, there exists an

integer M > 1 such that 2 s good.

Proof. (1) follows from v(C,) = QU{oo}. For z € B,,, if its image in By is
good, v(1,(2)) € Z. Replacing z with p~?("(2) 2 we may assume v(n,(2)) = 0,
ie. n,(z) € O*C,,' By applying Lemma 17 repeatedly, we see that there exists an

integer M > 0 such that zP" € (Afn_fl)* and hence 27" is a good element. [
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