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1. Introduction

Parabolic vector bundles on a compact Riemann surface were introduced
in [MS], and parabolic vector bundles on higher dimensional projective varieties
(not necessarily smooth) were introduced in [MY].

Here we consider the principal bundle analog of parabolic vector bundles
which was defined in [BBN]. In Section 3 we recall the definition of a parabolic
principal bundle, and also describe an equivalent formulation. Let G be a
complex algebraic group. According to [BBN], a parabolic G-bundle over X is
a functor from the category of finite dimensional left G-modules to the category
of parabolic vector bundles over X satisfying certain conditions. This definition
is modeled on a description by Nori of the usual principal bundles ([No1]). A
functor giving a parabolic G-bundle over X can be concretely represented by a
G-space over X which has the property that it is a principal G-bundle outside
the parabolic divisor.

Let G be a semisimple algebraic group over C. The Lie algebra g of G
is a G-module by the adjoint action. Let E∗ be a parabolic G-bundle over
a compact Riemann surface X and E∗(g) the corresponding parabolic vector
bundle over X for the G-module g. We prove that E∗ admits a flat connection if
and only if every direct summand of E∗(g) is of parabolic degree zero (Theorem
4.2).

Given a vector bundle E and a polynomial P (x) with nonnegative integral
coefficients, a vector bundle P (E) is defined by replacing addition and multi-
plication by the direct sum and tensor product operations respectively. The
vector bundle E is called finite if there are two such distinct polynomials P1

and P2 with P1(E) isomorphic to P2(E) ([We], [No1]). Nori proved that a
vector bundle E over a projective manifold is finite if and only if it admits a
flat connection with finite monodromy ([No1], [No2]).

We call a parabolic vector bundle F∗ to be finite if P1(F∗) ∼= P2(F∗)
for some polynomials P1 and P2 with nonnegative integral coefficients and
P1 �= P2. A parabolic G-bundle E∗, where G is a complex algebraic group, is
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306 Indranil Biswas

called finite if all the associated vector bundles are finite. If G is reductive and
V0 is a fixed faithful G-module, then E∗ is finite if the parabolic vector bundle
associated to E∗ for the G-module V0 is finite (Proposition 5.1).

Let G be a semisimple algebraic group and E∗ a parabolic principal G-
bundle over a projective manifold X. We prove that E∗ is finite if and only if
it admits a flat connection whose monodromy is a finite group (Theorem 5.2).

It should be clear to the reader but nevertheless we should clarify that,
like [BBN], the present work was completely inspired and influenced by [No1].

Acknowledgements. The author is very grateful to the referee for going
through the paper very carefully. The comments of the referee led to the
removal of an error in the proof of Proposition 4.4.

2. Preliminaries

2.1. Parabolic bundles
Let X be a connected smooth projective variety over C. Let D be a normal

crossing divisor on X. This means that D is effective, reduced with each
irreducible component of D being smooth, and furthermore, the irreducible
components of D intersect transversally. Let

(2.1) D =
c∑

i=1

Di

be the decomposition of D into irreducible components. So each Di is smooth
by assumption.

Let E be an algebraic vector bundle over X. A quasiparabolic structure
on E over D is a filtration

(2.2) E|Di
= F i

1 ⊃ F i
2 ⊃ F i

3 ⊃ · · · ⊃ F i
li ⊃ F i

li+1 = 0

by subbundles of the restriction of E to Di for each i ∈ [1 , c]. In other words,
each F i

j is a subbundle of E|Di
and rank(F i

j ) > rank(F i
j+1) for j ∈ [1 , li]. The

intersection of any collection of these subbundles on divisors is a subbundle of
E on each component of the intersection of the supports.

For a quasiparabolic structure as above, parabolic weights are a collection
of rational numbers

(2.3) 0 ≤ λi
1 < λi

2 < λi
3 < · · · < λi

li < 1

where i ∈ [1 , c]. The parabolic weight λi
j corresponds to F i

j in (2.2). A parabolic
structure on E is a quasiparabolic structure with parabolic weights. A vector
bundle equipped with a parabolic structure on it is also called a parabolic vector
bundle.

For notational convenience, a parabolic vector bundle defined as above will
be denoted by E∗. The divisor D is called the parabolic divisor for E∗.
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Given any parabolic vector bundle, M. Maruyama and K. Yokogawa asso-
ciate to it a filtration of sheaves parametrized by R (see [MY]). The construc-
tion of this filtration will be recalled now. The filtration is first constructed for
the interval [0 , 1] and then extended to R using a periodicity condition.

Take a parabolic vector bundle defined as in (2.2) and (2.3). Let

(2.4) Λ :=
c⋃

i=1

{λi
l1 , . . . , λ

i
li} ⊂ Q

be the union consisting of all parabolic weights. For any λ ∈ Λ and i ∈ [1 , c],
set i(λ) ∈ [1 , li] that satisfies the two conditions

(1) λi
i(λ) ≥ λ, and

(2) if i(λ) �= 1, then λi
i(λ)−1 < λ .

The two condition clearly fix the integer i(λ) uniquely. Let F i(λ) ⊂ E be
the subsheaf defined by the exact sequence

(2.5) 0 −→ F i(λ) −→ E
q−→ (E|Di

)/F i
i(λ) −→ 0

with F i
i(λ) a term in the filtration (2.2). The projection q in (2.5) is the com-

position of the restriction homomorphism E −→ E|Di
to Di with the obvious

projection of E|Di
to its quotient (E|Di

)/F i
i(λ). Let

E(λ) :=
c⋂

i=1

F i(λ) ⊂ E

be the subsheaf of E defined by the intersection.
If 0 ∈ Λ, then clearly E(0) = E. If 0 /∈ Λ, set E(0) := E. Also, set

E(1) := E
⊗OX(−D). For any 0 ≤ t < 1, define λ(t) ∈ Λ ∪ {0} as

λ(t) := minimum {λ ∈ Λ ∪ {0 , 1} |λ ≥ t} .

Now set E(t) := E(λ(t)).
For any t ∈ R, define

(2.6) Et := E(t− [t]) ⊗OX(−[t]D)

where [t] ∈ Z is the integral part of t, so 0 ≤ t − [t] < 1, and E(t − [t]) is
defined above.

From the definition of the filtration {Et}t∈R it follows immediately that

(1) the filtration is decreasing as t increases;
(2) it is left continuous, which means that for each t ∈ R, there is ε(t) > 0

such that Et = Et−ε for all ε ∈ [0 , ε(t)];
(3) Et+1 = Et

⊗OX(−D) for all t ∈ R;
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308 Indranil Biswas

(4) given any finite interval [a , b] ⊂ R, the set

{t ∈ [a , b] |Et0 �= Et0+δ for all δ > 0}

is finite;
(5) the filtration has a jump at t0, that is, Et0 �= Et0+δ for all δ > 0, if

and only if t0 − [t0] is a parabolic weight, i.e., t0 − [t0] ∈ Λ.

For any t ∈ R, let Et+ denote the right limit of Et+ε as ε > 0 converges
to 0. It follows from the 4th property stated above that for each t ∈ R there is
ε(t) > 0 such that Et+ = Et+ε for all ε ∈ (0 , ε(t)).

The parabolic structure on E can easily be recovered from the filtration
{Et}t∈R. A number 0 ≤ λ < 1 is a parabolic weight if and only if Eλ �= Eλ+.
If λ is a parabolic weight, then the corresponding term in the quasiparabolic
filtration is recovered using the quotient Eλ/Eλ+. More precisely, Eλ/Eλ+

coincides with the graded piece of the quasiparabolic filtration.
Therefore, a parabolic vector bundle can also be defined in terms of a

filtration of sheaves. When a parabolic vector bundle E∗ is defined in terms
of a filtration {Et}t∈R of sheaves, then E0 will be called the underlying vector
bundle of the parabolic vector bundle E∗. Note that in the filtration defined in
(2.6), we have E0 = E.

Let
τ : X \D −→ X

be the inclusion map. Consider the quasicoherent sheaf τ∗τ∗E on X given by
the direct image of the restriction of E to X \ D. Note that τ∗τ∗E is not
coherent if the divisor D is nonzero. Each Et, t ∈ R, is naturally contained
in τ∗τ∗E. Furthermore, τ∗τ∗E is generated by the collection of subsheaves Et,
t ∈ R.

Now we are in a position to define the direct sum, dual and tensor product
operations on parabolic vector bundles.

Given two parabolic vector bundle E∗ and V∗, with D as the common
parabolic divisor, and E and V respectively as the underlying vector bundles,
consider

W := τ∗τ∗E ⊕ τ∗τ∗V = τ∗τ∗(E ⊕ V ).

The direct sum E∗
⊕
V∗ is defined to be the parabolic vector bundle that

corresponds to the filtration {Wt}t∈R in W defined as

Wt := Et ⊕ Vt

where {Et}t∈R and {Vt}t∈R are the filtrations for E∗ and V∗ respectively. Note
that the underlying vector bundle for the parabolic vector bundle E∗

⊕
V∗

coincides with E
⊕
V . The set of all parabolic weights of E∗

⊕
V∗ is the union

of the parabolic weights of E∗ and V∗.
Now define

U := (τ∗τ∗E) ⊗τ∗OX\D
(τ∗τ∗V ) = τ∗τ∗(E ⊗ V ) .
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So each Et

⊗
Vt′ is a subsheaf of U . For any t ∈ R, let Ut denote the subsheaf

of U generated by all the subsheaves Et1

⊗
Vt2 with t1 + t2 ≥ t. It is easy

to see that each Ut is a coherent subsheaf of U . In fact, Ut is a subsheaf
of Et−1

⊗
V−1. This follows immediately from the third property that says

Et+1 = Et

⊗OX(−D).
The parabolic vector bundle defined by the filtration {Ut}t∈R of U is the

parabolic tensor product E∗
⊗
V∗ (see [Yo], [Bi2], [BBN] for the details).

Note that the underlying vector bundle for the parabolic vector bundle
E∗

⊗
V∗ need not coincide with E

⊗
V . In fact, if E∗ has a parabolic weight

α and V∗ has a parabolic weight β such that α + β ≥ 1, then the underlying
vector bundle for the parabolic vector bundle E∗

⊗
V∗ does not coincide with

E
⊗
V . In that case E

⊗
V is a proper subsheaf of the vector bundle underlying

E∗
⊗
V∗. Let Λ1 (respectively, Λ2) denote the set of all parabolic weights of E∗

(respectively, V∗). The set of all parabolic weights of E∗
⊗
V∗ coincides with

the following set

{λ+ µ |λ ∈ Λ1, µ ∈ Λ2, λ+ µ < 1}⋃
{λ+ µ− 1 |λ ∈ Λ1, µ ∈ Λ2, λ+ µ ≥ 1} .

It is straight forward to deduce this from the definition of tensor product.
For any t ∈ R, the coherent sheaf E−t−1+ (this right limit was defined

earlier) coincides with E over X \D. Therefore, we have a natural isomorphism

(E−t−1+)∗ ∼= E∗

over X \D. This implies that over X,

(E−t−1+)∗ ⊂ τ∗τ∗E∗ .

Indeed, if A and B are two torsionfree coherent sheaves overX with an inclusion
A ↪→ B over X \D, then this inclusion homomorphism extends to an injective
homomorphism

A −→ τ∗τ∗B

over X. This is an immediate consequence of the definition of τ∗τ∗B.
Therefore, we have

Et := (E−t−1+)∗ ⊂ E ′ := τ∗τ∗E∗

with the inclusion obtained above. Note that {Et}t∈R is a decreasing filtration
in the sense that there is a natural inclusion of the coherent sheaf Et1 in Et2

provided t2 ≤ t1. Indeed, the dual of the homomorphism E−t2−1+ ↪→ E−t1−1+

is the natural inclusion. In fact, the filtration satisfies all the conditions required
to define a parabolic structure. The parabolic vector bundle corresponding to
the filtration {Et}t∈R of E ′ is defined to be the parabolic dual of E∗. This
parabolic dual will be denoted by E∗

∗ .
If E∗ has at least one nonzero parabolic weight, then the underlying vector

bundle for the parabolic vector bundle E∗
∗ does not coincide with E∗. The
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underlying vector bundle for E∗
∗ is a subsheaf of E∗. The set of all parabolic

weights of E∗
∗ is

{1 − λ |λ ∈ Λ1 \ (Λ1 ∩ {0})} ∪ (Λ1 ∩ {0}) ,
where Λ1 as before is the set of all parabolic weights of E∗.

For any two parabolic vector bundles E∗ and V∗ the parabolic bundle ho-
momorphism from E∗ to V∗ is the parabolic vector bundle

HomP (E∗ , V∗) := E∗
∗ ⊗ V∗ .

The set of all parabolic weights of HomP (E∗ , V∗) can be calculated from the
above description of parabolic weights of a dual and a tensor product. The set
of all parabolic weights of HomP (E∗ , V∗) coincides with

{µ− λ |λ ∈ Λ1, µ ∈ Λ2, µ ≥ λ}
⋃

{µ− λ+ 1 |λ ∈ Λ1, µ ∈ Λ2, µ < λ}

where Λ1 and Λ2 are the set of all parabolic weights of E∗ and V∗ respectively.
The parabolic tensor product is self-dual, that is, (E∗

∗)∗ = E∗. The tensor
product is associative, that is,

E∗ ⊗ (V∗ ⊗W∗) = (E∗ ⊗ V∗) ⊗W∗

where E∗, V∗ andW∗ are any parabolic vector bundles. Furthermore, the tensor
product is distributive, that is,

E∗ ⊗ (V∗ ⊕W∗) = (E∗ ⊗ V∗) ⊕ (E∗ ⊗W∗) .

See [Bi2], [BBN] for the details.

2.2. Parabolic bundle and bundles with finite group action
Let Y be a connected smooth projective variety and

Γ ⊂ Aut(Y )

a finite subgroup of the automorphism group of the variety Y .
A Γ-linearized vector bundle over Y is an algebraic vector bundle W over

Y equipped with an action of Γ which is compatible with the obvious action
of Γ on Y . In other words, Γ acts on the total space of the vector bundle W
and for every g ∈ Γ the action of g on W is a vector bundle isomorphism of
W with (g−1)∗W .

Assume that the quotient Y/Γ is smooth. Let

q : Y −→ X := Y/Γ

be the quotient map. Let Dq ⊂ Y be the reduced ramification divisor for q.
Take a Γ-linearized vector bundle W over Y . Let

D̃ ⊂ Dq
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be the union of all those irreducible components D′ of Dq that satisfy the
condition that for a general point z of D′, the action of its isotropy subgroup
(for the action of Γ on Y ) on the fiber Wz is nontrivial. So D̃ depends on W .

Assume that the image D := q(D̃) is a normal crossing divisor on X. In
[Bi1], using W we constructed a parabolic vector bundle over X with D as the
parabolic divisor. This construction will be briefly recalled.

Let

D =
h∑

j=1

Dj

be the decomposition of D into irreducible components. Set D̃j := q−1(Dj).
So

D̃ := q−1(D) =
h∑

j=1

D̃j =
h∑

j=1

nj(D̃j)red

where (D̃j)red is the reduced divisor defined by D̃j and nj ≥ 1.
Since W is Γ-linearized, the divisor D̃ is left invariant by the action of Γ

on Y . Consequently, we have an action of Γ on the direct image

W (t) := q∗


W ⊗OY


 h∑

j=1

[−tnj ](D̃j)red







on X, where t ∈ R. Finally define

(2.7) Et := W (t)Γ ,

to be the invariant part for the action of Γ on W (t). The filtration {Et}t∈R

gives a parabolic vector bundle over X. See Section 2c of [Bi1] for the details.
The converse is also true. Fix X and D as in Section 2.1. Also fix an

integer N . We will consider all parabolic vector bundles over X with D as
the parabolic divisor and satisfying the condition that all the parabolic weights
are integral multiples of 1/N (that is, any number in Λ (defined in (2.4)) is an
integral multiple of 1/N). There is a finite Galois covering

(2.8) q : Y −→ X ,

where Y is a smooth projective variety, such that all parabolic vector bundles
of the above type arise from Γ-linearized vector bundles over Y , where Γ is the
Galois group for the covering map q in (2.8). More precisely, given a parabolic
vector bundle E∗ of the above type, with parabolic weights multiples of 1/N ,
there is a unique Γ-linearized vector bundle W over Y such that the parabolic
vector bundle constructed from W coincides with E∗. See Section 3 of [Bi1]
for the details. The covering q was first constructed in [Ka] to prove vanishing
theorems (see also [KMM, Chapter 1.1]).

This correspondence between Γ-linearized vector bundles and parabolic
vector bundles is compatible with the direct sum, tensor product and dual-
ization operations. To describe this, let V and W be two Γ-linearized vector
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bundles over Y . So V
⊕
W and V

⊗
W have natural Γ-linearizations. Also, V ∗

is a Γ-linearized vector bundle. Let E∗ and F∗ be the parabolic vector bundles
corresponding to V and W respectively. Then, the parabolic vector bundles
corresponding to V

⊕
W and V

⊗
W are E∗

⊕
F∗ and E∗

⊗
F∗ respectively.

Similarly, the parabolic vector bundle corresponding to V ∗ is the parabolic
dual E∗

∗ . The parabolic vector bundle corresponding to the Γ-linearized vector
bundle Hom(V ,W ) is the parabolic homomorphism bundle HomP (E∗ , F∗).

2.3. Principal bundles
Let G be a linear algebraic group over C. Let M be a connected smooth

projective variety over C.
A principal G-bundle over M is a smooth complex variety E equipped with

an action of G on the right together with a surjective morphism

p : E −→ M

satisfying the following conditions:

(1) the map p is affine and smooth;
(2) the map p is a morphism of G-spaces, with the action of G on M being

the trivial one;
(3) the map from E×G to the fiber product E×M E defined by (z , g) 
−→

(z , zg) is an isomorphism.

Note that we do not assume E to be locally trivial in Zariski topology.
In [No1], Nori gave a Tannakian description of G-bundles which will be

very useful for us. This description will be recalled below.
Let Rep(G) denote the category of all finite dimensional complex left rep-

resentations of the group G, or equivalently, left G-modules. Note that Rep(G)
is closed under the operations of direct sum and tensor product. It is also closed
under taking the dual. By a G-module we will always mean a left G-module.

Let Vect(M) denote the category of all algebraic vector bundles over M .
Given a principal G-bundle E over M and a left G-module V , the group

G acts on E × V . The action of any g ∈ G sends a point (ζ , v) ∈ E × V to
the point (ζg , g−1v) ∈ E × V . The corresponding quotient space

(2.9) E(V ) := E
G∧ V =

E × V

G

defines a vector bundle over M (see [Gi, p. 114, Définition 1.3.1]). The vector
bundle E(V ) is said to be associated to E for the G-module V .

Note that if

(2.10) f : V −→ W

is a homomorphism of G-modules, then we have a homomorphism of vector
bundles

f̃ : E(V ) −→ E(W )
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that sends any (z , v) ∈ E
G∧ V (see (2.9)) to (z , f(v)) ∈ E

G∧W . Let

(2.11) F(E) : Rep(G) −→ Vect(M)

be the functor that sends any G-module V to the vector bundle E(V ) (Defined
in (2.9)) and sends any homomorphism f of G-modules to the homomorphism
f̃ between the corresponding vector bundles.

The functor F(E) defined above enjoys several natural abstract properties
some of which we list here. The functor F(E) is compatible with the alge-
bra structures of Rep(G) and Vect(M) defined using direct sum and tensor
product operations. It takes a dual representation to the dual vector bundle.
Furthermore, F(E) takes an exact sequence of G-modules to an exact sequence
of vector bundles. It takes the trivial G-module C to the trivial line bundle
on M . The dimension of a G-module V coincides with the rank of the vector
bundle F(E)(V ).

Nori proves that the collection of principal G-bundles over M are in bijec-
tive correspondence with the collection of C-additive functors

F : Rep(G) −→ Vect(M)

satisfying the following properties (see [No1, p. 31] and [No2, p. 77] for the
details):

(1) The rank of the vector bundle F(V ) coincides with the dimension of
the G-module V .

(2) A morphism of vector bundles is said to be strict if the cokernel is also
locally free. Let f be a homomorphism of G-modules as in (2.10). Then the
corresponding homomorphism of vector bundles

F(f) : F(V ) −→ F(W )

is strict. In other words, the cokernel of F(f) is locally free. Note that this
implies that both the image and the kernel of F(f) are both locally free.

(3) The kernel of the homomorphism F(f) (which is a vector bundle by
the previous condition) coincides with F(kernel(f)) and the cokernel of F(f)
coincides with F(cokernel(f)). The rank of the vector bundle F(V ) coincides
with the dimension of the G-module V .

(4) For any two G-modules V and W ,

F(V ⊗W ) = F(V ) ⊗ F(W )

and F(V ∗) = F(V )∗. Furthermore, F(C), where C is the trivial G-module, is
the trivial line bundle OM .

(5) For any two G-modules V and W , the map

F(Hom(V ,W )) = F(V ∗ ⊗W ) −→ F(V ∗) ⊗F(W ) = Hom(F(V ) ,F(W ))

is injective.
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Given such a functor F , there is a G-bundle E, unique up to a unique
isomorphism, such that F ∼= F(E) ([No1, p. 34, Proposition 2.9], [No2]). For
any G-bundle E, the functor F(E) clearly has all the above properties.

3. Parabolic G-bundle

The above alternative description of a principal G-bundles due to Nori
clearly gives a way to define the parabolic analog of G-bundles.

Let PVect(X) denote the category of all parabolic vector bundles over X
with a fixed normal crossing divisor D as the parabolic divisor. Fix a positive
integer N . Let

(3.1) PVectN (X) ⊂ PVect(X)

denote the subcategory of all parabolic vector bundles E∗ with the property
that all the parabolic weights of E∗ are integral multiples of 1/N . From the
description of parabolic weights of a tensor product, direct sum, dual, and a
homomorphism (given in Section 2.1) it follows immediately that PVectN (X)
is closed under the operations of taking direct sum, tensor product, dual and
homomorphism.

A parabolic G-bundle is a C-additive functor

(3.2) FP : Rep(G) −→ PVectN (X)

for some N ≥ 1 satisfying the following conditions:

(1) the functor F takes the operations of direct sum, tensor product, dual
and homomorphism in Rep(G) to the corresponding operation on PVectN (X)
(we already noted that PVectN (X) is closed under all these operations);

(2) the functor F satisfies all the five conditions that characterize a G-
bundle (described in Section 2.3) with the direct sum, tensor product, dual
and homomorphism operations being those for parabolic bundles.

(See Section 2 of [BBN] for the details.)
Let FP be a functor as in (3.2). Fix a covering q as in (2.8) such that for

any E∗ ∈ PVectN (X) we have a Γ-linearized vector bundle on Y . We recall
that there is bijective correspondence between PVectN (X) and the collection
of all Γ-linearized vector bundle on Y .

Let VectΓ(Y ) ⊂ Vect(Y ) denote the subcategory of Γ-linearized vector
bundle on Y . Consider the composition of FP with the functor

PVectN (X) −→ VectΓ(Y )

that sends any E∗ ∈ PVectN (X) to the Γ-linearized vector bundle over Y
corresponding to E∗. This composition will be denoted by F ′

P . By the result
of Nori described in Section 2.3 the functor F ′

P defines a principal G-bundle
EG over Y .



�

�

�

�

�

�

�

�

On the principal bundles with parabolic structure 315

A Γ-linearized principal G-bundle is a principal G-bundle E′
G over Y to-

gether with a lift of the Galois action of Γ on Y to the total space of E′
G

satisfying the condition that the action of Γ on E′
G commutes with the action

of G on E′
G. So a Γ-linearized GL(N,C)-bundle is a Γ-linearized vector bundle

of rank n by the standard representation.
Since the image of the functor F ′

P defined above is contained in VectΓ(Y ),
it follows that EG is Γ-linearized. Indeed, for any γ ∈ Γ, the G-bundle γ∗EG

over Y corresponds to the composition of F ′
P with the automorphism of Vect(Y )

defined by E 
−→ γ∗E. If E ∈ VectΓ(Y ), then E is identified with γ∗E. Since
the image of F ′

P is contained in VectΓ(Y ), from the result of Nori we get an
identification of EG with γ∗EG. As γ runs over Γ, these identifications define
a Γ-linearization of EG.

Consider the quotient space EG/Γ. Since the action of Γ on EG is a lift of
the action of Γ on Y , we have a projection

(3.3) f : EG/Γ −→ Y/Γ = X .

Since the actions of Γ and G on EG commute, the quotient space EG/Γ is
equipped with an action of G and the map f in (3.3) is a morphism of G-
spaces with the action of G on X being the trivial one. The action of G over
f−1(X \D) is free. Hence f makes EG/Γ a principal G-bundle over X \D. In
general, the action is not free over D. However, the isotropy subgroup of any
y ∈ f−1(D) is a finite group, as Γ itself is a finite group. Also, since Y/Γ is
smooth, the quotient EG/Γ must also be smooth.

The isotropy subgroup of any z ∈ f−1(D) is in fact abelian. This follows
immediately from the fact that for any point y ∈ q−1(x) ⊂ Y , where q is
defined in (2.8), the isotropy group of y for the action of Γ on Y is abelian.
It is evident that the isotropy of z is a subgroup of the isotropy of y. That
the isotropy of y is abelian follows immediately from the construction of the
covering q given in [KMM, Chapter 1.1, pp. 303–305].

The abelianness of the isotropy of y can also be deduced using the given
condition that D is a normal crossing divisor. Indeed, the fundamental group
of the complement

(C∗)k × Cd−k = Cd \ {(x1, x2, . . . , xd) ∈ Cd |x1x2 · · ·xk = 0}
is abelian. Hence the Galois group for any étale Galois cover of (C∗)k × Cd−k

is abelian. Since for a sufficiently small analytic open neighborhood Ux ⊂ X
of x ∈ D, the complement Ux \ (Ux ∩D) is homotopic to some (C∗)k × Cd−k

where d = dimX and k ∈ [1 , d], it follows that the isotropy subgroup of any
y ∈ q−1(x) for the action of Γ on Y is abelian.

The above observations clearly suggests the following alternative descrip-
tion of a parabolic G-bundle.

A parabolic G-bundle over X with D as the parabolic divisor is a smooth
variety Q over X equipped with an action of G such that the surjective projec-
tion f of Q to X is G-equivariant with the action of G on X being the trivial
one, and satisfying the following conditions:
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(1) the action of G on Q is proper, and X = Q/G;
(2) f : f−1(X \D) −→ X \D is a principal G-bundle over X \D (so the

action of G is free over f−1(X \D));
(3) for any point x ∈ D and z ∈ f−1(x), the isotropy of z, for the action

of G on Q, is a finite abelian subgroup of G.

Note that the quotient map f in (3.3) satisfies all the above conditions.
The above definition of a parabolic G-bundle is equivalent to the earlier

definition modeled on Nori’s definition of a G-bundle.
There is a close analogy of parabolic G-bundles with the Seifert fibered

spaces. More precisely, if we replace G in the above definition of a parabolic
G-bundle by the circle group S1, and take X to be a compact Riemann surface,
then the total space Q is a Seifert fibered three manifold (see [He, Chapter 12]).

4. Flat connection on a parabolic bundle

We will recall the definition of a logarithmic connection introduced in [De1].
As before, let X be a connected smooth projective manifold and D a normal
crossing divisor on X. Let Ωi

X(logD) denote the sheaf of logarithmic i-forms
on X singular along D ([De1, Ch. II, §3]). Take an algebraic vector bundle
E over X. A logarithmic connection on E singular along D is an algebraic
differential operator

D : E −→ Ω1
X(logD) ⊗ E

satisfying the Leibniz identity which says that D(fs) = fD(s) + df ⊗ s, where
f is a locally defined holomorphic function on X and s is a locally defined
holomorphic section of E. The Leibniz identity implies that the differential
operator D is of order 1.

The curvature of D is a holomorphic section

D ◦ D ∈ H0(X, Ω2
X(logD) ⊗ End(E)) .

The logarithmic connection is called flat if the curvature of D vanishes identi-
cally.

For any irreducible component Di of D, we have a residue map

Res(Di) : Ω1
X(logD) −→ ODi

which is defined using the Poincaré adjunction formula ([De1, p. 77, (3.7.2)]).
Let D be a logarithmic connection. For any irreducible component Di of

D consider the composition

E
D−→ Ω1

X(logD) ⊗ E
Res(Di)⊗IdE−→ E|Di

.

This composition gives a section

(4.1) Res(D, Di) ∈ H0(Di, End(E|Di
))
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which is called the residue of D along Di ([De1, p. 78, (3.8.3)]).
Let E∗ be a parabolic vector bundle as defined in Section 2.1 with E as

the underlying vector bundle and D as the parabolic divisor.
A holomorphic connection on E∗ is a logarithmic connection D on E such

that

(1) for each irreducible componentDi ofD, the residue Res(D, Di) (defined
in (4.1)) is semisimple (that is, completely reducible);

(2) the residue Res(D, Di) preserves the quasiparabolic filtration in (2.2);
(3) on each graded piece F i

j/F
i
j+1 in (2.2), j ∈ [1 , li], the action of Res(D,

Di) is multiplication by the scalar λi
j , where λi

j are the parabolic weights as in
(2.3).

Note that since Res(D, Di) preserves the filtration in (2.2), it acts on each
graded piece F i

j/F
i
j+1.

A flat connection on E∗ is a logarithmic connection D on E as above
satisfying the extra condition that D is flat.

A connection on a Γ-linearized vector bundle is called Γ-equivariant if the
action of Γ on the vector bundle preserves the connection.

The above definition of a holomorphic connection on a parabolic vector
bundle is simply the translation of the definition of a Γ-equivariant holomor-
phic connection using the bijective correspondence between parabolic vector
bundles and Γ-linearized vector bundles. To explain this, let W be the Γ-
linearized vector bundle on Y corresponding to E∗ after choosing a suitable
cover q as in (2.8). On q−1(X \ D), the two vector bundles W and q∗E are
canonically identified and the action of Γ on W |q−1(X\D) corresponds to the
natural action of Γ on q∗E|q−1(X\D) obtained from the fact that the vector
bundle is a pullback from Y/Γ. Here E denotes the underlying vector bundle
for E∗. This assertion follows immediately from the identity (2.7). Therefore, a
holomorphic connection on E|X\D induces a Γ-equivariant holomorphic connec-
tion on W |q−1(X\D). Now, the conditions on a holomorphic connection on E∗
are exactly the ones that are required to extend the connection on W |q−1(X\D)

to a connection on W over Y . Note that any extension of a Γ-equivariant flat
connection on q−1(X \D) to Y must be Γ-equivariant. Indeed, if ∇ is a con-
nection on W over Y extending the Γ-equivariant connection on q−1(X \D),
then for any γ ∈ Γ, the difference γ∗∇ −∇ is a End(W )-valued one-form on
Y vanishing on q−1(X \D). So, we have γ∗∇ = ∇.

Conversely, if we have a Γ-equivariant holomorphic connection on W over
Y , then it induces a holomorphic connection on E over X \D using the identity
(2.7). It is straightforward to check that this connection extends to X as a
logarithmic connection. See Lemma 4.11 of [Bi2]. This logarithmic connection
satisfies the conditions in the definition of a holomorphic connection on E∗.
Clearly, a holomorphic connection on the parabolic vector bundle E∗ is flat
if and only if the corresponding holomorphic connection on the Γ-linearized
vector bundle W is flat.

Lemma 4.1. Let E∗ and V∗ be parabolic vector bundles equipped with
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holomorphic connections D1 and D2 respectively. Then the direct sum E∗
⊕
V∗

and the tensor product E∗
⊗
V∗ have induced holomorphic connections. Simi-

larly, the parabolic dual E∗
∗ also has an induced holomorphic connection.

Proof. If E∗ ∈ PVectN1(X) and V∗ ∈ PVectN2(X), then E∗, V∗ ∈
PVectN (X), where N = N1N2. Fix a covering q as in (2.8). So E∗ and
V∗ correspond to Γ-linearized vector bundles F and W respectively over Y .
Let ∇1 (respectively, ∇2) be the holomorphic connection on F (respectively,
W ) corresponding to the holomorphic connection D1 (respectively, D2) on E∗
(respectively, V∗). Now, ∇1 and ∇2 together induce holomorphic connections
on F

⊕
W and F

⊗
W . Since the direct sum and tensor product operations

of Γ-linearized vector bundles correspond to direct sum and tensor product
operations of parabolic vector bundles, we have holomorphic connections on
E∗

⊕
V∗ and E∗

⊗
V∗. Similarly, E∗

∗ also gets a holomorphic connection from
the connection on F ∗ induced by ∇1.

Let G be a connected semisimple algebraic group over C. Let g be the Lie
algebra of G. So g is a left G-module by the adjoint action. The Lie algebra
multiplication operation

g ⊗ g −→ g

is a homomorphism of G-modules.
Let E∗ be a parabolic principal G-bundle over X. So we have the parabolic

vector bundle E∗(g) which is the image of the G-module g by the functor as in
(3.2) defining E∗. The Lie algebra multiplication operation gives a homomor-
phism

(4.2) µ : E∗(g) ⊗ E∗(g) −→ E∗(g)

of parabolic vector bundles. From Lemma 4.1 we know that a holomorphic
connection on E∗(g) induces a holomorphic connection on E∗(g)

⊗
E∗(g).

A holomorphic connection on E∗ is defined to be a holomorphic connec-
tion D on the parabolic vector bundle E∗(g) satisfying the condition that the
homomorphism µ in (4.2) commutes with the connections (the connection on
E∗(g)

⊗
E∗(g) being the induced one).

A flat connection on E∗ is a holomorphic connection D as above satisfying
the extra condition that D is flat.

A holomorphic vector bundle V over a compact connected Riemann surface
admits a holomorphic connection if and only if for every decomposition V ∼=
V1

⊕
V2, the degree of V1 is zero ([We], [At]). We will prove an analog of this

criterion for parabolic G-bundles.
Any holomorphic connection on a principal bundle over a Riemann surface

M is automatically flat, as there are no nonzero forms of type (2 , 0) on M . By
a connection we will always mean a holomorphic connection. So we will often
say just “connection” instead of “holomorphic connection”.

Given a parabolic vector bundle E∗, a parabolic vector bundle F∗ is called
a direct summand of E∗ if there is another parabolic vector bundle V∗ such
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that E∗ is isomorphic to F∗
⊕
V∗. A clarification of this definition is needed.

Given a subbundle F of the underlying vector bundle E of the parabolic vector
bundle E∗, there is an induced parabolic structure on F ([MS], [MY]). Let F∗
denote this parabolic vector bundle with F as the underlying vector bundle.
If V is another subbundle of E with E = F

⊕
V , then it may happen that

F∗
⊕
V∗ is not isomorphic to E∗. In other words, the condition that F is a

direct summand of E does not imply that F∗ is a direct summand of E∗.

Theorem 4.2. Let X be a compact connected Riemann surface. As
before, the algebraic group G is assumed to be semisimple. A parabolic G-
bundle E∗ over X admits a flat connection if and only if every direct summand
of the parabolic vector bundle E∗(g) is of parabolic degree zero.

Proof. Fix a Galois covering q : Y −→ X as in (2.8) such that the
parabolic G-bundle E∗ corresponds to a Γ-linearized G-bundle FG over Y . The
Galois group for q will be denoted by Γ. Let

ad(FG) :=
FG × g

G

be the adjoint vector bundle. So ad(FG) is the vector bundle over Y associated
to FG for the adjoint action of G on its Lie algebra g (see (2.9)). Therefore, the
parabolic vector bundle E∗(g) corresponds to the Γ-linearized vector bundle
ad(FG).

We already noted that a flat connection on the vector bundle E∗(g) cor-
responds to a Γ-equivariant flat connection on the corresponding Γ-linearized
vector bundle ad(FG). A flat connection D on E∗(g) is compatible with the
homomorphism µ in (4.2) if and only if the corresponding flat connection ∇
on ad(FG) preserves the Lie algebra structure of the fibers of ad(FG). Indeed,
this is an immediate consequence of the fact that the connection on a parabolic
tensor power of E∗(g) induced by the connection D on E∗(g) corresponds to
the connection induced by ∇ on the corresponding tensor power of ad(FG).

Let ∇ be a connection on ad(FG). Consider the connection on

Hom(ad(FG)⊗2 , ad(FG))

induced by ∇. Let m denote the section of this homomorphism bundle defined
by the Lie algebra structure of the fibers of ad(FG). The connection ∇ is said
to preserve the Lie algebra structure of the fibers of ad(FG) if m is a flat section
for the induced connection. Note that ∇ preserves the Lie algebra structure of
the fibers of ad(FG) if and only if the homomorphism

ad(FG) ⊗ ad(FG) −→ ad(FG)

defining the Lie algebra structure commutes with the connections (the connec-
tion on ad(FG)⊗2 is the one induced by ∇).

The next step would be to prove the following proposition which says that
ad(FG) admits a Γ-equivariant flat connection compatible with the Lie algebra
structure of its fibers if and only if it admits a flat connection (not necessarily
Γ-equivariant or Lie algebra structure preserving).
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Proposition 4.3. The adjoint vector bundle ad(FG) admits a
Γ-equivariant flat connection preserving the Lie algebra structure of the fibers
if and only if it admits a flat connection.

Proof. Let GL(g) denote the group of all linear automorphisms of the
vector space g. Its Lie algebra will be denoted by gl(g).

Let FGL(g) be the principal GL(g)-bundle over Y obtained by extending
the structure group of the G-bundle FG using the homomorphism G −→ GL(g)
which is defined by the adjoint action of G on g. Let

(4.3) τ : FG −→ FGL(g) :=
FG × GL(g)

G

be the map for this extension of structure group. So τ (z) = {(z , e)}, where
z ∈ FG and e ∈ GL(g) is the identity element.

A flat connection on FGL(g) is a holomorphic gl(g)-valued one-form ω on
the total space of FGL(g) satisfying the following two conditions:

(1) the form ω is equivariant for the natural action of GL(g) on FGL(g) and
the adjoint action of GL(g) on its Lie algebra gl(g);

(2) the restriction of ω to any fiber of the projection of FGL(g) to Y is the
Maurer-Cartan form.

(See [KN, p. 64, Proposition 1.1] for connection on principal bundles.)
Consider the homomorphism ι : g −→ End(g) defined by the adjoint

action of G. So, ι(v)(w) = [v , w]. Note that ι is a homomorphism of G-
modules. Since G is semisimple, the homomorphism ι is injective.

Since G is semisimple, there is a retraction

ρ : End(g) −→ g

of G-modules. So ρ ◦ ι is the identity automorphism of g.
Giving a connection on the vector bundle ad(FG) is equivalent to giving a

connection on the principal bundle FGL(g). Note that the map τ in (4.3) has
the property that its differential is injective everywhere. More precisely, τ is
an unramified covering map over its image. Using the property of τ it follows
that if ω is a connection form on FGL(g), then τ∗(ρ◦ω) is a connection form on
FG, where τ is defined in (4.3) and ρ is the splitting considered above. Indeed,
since the projection ρ is a homomorphism of G-modules, the form τ∗(ρ ◦ ω) is
G-equivariant, and since the differential of τ is injective everywhere, the form
ω coincides with the Maurer-Cartan form on a fiber of the projection of FG to
Y .

The connection on ad(FG) induced by a connection on the principal bun-
dle FG is clearly compatible with the Lie algebra structure of the fibers of
ad(FG). Therefore, if ad(FG) admits a flat connection, then it admits one that
is compatible with the Lie algebra structure of the fibers of ad(FG).

Note that if the connection ω on FGL(g) is Γ-equivariant, then the connec-
tion τ∗(ρ ◦ ω) on FG is also Γ-equivariant. Indeed, this follows immediately
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from the fact that the map τ in (4.3) is Γ-equivariant. Therefore, to complete
the proof of the proposition it suffices to show that if ad(FG) admits a flat
connection, then it admits one that is Γ-equivariant.

We recall that the space of all connections on ad(FG) is an affine space
for the vector space H0(Y,KY

⊗
End(ad(FG))), where KY is the holomorphic

cotangent bundle of Y . If ∇ is a connection on the vector bundle ad(FG), then
the connection

∇′ :=
1

#Γ

∑
g∈Γ

g∗∇

on ad(FG), where #Γ is the order of the group Γ and the average is defined
using the affine space structure on the space of all connections, is clearly Γ-
equivariant. This completes the proof of the proposition.

Continuing with the proof of Theorem 4.2, we call a Γ-linearized vector
bundle V over Y decomposable if it is isomorphic, as a Γ-linearized vector
bundle, to V1

⊕
V2, where V1 and V2 are Γ-linearized vector bundles of positive

rank. We will call V to be indecomposable if it is not decomposable.
When Γ is the trivial group, the following proposition is Proposition 19 of

[At].

Proposition 4.4. Any indecomposable Γ-linearized vector bundle over
Y of degree zero admits a connection.

Proof. Let V be a holomorphic vector bundle over Y . Let Diff1
Y (V , V )

denote the vector bundle of differential operators of order one on V . Consider
the symbol homomorphism

σ : Diff1
Y (V , V ) −→ TY ⊗ End(V ) .

The Atiyah bundle

At(V ) := σ−1(TY ⊗ IdV ) ⊂ Diff1
Y (V , V )

is the inverse image of TY
⊗

IdV ⊂ TY ⊗ End(V ) by the symbol map. Con-
sider the Atiyah exact sequence

(4.4) 0 −→ End(V ) −→ At(V ) σ−→ TY −→ 0 .

A holomorphic connection on V is a holomorphic splitting of the exact sequence
(4.4) [At, p. 188, Definition].

The space of all extensions of TY by End(V ) is parametrized by

(4.5) H1(Y, KY ⊗ End(V )) ∼= H0(Y, End(V ))∗

with the isomorphism being the Serre duality. Note that End(V ) ∼= End(V )∗

with the isomorphism defined by the symmetric bilinear form

A⊗B 
−→ trace(AB)
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on the fibers of End(V ).
We will recall a few properties of the extension class for (4.4). Let

βV ∈ H1(Y, KY ⊗ End(V ))

be the Atiyah class representing the extension in (4.4), and let

(4.6) βV ∈ H0(Y, End(V ))∗

correspond to βV by the isomorphism in (4.5).
Let I denote the identity automorphism of V . We have

(4.7) βV (I) = 2π
√−1degree(V )

which is a consequence of the construction of Chern classes from the Atiyah
class [At, p. 197, Theorem 6].

Let

(4.8) F. : 0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk−1 ⊂ Fk = V

be a filtration of V by holomorphic subbundles, that is, each Fi is a holomorphic
subbundle of V . Let

EndF.
(V ) ⊂ End(V )

be the subbundle that preserves the filtration. So for each y ∈ Y and w ∈
End(V )y in the fiber over y, we have w ∈ EndF.

(V )y if and only if w((Fi)y) ⊂
(Fi)y for each i ∈ [1 , k]. Let

(4.9) End0
F.

(V ) ⊂ EndF.
(V )

be the subbundle of nilpotent endomorphisms with respect to the flag. So,
w ∈ End0

F.
(V )y if and only if w((Fi)y) ⊂ (Fi−1)y for each i ∈ [1 , k].

With the above notation, the Atiyah bundle At(V ) contains a subbundle F
defined by the sheaf of differential operators on V that preserves the filtration
F. in (4.8). In other words, we have a commutative diagram

0 −→ EndF.
(V ) −→ F −→ TY −→ 0� � ‖

0 −→ End(V ) −→ At(V ) −→ TY −→ 0

where EndF.
(V ) −→ End(V ) is the natural inclusion map, and F is defined

by the condition that a holomorphic section w of At(V ), defined over an open
subset U ⊂ Y , is a section of F if and only if for each i ∈ [1 , k] and any
holomorphic section si of Fi over U , the evaluation w(si) is again a section of
Fi.

From the above commutative diagram it follows immediately that the ex-
tension class βV is in the image of H1(Y, KY

⊗
EndF.

(V )), for the homomor-
phism

H1(Y, KY ⊗ EndF.
(V )) −→ H1(Y, KY ⊗ End(V )) ,
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induced by the inclusion of EndF.
(V ) in End(V ). Using this it can be shown

(see the next paragraph) that

(4.10) βV ∈ kernel(ψ) ,

where βV is defined in (4.6) and

ψ : H0(Y, End(V ))∗ −→ H0(Y, End0
F.

(V ))∗

(End0
F.

(V ) is defined in (4.9)) is the dual of the homomorphism H0(Y,
End0

F.
(V )) ↪→ H0(Y, End(V )) induced by the inclusion of End0

F.
(V ) in End(V ).

To prove the inclusion in (4.10) first recall that the isomorphism in (4.5)
was constructed using the trace form. Note that End0

F.
(V ) is precisely the

orthogonal part EndF.
(V )⊥ ⊂ End(V ) with respect to the trace form. (This

is a special case of the general fact that for any parabolic subalgebra p in a
complex semisimple Lie algebra g the orthogonal part p⊥ ⊂ g for the Killing
form on g coincides with the nilpotent radical of p.) Therefore, the composition

EndF.
(V ) ↪→ End(V ) ∼= End(V )∗ −→ (End0

F.
(V ))∗

is the zero homomorphism (in fact, the above is an exact sequence of vector
bundles). This immediately implies the inclusion in (4.10).

Take any τ ∈ Aut(Y ), and let

τ : H1(Y, KY ⊗ End(V )) −→ H1(Y, KY ⊗ End(τ∗V ))

be the isomorphism induced by τ . Let

βτ∗V ∈ H1(Y, KY ⊗ End(τ∗V ))

be the Atiyah class for τ∗V . Since τ∗At(V ) ∼= At(τ∗V ), the identity

(4.11) βτ∗V = τ(βV )

is obviously valid.
Let W be a Γ-linearized vector bundle over Y . The group Γ has a natural

action on H1(Y, KY

⊗
End(W )). Let

(4.12) β ∈ H1(Y, KY ⊗ End(W ))

represent the Atiyah exact sequence of W . From (4.11) it follows immediately
that

β ∈ H1(Y, KY ⊗ End(W ))Γ .

In other word, β is fixed by the action of Γ on H1(Y, KY

⊗
End(W )). The

isomorphism in (4.5) commutes with the action of the automorphism group
Aut(V ) of the vector bundle V on H1(Y, KY

⊗
End(V )) and H0(Y, End(V ))∗

respectively. Therefore, if

(4.13) β ∈ H0(Y, End(W ))∗
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corresponds to the extension class β by the isomorphism in (4.5), then

β ∈ (H0(Y, End(W ))∗)Γ .

For a linear action of Γ on a finite dimensional complex vector space U we
have

(U∗)Γ ∼= (UΓ)∗ ,

where U∗ is the dual of U and UΓ is the space of all coinvariants, that is, the
quotient

UΓ :=
U∑

g∈Γ(g − 1)U

with (g−1)U := Image((g−1)U). From this observation it follows immediately
that

(H0(Y, End(W ))∗)Γ ∼= (H0(Y, End(W ))Γ)∗ ,

and hence we have β ∈ (H0(Y, End(W ))Γ)∗. Consequently, we have

(4.14) β ◦ (g − 1) = 0

on H0(Y, End(W )) for all g ∈ Γ.
Take any section φ ∈ H0(Y, End(W )). So we have

(4.15) φ = φ0 +
∑
g∈Γ

(g − 1)ψg ,

where φ0 ∈ H0(Y, End(W ))Γ is a Γ-invariant section and ψg, g ∈ Γ, are some
elements in H0(Y, End(W )).

Since Y is compact and connected, the characteristic polynomial of φ0(y) ∈
End(Wy) does not depend on y. Consider the decomposition of W obtained
from the generalized eigenspace decomposition for φ0. Since φ0 is left invariant
by the action of Γ, this is a decomposition of W into a direct sum of Γ-linearized
vector bundles.

Assume that W is indecomposable. This implies that φ0(y) has only one
eigenvalue, say λ. So, the endomorphism of W

φ′ := φ0 − λIdW

is nilpotent with respect to the filtration of subbundles of W defined by φ0.
Note that since φ0 has exactly one eigenvalue, using the powers of φ′ we get a
filtration F. of subbundles ofW . More precisely, the subbundles in the filtration
F. are the inverse image of the torsion sheaves Torsion(W/(φ′)i(W )), i ≥ 0, for
the natural projection

W −→ W/(φ′)i(W ) .

If φ′ �= 0, then this filtration F. of W is nontrivial. Since φ′ is nilpotent
with respect to the filtration F., setting V = W in (4.10) we conclude that
β(φ′) = 0, where β is defined in (4.13). Now, if degree(W ) = 0, then from
(4.7) it follows that β(φ0) = 0.
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Finally, (4.14) and (4.15) together imply that β(φ) = 0 for all φ, that is,
β = 0. Consequently, we have β = 0, where β is the extension class defined
in (4.12). This completes the proof of the proposition.

Continuing with the proof of Theorem 4.2, given a Γ-linearized vector
bundle W , a Γ-linearized vector bundle W1 is called a direct summand of W
if there is a Γ-linearized vector bundle W2 such that W and W1

⊕
W2 are

isomorphic as Γ-linearized vector bundles.
If V ∼= V1

⊕
V2, then from a holomorphic connection on V we can con-

struct holomorphic connections on V1 and V2 as follows. Let pVi
(respectively,

qVi
), i = 1, 2, be the inclusion (respectively, projection) of V to Vi defined using

a fixed isomorphism of V with V1

⊕
V2. If ∇V is a holomorphic connection on

V , then the first order differential operator

(IdKY
⊗ qVi

) ◦ ∇V ◦ pVi
: Vi −→ KY ⊗ Vi

is a holomorphic connection on Vi (see [At, p. 202, Proposition 17]). Conversely,
if V1 and V2 are equipped with holomorphic connections, then V has an induced
holomorphic connection. Any holomorphic vector bundle with a holomorphic
connection is of degree zero. Indeed, recall that a holomorphic connection on
a Riemann surface is flat.

Therefore, using Proposition 4.4 we conclude that a Γ-linearized vector
bundle admits a Γ-equivariant connection if and only if every direct summand
of it is of degree zero.

We next note that in the bijective correspondence between PVectN (X)
and VectΓ(Y ) we have

(4.16) par-deg(F∗) =
degree(W ′)

#Γ

([Bi1, p. 318, (3.12)]), where F∗ ∈ PVectN (X) and W ′ ∈ VectΓ(Y ) correspond
to each other. In view of this, Proposition 4.3 together with the above conclu-
sion completes the proof of the theorem.

Let M be a connected smooth projective manifold of complex dimension
at least three. Fix an ample line bundle L over M . Let EG be a holomorphic
principal G-bundle over M , where G is a complex algebraic group.

Atiyah proved that EG admits a holomorphic connection if and only if for
any n0 ∈ N there is an integer n ≥ n0 and a smooth divisor Dn in the complete
linear system |L⊗n| such that the restriction of EG to Dn admits a holomorphic
connection ([At, p. 204, Proposition 21]).

Note that for a covering q as in (2.8), if L is an ample line bundle over
X, then q∗L is ample over Y , since the morphism q is finite. Also note that if
D is a normal crossing divisor on X, then there is a n0 ∈ N such that for any
n ≥ n0, the general member Dn ∈ |L⊗n| has the following properties

(1) Dn is smooth and irreducible;
(2) D ∩Dn is a normal crossing divisor on Dn.
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If E∗ is a parabolic G-bundle over X with D as the parabolic divisor, for such
a divisor Dn, we can restrict E∗ to Dn to get a parabolic G-bundle over Dn

with D ∩Dn as the parabolic divisor.
Therefore, the above quoted Proposition 21 of [At] gives the following

Proposition.

Proposition 4.5. Let D be a normal crossing divisor on a connected
smooth projective variety X with dimX ≥ 3. Let E∗ be a parabolic G-bundle
over X with D as the parabolic divisor, where G is a complex semisimple alge-
braic group. Fix an ample line bundle L over X. The parabolic G-bundle E∗
admits a holomorphic connection if and only if for every n0 ∈ N there is an
integer n ≥ n0 and a divisor Dn ∈ |L⊗n| in the complete linear system such
that

(1) Dn is smooth;
(2) D ∩Dn is a normal crossing divisor on Dn;
(3) the parabolic G-bundle on Dn, with D ∩ Dn as the parabolic divisor,

obtained by restricting E∗ to Dn admits a holomorphic connection.

5. Finite principal bundles

Let P (x) be a polynomial in one variable whose coefficients are nonnegative
integers. Given a vector bundle E, define P (E) by substituting E for x and
replacing the addition and multiplication by direct sum and tensor product
operations respectively. In other words, if P (x) =

∑n
i=0 aix

i, then

P (E) :=
n⊕

i=0

(E⊗i ⊗C Cai) .

An algebraic vector bundle E is called finite if there are two distinct poly-
nomials with nonnegative integral coefficients, say P1 and P2, such that the
vector bundle P1(E) is isomorphic to P2(E) ([We], [No1], [No2]).

The main result of [No1] says that a vector bundle E over a projective
manifold M is finite if and only if there is a finite étale Galois cover p : M̃ −→
M such that the pullback p∗E is trivial. Note that the condition that there is
a finite étale Galois covering p with p∗E trivial is equivalent to the condition
that E admits a flat connection whose monodromy group is finite.

The above definition of finiteness suggests the following definition for prin-
cipal bundles.

Let G be a complex algebraic group. A principal G-bundle EG over a
smooth projective varietyM is defined to be finite if for every finite dimensional
G-module V , the associated vector bundle EG(V ) := (EG × V )/G is finite.

We recall that a G-module V0 is called faithful if the homomorphism G −→
Aut(V0) is injective.

Proposition 5.1. Let G be a complex reductive algebraic group and V0

a finite dimensional faithful G-module. A principal G-bundle EG over M is
finite if and only if the associated vector bundle EG(V0) over M is finite.
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Proof. If EG is finite then obviously EG(V0) is finite. To prove the con-
verse, assume that the vector bundle EG(V0) is finite.

First note that if W is finite then W ∗ is also finite, as P1(W ) ∼= P2(W )
implies P1(W ∗) ∼= P2(W ∗). From the above quoted result of Nori that a vector
bundle is finite if and only if it has a flat connection with finite monodromy
it follows immediately that if W1 and W2 are finite then both W1

⊕
W2 and

W1

⊗
W2 are also finite.

Let V be a finite dimensional G-module. Since V0 is faithful and G is
reductive, we know that V is a direct summand of a G-module V of the form

V =
l⊕

j=1

V
⊗nj

0 ⊗ (V ∗
0 )⊗mj

([De2, p. 40, Proposition 3.1 (a)]). Since EG(V0) is finite, from the above
remarks on tensor product, direct sum and dual it follows immediately that
the associated vector bundle

EG(V) :=
EG × V
G

is finite.
Any direct summand of a finite vector bundle is finite ([No1, p. 36, Lemma

3.2 (2)]). Since the G-module V is a direct summand of V , the associated vector
bundle EG(V ) is a direct summand of EG(V). This completes the proof of the
proposition.

Given a parabolic vector bundle E∗ and a polynomial P (x) =
∑n

i=0 aix
i,

where ai ∈ N are nonnegative, define

P (E∗) :=
n⊕

i=0

(E∗)⊗i
⊗

C

Cai

using the tensor product and direct sum operations of parabolic vector bundles.
Imitating the definition of a finite vector (principal) bundle we will define a
finite parabolic vector (principal) bundle.

A parabolic vector bundle E∗ is defined to be finite if there are two distinct
polynomials with nonnegative integral coefficients, say P1 and P2, such that the
parabolic vector bundle P1(E∗) is isomorphic to P2(E∗).

A parabolic G-bundle F∗ is defined to be finite if for every finite dimen-
sional G-module V , the corresponding parabolic vector bundle F∗(V ) is finite.
Here F∗(V ) denotes the image of the G-module V by the functor as in (3.2)
defining the parabolic G-bundle.

Let G be a complex semisimple group. Let E∗ be a parabolic G-bundle
over a connected projective manifold X with a normal crossing divisor D as
the parabolic divisor.

Theorem 5.2. The parabolic G-bundle E∗ is finite if and only if it ad-
mits a flat connection with finite monodromy.
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Proof. Take N ∈ N such that the functor as in (3.2) defining the parabolic
G-bundle E∗ sends Rep(G) to PVectN (X). Fix a covering as in (2.8) such that
we have bijective correspondence between PVectN (X) and VectΓ(Y ), where
Γ is the Galois group for the covering map q. Let EG denote the Γ-linearized
principalG-bundle over the covering Y corresponding to the parabolicG-bundle
E∗.

Assume that E∗ is finite. Let g be the Lie algebra of G, which is a G-
module by the adjoint action. Let E∗(g) denote the parabolic vector bundle
which is the image of the G-module g by the functor as in (3.2) defining the
parabolic G-bundle E∗. Since E∗ is finite, the parabolic vector bundle E∗(g)
is finite. Let P1 and P2 be two distinct polynomials with nonnegative integral
coefficients such that

(5.1) P1(E∗(g)) ∼= P2(E∗(g)) .

Such polynomials exist since E∗(g) is finite.
Consider the adjoint vector bundle ad(EG). Note that ad(EG) corresponds

to E∗(g) by the bijective correspondence between PVectN (X) and VectΓ(Y ).
From (5.1) it follows that

P1(ad(EG)) ∼= P2(ad(EG)) .

In other words, ad(EG) is a finite vector bundle. Therefore, from [No1] we
know that ad(EG) has a flat connection ∇ whose monodromy group is finite.
We need to show that ∇ is Γ-equivariant, as well as it preserves the Lie algebra
structure of the fibers of ad(EG) in order to be able to conclude that ∇ induces
a connection on E∗.

Since the monodromy group of ∇ is finite, there is a Hermitian structure
on ad(EG) which is preserved by ∇. To explain this fix a point y ∈ Y . Let

Γ0 ⊂ Aut(ad(EG)y)

be the monodromy of ∇, where Aut(ad(EG)y) denotes the group of all linear
isomorphisms of the fiber ad(EG)y.

Choose a Hermitian structure h on ad(EG)y. Now define the Hermitian
structure

ĥ :=
∑
g∈Γ0

g∗h

on ad(EG)y, where g∗h(v , w) := h(g(v) , g(w)); note that Γ0 is a finite group.
This Hermitian structure ĥ is evidently preserved by the action of the mon-
odromy group Γ0. Consequently, by parallel translations of ĥ (for the connec-
tion ∇) we obtain a Hermitian structure on the vector bundle ad(EG) which
is preserved by ∇. In other words, ∇ is a unitary connection. This implies
that the vector bundle ad(EG) is quasistable (with respect to any polarization)
with vanishing Chern classes of positive degree, and ∇ is the unique unitary
flat connection on ad(EG). See [Do2, p. 231, Proposition 1] (and also [Do1,
p. 1, Theorem 1] as referred in [Do2] for uniqueness).
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From the uniqueness of unitary flat connection on a vector bundle over
Y it follows immediately that the connection ∇ is preserved by the action of
the Galois group Γ on ad(EG). Indeed, for any g ∈ Γ, the connection g∗∇ on
g∗ad(EG) = ad(EG) coincides with ∇, as g∗∇ is unitary flat with ∇ also being
so. In other words, the connection ∇ is Γ-equivariant.

As in the proof of Theorem 4.2, let

m ∈ H0(Y, Hom(ad(EG)⊗2 , ad(EG)))

be the section defined by the Lie algebra structure of the fibers of ad(EG). Con-
sider the connection ∇ on Hom(ad(EG)⊗2 , ad(EG)) induced by the connection
∇ on ad(EG). Since ∇ is unitary flat, the connection ∇ is also unitary flat.
Since m is a holomorphic section of Hom(ad(EG)⊗2 , ad(EG)), it must be a flat
section with respect to the unitary flat connection ∇ ([Do1, p. 6, Proposition
3 (ii)]). In other words, the connection ∇ on ad(EG) preserves the Lie algebra
structure of the fibers of ad(EG).

Since ∇ is Γ-equivariant and preserves the Lie algebra structure of the
fibers of ad(EG), it induces a connection D on the parabolic G-bundle E∗ (see
Section 4). Since ∇ is flat with finite monodromy, the connection D is flat with
finite monodromy. So, a finite parabolic G-bundle admits a flat connection
with finite monodromy.

To prove the converse, let D be a flat connection on the parabolic G-bundle
E∗. Let V be a finite dimensional G-module. Let E∗(V ) denote the parabolic
vector bundle which is the image of the G-module V by the functor as in (3.2)
defining the parabolic G-bundle E∗. We need to show that E∗(V ) is finite.

Let W = EG(V ) := (EG × V )/G be the vector bundle associated to EG

for the G-module V . So W and E∗(V ) correspond to each other by the bijective
correspondence between PVectN (X) and VectΓ(Y ). We will show that W is a
finite vector bundle.

The connection D on E∗ induces Γ-equivariant flat connection ∇ on the
adjoint vector bundle ad(EG) that preserves the Lie algebra structure of the
fibers of ad(EG). Let Z(G) ⊂ G be the center of G. So the adjoint action of
Z(G) on g is trivial, and the quotient

G′ :=
G

Z(G)

acts faithfully on g. Since the connected component containing the identity
element of the group of all automorphisms of the Lie algebra g coincides with
G′, the connection ∇ on ad(EG) gives a connection ∇′ on the principal G′-
bundle

EG(G′) :=
EG ×G′

G

obtained by extending the structure group of EG using the quotient map G −→
G′. Indeed, since ∇ preserves the Lie algebra structure of the fibers of ad(EG),
it induces a flat connection ∇′ on EG(G′). Consider the map

(5.2) τ : EG −→ EG(G′)
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for the extension of structure group. So, for any z ∈ EG we have τ (z) =
{(z , e)}, where e is the identity element in G′.

Since G is semisimple, its center Z(G) is a finite group. Therefore, the
projection τ in (5.2) is a covering map. Consequently, the pullback ∇ := τ∗∇′

is a flat connection on the principal G-bundle EG.
Since the monodromy of ∇ is a finite group and Z(G) is finite, the mon-

odromy of the connection ∇ on EG is a finite group.
A connection on a principal bundle induces a connection on any of its

associated bundles. Let ∇V denote the flat connection on the above vector
bundle W = EG(V ) (associated to EG for the G-module V ) by the connection
∇. The monodromy of ∇V is a finite group since the monodromy of ∇ is so.

Since ∇ is Γ-equivariant, the connection ∇ is Γ-equivariant. Hence the
connection ∇V on W is also Γ-equivariant. Therefore, ∇V induces a flat con-
nection on the parabolic vector bundle E∗(V ). Recall that E∗(V ) corresponds
to W by the bijective correspondence between PVectN (X) and VectΓ(Y ). Let
DV denote the connection on E∗(V ) induced by ∇V . Note that the monodromy
group of DV is finite since ∇V has finite monodromy.

Let Γ0 be a finite subgroup of Aut(V0), where V0 is a finite dimensional
vector space. So V0 is a Γ0-module. Given a polynomial P (x) with nonnega-
tive integral coefficients, P (V0) is a Γ0-module which is constructed by replac-
ing addition and multiplication by direct sum and tensor product operations
respectively. We want to show that there are two such distinct polynomials
P1 and P2 with the property that the two Γ0-modules P1(V0) and P2(V0) are
isomorphic.

Since Γ0 is a finite group, there are only finitely many finite dimensional
irreducible Γ0-modules. Now the above assertion that there are two distinct
polynomials P1 and P2 with P1(V0) ∼= P2(V0) is a very special case of [No1,
p. 35, Lemma 3.1] (set the base X in [No1] to be a single point).

Now, fix a point x ∈ X \D. Set V0 = Ex and set Γ0 to be the monodromy
representation for the flat connection DV over X \ D. The assertion that
P1(V0) ∼= P2(V0) as Γ0-modules immediately implies that the two parabolic
vector bundles P1(E∗(V )) and P2(E∗(V )) are isomorphic (they have flat con-
nections with same monodromy). In other words, the parabolic vector bundle
E∗(V ) is finite. This completes the proof of the theorem.
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Lecture Notes in Math. 163, Springer-Verlag, Berlin, 1970.

[De2] P. Deligne (notes by J. S. Milne), Hodge cycles on abelian varieties,
(Hodge cycles, motives, and Shimura varieties, by P. Deligne, J.
S. Milne, A. Ogus and K.-Y. Shih), Lecture Notes in Math. 900,
Springer-Verlag, Berlin-New York, 1982.

[Do1] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex
algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc.
50 (1985), 1–26.

[Do2] , Infinite determinants, stable bundles and curvature, Duke
Math. Jour. 54 (1987), 231–247.

[Gi] J. Giraud, Cohomologie non abélienne, Die Grundlehren der math-
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