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Calabi–Yau threefolds with infinitely many
divisorial contractions

By

Hokuto Uehara∗

Abstract

We study Calabi–Yau 3-folds with infinitely many divisorial con-
tractions. We also suggest a method to describe Calabi–Yau 3-folds
with the infinite automorphism group.

0. Introduction

A smooth complex projective n-dimensional variety X is a Calabi–Yau n-
fold (C–Y n-fold) if KX = 0 and h1(OX) = 0. If the Abundance Conjecture
and the Minimal Model Conjecture are true, a Q-factorial terminal n-fold Y
with Kodaira dimension κ(Y ) = 0 is always birationally equivalent to a Q-
factorial terminal n-fold X with KX ≡ 0 ([6], [10]). We can regard C–Y
n-folds as special cases of this. As is well-known, for a smooth K3 surface S,
the nef cone A(S) is rational polyhedral if and only if AutS is finite ([22]).
Moreover if a K3 surface S with infinite AutS contains a −2-curve, then S
contains infinitely many −2-curves ([12]). In the same way, the Morrison Cone
Conjecture (2.1) states that for a C–Y 3-fold X the nef cone A(X) is rational
polyhedral if and only if AutX is finite. By analogy with K3 surfaces and C–Y
3-folds, if a C–Y 3-fold X with infinite AutX admits a divisorial contraction,
it is highly likely that it admits infinitely many such. In addition to this, a
C–Y 3-fold always admits a birational contraction when its Picard number is
more than 13 ([2]). In this context, it seems worthwhile to study C–Y 3-folds
with infinitely many divisorial contractions. One of the aim of this article is to
give a characterization of C–Y 3-folds which admit infinitely many divisorial
contractions (see Theorem 0.3. See also Theorem 3.6 and Remark 3.8 for the
precise statement).

Another aim of this article is to suggest a method to describe C–Y 3-folds
X with infinite AutX. If we have such X, then A(X)∩c⊥2 �= {0} (Remark 2.3),
where c2(= c2(X)) is the second Chern class of X. If A(X) ∩ c⊥2 contains the
class of a rational divisor, it is likely (cf. Conjecture 1.2) that some multiple of
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100 Hokuto Uehara

the divisor determines a nontrivial contraction ϕ : X → Y satisfying ϕ∗H ·c2 =
0 for an ample divisor H on Y . We call such a contraction c2-contraction. In
this context our first task to describe C–Y 3-folds with infinite AutX is to:

(i) describe C–Y 3-folds X with infinite AutX such that X does not admit
any nontrivial c2-contractions.

I guess such X has the small Picard number greater than 2. Secondly we
should:

(ii) classify C–Y 3-folds which admit a nontrivial c2-contraction.

Presumably we can do this because we have the remarkable classification of
C–Y 3-folds X admitting a c2-contraction ϕ : X → Y in the case dimY ≥ 2
by K. Oguiso (cf. [20] or Theorem 3.3). Next we should:

(iii) determine which C-Y 3-folds in the list obtained by (ii) have infinite
AutX.

If we carry out these, we can describe all C–Y 3-folds with infinite AutX.
In Section 1, we prove several lemmas for the latter use. Let Ĩ(= ĨX)

be the index of the set {ϕi}i∈Ĩ of all possible divisorial contractions on a C–
Y 3-fold X and let us denote the exceptional divisor of ϕi by Ei. The most
important lemma in Section 1 is:

Lemma 0.1 (= Proposition 1.10 + Remark 1.5). Let J be an infinite
subset of Ĩ. Then there exist 1, 2, 3 ∈ J such that E1 + E2 + E3 is nef.

We use this lemma in Section 3 to construct a nontrivial c2-contraction on C–Y
3-folds with infinitely many divisorial contractions.

In Section 2, we give a partial answer to the following conjecture. Put
A(X)ε := {x ∈ A(X) | c2 · x ≥ εH2 · x} for an ample divisor H on X and let ε
be a positive real number.

Conjecture 0.2 (=Conjecture 2.6). Let X be a C–Y 3-fold.
(i) Let ϕ : X → Y be a contraction such that ϕ∗A(Y ) ⊂ A(X)ε. Then the

cardinality of the set of such ϕ is finite.
(ii) Let ϕ : X → Y be a contraction such that ϕ∗A(Y ) ⊂ A(X)ε. Then

A(Y ) is rational polyhedral.

If AutX is infinite, then A(X) is not rational polyhedral (Remark 2.3). Hence
Conjecture 0.2 means the shape of A(X) is complicated near A(X) ∩ c⊥2 . We
expect this “complexity” produces a rational point on A(X) ∩ c⊥2 \{0}.

In Section 3, we consider C–Y 3-folds with infinitely many divisorial con-
tractions. Define Ĩc2∗0 := {i ∈ Ĩ |Ei · c2 ∗ 0}, where ∗ is <,= or >. The main
result of Section 3 is:

Theorem 0.3 (See Theorem 3.6 for the precise statement). Assume
that Ĩc2=0 is infinite for a C–Y 3-fold X. Then there exist a K3 surface S
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containing infinitely many smooth rational curves, an elliptic curve E and a
finite Gorenstein automorphism group G of S ×E such that X is birational to
(S × E)/G.

In the proof of Theorem 0.3 we use Lemma 0.1 to prove the existence of a
nontrivial c2-contraction on X and we use the Oguiso’s classification to deter-
mine the structure of X. Hence Theorem 0.3 is regarded as a realization of the
method to describe C–Y 3-folds with infinite AutX we mention above.

Finally, in Section 4 we construct C-Y 3-folds with |Ĩc2=0| = ∞. In passing,
we show that the set Ĩc2<0 is always finite in Corollary 1.11 and Remark 1.5. I
do not know any examples of C-Y 3-folds with |Ĩc2>0| = ∞.

Notation and Convention
(i) When a normal projective varietyX over C has at most rational Goren-

stein singularities and it satisfies h1(OX) = 0 and KX = 0, we call it a C–Y
model. X always means a C–Y 3-fold and a C–Y model means a 3-dimensional
C–Y model throughout this paper unless we specify otherwise.

(ii) For a n-dimensional projective variety X, let A(X) denote the cone
generated by ample divisors inN1(X) and Ae(X) denotes the effective nef cone,
namely, the cone generated by nef effective divisors inN1(X). Let us denote the
cone {x ∈ N1(X) |xn = 0} by W . Suppose the symbol ∗ denotes >,≥ etc. For
a real divisor D on X and a constant c, set D∗c := {z ∈ N1(X) | (D ·z)∗c}∪{0}.
Moreover [D] denotes the element in N1(X) corresponding to D. For a real
1-cycle z, define the subspace z∗c of N1(X) and the class [z] ∈ N1(X) in the
similar way. Define NE(X)D∗0 := NE(X) ∩D∗0.

(iii) For a C–Y 3-fold X, we can regard the second Chern class c2(X) as
a linear form on H2(X,Z). We often abbreviate it by c2 in this article. As
is well-known, c2 · x ≥ 0 for all x ∈ A(X) by Y. Miyaoka ([13]). We define
A(X)ε := A(X)∩ (c2 − εH2)≥0 for a fixed ample divisor H and a positive real
number ε.

(iv) We use the terminology terminal, canonical, klt (Kawamata log termi-
nal), lc (log canonical) and plt (purely log terminal) for a log pair (X,∆) in
the sense in [10], but we always assume that ∆ is effective in these definitions.
Klt is same as log terminal in [6]. We also use the terminology semismooth in
the sense in [9].

(v) The term contraction means a surjective morphism between normal
projective varieties with connected fibers and thus contractions consist of the
fiber space case and the birational contraction case. Let IX(= I) be the index
of the set {ϕi : X → Yi}i∈I of all possible birational contractions of type III on
a C–Y 3-fold X (see Definition 1.1 for this terminology). For i ∈ I, let Ei be
the exceptional divisor of ϕi, Ci the irreducible curve ϕi(Ei) and Fi a general
fiber of ϕi|Ei

: Ei → Ci. It is known that Ei · Fi = −2. Furthermore let us
denote by Vi the image of the closed cone of curves NE(Ei) under the natural
map N1(Ei) → N1(X). We know that Vi is a 2-dimensional cone (see Fact
(iii)) generated by the rays R≥0[Fi] and R≥0[vi], where vi is a real 1-cycle.

(vi) We denote the biregular (respectively, birational) automorphism group



�

�

�

�

�

�

�

�

102 Hokuto Uehara

of a variety X by AutX (respectively, BirX).
(vii) If V is given as VQ⊗R for some Q-vector space VQ, a rational polyhedral

cone is a closed cone generated by a finite set of rational points. A cone C is
locally rational polyhedral at a point x if there is a neighborhood U of x and a
rational polyhedral cone D such that C ∩ U = D ∩ U . Let E be a open cone
in V . We say that a cone C is locally rational polyhedral in E if C is a rational
polyhedral at every point in E .

Acknowledgement. Part of this paper was written while I was at the
University of Warwick from April 2000 to March 2001 and had a short visit at
the University of Bayreuth. I would like to thank both universities (in particular
Professors M. Reid and Th. Peternell) for providing a pleasant environment.
I wish to thank Professors Y. Kawamata and Masa-hiko Saito for pertinent
comments. I am especially grateful to Professors K. Oguiso and B. Szendröi
for their generosity with their time and expertise. Last but not least, I would
like to express gratitude to my friends, K. Inui, M. Fukushima and D. Ryder
for their warm encouragement.

1. Divisorial contractions on C–Y 3-folds

We say that a birational contraction ϕ : X → Y between normal projective
varieties is primitive if ρ(X/Y ) = 1. We classify a primitive birational contrac-
tion on a Q-factorial C–Y model according to the dimensions of its exceptional
set and its image.

Definition 1.1. We say that a primitive birational contraction on a (3-
dimensional) C–Y model is of type I if it contracts only finitely many curves,
of type II if it contracts an irreducible surface to a single point and of type III
if it contracts an irreducible surface to a curve. Hence a primitive birational
contraction is, so called, a small (respectively, divisorial) contraction if it is
of type I (respectively, type II or III). Every birational contractions on a Q-
factorial C–Y model is one of types I, II and III.

Let ϕ : X → Y be a birational contraction on a n-dimensional C–Y model
X. Let H, H ′ denote ample divisors on X, Y respectively. Since ∆ := −H +
mϕ∗H ′ is effective for sufficiently large m, the pair (X, ε∆) defines a log variety
with klt singularities for 0 < ε� 1. Therefore we can regard ϕ as a KX + ε∆-
extremal face contraction and so we may apply theory of the log Minimal Model
Program (log MMP) to study ϕ. All of the following facts come from theory
of the log MMP ([6], [10]).

Fact
(i) Since −(KX + ε∆) is ϕ-ample, the cone NE(X/Y ) is rational polyhe-

dral by the cone theorem.
(ii) Since every extremal face contraction can be decomposed into extremal

ray contractions, we can write ϕ = ψm ◦ · · · ◦ ψ1, where ψi is a primitive
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contraction and m = ρ(X/Y ). A contraction ϕ corresponds to a codimension
m face ∆m of A(X), not entirely contained in W , which is just the image of
A(Y ) under the injection ϕ∗ : N1(Y ) → N1(X). Thus a decomposition of ϕ
corresponds to a sequence of faces ∆0 := A(X) > ∆1 > · · · > ∆m, where ∆i is
a codimension 1 face of ∆i+1.

(iii) Since the image of ϕ∗ : Pic(Y ) → Pic(X) coincides with

{D ∈ Pic(X) |D · z = 0 for all z ∈ (ϕ∗H ′)⊥ ∩NE(X)}

and since X is a C–Y model, Y is also a C–Y model. We also obtain an exact
sequence

0 → N1(X/Y ) → N1(X) → N1(Y ) → 0.

Assume that dimX = 3. Pick i ∈ I. By the exact sequence above, we know
that Vi is a 2-dimensional cone in N1(X).

(iv) Let X be a C–Y 3-fold and L an effective nef divisor on it. Since
(X, εL) is a klt pair for 0 < ε � 1 and KX + εL is nef, we know that L is
semi-ample by the log abundance theorem ([7], see also [17]).

Conjecture 1.2. Let X be a C–Y 3-fold and L a nef divisor on it.
Then L is semi-ample.

If L · c2 > 0, we can show that L is effective ([25]). So in this case, Conjecture
1.2 is true.

(v) By the cone theorem for klt pairs, the nef cone A(X) is locally rational
polyhedral inside the cone W . See [4], [5] and [25] for the proof.

In passing, for a C–Y 3-fold X and an effective divisor ∆ on it such that
the pair (X,∆) has at most klt singularities, if every KX + ∆-extremal ray
corresponds to a divisorial contraction, the number of KX +∆-extremal rays is
finite by the observation in Fact (iii). On the other hand, the pair of the C–Y
3-fold X constructed by C. Schoen (cf. [15]) and some effective divisor ∆ on
X gives an example where NE(X)KX+∆<0 contains infinitely many extremal
rays corresponding to contractions of type I ([15]). This supplies a negative
answer for the problem stated in [6, 4-2-5], i.e. for a klt pair (X,∆) with
κ(X,KX + ∆) ≥ 0, is the number of KX + ∆-extremal rays finite? But I still
feel (4-2-5) ibid. is affirmative when ∆ is trivial.

We have the following result by V. V. Nikulin [16, p. 282].

Proposition 1.3. The sets I1 := {i ∈ I |Ei is an exceptional divisor of
two different divisorial contractions} and I2 := {i ∈ I | there exists j ∈ I such
that either Ei ·Fj > 0 and Ej ·Fi = 0 or Ej ·Fi > 0 and Ei ·Fj = 0} are finite.

Lemma 1.4. Let X be a Q-factorial C–Y model with its Picard number
ρ. Define Ki := {j ∈ I |Ei ∩Ej �= ∅} for i ∈ I.

(i) Assume J ⊂ I. If |J | ≥ ρ, there exist i, j ∈ J such that Ei ∩Ej is not
empty.
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(ii) There is no subset J ⊂ I such that J satisfies the following property
(∗).
(∗) Assume that we have 1, . . . , n ∈ J such that i ∈ J\⋃i−1

k=1Kk for all i ≤ n.
Then J\⋃n

k=1Kk �= ∅.
(iii) Assume J ⊂ I such that |J | = ∞. Then there exists i ∈ J such that

|Ki ∩ J | = ∞. In particular, there exists an infinite subset J ′ ⊂ J such that
Ei ∩ Ej is not empty for all i, j ∈ J ′.

Proof. (i) Assume that we have elements 1, . . . , ρ ∈ J such that Ei∩Ej is
empty for all i �= j. Then there exists a nontrivial relation Σρk=1akEk+a0H ≡ 0
for ak ∈ R and some ample divisor H. Then because Ei·Fj = 0 if and only if i �=
j, the numbers ak ·a0 > 0 for all k. This is absurd, since (ΣakEk+a0H)·H2 �= 0.

(ii) If J satisfies (∗) then we have 1, . . . , ρ ∈ J such that k /∈ ⋃k−1
i=1 Ki for

all k ≤ ρ. This contradicts (i).
(iii) Assume that Ki ∩ J is finite for all i ∈ J . By |J | = ∞, J satisfies (∗)

in (ii). The second statement follows from the first one.

Remark 1.5. Every exceptional divisor of a birational contraction of
type II does not meet each other. Therefore the number of contractions of type
II is finite by the same proof of (i) above.

Lemma 1.6. For general i ∈ I (namely, all but a finite number of i ∈ I)
NE(X) = NE(X)Ei≥0 + R≥0[Fi].

Proof. It is enough to check the finiteness of J := I\(I1 ∪ I2 ∪ {i ∈
I |NE(X) = NE(X)Ei≥0 + R≥0[Fi]}). For i ∈ J , not only R≥0[Fi] but also
R≥0[vi] is a KX + εEi-extremal ray. Then R≥0[vi] determines a birational
contraction of type I. If J is infinite, there exists an infinite subset J ′ ⊂ J such
that Ei∩Ej is not empty for all i, j ∈ J ′ by Lemma 1.4. Then R≥0[vi] = R≥0[vj ]
for all i, j ∈ J ′. Let ϕ : X → Y be the associated contraction of type I and H
a general hyperplane section on Y , and define li := ϕ(Ei)|H for i ∈ J ′. Then
since li · lj = 0 on H if and only if i �= j, the li’s are linearly independent in
N1(H). This is absurd.

Pick i ∈ I. Define ti =min{t ∈ R |Ei + tH is nef}, where H is a fixed
ample divisor on X. {ti} denotes the round up of ti.

Lemma 1.7. ti ≤ 4 for all i ∈ I.

Proof. If Ei is normal, Ei has at most RDP. By the inversion of adjunc-
tion, (X,Ei) has at most plt singularities. If Ei is non-normal, Ei is semi-
smooth ([27]). Then we use the inversion of adjunction again and know (X,Ei)
has at most lc singularities. In both cases, we can apply the rationality theo-
rem ([6]) for the klt pairs (X, (1 − ε)Ei) for sufficiently small positive rational
numbers ε and we obtain the statement.

Lemma 1.8. Let J ⊂ I and let H be an ample divisor on X. Assume
that there exist an integer N and z ∈ NE(X) such that z ·Ei ≤ N for all i ∈ J .
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(i) Let ε be a positive real number. Then the set Jε(z) := {i ∈ J |ϕ∗
iA(Yi)

⊂ (z − εH2)≥0} is finite.
(ii) If z is in the interior of NE(X), J is finite.

Proof. (i) By Lemma 1.6, we may assume that Ei+ tiH ∈ ϕ∗
iA(Yi) for all

i ∈ Jε(z). Then we get (Ei+{ti}H)·(z−εH2) ≥ ({ti}−ti)H ·(z−εH2) ≥ 0 and
(Ei+{ti}H) ·z ≤ N+4H ·z =: c. Thus Ei+{ti}H ∈ (z−εH2)≥0∩z≤c∩A(X).
Since (z − εH2)≥0 ∩ z≤c ∩ A(X) is a compact set, Jε is finite.

(ii) This is the special case of (i).

Let D be a prime divisor on X. By the Serre duality for a Cohen-Macaulay
surface D,

χ(OD) = χ(ωD) = χ(OD(D)) = χ(OX(D)).

Combining this equality with the Riemann-Roch theorem for a C–Y 3-fold X,
we obtain:

Lemma 1.9. For a prime divisor D on X, we have

χ(OD) = (1/6)D3 + (1/12)D · c2.
The following proposition is a key to prove Theorem 3.6.

Proposition 1.10. Let J be an infinite subset of I. Then there exist
1, 2, 3 ∈ J such that E1 + E2 + E3 is nef.

Proof. We may assume that NE(X) = NE(X)Ei≥0 + R≥0[Fi] for all
i ∈ J by Lemma 1.6 and that Ei ·Fj > 0 for all different i, j ∈ J by Proposition
1.3 and Lemma 1.4 (iii). Pick 1, 2, 3 ∈ J . Then (E1 + E2 + E3) · Fi ≥ 0 for
i = 1, 2, 3. Thus E1 + E2 + E3 is nef.

Note that the nef divisor E1+E2+E3 is semi-ample by Fact (iv). By Proposition
1.10, the set {i ∈ I |Ei·z < 0} is finite for a pseudo-effective element z ∈ N1(X),
i.e. z · x ≥ 0 for all x ∈ A(X).

Corollary 1.11. The sets Ic2<0 := {i ∈ I |Ei · c2 < 0}, {i ∈ I |Ei is a
Hirzebruch surface} and IdP := {i ∈ I |Ei is a generalized del Pezzo surface}
are finite.

Proof. Because c2 is pseudo-effective on minimal model 3-folds by [13], the
set Ic2<0 is finite. For i ∈ I such that Ei is a Hirzebruch surface, Ei ·c2 = −4 by
Lemma 1.9. Next suppose that IdP is infinite. By Proposition 1.3 and Lemma
1.4 (iii), we may assume that Ei · Fj > 0 for all different i, j ∈ IdP . Then
there exists a real 1-cycle v such that R≥0[v] = R≥0[vi] for all i ∈ IdP . This is
absurd, since Ei · v < 0 for all i ∈ IdP .

2. The second Chern class and the nef cone

Let us remember the following conjecture of D. Morrison concerning the
finiteness properties of the nef cones ([14], [5]). We refer to 2.1 as the Morrison
Cone Conjecture.
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Conjecture 2.1. Let X be a C–Y n-fold. The number of the AutX-
equivalence classes of faces of the effective nef cone Ae(X) corresponding to
birational contractions or fiber space structures is finite. Moreover, there exists
a rational polyhedral cone Π which is a fundamental domain for the action of
AutX on Ae(X) in the sense that

(i) Ae(X) =
⋃
α∈AutX α∗Π,

(ii) Int Π ∩ α∗ Int Π = ∅ unless α∗ = id.

Let H be a nef and big divisor on a (3-dimensional) C-Y model Y . Set
Aut(Y,H) := {α ∈ AutY |α∗H ≡ H}.

Lemma 2.2. Let Y , H be as above. Then the group Aut(Y,H) is finite.

Proof. Let ϕ : Y → Z be the birational contraction defined by the free
complete linear system mH for sufficiently large integer m. Take an element
of Aut(Y,H). Then it descends to an element of Aut(Z,H ′), where H ′ is an
ample divisor on Z such that ϕ∗H ′ = mH. On the other hand, the natural
map BirY → BirZ is injective, hence it is enough to prove the finiteness
of Aut(Z,H ′). Grothendieck proved that Aut(Z,H ′) is a projective scheme,
in particular, it has finitely many components. On the other hand, because
H0(Y, TZ) = 0 by Corollary 8.6 [3], AutZ is discrete and thus Aut(Z,H ′) is
finite.

Remark 2.3. If c2 is positive on A(X)\{0} or if A(X) is rational
polyhedral, then since we can find an ample divisor H such that AutX =
Aut(X,H), AutX is finite ([26]). Consequently if the Morrison Cone Conjec-
ture is true for C–Y 3-folds X, A(X) is rational polyhedral if and only if AutX
is finite.

We study birational contractions of type III whose exceptional divisors are non-
normal. If the Morrison Cone Conjecture is true, we can bound the numbers
E3
i and Ei · c2 for i ∈ I. In fact, for non-normal exceptional divisors Ei we can

prove (without assuming the Morrison Cone Conjecture):

Proposition 2.4. 7−7h1,2(X) ≤ E3
i ≤ 7 and −2 ≤ Ei ·c2 ≤ 6h1,2(X)−

2 for all i ∈ I such that Ei is non-normal.

Proof. Fix i ∈ I such that Ei is non-normal and let E, C denote Ei,
Ci respectively. Since E is non-normal, E is semi-smooth and C0 := Sing(E)
is an irreducible smooth curve, which gives a section of E → C ([27]). Let
ψ : Z → X, E′ and D be the blowup along C0, the strict transform of E on Z
and the exceptional divisor of ψ respectively. Let us also define p := ψ|E′ and
C ′

0 := p−1(C0) with the reduced structure. By local calculation, we can check
easily that p gives the normalization of E and thatD and E′ meet transversally,
in particular, D|E′ = C ′

0. Let E′ → C ′ → C be the Stein factorization of the
morphism E′ → E → C, then we know that E′ is a P1-bundle over a smooth
curve C ′ and C ′ → C is a double cover. We know from these facts that C ′

0 is
a section of the P1-bundle.
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Let F be a ruling of the Hirzebruch surfaceD over C0. Because ψ∗E|D·F =
0, ψ∗E|D is numerically proportional to F on D and so 0 = (ψ∗E)2 ·D. Then
we have

0 = E′2 ·D + 4E′ ·D2 + 4D3.

Furthermore because of KZ = D and the adjunction formula, we obtain

8(1 − g(C ′)) = K2
E′ = D2 · E′ + 2D · E′2 + E′3,

2g(C ′) − 2 = (KE′ + C ′
0) · C ′

0 = 2D2 · E′ + E′2 ·D
and

8(1 − g(C)) = K2
D = 4D3.

By these equalities, we get

E3 = (E′ + 2D)3 = 7 − 3g(C ′) − 4g(C).

By the fact that g(C ′) ≤ h1,2(X) ([1]), we get the bound of E3. On the other
hand, because every fiber of ϕ|E : E → C is a conic we have Riϕ∗OE = 0 for
i > 0. Thus we know χ(OE) = χ(OC) and therefore

E · c2 = 12χ(OE) − 2E3 = 6g(C ′) − 4g(C) − 2

by Lemma 1.9. We use g(C ′) ≤ h1,2(X) again to obtain the bound of E ·c2.

Remark 2.5. We use the notation in the proof above. It seems worth-
while to restate the following formulae, that is, E3 = 7 − 3g(C ′) − 4g(C) and
E · c2 = 6g(C ′) − 4g(C) − 2.

Conjecture 2.6 (cf. [26, Problem 3]).
(i) Let ϕ : X → Y be a contraction such that ϕ∗A(Y ) ⊂ A(X)ε. Then the

cardinality of the set of such ϕ is finite.
(ii) Let ϕ : X → Y be a contraction such that ϕ∗A(Y ) ⊂ A(X)ε. Then

A(Y ) is rational polyhedral.

If AutX is finite, the Morrison Cone Conjecture implies that the nef cone A(X)
is rational polyhedral. Hence obviously Conjecture 2.6 is true for such X (mod-
ulo the Morrison Cone Conjecture). If AutX is infinite, then by Conjecture 2.6
we can expect the shape of the nef cone A(X) is complicated near A(X) ∩ c⊥2
(see also the argument after Problem 3.10).

If we have a bound of the number Ei · c2 for i ∈ I, Conjecture 2.6 (i) is
affirmative in the case when ϕ is a birational contraction of type III, due to
Lemma 1.8 (i).

Theorem 2.7. Conjecture 2.6 (i) is affirmative in the following cases :
(i) ϕ is a fiber space ([19]).
(ii) ϕ is a birational contraction of type III whose exceptional divisor is

non-normal.
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Theorem 2.8. Conjecture 2.6 (ii) is affirmative in the following cases :
(i) ϕ is a fiber space.
(ii) Assume that the Morrison Cone Conjecture holds true and ϕ is a bi-

rational contraction.

Proof. (i) We may assume ρ(Y ) ≥ 2 so in particular dimY = 2. By our
assumption and Theorem 2.7 (i) we know that Y admits at most finitely many
contractions. By Theorem 3.1 in [17] there exists a nonzero effective divisor
∆ =

∑
aiDi (ai > 0, Di a prime divisor) such that (Y,∆) is a klt pair and

KY + ∆ ≡ 0. Let R = R≥0[z] be a geometrically extremal ray of the cone
NE(Y ), where z is a real 1-cycle (by the definition of a geometrically extremal
ray, if z1+z2 ∈ R for z1, z2 ∈ NE(Y ) we have z1, z2 ∈ R. Of course an extremal
ray in the Minimal Model theory is geometrically extremal). Note that R is a
KY -extremal ray if KY · z < 0, and R is a KY +∆+ εDi-extremal ray for some
i and 0 < ε� 1 if KY · z > 0. Now we prove that A(Y ) is rational polyhedral
by the induction for ρ(Y ). Denote the set of the geometrically extremal rays
R with R ⊂ K⊥

Y by S. If S = ∅ we have a contraction f : Y → Z for any
geometrically extremal rays R such that f contracts only R. So the proof is
done by Theorem 2.7 (i). Hence we may assume S �= ∅. Pick R(= R≥0[z]) ∈ S.
It is enough to show that we can take the real 1-cycle z as a rational one and
S is a finite set. Since the cone NE(Y ) is generated by the finitely many
KY -extremal rays and the subcone NE(Y )KY ≤0, there exists a contraction
f(= fR) : Y → Z associated to a KY -extremal ray such that R≥0[z]+R≥0[F ] =
(f∗L)⊥∩NE(Y ), where F is a curve contracted by f and L is a nef R-divisor on
Z. We can check that f∗R is a geometrically extremal ray of the cone NE(Z)
by using the exact sequence 0 → 〈[F ]〉R → N1(Y ) → N1(Z) → 0. Hence by the
induction hypothesis (the finiteness of geometrically extremal rays of NE(Z)),
there exists only finitely many R1 ∈ S such that fR = fR1 (here note that
f∗R1 = f∗R2 implies R1 = R2 for R1, R2 ∈ S). Moreover since we may assume
that f∗z is a rational 1-cycle by the induction hypothesis (the rationality of the
geometrically extremal rays of NE(Z)), combining the short exact sequence
above with the fact KY · z = 0 and KY · F ∈ Q<0, we can conclude that we
may take z as a rational 1-cycle. Use Theorem 2.7 (i) again, we have that the
set {fR}R∈S is finite and in particular S is finite. This completes the proof.

(ii) We may assume that ϕ is primitive. Put B∆ := {α ∈ AutX |α∗∆ ⊂
ϕ∗Ae(Y )} for a codimension 1 face ∆ of Π and B :=

∐
∆⊂Π B∆, where ∆ runs

through every codimension 1 face of Π. Then we have

ϕ∗A(Y ) = ϕ∗Ae(Y ) =
⋃

α∈B

(α∗Π ∩ ϕ∗Ae(Y )).

Here we take the closure in the relative topology of the real vector subspace
〈ϕ∗Ae(Y )〉 ⊂ N1(X). Hence it is enough to prove that B∆ is a finite set for
every ∆. Fix a codimension 1 face ∆ such that B∆ �= ∅. Replace Π with α∗Π for
some α ∈ Aut(X) if necessary, then we may assume that ∆ ⊂ ϕ∗Ae(Y ). First
we look for classes of ample divisors on Y on which ϕ∗c2 takes minimum value
and whose pull back on X belongs to ∆. Since ϕ∗A(Y ) ⊂ c2>0, there are only
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finitely many such and by adding these together and pulling it back on X, we
get a nef and big divisor H on X. Of course [H] ∈ ∆ by the definition. Note
that the set {[α∗H]}α∈B∆ is finite and so put this by {[α1∗H], . . . , [αn∗H]},
where αi ∈ B∆. It is straightforward to see that B∆ =

∐n
i=1 αi · Aut(X,H).

Therefore we know that B∆ is a finite set by Lemma 2.2 and the proof is
done.

3. The structure of certain C–Y 3-folds with infinitely many divi-
sorial contractions

The main results of this section are Theorem 3.6 and Corollary 3.9. We
use the following notation and terminology.

(i) Let X be a normal projective variety such that OX(KX) � OX . We
denote by ωX a generator of H0(X,OX(KX)). A finite automorphism group
G is called Gorenstein if g∗ωX = ωX for all g ∈ G.

(ii) Suppose we have a faithful finite group action G on a variety X. Put
Xg := {x ∈ X | g(x) = x} for g ∈ G; X [G] :=

⋃
g∈G\{1}X

g.
(iii) Put ζn := exp(2πi/n), the primitive n-th root of unity in C. Denote by

Eζ the elliptic curve whose period is ζ in the upper half plane. Let us recall the
following pairs of an Abelian 3-fold and its specific Gorenstein automorphism
group: the pair (A3, g3), where A3 is the triple product of Eζ3 and g3 is its
automorphism diag(ζ3, ζ3, ζ3) and the pair (A7, g7) is the Jacobian 3-fold of
the Klein quartic curve C = (x0x

3
1 + x1x

3
2 + x2x

3
0 = 0) ⊂ P2 and g7 is the

automorphism of A7 induced by the automorphism of C given by [x0 : x1 :
x2] �→ [ζ7x0 : ζ2

7x1 : ζ4
7x2]. We call (A3, g3) a Calabi pair and (A7, g7) a Klein

pair.

Definition 3.1. Let W be a normal projective surface over C with
at most klt singularities. We call W a log Enriques surface if h1(OW ) = 0,
mKW = 0 for some positive integer m. We call the integer I(W ) := min{m ∈
Z>0 |mKW = 0} the global canonical index of W .

We construct C–Y 3-folds with infinitely many birational contractions from
certain log Enriques surfaces in Section 4.

Definition 3.2. Let ϕ : X → Y be a contraction from a C–Y 3-fold
X and a divisor L on X the pull back of an ample divisor on Y . We call
ϕ a c2-contraction if L · c2 = 0. For example, a fibration ϕ : X → P1 is a
c2-contraction if and only if the general fiber is an Abelian surface. Moreover
for an elliptic fibration ϕ : X →W , it is a c2-contraction if and only if W is a
log Enriques surface by [17] (we do not have to assume there that X is simply
connected). There exists a unique c2-contraction ϕ0 : X → Y0 such that every
c2-contraction ϕ : X → Y on X factors through ϕ0 (see [20, Lemma-Definition
(4.1)]). We call ϕ0 the maximal c2-contraction.

We have the beautiful classification of C–Y 3-folds which admit either a bira-
tional c2-contraction or an elliptic c2-contraction, due to K. Oguiso (see [20]).
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It plays an important role to prove Theorem 3.6. The following result is coarser
than the Oguiso’s original classification.

Theorem 3.3 (Oguiso).
(i) Let ϕ : X → Y be a non-isomorphic birational c2-contraction. Then ϕ

is isomorphic to either one of the following :
(a) The unique crepant resolution Φ7 : X7 → X̄7 := A7/ 〈g7〉 of X̄7,

where (A7, g7) is the Klein pair.
(b) The unique crepant resolution Φ3 : X3 → X̄3 := A3/ 〈g3〉 of X̄3,

where (A3, g3) is the Calabi pair.
(c) The unique crepant resolution Φ3,i : X3,i → X̄3,i of X̄3,i, (i = 1, 2),

where X̄3,i is an étale quotient of X̄3.
(ii) Let ϕ : X →W be an elliptic c2-contraction. Then ϕ is isomorphic to

either one of the following :
(a) One of the relatively minimal models over W3 of

p12 : X3
Φ3−→ X3

p−→W3,

where Φ3 : X3 → X̄3 is as above and p is an elliptic fibration on
X3.

(b) An elliptic fiber space structure on an étale quotient of an Abelian
3-fold.

(c) One of the relatively minimal models over W3,1 of

κ3,1 : X3,1
Φ3,1−→ X3,1

κ−→W3,1,

where Φ3,1 : X3,1 → X̄3,1 is as above and κ is an elliptic fibration
on X3,1.

(d) One of the relatively minimal models over S/G of

ψ : Y ν→ (S × E)/G
µ→ S/G,

where S is a normal K3 surface (namely its minimal resolution is
a smooth K3 surface), E is an elliptic curve, G is a finite Goren-
stein automorphism group of S × E whose element is of the form
(gS , gE) ∈ AutS×AutE and ν is a crepant resolution of (S×E)/G.
Slightly more precisely, G is of the form G = H � 〈a〉, where H is
a commutative group consisting of elements like h = (hS, hE) such
that ord(hS) = ord(hE) = ord(h) and hE is a translation, further-
more the generator a of 〈a〉 is the element of the form (aS, ζ−1

I(W ))
such that a∗SωS = ζI(W )ωS . Moreover I(W ) ∈ {2, 3, 4, 6}.

For a contraction ϕ : X → Y on a C–Y 3-fold X, we define M(ϕ) := {i ∈
I |Ei · C = 0 for all curves C such that ϕ(C) is a point}.

Lemma 3.4.
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(i) Let ϕ : X → Y be a primitive birational contraction on a C–Y 3-fold
X. Denote the extremal ray corresponding to ϕ by R. Then the set

L(ϕ) := {i ∈ I |R ⊂ Vi and ϕ(Ei) is a Q-Cartier divisor on Y }

is finite.
(ii) Let ϕ : X → Y be a (not necessarily primitive) birational contraction

on a C–Y 3-fold X. The set

M(ϕ) := {i ∈M(ϕ) |Ei ∩ Exc(ϕ) �= ∅}
= {i ∈ I |Ei ∩ Exc(ϕ) �= ∅ and Ei = 0 in N1(X/Y )}

is finite.
(iii) Suppose that we have the following diagram:

X

ϕ
���

��
��

��
�

Φ ��������� Y

ψ����
��

��
��

W ,

where ϕ, ψ are contractions on C–Y 3-folds X, Y and Φ is a birational map
over W . Then for general i ∈ M(ϕ), Ei is contained in the isomorphic locus
of Φ. In particular, |M(ϕ)| = ∞ is equivalent to |M(ψ)| = ∞.

Proof. (i) Assume that L(ϕ) is infinite. We can take 1, 2 ∈ L(ϕ) such
that E1 ∩ E2 �= ∅. Since R ⊂ V1 ∩ V2, the class of 1-cycle [E1 · E2] belongs
to R and so dimϕ(E1 ∩ E2) = 0. Hence dimϕ(E1) ∩ ϕ(E2) = 0. This is a
contradiction because ϕ(E1) and ϕ(E2) are Q-Cartier divisors.

(ii) Let R1, . . . , Rn be the generators of the cone NE(X/Y ), namely ex-
tremal rays, and consider that ψk is the extremal contraction corresponding to
Rk. It is enough to check that M(ϕ) ⊂ ⋃n

k=1 L(ψk). Pick 0 ∈ M(ϕ). Then
there exist an integer k and an irreducible curve C such that C ⊂ E0 and
[C] ∈ Rk. Thus Rk ⊂ V0. Now since ψk(Ei) is a Cartier divisor for i ∈ M(ϕ),
we obtain the statement.

(iii) Note that Φ is a composition of flops over W . Apply (ii) for each
flopping contraction, then we obtain the statement.

Lemma 3.5. We use the notation in Theorem 3.3. Neither X7, X3,
X3,1 nor X3,2 admits infinitely many contractions of type III.

Proof. Let Φ3 be the unique crepant resolution of X̄3. Φ3 is a composition
of birational contractions of type II (cf. [18]). Pick i ∈ IX3 , if any. Then
Φ3(Ei) ∩ Sing X̄3 �= ∅ because X̄3 is a quotient of an Abelian 3-fold. Since
Sing X̄3 = Φ3(Exc(Φ3)), we have Ei ∩ Exc(Φ) �= ∅, which implies i ∈ L(ψ) for
some contraction ψ of type II. Hence if IX3 is infinite, there exists a birational
contraction ψ of type II on X3 such that L(ψ) is infinite. This is absurd.
In the cases of X3,1 and X3,2, the same proof as above works, since X̄3,1,
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X̄3,2 are étale quotients of X̄3. Next let Φ7 be the unique crepant resolution
of X̄7. Then Exc(Φ7) = E1 ∪ E2 ∪ E3, each Ej is a Hirzebruch surface of
degree 2 and these divisors are crossing normally each other along the negative
sections (cf. [18]) (thus va ∈ R≥0[Fb], vb ∈ R≥0[Fc], vc ∈ R≥0[Fa] for some
a, b, c with {a, b, c} = {1, 2, 3}). Because X̄7 is a quotient of an Abelian 3-fold,
Ei ∩ (E1 ∪E2 ∪E3) �= ∅ for all i ∈ IX7 . Furthermore if Ei intersects Ea and if
vi /∈ R≥0[Fb], vi ∈ R≥0[Fa], since vi ∈ Va∩E⊥

b . So in this case Ei intersects Ea
and Ec, does not intersect Eb. By this way, we know that every Ei intersects
precisely two of E1, E2 and E3. Assuming that IX7 is infinite, we can find a
divisorial contraction ψ which contracts either E1, E2 or E3, such that L(ψ) is
infinite. So we obtain a contradiction.

Theorem 3.6. Assume that Ic2=0(= IX,c2=0) := {i ∈ IX |Ei · c2 = 0}
is infinite. Then the following hold.

(i) We have an elliptic c2-contraction ϕ : X → W and ϕ fits in the case
of (ii)(d) in Theorem 3.3, that is, we have the following diagram:

X

ϕ ���
��������

Φ �������������� Y

ψ���������������

ν

��
W ∼= S/G (S × E)/G,

µ
��

where Y , S, E, G, ψ, ν and µ are given there. Let r : S × E → (S × E)/G
be the quotient morphism. Then the normal K3 surface S contains infinitely
many smooth rational curves {l} such that

(a) r(l × E) ∩ Sing(S × E)/G = ∅, and
(b)

⋃
g∈G g ·l is contractible at the same time by a birational contraction

on S.
(ii) Let Φ denote the birational map between X and Y over W in (i). Then

for general i ∈ Ic2=0, Ei is contained in the isomorphic locus of the birational
map ν ◦Φ and Ei = r(l×E) under this isomorphism for some smooth rational
curve l on S satisfying (a) and (b) in (i).

Proof. (i) Let us denote by ϕ : X → W the maximal c2-contraction (a
priori W may be a point).

Claim 3.7. For a general i ∈ Ic2=0, i ∈M(ϕ).

Proof. If not, by Proposition 1.10 we can take 1, 2, 3 ∈ Ic2=0\M(ϕ) such
that some multiple of E1 +E2 +E3 determines a c2-contraction, which factors
through ϕ. By the choice of 1, 2, 3, there exists one of the elements 1, 2, 3, say
1, and there exists an irreducible curve C on X such that ϕ(C) is a point and
E1 ·C > 0. By the proof of 1.10 we can pick 4, 5 ∈ Ic2=0\M(ϕ), different from
1, 2, 3, such that some multiple of E1 + E4 + E5 determines a c2-contraction,
which factors through ϕ. Thus there exists one of the elements 4, 5, say 4, such
that E4 · C < 0. By the same procedure, we have infinitely many elements
i ∈ Ic2=0\M(ϕ) such that Ei · C < 0. This is a contradiction with 1.10.
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When dimW = 1, at most finitely many Ei (i ∈ I) are contracted to a point
on W by ϕ, so M(ϕ) is finite. Hence we have dimW ≥ 2. If ϕ is isomorphic,
A(X) ⊂ c⊥2 and in particular c2 = 0. In this case, X is an étale quotient of an
Abelian 3-fold by [8] and it never admits birational contractions. Combining
Theorem 3.3 with Lemma 3.4 (iii) and Lemma 3.5, we know that ϕ fits in the
case (ii)(d) of 3.3 and |M(ψ)| = ∞. Furthermore |M(ψ)| = ∞ implies that the
set {i ∈ I(S×E)/G |Ei ∩ Sing(S ×E)/G = ∅} is infinite by 3.4 (ii). Here we use
the equality Sing(S ×E)/G = ν(Exc(ν)). Note that every primitive birational
contraction on S×E is the form as f× idE , where f is a contraction of a single
smooth rational curve on S. Thus we have the conditions (a) and (b).

(ii) This follows from 3.4 (ii) and 3.4 (iii).

Remark 3.8.
(i) Assume that Theorem 3.6 (i) holds. Then we have an infinite set

{i ∈ M(µ) |Ei ∩ Sing(S × E)/G = ∅}. Using Lemma 3.4 (iii), we know that
IX,c2=0 is infinite. Namely 3.6 (i) is a characterization of C–Y 3-folds X with
|IX,c2=0| = ∞.

(ii) Because (SingS ×E)∪ (S ×E)[G] = r−1 Sing(S ×E)/G by the purity
of branch locus, the condition (a) in 3.6(i) is equivalent to the condition

(a)′ (l × E) ∩ ((SingS × E) ∪ (S × E)[G]) = ∅.
Corollary 3.9. The set Ic2=0 is finite up to AutX.

Proof. We may assume that Ic2=0 is infinite. Now X is birational to
(S×E)/G via ν◦Φ as in Theorem 3.6. Consider the minimal resolution S′ → S.
We may assume that Y is obtained as a crepant resolution ν′ : Y → (S′×E)/G,
that is, ν factors through ν′. The existence of ν′ is guaranteed by [21]. By 3.6
(ii) and Claim 3.7, for general i ∈ Ic2=0, Ei is contained in the isomorphic locus
of ν′ ◦ Φ and Ei is isomorphic to the image on (S′ × E)/G of l × E for some
smooth rational curve l on S′. On the other hand, the set I(S′×E)/G is finite up
to Aut(S′ × E)/G by Theorem (2.23) in [20] (note that the proof of Theorem
(2.23) in [20] works even if G does not act on S′ ×E freely). Therefore the set
Ic2=0 is finite up to BirX. By the proof of Lemma (1.15) in [5], the set Ic2=0

is finite up to AutX.

As we mention in the Introduction, the following problem seems worthwhile to
think about.

Problem 3.10. Assume that AutX is infinite and its Picard number
ρ(X) is sufficiently large. Then does X admit a nontrivial c2-contraction?

Conjecture 2.6 says that if AutX is infinite the shape of A(X) is complicated
near A(X)∩c⊥2 . We expect that this “complexity” produces a rational point on
A(X) ∩ c⊥2 \{0} and some multiple of the divisor corresponding to the rational
point defines a c2-contraction. In fact when we study the structure of C–Y
3-folds X with |Ic2=0| = ∞ in Theorem 3.6, we showed the existence of an
elliptic c2-contraction on X by Proposition 1.10.
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4. Construction of C–Y 3-folds with infinitely many birational con-
tractions

The aim of this section is to give construction of C–Y 3-folds with infinitely
many birational contractions of type I or III from certain log Enriques surfaces.
First of all, given a log Enriques surface W with I(W ) ∈ {2, 3, 4, 6}, we con-
struct a C–Y 3-fold X with a c2-contraction ϕ : X → W . Let q : S → W
be the global canonical cover and denote by G = 〈a〉 (∼= Z/I(W )Z) the Galois
group of q. The S may be an Abelian surface in general but here we assume
that S is a normal K3 surface (this assumption is satisfied, for example, if W
contains a contractible smooth rational curve. Here a curve m on W is said
contractible if it is contracted by a birational contraction and this is equivalent
to m2 < 0). Let E be an elliptic curve such that E has an automorphism of
order I(W ) which fixes the origin. Suppose that the generator a of G satisfies
that a∗ωS = ζI(W )ωS . Then define the action of a on E as a(x) = ζ−1

I(W )x for
x ∈ E. Then G gives a Gorenstein action on S × E. Take the minimal resolu-
tion S′ → S, then G acts on S′ and we know that (S′ ×E)/G is a C–Y model.
By [21] there exists a crepant resolution ν′ : X → (S′ × E)/G. Of course this
X is a C–Y 3-fold and ϕ : X → (S′ × E)/G → (S × E)/G → S/G = W is an
elliptic c2-contraction.

For a log Enriques surface W , let us denote by ΣW the locus of klt points
on W which are neither RDP’s nor smooth points.

Proposition 4.1. Let ϕ : X ν′→ (S′ × E)/G
µ→ S/G = W be as is

constructed from W above. Suppose that there exists a contractible smooth
rational curve m on W .

(i) Assume that m ∩ ΣW = ∅. Then there exists a contraction of type III
on X contracting a prime divisor D0 such that ϕ(D0) = m.

(ii) Assume that m∩ΣW �= ∅. Then there exists a contraction of type I on
X contracting an irreducible curve m0 such that ϕ(m0) = m.

Proof. Let r′ : S′×E → (S′×E)/G be the quotient morphism. Moreover
let l be an irreducible component of q−1m and denote by l′ the strict transform
of l on S′. Put D := r′(l′ × E). In the first case, because l′ ∩ S′[G] = ∅ we
know that D ∩ Sing(S′ × E)/G = ∅. Furthermore since m is contractible on
W ,

⋃
g∈G g · l′ is contractible on S′ and in particular, D is contractible by a

birational contraction of type III on (S′ ×E)/G. Hence ν′−1
∗ D gives a desired

divisor D0. In the second case, we have (l × E) ∩ (S × E)[G] �= ∅ (we prove
the contraposition of this in the proof of Proposition 4.4 below) and D is an
exceptional divisor of a contraction of type III, since

⋃
g∈G g · l′ is contractible

on S′. Moreover D contains a point y ∈ r′((S′ × E)[G]) such that y is over a
point in m∩ΣW by the morphism µ. Note that dim(S′ ×E)[G] ∩ (l′ ×E) = 0.
Because the problem is local, we may assume that {y} = (Sing(S′×E)/G)∩D.
Let

X =: X0
ψ1−→ X1 · · · ψn−→ Xn := (S′ × E)/G
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be a primitive decomposition of ν′ and let us denote by mn the unique irre-
ducible curve passing through y, of the form r′(l′ × {z}), where z is a point
in E[G]. Suppose that Di (resp. mi) stands for the strict transform of D
(resp. mn) on Xi. Let V be an irreducible component of ν′−1y such that
V ∩ D0 �= ∅. When dimV = 2, we have dimV ∩ D0 = 1. If every compo-
nent V such that V ∩ D0 �= ∅ is 1-dimensional, the equality ν′∗D · V = 0
implies that V ⊂ D0, hence dimV ∩D0 = 1 (note that D0 is not contractible
any more by a divisorial contraction on X, since the dimension of the im-
age of the map N1(D0) → N1(X) is more than 2 (cf. Fact (iii))). There-
fore there exists an integer k ≥ 1 such that dimψ−1

k+1 · · ·ψ−1
n y ∩ Dk = 0 and

dimψ−1
k · · ·ψ−1

n y ∩ Dk−1 = 1. The following claim comes from the general
theory and we leave the proof to the reader, since it is an easy exercise.

Claim 4.2. Let f : X → Y , g : Y → Z be primitive birational con-
tractions between C–Y models. Suppose that the strict transforms f−1

∗ l of all
curves l contracted by g are numerically proportional. Then if g is of type I
(resp. of type III), there exists a contraction f ′ of type I (resp. of type III)
over Z such that f−1

∗ l are contracted by f ′.

We apply the claim repeatedly and then we have a contraction of type III
on Xk, ψ : Xk → Z, such that Exc(ψ) = Dk. Let Ck−1 be an irreducible
curve on Xk−1 such that Ck−1 ⊂ ψ−1

k · · ·ψ−1
n y ∩ Dk−1. Then we know that

NE(Xk−1/Z) is generated by R≥0[Ck−1] and R≥0[mk−1]. The latter extremal
ray determines a contraction of type I on Xk−1 and using the claim again, we
obtain a contraction of type I on X whose exceptional set consists of m0.

Consider a log Enriques surface W with I(W ) ∈ {2, 3, 4, 6} such that W con-
tains infinitely many contractible smooth rational curves. Then by Proposition
4.1, we can construct a C–Y 3-fold X with infinitely many birational contrac-
tions of type I or type III.

Example 4.3.
(i) See the nice survey, [11], by S. Kondō and its references for the details

of the following. Due to E. Horikawa we know that the moduli space M of
Enriques surfaces is 10-dimensional. The moduli space N of Enriques surfaces
which contains at least one smooth rational curve is an irreducible subvariety
of codimension 1 in M. Enriques surfaces whose automorphism group is finite
are classified by S. Kondō and the moduli of them consists of seven families
{Fi}7

i=1 and each family is at most 1-dimensional. On the other hand for
Enriques surfaces W , AutW is finite if and only if W contains at least one but
at most finitely many smooth rational curves. Consequently there exists the
9-dimensional moduli space, N\⋃7

i=1 Fi, whose elements are Enriques surfaces
which contain infinitely many smooth rational curves.

(ii) Let E1, E2 be elliptic curves which are not mutually isogenous and S′

the Kummer surface associated to the Abelian surface E1 × E2. Consider the
involution a on S′ induced by the involution (x, y) �→ (x,−y) on E1 ×E2. Let
{Fi}4

i=1 (resp. {F ′
i}4
i=1) be the smooth rational curves on E1 ×E2/(−1) which
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are the images of {x} × E2 (resp. E1 × {y}) by the natural map E1 × E2 →
E1 × E2/(−1), where x ∈ E1 (resp. y ∈ E2) is a point of order 2. Then the
fixed locus S′a consists of the eight, disjoint smooth rational curves f−1

∗ Fi,
f−1
∗ F ′

i , where f is the minimal resolution of E1 ×E2/(−1). Because the every
generator of the Picard group of S′ is fixed by the involution a, every smooth
rational curve l′ is also fixed, that is, a · l′ = l′. Contract the eight smooth
rational curves f−1

∗ Fi, f−1
∗ F ′

i on S′ and we get a normal K3 surface S with
eight A1-singularities. The group action of 〈a〉 on S′ descends to the group
action on S and let us use the same letter 〈a〉 for this action. Then we obtain
a log Enriques surface W := S/ 〈a〉 which contains infinitely many contractible
smooth rational curves {m} such that m ∩ ΣW �= ∅. Here we use the fact
that every Kummer surface has the infinite automorphism group and so in
particular, it contains infinitely many smooth rational curves.

I do not know any example of rational log Enriques surface W which contains
infinitely many smooth rational curves {m} such that m ∩ ΣW = ∅.*1

The following statement is the converse of Proposition 4.1.

Proposition 4.4. Suppose the conditions in Theorem 3.6 (i) hold.
Then the log Enriques surface W ∼= S/G contains infinitely many contractible
smooth rational curves {m} such that m = ϕ(Ei) and m ∩ ΣW = ∅.

Proof. Because G = H � 〈a〉 as is in (ii)(d) in Theorem 3.3, we can
decompose the quotient morphism S →W as follows:

S
p �� T := S/H

q �� S/G = T/ 〈a〉 ∼= W .

Note that T is a normal K3 surface, for H is a Gorenstein group acting on
S (and notice that H was trivial in the argument before Proposition 4.1). In
particular, T has at most RDP’s.

Claim 4.5. l ∩ Sh·ai

= ∅ for all h ∈ H, all i �= 0 modulo I(W ).

Proof. The condition Remark 3.8(a)′ implies that (l×E)∩(S×E)[G] = ∅.
Therefore if Eh·a

i �= ∅ for all h ∈ H, all i �= 0 modulo I(W ), we know that
l∩Sh·ai

= ∅. In fact this hypothesis is true, since the morphism idE − ai on E
is surjective.

It is straightforward to see that

p−1T a
i

=
⋃

h∈H
Sh·a

i

for all i.

Thus we have p(l) ∩ T [〈a〉] = ∅. On the other hand because W\q(T [〈a〉]) has at
most RDP’s, q ◦ p(l) ∩ ΣW = ∅. Since q ◦ p(l) is contractible by an extremal
contraction on W , q ◦ p(l) ∼= P1.

*1If a log Enriques surface W satisfies such conditions, the minimal resolution of W contains
infinitely many −2 curves. I found an example of a smooth rational surface containing
infinitely many −2 curves but unfortunately my surface is not the minimal resolution of log
Enriques surface.
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In summary, for a given C–Y 3-fold X with |Ic2=0| = ∞ there exists an elliptic
c2-contraction ϕ : X → W . Here W is a log Enriques surface with I(W ) ∈
{2, 3, 4, 6} which contains infinitely many smooth rational curves {m} such that
m ∩ ΣW = ∅ and m = ϕ(Ei) for some i ∈ Ic2=0. Conversely, for a given log
Enriques surface W with I(W ) ∈ {2, 3, 4, 6} which contains infinitely many
smooth rational curves {m} such that m ∩ ΣW = ∅, there exists a C–Y 3-fold
X with |Ic2=0| = ∞ which admits an elliptic c2-contraction ϕ : X →W .
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