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Chaotic expansion and smoothness of some
functionals of the fractional Brownian motion

By

M’hamed Eddahbi∗ and Josep Vives∗∗

Abstract

This paper deals with some additive functionals of the fractional
Brownian motion that arise as limits in law of some occupation times of
this process. In concrete, this functionals are obtained via the Cauchy
principal value and the Hadamard finite part. We derive some regularity
properties of theses functionals in Sobolev-Watanabe sense.

1. Introduction

Fractional Brownian motion (fBm for brevity) is a generalization of or-
dinary Brownian motion that has been used successfully to model a variety
of natural phenomena such as terrains, coast lines, rivers, financial data and
clouds. It is a self-similar Gaussian process with stationary increments. The
main difference between fBm and standard Brownian motion is that while the
increments in Brownian motion are independent they are dependent in fBm.
This process and related transformations are actually the main subject of a lot
of research groups in the theory of stochastic analysis, financial mathematics,
fractal analysis of computer traffic and telecommunications, etc...

Let {BH
t : t ∈ [0, T ]} be a real valued fBm. For all 0 ≤ t ≤ T , we define

the random occupation measure µt(·) by µt(A) =
∫ t

0
1A(BH

s )ds, where A is
a Borel set of R and 1A(·) is its characteristic function. It is well known by
Berman (1973) and Geman and Horowitz (1980) that µt(·) has a density with
respect to the Lebesgue measure. We will denote it here by �H(t, x). The family
{�H(t, x) : t ≥ 0, x ∈ R} is called the local time associated with the fBm BH .
Moreover, �H(t, x) has a version which is almost surely continuous as well as
uniformly continuous on any compact set, and satisfies the so called occupation
density formula ∫ t

0

f(BH
s )ds =

∫
R

f(x)�H(t, x)dx,
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for any bounded Borel function f . Moreover, the two processes {�H(λt, λHx) :
t ≥ 0} and {λ1−H�H(t, x) : t ≥ 0} have the same law for every λ > 0. This is
a consequence of the self-similarity of BH i.e. {BH

ct , t ≥ 0} and {cHBH
t , t ≥ 0}

have the same law.
One can also write

�H(t, x) =
∫ t

0

δx(BH
s )ds.

For ease of notations we shall omit the superscript H for �H(t, x).
In what follows we shall consider certain important singular operators, cer-

tain inequalities and properties for those operators such as fractional derivative
and Hilbert transform of a real function.

Let 0 < δ < 1 and f : R → R be a function that belongs to Cδ(R) ∩L1(R)
where Cδ(R) is the space of locally δ-Hölder continuous functions on R. For
δ > γ > 0 we define Dγ

±f by

Dγ
±f(x) :=

γ

Γ(1 − γ)

∫ ∞

0

f(x) − f(x ∓ y)
y1+γ

dy.

The operators Dγ
+ and Dγ

− are called right-handed and left-handed Marchaud
fractional derivatives of order γ respectively.

We put Dγ := Dγ
+ − Dγ

−.
It is known form Hardy and Littlewood (1928) that Dγ

±f is (δ− γ)-Hölder
continuous when f is δ-Hölder continuous for any 0 < γ < δ.

Fractional derivatives and integrals usually known as fractional calculus,
have many uses and they themselves have arisen from certain requirements in
applications, such as fractional integro-differentiation which has now become a
significant topic in mathematical analysis. Applied mathematicians and scien-
tists found the fractional calculus useful in various fields namely quantitative
biology, electrochemistry, transport theory, probability and potential theory to
mention a few. We refer the reader for a complete survey on the fractional in-
tegrals and derivatives to the book by Samko et al. (1993) (and the references
therein). This book was focused on the evaluation of fractional integrals and
derivatives of concrete functions and to applications to diffusion problems.

For γ = 0 we define D0 as

D0f(x) :=
∫ ∞

0

f(x + y) − f(x − y)
y

dy.

Therefore for any 0 ≤ γ < 1 we have

Dγf(x) = κ(γ)
∫ ∞

0

f(x + y) − f(x − y)
y1+γ

dy,

where κ(γ) = γ/(Γ(1 − γ)) for 0 < γ < 1 and κ(0) = 1.
Let the function f belongs to L2(R). We consider the Hilbert transform

of the function f defined by

Hf(x) :=
1
π

(
v.p.

(
1
·
)
∗ f

)
(x).
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Then D0 = πH.
From the theory of singular integrals it is known that the operator D0

maps Lp(R) into Lp(R) for 1 < p < ∞. Moreover for any f ∈ Lp(R), p > 1

(1.1) ‖D0f‖Lp(R) ≤ cp‖f‖Lp(R),

where cp depends only on p. However (1.1) fails in the case p = 1 in which f
belongs to L1(R). It is also known that D0f still exists for almost everywhere
in this case, but D0f does not necessary belong to L1(R). If f belongs to
Lp(R) ∩ Cδ(R) for p > 1 then D0f exists for all x and preserves the class of
Hölder continuous functions of order δ > 0. In the particular case (p = 2) the
operator π−1D0 = H is an isometry on L2(R) and H−1 = −H. For more deep
properties of this operator we refer the reader to Titchmarsh (1948) Chapter
V.

Integrals transformations including Fourier and Hilbert transforms play
a significant role in signal processing. For a complete description of selected
applications of Hilbert transforms which serves as a theoretical basis of the
complex notations of signals we refer to the book by Hahn (1996).

The above mentioned operators Dγ
± and H appeared also in the following

limit results.
Let �(t, x) be the local time of the fBm BH at level x and time t. If f is

a function belonging to L1(R) such that f :=
∫

R
f(x)dx 
= 0 then the sequence

of processes
1

n1−H

∫ nt

0

f(BH
s )ds, t ≥ 0,

converges in law as n go to infinity to the process f�(t, 0), t ≥ 0.
If f is a function such that Hf belongs to L1(R) and Hf 
= 0 then the

sequence of processes

1
n1−H

∫ nt

0

f(BH
s )ds, t ≥ 0,

converges in law as n go to infinity to the process HfH�(t, ·)(0), t ≥ 0.
Let 0 < γ < δ < 1/2H − 1/2 and f belongs to Cδ(R) ∩ L1(R), then the

sequence of processes

1
n1−H(1+γ)

∫ nt

0

Dγ
−f(BH

s )ds, t ≥ 0,

converges in law as n → +∞ to the process fDγ
+�(t, ·)(0), t ≥ 0.

More discussions on limit theorems of this kind can be found in Yamada
(1986, 1996) for Brownian motion, Fitzsimmons and Getoor (1992) for stable
Lévy processes and Shieh (1996) for fractional Brownian motion.

Theses transformations for the local time of the Brownian motion have
also been considered by a number of authors (Ezawa et al. (1975), Yor (1982),
Biane and Yor (1987) and Bertoin (1989, 1990)) for various motivations and
different points of view.
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The above description represents the motivation of the study of the chaotic
expansion and regularity properties of the local time and related transforma-
tions.

In this paper we go one step further by presenting another application of
the fractional derivatives and integrals. Concretely the operators Dγ

± and D0

are power full to give simple representations of some additive functionals of
stochastic processes (see e.g. Yamada (1984), for the Brownian motion).

The main goal of this paper is to establish a unified result on the expansion
in Wiener chaos of the fractional derivative and the Hilbert transform of the
local time of the fBm (Theorem 3.1). Regularity in Sobolev-Watanabe spaces
are given for theses transformations. Our main concrete application is the
study of the chaotic expansion and the regularity in Sobolev-Watanabe spaces
of some additives functionals which arise as limits of suitable normalized occu-
pation times of the fBm. (Theorems 4.1, 4.2 and Corollary 4.1). An advantage
using Sobolev-Watanabe spaces is the ability to use Wiener chaos expansion
and related properties and techniques to further study the regularity of some
functionals of the fBm or roughly speaking of the underlying Wiener process
thank to the representation (2.3) and to obtain approximation results of the
local time in some functional spaces (Propositions 5.2 and 5.3).

We briefly explain the structure of the rest of the paper. The second section
provides the background material needed and the statement of the preliminary
result. The third section contains the main result and the forth section deals
with main applications. Finally in the last section we state and prove some
technical intermediate results and then explain how the main result can be
deduced.

2. Preliminary results

Let us first recall some facts on the Wiener chaos expansion.
Let W = {Wt : t ∈ [0, T ]} be a standard Brownian motion defined on the

stochastic basis (Ω,F , (Ft)0≤t≤T , P), (Ft)0≤t≤T being the completed standard
Brownian filtration. Let In(fn) denote the multiple Itô stochastic integral of a
symmetric kernel fn ∈ L2([0, T ]n) with respect to the Wiener process W .

In the theory of stochastic analysis on Wiener space it is well known that
any square integrable random variable F can be written as F =

∑∞
n=0 In(fn).

This form is called the chaotic expansion of F . The Ornstein-Uhlenbeck oper-
ator L is defined by

LF = −
∞∑

n=0

nIn(fn).

If p ∈ (1,∞) and α ∈ R we define the Sobolev-Watanabe spaces (see, Wata-
nabe (1984)) D

α,p, as the closure of the set of polynomial random variables with
respect to the norm

‖F‖α,p = ‖(Id − L)
α
2 F‖Lp(Ω),

where Id stands for the mapping identity.



�

�

�

�

�

�

�

�

Smoothness of some functionals of the fBm 353

It is known that a random variable F belongs to D
α,2 if and only if its

chaotic expansion
∑∞

n=0 In(fn) satisfies

∞∑
n=0

(1 + n)αn!‖fn‖2
2 < +∞,

where ‖fn‖2 = ‖fn‖L2([0,T ]n).
For a complete survey on this topic we refer the reader to the book by

Nualart (1995).
Let pσ(x) be the centered Gaussian kernel with variance σ > 0. We denote

by Hn the n-th Hermite polynomial defined for n ≥ 1 by

Hn(x) =
(−1)n

n!
exp

(
x2

2

)
dn

dxn

(
exp

(
−x2

2

))
and H0(x) = 1.

Let BH = {BH
t : t ∈ [0, T ]} be a real valued standard fractional Brow-

nian motion (1-fBm for brevity) with Hurst parameter H ∈ (0, 1). It is well
known that BH is a centered Gaussian process and admits the following integral
representation

BH
t =

∫ t

0

KH(t, s)dWs.

The kernel KH(t, s) for s < t is given by,

(2.2) KH(t, s) = cH(t − s)µ − µcH

∫ t

s

(r − s)µ−1

(
1 −

(s

r

)−µ
)

dr,

cH being a constant and µ = H − 1/2.
The covariance function RH(s, t) = E(BH

s BH
t ) of BH has the explicit form

RH(s, t) =
∫ s∧t

0

KH(t, r)KH(s, r)dr

=
1
2
(s2H + t2H − |t − s|2H).

Moreover, the sample paths of BH are a.s. (H − ε)-Hölder continuous for any
ε > 0.

Berman (1973) and Geman and Horowitz (1980) show that the local time
�(t, x) of BH exists and has Hölder continuous modification of order 1/2H −
1/2 − ε in space and of order 1 − H − ε in time for any ε > 0.

Let {Wt : t ∈ [0, T ]N} be a real valued N -parameter Wiener process.
Given a vector H = (H1, . . . , HN ) with all his components in (0, 1) and a fixed
point T in R+, we define the N -parameter fractional Brownian motion (N -fBm
for brevity), denoted by {BH

t : t ∈ [0, T ]N}, as

(2.3) BH
t =

∫
[0,t]

N∏
j=1

KHj
(tj , sj)dWs,
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for s = (s1, . . . , sN ) and t = (t1, . . . , tN ) and where KHj
, j = 1, . . . , N are the

kernels given in (2.2).
One can show that {BH

t : t ∈ [0, T ]N} is a centered Gaussian process with
the covariance function

RH(s, t) =
N∏

j=1

RHj
(sj , tj) = RH(t, s).

To simplify the notations, we will assume RH(s) = RH(s, s) =
∏N

j=1 s
2Hj

j .
For a given victor H = (H1, . . . , HN ) we shall denote by KH(t, s) the

function
∏N

j=1 KHj
(tj , sj), H∗ = max{H1, . . . , HN}, H = (1/N)

∑N
j=1 Hj and

1/Ĥ = (1/N)
∑N

j=1(1/Hj).
The local time of BH is defined, for any t ∈ [0, T ]N and for every x ∈ R,

as
�(t, x) =

∫
[0,t]

δx(BH
s )ds,

where δx denotes the Dirac function on R. The function �(t, x) has Hölder
continuous modification of order N/2Ĥ − 1/2 − ε in space and of order N(1 −
H) − ε in time for any ε > 0 (see e.g. Xiao (1997)).

In the sequel the multiple stochastic integrals In are interpreted with re-
spect to the N -parameter Wiener process W and du = du1 . . . duN .

Let us now recall a recent result due to Eddahbi et al. (2002) concerning
the chaotic decomposition of the local time of the fBm at any level x ∈ R and
its Sobolev-Watanabe regularity.

Theorem 2.1. Let �(t, x) be the local time of the N-fBm BH . Then
�(t, x) has the following chaos expansion:

�(t, x) =
∞∑

n=0

In(fn( · ; t, x)),

where for (t1, . . . , tn) ∈ ([0, T ]N )n

fn(t1, . . . , tn; t, x) =
∫

[t1∨···∨tn,t]

pRH(s)(x)
[RH(s)]

n
2
Hn

(
x

[RH(s)]
1
2

) n∏
i=1

KH(s, ti)ds.

Consequently �(t, x) belongs to D
α,2 for every α < N/2Ĥ − 1/2.

Proof. See Eddahbi et al. (2002).

3. Main result

We establish the chaotic expansion for the fractional derivative of �(t, x)
and for its Hilbert transform. This extends the results by Eddahbi et al. (2000)
to the fBm setting.
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For any 0 < γ < 1/2H∗ − 1/2 the fractional derivative Dγ
± of �(t, x) is

given by

Dγ
±�(t, ·)(x) =

γ

Γ(1 − γ)

∫ ∞

0

�(t, x) − �(t, x ∓ y)
y1+γ

dy.

To simplify the notations we simply use Dγ
±�(t, x) instead of Dγ

±�(t, ·)(x).
The main result of this section generalizes those of Eddahbi et al. (2000)

to a real valued N -fBm and presents an unified approach to the study of the
fractional derivative and the Hilbert transform of local times.

Theorem 3.1. Let 0 < γ < 1/2H∗−1/2 and D ∈ {Dγ
+, Dγ

−, Dγ , D0}.
Then for every t ∈ [0, T ]N and x ∈ R, D�(t, x) has the following chaos expan-
sion

D�(t, x) =
∞∑

n=0

In(Dfn( · ; t, x)),

where

fn(t1, . . . , tn; t, x) =
∫

[t1∨···∨tn,t]

pRH(s)(x)
[RH(s)]

n
2
Hn

(
x

[RH(s)]
1
2

) n∏
i=1

KH(s, ti)ds.

Moreover D�(t, x) belongs to D
α,2, for all α < N/2Ĥ − 1/2 − γ.

Remark 1. As a consequence of the Rademacher-Menchov lemma (see
e.g. Stout (1984)) if {Jn : n ≥ 1} is an orthogonal sequence of random variables
such that

∑∞
n=1(log n)2E[Jn]2 is finite, then the series

∑∞
n=1 Jn converges al-

most surely. Then the expansions in both Theorems 2.1 and 3.1 converge a.s.
to �(t, x) and D�(t, x) respectively.

Remark 2. In the spatial case where Hj = H for all j = 1, . . . , N ,
D�(t, x) belongs to D

α,2, for all α < N/2H −1/2−γ. Hence when H is close to
zero the local time and its fractional derivative are more regular as functions
on ω (the random component). Theorem 3.1 recovers the results of Eddahbi et
al. (2000) in the particular case when N = 1 and H = 1/2 (Brownian motion
case).

Remark 3. In the case where N = 1 the regularity of Dγ�(t, x) for
γ ≥ 0 in D

α,2 depends on the bound 1/2H−1/2−γ which is exactly the bound
of the Hölder regularity of the Dγ�(t, x) as a function in the space variable.
This observation is not clear in the case of the Brownian motion (H = 1/2)
where the bound for both space and time variables of �(t, x) and Dγ�(t, x) are
1/2 and 1/2 − γ respectively (see e.g. Eddahbi et al. (2000)).

4. Applications: some examples

This section deals with three additive functionals of the 1-fBm (which
means that we take N = 1). We deduce the chaotic decomposition and regu-
larity properties for this functionals of the fBm.
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For the local time �(t, x) we can then write

H�(t, ·)(x) =
1
π

∫ ∞

0

�(t, x + y) − �(t, x − y)
y

dy.

Therefore

D0�(t, ·)(x) =
∫ ∞

0

�(t, x + y) − �(t, x − y)
y

dy

= πH�(t, ·)(x).

Let AH(t, x) be the continuous additive functional of the fBm BH
t which

corresponds to Cauchy’s principal value v.p.(1/x). More precisely AH(t, x) is
defined as

AH(t, x) =
∫ t

0

v.p.

(
1

BH
s − x

)
ds

= πH�(t, ·)(x)
= D0�(t, ·)(x).

Next, we will define the additive functional of BH which corresponds to
the Hadamard finite part p.f.(x−1−γ

+ ) for 0 < γ < 1/2H − 1/2, by

Aγ
H(t, x) =

∫ t

0

p.f.

(
1

(BH
s − x)1+γ

+

)
ds.

Moreover Aγ
H(t, x) can be represented in term of the fractional derivative and

the Hilbert transform as

(4.4) Aγ
H(t, x) = Dγ

+�(t, x) cosπγ + H(Dγ
+�(t, ·))(x) sinπγ.

The processes �(t, x), AH(t, x) and Aγ
H(t, x) are additive functionals of the

fBm BH associated respectively with the Schwartz distributions δx, v.p.(1/x)
and p.f.(x−1−γ

+ ). These additive functionals appeared in some limit theorems as
discussed by Shieh (1996) for the fBm and in Yamada (1996) for the Brownian
motion (H = 1/2). We recall the main limit theorems in which the above
functionals appeared as limit processes.

Proposition 4.1. Let f be a function in L1(R). Assume that f :=∫
R

f(x)dx 
= 0. Then the sequence

1
n1−H

∫ nt

0

f(BH
s )ds, t ≥ 0,

converges in law as n go to infinity to the processes f�(t, 0), t ≥ 0. Let f be
a function such that D0f belongs to L1(R). Assume that D0f 
= 0. Then the
sequence

1
n1−H

∫ nt

0

f(BH
s )ds, t ≥ 0,

converges in law as n go to infinity to the process π−2D0fAH(t, 0), t ≥ 0.
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Proposition 4.2. Let 0 < γ < β < 1/2H − 1/2. Assume that f ∈
Cβ(R) ∩ L1(R) and f 
= 0. Then the sequence

1
n1−H(1+γ)

∫ nt

0

Dγ
−f(BH

s )ds, t ≥ 0,

converges in law as n → +∞ to the process fDγ
+�(t, 0), t ≥ 0, and the sequence

1
n1−H(1+γ)

∫ nt

0

Dγ
+f(BH

s )ds, t ≥ 0,

converges in law as n → +∞ to the process fAγ
H(t, 0), t ≥ 0.

Now, we derive the chaos expansion and regularity in D
α,2 of the additive

functionals Aγ
H(t, x) and AH(t, x).

Theorem 4.1. For any 0 < γ < 1/2H − 1/2 the additive functional
Aγ

H(t, x) has the following chaotic decomposition

Aγ
H(t, x) =

∞∑
n=0

In(Dγ
+fn( · ; t, x) cosπγ + H(Dγ

+fn( · ; t, · ))(x) sinπγ),

where

fn(t1, . . . , tn; t, x) =
∫ t

t1∨···∨tn

ps2H (x)
snH

Hn

( x

sH

) n∏
i=1

KH(s, ti)ds.

Moreover Aγ
H(t, x) belongs to D

α,2, for every α < 1/2H − 1/2 − γ.

Theorem 4.2. The additive functional AH(t, x) has the following cha-
otic decomposition

AH(t, x) =
∞∑

n=0

In(D0fn( · ; t, x)),

where the kernels fn are as in Theorem 4.1. Moreover AH(t, x) belongs to D
α,2,

for every α < 1/2H − 1/2.

Proof. The proof is a consequence of Theorem 3.1 and the formula (4.4).

At the end of this section we treat the continuous additive functional which
corresponds to the function (y − x)β−1

+ , x ∈ R where, 0 < β < 1, is defined by

A−β
H (t, x) =

∫ t

0

(BH
s − x)β−1

+ ds,

and hence it belongs to the class of continuous additive functionals of BH
t .
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By the occupation density formula, we can write

A−β
H (t, x) =

∫
R

(y − x)β−1
+ �(t, y)dy

= ((·)β−1
+ ∗ �(t, ·))(x).

Let g be a continuous function with compact support. If Iβg denotes the
β-th integral of the function g defined by

Iβg(x) =
1

Γ(β)
((·)β−1

+ ∗ g)(x),

then
A−β

H (t, x) = Γ(β)Iβ�(t, x)·
Since, Iβ is a linear continuous operator from the Banach space C(I) of

continuous functions on the compact set I to C(R), the space of continuous
functions on R, it is then a closed linear operator.

Hence, Theorem 4.1 leads to the following result

Corollary 4.1. The additive functional A−β
H (t, x), 0 < β < 1, has the

following chaos expansion

A−β
H (t, x) = Γ(β)

∞∑
n=0

In(Iβfn( · ; t, · )(x)).

Moreover, the functional A−β
H (t, x) belongs to D

α,2, for all α < 1/2H−1/2+β.

Proof. Comparing the fractional integral Iβ with the Marchaud fractional
derivative, Iβ�(t, x) is formally obtained from Dβ

+�(t, x) if we replace β with −β.
Hence,

Iβ�(t, x) = D−β
+ �(t, x),

and the Corollary is proved.

5. Proof of the main result

In order to prove the Theorem 3.1, we need the following technical results.
Let RH(s, t) be the covariance function of 1-fBm. Set

QH(z) :=


RH(1, z)

zH
if z ∈ (0, 1]

0 if z = 0.

The following lemma studies the properties of the function QH(·) and the
behaviour of ∫ 1

0

QH(z)n dz

zH(1+γ)

when n goes to infinity and 0 ≤ γ < 1/2H∗ − 1/2.
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Lemma 5.1. The function QH(·) is continuous with values in [0, 1],
QH(1) = 1, strictly increasing and there exists a constant c(γ, H) independent
of n such that ∫ 1

0

QH(z)n dz

zH(1+γ)
≤ c(γ, H)

n
1

2H

.

Proof. The Proof this Lemma can be found in Eddahbi et al. (2002).

Proposition 5.1. Let 0 < γ < 1/2H∗ − 1/2, D ∈ {Dγ
+, Dγ

−, Dγ , D0}
and fn( · ; t, x) be as in Theorem 3.1. Then the series∑

n≥0

In(Dfn( · ; t, x))

is convergent in L2(Ω). Moreover, the sum
∑

n≥0 In(Dfn( · ; t, x)) belongs to
D

α,2 for every α < N/2Ĥ − 1/2 − γ.

Proof. Let us give the proof for Dγ
+ (the other cases can be proved simi-

larly and by linearity).
We consider the series ∑

n≥0

In(Dγ
+fn( · ; t, x)).

Let us first recall an important formula known from Szegö (1939), that is

Hn(y) exp
(
−y2

2

)
=

(−1)[
n
2 ]2

n
2 +1

n!
√

π
Gg

n,0(y)

where

Gg
n,γ(y) :=

∫ ∞

0

rn+γ exp(−r2)g(yr
√

2)dr, y ∈ R and γ ≥ 0

and

g(y) :=

{
cos(y) if n ∈ 2N

sin(y) if n /∈ 2N.

Thanks to the expression of the kernels fn we have

Dγ
+fn(t1, . . . , tn; t, x)

=
(−1)[

n
2 ]2

n+1
2

πn!

∫
[t1∨···∨tn,t]

∏n
i=1 KH(s, ti)

[RH(s)]
n+1

2

Dγ
+Gg

n,0

(
x

[RH(s)]
1
2

)
ds.
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Then

‖Dγ
+fn( · ; t, x)‖2

2

=
2n+1

(πn!)2

∫
[0,t]

· · ·
∫

[0,t]

∫
[t1∨···∨tn,t]

∫
[t1∨···∨tn,t]

×
[∏n

i=1 KH(u, ti)

[RH(u)]
n+1

2

Dγ
+Gg

n,0

(
x

[RH(u)]
1
2

)

×
∏n

i=1 KH(v, ti)

[RH(v)]
n+1
2

Dγ
+Gg

n,0

(
x

[RH(v)]
1
2

)]
dudv dt1 · · · dtn

=
2n+1

(πn!)2

∫
[0,t]

∫
[0,t]

RH(u, v)n

[RH(u)RH(v)]
n+1

2

× Dγ
+Gg

n,0

(
x

[RH(u)]
1
2

)
Dγ

+Gg
n,0

(
x

[RH(v)]
1
2

)
dudv,

where we have used in the last equality the Fubini theorem and the definition
of RH(u, v).

After some simple computations we can write for λ > 0

Gg
n,0

(x

λ

)
− Gg

n,0

(
x − y

λ

)
= Gg

n,0

(x

λ

)(
1 − cos

(
yr

√
2

λ

))

+ Gg′
n,0

(x

λ

)
sin

(
yr

√
2

λ

)
.

Let us set

c1(γ) :=
γ

Γ(1 − γ)

∫ ∞

0

1 − cos(y)
y1+γ

dy

and
c2(γ) :=

γ

Γ(1 − γ)

∫ ∞

0

sin(y)
y1+γ

dy.

Then
γ

Γ(1 − γ)

∫ ∞

0

(
1 − cos

(
r
√

2
λ

y

))
dy

y1+γ
=

rγ2
γ
2

λγ
c1(γ),

and
γ

Γ(1 − γ)

∫ ∞

0

sin

(
r
√

2
λ

y

)
dy

y1+γ
=

rγ2
γ
2

λγ
c2(γ).

Hence

Dγ
+Gg

n,0

(x

λ

)
=

2
γ
2

λγ

[
c1(γ)Gg

n,γ

(x

λ

)
+ c2(γ)Gg′

n,γ

(x

λ

)]
.

Now using the fact that

sup
λ>0

sup
x∈R

∣∣∣Gg
n,γ

(x

λ

)∣∣∣ ≤ 1
2
Γ
(

n + γ + 1
2

)
,
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and

sup
λ>0

sup
x∈R

∣∣∣Gg′
n,γ

(x

λ

)∣∣∣ ≤ 1
2
Γ
(

n + γ + 1
2

)
,

we deduce that∣∣∣∣Dγ
+Gg

n,0

(
x

[RH(s)]
1
2

)∣∣∣∣ ≤ c(γ)2
γ
2

[RH(s)]
γ
2
Γ
(

n + γ + 1
2

)
,

where c(γ) = max{|c1(γ)|, |c2(γ)|}.
Therefore

n!‖Dγ
+fn( · ; t, x)‖2

2 ≤ c(γ)c(n)
∫

[0,t]

∫
[0,t]

RH(u, v)n dudv

[RH(u)RH(v)]
n+1+γ

2

= c(γ, H, t)c(n)
N∏

j=1

∫ 1

0

QHj
(z)n dz

zHj(1+γ)
.

But Lemma 5.1 yields

n!‖Dγ
+fn( · ; t, x)‖2

2 ≤ c(γ, H, t)
c(n)

n
N

2cH

,

c(γ, H, t) being a constant which may changes from line to line.
By Stirling formula we have,

c(n) ∼ 1
n

1
2−γ

.

Thus

(5.5)
∑
n≥1

n!‖Dγ
+fn( · ; t, x)‖2

2 ≤
∑
n≥1

c(γ, H, t)

n
1
2−γ+ N

2cH

.

The right hand side of the above inequality converges for any γ < N/2Ĥ −1/2,
but this condition is satisfied since γ < 1/2H∗ − 1/2 ≤ N/2Ĥ − 1/2.

Now, from (5.5) we deduce that the

∞∑
n=0

In(Dγ
+fn( · ; t, x))

converges in D
α,2, for all α < N/2Ĥ − 1/2− γ and the limit is uniform on D

α,2

in the space variable. The proof of the proposition is complete.

Let E be a Banach space endowed with the norm ‖ · ‖E . We shall de-
note by C(R; E), the space of continuous functions on R endowed with the sup
norm ‖ · ‖∞,E and by Cδ(R; E), the space of δ-Hölder continuous E-valued func-
tions endowed with the norm ‖f‖∞,δ,E := ‖f‖∞,E + ‖f‖δ,E , where ‖f‖∞,E =
supx ‖f(x)‖E and ‖f‖δ,E = supx�=y(‖f(x) − f(y)‖E)/(|x − y|δ).
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Lemma 5.2. Let γ and δ be real numbers such that 0 < γ < δ. Let
D ∈ {Dγ

+, Dγ
−, Dγ}. Then D is a bounded linear operator from Cδ(R; E) to

C(R; E). Consequently D is continuous, hence is a closed operator.

Proof. Let A be a positive constant and f be a function in the space
Cδ(R; E). Assume that, D = Dγ

−. We have

‖Dγ
−f(x)‖E =

γ

Γ(1 − γ)

∥∥∥∥∫ ∞

0

f(x) − f(x + y)
y1+γ

dy

∥∥∥∥
E

≤ γ

Γ(1 − γ)

∫ A

0

‖f(x) − f(x + y)‖E
y1+γ

dy

+
γ

Γ(1 − γ)

∫ +∞

A

‖f(x) − f(x + y)‖E
y1+γ

dy.

Hence,

‖Dγ
−f‖∞,E ≤ c(γ)‖f‖δ,E

∫ A

0

yδ−γ−1dy + c(γ, A)‖f‖∞,E

≤ c(δ, γ, A) ‖f‖∞,δ,E since γ < δ,

and the proof is done.

In the case where γ > 0 we take E = D
α,2, the Sobolev-Watanabe space.

In the case where γ = 0, we take E = L2(Ω) but we consider the norms in
the space L2(R, L2(Ω)).

Lemma 5.3. The operator D0 linear and bounded from L2(R, L2(Ω)) to
L2(R, L2(Ω)). Moreover the operator π−1D0 is an isometry on L2(R, L2(Ω)).

Proof. Let us first prove the second point of the lemma. Assume that
F is an element of L2(R, L2(Ω)). Since π−1D0 = H, which is an isometry on
L2(R), hence a closed linear operator we have

‖D0(F )(·)‖2
L2(R,L2(Ω)) = π2

∫
R

E[H(F )(x)]2dx

= π2
E

∫
R

[H(F )(x)]2dx

= π2
E

∫
R

[F (x)]2dx

= π2‖F‖2
L2(R,L2(Ω)).

Now, we establish two propositions which give approximation result of
�(t, x) in the spaces Cδ(R, Dα,2) and L2(R, L2(Ω)).



�

�

�

�

�

�

�

�

Smoothness of some functionals of the fBm 363

Proposition 5.2. Set �m(t, x) =
∑m

n=0 In(fn( · ; t, x)). Then �m(t, x)
converges to �(t, x) in Cδ(R, Dα,2) for all α < N/2Ĥ−1/2−δ and δ < 1/2H∗−
1/2. Moreover, for all fixed m ∈ N, the mapping x 
→ �m(t, x) is δ-Hölder
continuous function for any 0 < δ < 1/2H∗ − 1/2.

Proof. We know from Theorem 2.1 that a.s.

�(t, x) =
∞∑

n=0

In(fn( · ; t, x)),

where

fn(t1, . . . , tn; t, x)

=
(−1)[

n
2 ]2

n+1
2

πn!

∫
[t1∨···∨tn,t]

∏n
i=1 KH(s, ti)

[RH(s)]
n+1
2

Gg
n,0

(
x

[RH(s)]
1
2

)
ds.

Let 0 < δ < 1/2H∗ − 1/2 and α > 0 such that α < N/2Ĥ − 1/2 − δ, then we
have

‖�m(t, ·) − �(t, ·)‖2
Cδ(R,Dα,2) =

∥∥∥∥∥
∞∑

n=m+1

In(fn( · ; t, · ))
∥∥∥∥∥

2

Cδ(R,Dα,2)

≤ 2 sup
x∈R

∥∥∥∥∥
∞∑

n=m+1

In(fn( · ; t, x))

∥∥∥∥∥
2

Dα,2

+ 2 sup
x�=y

∥∥∑∞
n=m+1{In(fn( · ; t, x)) − In(fn( · ; t, y))}∥∥2

Dα,2

|x − y|2δ
.

Set

hn(s, x, y) := Gg
n,0

(
x

[RH(s)]
1
2

)
− Gg

n,0

(
y

[RH(s)]
1
2

)
.

Using similar computations as in the proof of the Proposition 5.1 we can write

E|In(fn( · ; t, x)) − In(fn( · ; t, y))|2

=
2n+1

(πn!)2

∫
[0,t]

∫
[0,t]

RH(u, v)n

[RH(u)RH(v)]
n+1

2

hn(u, x, y)hn(v, x, y)dudv

≤ c(δ, H, t)
2n+1+δ

(πn!)2
Γ
(

n + δ + 1
2

)2 |x − y|2δ

n
N

2cH

,

where we have used in the last inequality the fact that

sup
u∈[0,T ]N

|hn(u, x, y)| ≤ 2
n+1−δ

2 Γ
(

n + δ + 1
2

)
|x − y|δ

and Lemma 5.1.
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Therefore

sup
x�=y

∑∞
n=1 nα

E|In(fn( · ; t, x)) − In(fn( · ; t, y))|
|x − y|2γ

2

≤
∞∑

n=1

c(δ, H, t)

n
N

2cH
+ 1

2−δ−α
,

since by Stirling formula

2n+1+δ

(πn!)2
Γ
(

n + δ + 1
2

)2

∼ 1
n

1
2−δ

.

Consequently the series
∑∞

n=0 In(fn( · ; t, x)) converges in the space Cδ(R, Dα,2)
for any α < N/2Ĥ − 1/2 − δ and the proof is complete.

In order to establish the result of the Proposition 5.2 in the space L2(R,
L2(Ω)) we first state an important lemma.

Lemma 5.4. For u ∈ [0, T ]N , β > 0, n ∈ N and x ∈ R, we set

Sn(u, x, β) = Hn

(
x

[RH(u)]
1
2

)
exp

( −βx2

RH(u)

)
,

Tn(u, x, β) =
1

[RH(u)]
1
2

exp
(
−
(

1
2
− β

)
x2

RH(u)

)
.

a) For any 1/4 ≤ β < 1/2, there exists a universal constant c such that

sup
u,v∈[0,T ]N

sup
x∈R

|Sn(u, x, β)Sn(v, x, β)| ≤ c

(n ∨ 1)
8β−1

6

.

b) ∫
R

|Tn(u, x, β)Tn(v, x, β)|dx ≤ c(β)
[RH(u) ∧ RH(v)]

1
2
.

Proof. The proof of this lemma is similar to that given in Imkeller et al.
(1995), we omit it here.

Proposition 5.3. Set �m(t, x) =
∑m

n=0 In(fn( · ; t, x)). Then

‖�m(t, ·) − �(t, ·)‖L2(R,L2(Ω))

converges to zero as m tends to infinity.

Proof. Let us fix the time t ∈ [0, T ]N and recall the chaotic expansion of
the local time

�(t, x) =
∞∑

n=0

∫
[0,t]

pRH(s)(x)
[RH(s)]

n
2
Hn

(
x

[RH(s)]
1
2

)
In(KH(s, ·)⊗n)ds.



�

�

�

�

�

�

�

�

Smoothness of some functionals of the fBm 365

We have

‖�m(t, ·) − �(t, ·)‖2
L2(R,L2(Ω))

=
∫

R

∞∑
n=m+1

{∫
[0,t]

∫
[0,t]

RH(u, v)n

[RH(u)RH(v)]
n
2

× Hn

(
x

[RH(u)]
1
2

)
pRH(u)(x)

× Hn

(
x

[RH(v)]
1
2

)
pRH(v)(x)dudv

}
dx.

Now, for 1/4 ≤ β < 1/2 we can write

Hn

(
x

[RH(u)]
1
2

)
pRH(u)(x)Hn

(
x

[RH(v)]
1
2

)
pRH(v)(x)

=
Sn(u, x, β)Sn(v, x, β)Tn(u, x, β)Tn(v, x, β)

2π
=: Jn(u, v, x, β)

and by Lemma 5.4,∫
R

|Jn(u, v, x, β)|dx ≤ c(β)
[RH(u) ∧ RH(v)]

1
2

1

(n ∨ 1)
8β−1

6

.

Then

‖�(t, ·)‖2
L2(R,L2(Ω))

≤
∑
n≥0

c(β)

(n ∨ 1)
8β−1

6

∫
[0,t]

∫
[0,t]

RH(u, v)n

[RH(u)RH(v)]
n
2

× dudv

[RH(u) ∧ RH(v)]
1
2

≤
∑
n≥0

c(H, t)

(n ∨ 1)
8β−1

6

N∏
j=1

∫ 1

0

QHj
(z)n dz

zHj

≤ c1(H, N, t) + c2(H, N, t)
∑
n≥1

1

n
N

2cH
+ 8β−1

6

.

But the series
∑

n≥1 n−N/2 bH−(8β−1)/6 is convergent for any β satisfying N/2Ĥ+
(8β − 1)/6 > 1. Letting β tends to 1/2 we get the convergence of the series

∞∑
n=0

∫
[0,t]

pRH(s)(x)
[RH(s)]

n
2
Hn

(
x

[RH(s)]
1
2

)
In(KH(s, ·)⊗n)ds

in the space L2(R, L2(Ω)), hence ‖�m(t, ·)− �(t, ·)‖L2(R,L2(Ω)) converges to zero
as m tends to infinity.
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Proof of Theorem 3.1.

Case where γ > 0. It is a consequence of Proposition 5.1, Lemma 5.2
and Proposition 5.2, and the fact that

DIn(fn( · ; t, · ))(x) = In(Dfn( · ; t, x))

for D ∈ {Dγ
+, Dγ

−, Dγ} and

nαn!‖Dfn( · ; t, x)‖2
2 ≤ c(γ, H, t)

n
N

2cH
+ 1

2−γ−α

for n large enough.

Case where γ = 0. Combining Proposition 5.1, Lemma 5.3 and Propo-
sition 5.3 we finish the proof.
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[2] J. Bertoin, Application de la théorie spectrale des cordes vibrantes aux
fonctionnelles additives principales d’un brownien refléchi, Ann. Int. H.
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[17] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloquium Publica-
tions, XXIII 1939, New York.

[18] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Second
edition, Clarendon Press, Oxford, 1948.

[19] S. Watanabe, Lectures on stochastic differential equations and Malliavin
calculus, Springer, 1984.



�

�

�

�

�

�

�

�

368 M’hamed Eddahbi and Josep Vives
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