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The structure of a complete valuation ring with
an infinite residue field
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Introduction

The author has tried a generalization of Eichler type strong approxima-
tion theorem from the number fields to the quotient fields of general Dedekind
domains. The trials were successful for the algebraic function field over the real
field ([4],[5]). But soon more generalization turned out to be extremely difficult
([6]). It seems to be desirable to reconsider the structure of adele rings not over
the number fields, but in more general setting. But this is already difficult, and
as a first step, the author considered the local case, namely complete valuation
rings. The author found no literature on this topic in a general setting, and
the study is based on the analogy to the case over the number fields ([2], [3]).
The obtained result is the content of the present paper.

The above mentioned generalization of strong approximation theorem is
important in the connection to the cancellation problems of modules over non-
commutative orders, since the cancellation is affirmative if and only if the en-
domorphism ring has the strong approximation property ([1], [4]).

Let R be a complete valuation ring with some discrete valuation. The
valuation is denoted additively by v(x) and multiplicatively by |x|. Then for
x ∈ R we have v(x) ∈ Z, v(x) ≥ 0, and |x| = av(x) for some 0 < a < 1. (The
choice of a does not affect the topology induced by | |). Let P be the valuation
ideal of R. It is the unique maximal ideal of R and R/P is a field k, called the
residue field of R. When k is a finite field, the structures of the additive group
R and the multiplicative group 1 + P are well known. They are explained for
instance in [3] Chap. 2. In this paper, we investigate a generalization of these
results to the case when k is an infinite field. We use the completion of the
direct sum, which we shall explain first.

P is a principal ideal. Throughout this paper, we shall fix a generating
element π of P and call it the primitive element. Then we have P = πR and
v(π) = 1. Also we have P = {x ∈ R|v(x) > 0} and R× = {x ∈ R|v(x) = 0}.
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634 Aiichi Yamasaki

1. The completion of the direct sum

Let {Rλ} be an infinite family of complete valuation rings. The direct
product

∏
λ Rλ is given by

∏
λ Rλ = {(xλ)|∀λ, xλ ∈ Rλ}, the addition and

the multiplication being defined coordinatewize. The direct sum
∑

λ Rλ is a
subring of

∏
λ Rλ defined by

∑
λ Rλ = {(xλ) ∈ ∏

λ Rλ|∀′λ, xλ = 0} where
∀′λ, xλ = 0 means that xλ = 0 except for finite number of λ.

For x = (xλ) ∈ ∏
λ Rλ, consider the norm |x| = supλ |xλ|. (Since ∀λ, |xλ|

≤ 1, the supremum exists certainly. The supremum is actually the maximum,
because the valuation is discrete). We consider the closure of

∑
λ Rλ in the

topology induced by | |. Since each Rλ is complete, this closure is nothing
but the completion. We shall call this closure the completion of the direct sum
and denote it with l∞0 ({Rλ}).

l∞0 ({Rλ}) is a subring of
∏

λ Rλ, and is written as a set as follows:

l∞0 ({Rλ}) =

{
(xλ) ∈

∏
λ

Rλ|xλ = 0 except for countable number of λ

and for each ε > 0, |xλ| < ε except for finite number of λ

}
.

2. The case of the characteristic zero

If the characteristic of R is p > 0, then the valuation is trivial on the prime
field Fp so that Fp is contained in k, thus k has also the characteristic p.

If the characteristic of R is zero, then R contains the prime ring Z. If the
valuation is trivial on Z, k contains Z so contains Q, so that the characteristic
of k is zero. If the valuation is not trivial on Z, it is the p-adic valuation for
some p, so p �∈ R× and p ≡ 0 mod P . This implies that k contains Fp, so the
characteristic of k is p.

So three cases are possible. (1) Characteristics of R and k are both 0. (2)
Characteristic of R is zero, but that of k is p. (3) Characteristics of R and k
are both p. In this section, we shall investigate the case (1).

Assume that the characteristics of R and k are both 0. Then both R and
k contains Q and the valuation is trivial on Q. The primitive element π is
transcendental over Q and R contains the ring of formal power series Q[[π]].
So the additive group R becomes a Q[[π]]-module.

Theorem 1. The additive group R is isomorphic to the completion of
the direct sum of many Q[[π]]s as a Q[[π]]-module. The multiplicative group
1 + P is also a Q[[π]]-module and isomorphic to R as Q[[π]]-modules. The
isomorphism is given by the correspondence of the basis R � vλ ←→ 1 + vλπ ∈
1 + P .

Proof. Since k contains Q, k is a Q-vector space. Let {vλ}λ∈Λ be a basis
of k as a Q-vector space. For each λ, let vλ ∈ R× be a representative of the
coset vλ ∈ k = R/P . Then, all Q-linear combinations of {vλ} form a complete
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The structure of a complete valuation ring with an infinite residue field 635

representative system of k = R/P . Similarly, all Q-linear combinations of
{vλπ} form a complete representative system of P/P 2, so on. This yields that
all Q[[π]]-linear combinations of {vλ} form a dense set in R.

For x =
∑

λ αλvλ, αλ ∈ Q[[π]], evidently we have

(2.1) v(x) = min
λ

v(αλ)

or using the multiplicative valuation, we have

(2.2) |x| = sup
λ
|αλ|.

This implies that the direct sum of {Q[[π]]vλ} is homeomorphically imbedded
in R. Taking the completion, we get

(2.3) R 
 l∞0 ({Q[[π]]vλ}) as a Q[[π]]-module.

Next, we shall consider the multiplicative group 1 + P . For x ∈ P and
r ∈ R, (1 + x)r is defined by the power series

(2.4) (1 + x)r =
∞∑

j=0

r(r − 1) · · · (r − j + 1)
j!

xj

which converges on 1+P since the valuation is trivial on Q. Thus 1+P becomes
an R-module, especially becomes a Q[[π]]-module. Note that

(2.5) (1 + x)r ∈ 1 + rx(1 + P ),

especially that

(2.6)
∏
λ

(1 + vλπ)αλ ∈ 1 +
∑

λ

αλvλπ(1 + P ), αλ ∈ Q[[π]].

This implies that {1 + vλπ} generates a dense Q[[π]]-module in 1 + P and
1 + x =

∏
λ(1 + vλπ)αλ yields

(2.7) v(x) = min
λ

v(αλ) + 1

or using the multiplicative valuation, we have

(2.8) |x| = a sup
λ
|αλ| (with |x| = av(x)).

This means that the direct sum of {(1+vλπ)Q[[π]]} is homeomorphically imbed-
ded in 1 + P . Taking the completion, we get

(2.9) 1 + P 
 l∞0 ({(1 + vλπ)Q[[π]]}) as a Q[[π]]-module.

The last statement of the theorem is now obvious.
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3. The case of Char R=0 but Char k=p

In this case R contains Z and the valuation is p-adic on Z. So R contains
the p-adic ring Zp and the additive group R becomes a Zp-module.

Let v(p) = l > 0, then R is an extension of Zp with the ramification index
l. Let vp(α) be the discrete valuation on Zp then we have v(α) = lvp(α) for
α ∈ Zp ⊂ R.

Theorem 2. The additive group R is isomorphic to the completion of
the direct sum of many Zps as a Zp-module. The multiplicative group 1 + P is
also a Zp-module and written as

(3.1) 1 + P = H ×K

where H is a sub-Zp-module isomorphic to R and K is a finite cyclic group
consisting of all p-th power roots of 1 in 1 + P . The isomorphism between R
and H is given by the correspondence of the basis, which can be written explicitly
when k is a finite field.

Proof. Since k contains Fp, k is a Fp-vector space. Let {vλ}λ∈Λ be a basis
of k over Fp, and let vλ ∈ R× be a representative of the coset vλ ∈ k = R/P .
Then all linear combinations

∑
λ nλvλ with nλ ∈ Z, 0 ≤ nλ ≤ p − 1 form a

complete representative system of k = R/P . Similarly all linear combinations∑
λ nλvλpjπm form a complete representative system of P jl+m/P jl+m+1. This

implies that {vλπm} with λ ∈ Λ and 0 ≤ m ≤ l−1 generates a dense Zp-module
in R.

For x =
∑

λ,m αλ,mvλπm, αλ,m ∈ Zp, evidently we have

(3.2) v(x) = min
m,λ

(vp(αλ,m)l + m),

so that

(3.3) min
m,λ

vp(αλ,m)l ≤ v(x) ≤ min
m,λ

vp(αλ,m)l + l − 1,

which is equivalent to

(3.4) sup
m,λ
|αλ,m|lal−1 ≤ |x| ≤ sup

m,λ
|αλ,m|l.

Therefore the direct sum of {Zpvλπm} is homeomorphically imbedded in R, so
that taking the completion, we get

(3.5) R 
 l∞0 ({Zpvλπm}λ∈Λ,0≤m≤l−1) as a Zp-module.

The multiplicative group 1 + P is rather complicated. The discussion will
be divided into some subcases.

If n is not a multiple of p,then we have

(3.6) (1 + x)n ∈ 1 + nx(1 + P )
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where n ≡ n mod p and 1 ≤ n ≤ p− 1.
On the other hand, we have (1 + x)p = 1 + px + p(p−1)

2 x2 + · · ·+ xp with
v(px) = v(x) + l and v(xp) = pv(x). Therefore we get

(3.7) if v(x) <
l

p− 1
, then v((1 + x)p − 1) = pv(x)

and (1 + x)p ∈ 1 + xp(1 + P ).

(3.8) if v(x) >
l

p− 1
, then v((1 + x)p − 1) = v(x) + l

and (1 + x)p ∈ 1 + px(1 + P ).

(3.9) if v(x) =
l

p− 1
, then v((x + 1)p − 1) ≥ pl

p− 1
(= v(x) + l = pv(x))

but the equality may not hold for some x.
Especially, if 1+P has a p-th root of 1, then l must be a multiple of p− 1, and
the p-th root has a form 1 + x with v(x) = l

p−1 .

Anyway (1 + x)pj

converges to 1 as j →∞ for any x ∈ P . Therefore for a
fixed x, the mapping Z � n 
→ (1 + x)n is continuous in the p-adic topology, so
that (1 + x)α can be defined for α ∈ Zp. Thus 1 + P becomes a Zp-module.

(a) The case that l < p− 1.
In this case, we have (1 + x)p ∈ 1 + px(1 + P ) for any x ∈ P . This yields

(1+x)pj ∈ 1+pjx(1+P ) for any j ≥ 1, and eventually (1+x)α ∈ 1+αx(1+P )
for any α ∈ Zp.

Thus 1 + x =
∏

λ,m(1 + vλπm)αλ,m , αλ,m ∈ Zp implies

(3.10) x ∈
∑
λ,m

αλ,mvλπm(1 + P ).

This situation is the same as the additive group R. So that we have the result:

(3.11) 1 + P 
 l∞0 ({(1 + vλπm)Zp}λ∈Λ,1≤m≤l)

Evidently we have R 
 1 + P as Zp-modules. The isomorphism is given by the
correspondence of the basis R � vλπm ↔ 1 + vλπm+1 ∈ 1 + P .

(b) The case that l > p− 1 but l is not a multiple of p− 1.
From (3.7) and (3.8), for v(x) < l

p−1 , we have (1 + x)p ∈ 1 + xp(1 + P )
and

(3.12) (1 + x)pj ∈ 1 + pj−ixpi

(1 + P )

where i is the smallest integer such that piv(x) > l
p−1 . (But if j < i, then i in

(3.12) should be replaced by j).
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Thus we get
(3.13)

1 + x =
∏
λ

(1 + vλπm)nλpj

implies x ∈
∑

λ

nλpj−i(m)vpi(m)

λ πmpi(m)
(1 + P )

where i(m) is the smallest integer such that pim > l
p−1 . Again in (3.13), i(m)

should be replaced by j if j < i(m).
Especially (3.13) implies

(3.14) v(x) = (j − i(m))l + mpi(m),

so when j runs over 0, 1, 2, . . . , v(x) can be m, mp, . . . , mpi(m), mpi(m)+l, mpi(m)

+ 2l, . . ..
Therefore, when m runs over the following set, every value of v(x) can

appear just once.

(3.15) 1 ≤ m <
pl

p− 1
, m is not a multiple of p.

Case (b1) The residue field k has the characteristic p, so that r 
→ rp is a field
isomorphism on k. We shall assume that kp = k for a while. When k is a finite
field, this assumption is satisfied.

Under this assumption, {vp
λ} is a basis of k over Fp. Similarly {vpj

λ } is a
basis of k over Fp for any j. Now from (3.13), we see that when (nλ) varies,∏

λ(1+vλπm)nλpj

supplies a complete representative system of Pn/Pn+1 where
n = (j−i(m))l+mpi(m). This enables us to show that {1+vλπm}λ,m generates
a dense Zp-module in 1 + P . (m runs over the set defined by (3.15)).

Now, suppose that 1 + x =
∏

λ,m(1 + vλπm)αλ,m , αλ,m ∈ Zp, then from
(3.14) we have

(3.16) v(x) = min
λ,m

((vp(αλ,m)− i(m))l + mpi(m)).

Let j0 be the smallest integer such that pj0 > l
p−1 . Then we have i(m) ≤ j0

and mpi(m) < pl
p−1 . Thus we get

(3.17) min
λ,m

vp(αλ,m)l − j0l ≤ v(x) ≤ min
λ,m

vp(αλ,m)l +
pl

p− 1
.

or in other words

(3.18) sup
λ,m
|αλ,m|la

pl
p−1 ≤ |x| ≤ sup

λ,m
|αλ,m|la−j0l.

Thus the direct sum of {(1+vλπm)Zp} is homeomorphically imbedded in 1+P ,
so we get

(3.19) 1 + P 
 l∞0 ({(1 + vλπm)Zp}λ,m).
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This time again, we have R 
 1 + P as Zp-modules. This comes from the fact
that the set of m satisfying (3.15) consists of just l elements. Let l = (p−1)s+t
with 1 ≤ t ≤ p− 2. Then [ pl

p−1 ] = ps + t, and s multiples of p exist under this
value. So that #({m}) = ps+t−s = (p−1)s+t = l. The isomorphism R 
 1+P
is given by the correspondence of the basis R � vλπi ↔ 1 + vλπmi ∈ 1 + P
where mi is the i-th smallest number satisfying (3.15).
Case (b2) Now we assume that kp �= k. Let {uλ′}λ′∈Λ′ be a basis of a co-space
of kp over Fp. Then {uλ′} ∪ {vp

λ} is a basis of k over Fp.
For m′ = mp < pl

p−1 , (m, p) = 1, the lost representative system of
Pm′

/Pm′+1 is regained by adding the {1 + uλ′πm′} to the basis. Similarly for
m′ = mpj < pl

p−1 , (m, p) = 1, we use the fact that {vpj

λ } ∪ {upj−1

λ′ } ∪ {upj−2

λ′ } ∪
· · · ∪ {uλ′} is a basis of k over Fp. As a result, if we add {1 + uλ′πm′} to the
basis where

(3.20) 1 ≤ m′ <
pl

p− 1
, m′ is a multiple of p,

the lost denseness is regained. So we have

(3.21) 1 + P 
 l∞0
(
{(1 + vλπm)Zp}λ,m ∪ {(1 + uλ′πm′

)Zp}λ′,m′
)

.

This time again, we have R 
 1 + P as Zp-modules. In this case, since k is
an infinite field, the cardinality of the basis does not change even if we add
{(1 + uλ′πm′

)} to the basis. (The correspondence between the basis is not so
explicit. We rely only on the equality of the cardinality of the basis).

(c) The case that l is a multiple of p− 1.
For some x with v(x) = l

p−1 , it can happen that

(3.22) (1 + x)p �∈ 1 + R×π
pl

p−1 .

First we shall investigate the condition for (3.22). Let x = απ
l

p−1 and p = r0π
l

with α, r0 ∈ R×, then (3.22) is equivalent to

(3.23) r0α + αp ∈ P

or in other words

(3.24) r0α + αp = 0 in k.

The mapping k � r 
→ ϕ(r) = r0r + rp is Fp-linear on k.

Case (c1) Assume that ϕ is injective. Then (3.22) never happens. This assures
that {1+vλπm}∪{1+uλ′πm′} stated in (b) generates a direct sum Zp-module.
So we can apply the same argument with (b) except that we need some addition
to the basis. Let {wλ′′} be a basis of a co-space of ϕ(k) over Fp. Then {ϕ(vλ)}∪
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{wλ′′} is a basis of k over Fp. To get a complete representative system of
Pm′′

/Pm′′+1 with m′′ = pl
p−1 , we need to add {1 + wλ′′πm′′} to the basis. In

other respects, the argument is the same as (b) and we get

(3.25) 1 + P 
 l∞0 ({(1 + yν)Zp}) as a Zp-module

where

(3.26) {yν} = {vλπm} ∪ {uλ′πm′} ∪ {wλ′′πm′′}.

Here m and m′ runs through the conditions (3.15) and (3.20), and m′′ = pl
p−1 .

This time again, we get R 
 1 + P as Zp-modules. When k is a finite field, the
injectivity of ϕ implies the surjectivity of ϕ and {wλ′′} is empty.

Case (c2) Assume that ϕ is not injective. Then the kernel of ϕ is one-
dimensional over Fp, because ϕ(α) = 0 with α �= 0 implies r0 + αp−1 = 0,
so that α is a (p − 1)-th root of −r0, and other (p − 1)-th roots of −r0 are
obtained as F×

p α.
Let ϕ(r1) = 0, which is the same thing with that r1 is a (p − 1)-th root

of −r0. Now, we shall rearrange the basis {vλ} or {uλ′} as follows. If l
p−1 is

not a multiple of p, we choose {vλ} such that it includes r1 and set v0 = r1.
If l

p−1 is a multiple of p and r1 �∈ kp, we choose {uλ′} such that it includes r1

and set u0 = r1. If l
p−1 is a multiple of p and r1 ∈ kp, then let r2 be the p-th

root of r1. If l
p(p−1) is not a multiple of p, then we set v0 = r2. If l

p(p−1) is a
multiple of p and r2 �∈ kp, then we set u0 = r2. If l

p(p−1) is a multiple of p and
r2 ∈ kp, take r3 such that rp

3 = r2. Repeating this procedure, we obtain y0 in
(3.26) such that

(3.27) (1 + y0)ph−1 ∈ 1 + r1π
l

p−1 (1 + P ) for some h ≥ 1.

Then (1 + y0)ph �∈ 1 + R×π
pl

p−1 by the definition of r1.
The family {yν} in (3.26) generates a dense Zp-module in 1 + P , but this

time it is not a direct sum just because ϕ is not injective. If we omit y0

from {yν}, the family {yν}ν �=0 generates a direct sum Zp-module because ϕ
is injective on a co-space of r1. Let H be the completion of the direct sum,
namely

(3.28) H = l∞0 ({(1 + yν)Zp}ν �=0).

It is isomorphic with R as a Zp-module. (When k is a finite field, since the
codimension of ϕ(k) is one, {wλ′′} consists of one element, and this compensates
the omission of y0).

Now 1 + P is generated by H and 1 + y0. Note that if v(x) > l
p−1 , then

1 + x can be expressed without using 1 + y0. This shows that (1 + y0)ph ∈ H

and since (1 + y0)ph−1 �∈ H is obvious, we have (1 + P )/H 
 Z/phZ.
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Case (c21) If (1 + y0)ph

= 1, then the group generated by 1 + y0 is isomorphic
with (1 + P )/H, so that we get

(3.29) 1 + P = H× < 1 + y0 >
 R× Z/phZ as a Zp-module.

Case (c22) If (1 + y0)ph �= 1, since it belongs to H, we have the expression

(3.30) (1 + y0)ph

=
∏
ν �=0

(1 + yν)αν , αν ∈ Zp.

Put h′ = minν vp(αν). Since v((1 + y0)ph − 1) > pl
p−1 , and since (1 + x) 
→

(1+x)p is bijective from 1+P i to 1+P i+l for i > l
p−1 , we have (1+y0)ph ∈ Hp,

so that every αν can be divided by p thus we get h′ ≥ 1.
Assume that h′ ≥ h. Then we have (1 + y0)ph ∈ Hph

so that (1 + y0)ph

=
(1 + x)ph

for some 1 + x ∈ H. Here we have v(x) > v(y0), because v((1 +
x)p − 1) = pv(x) or v(x) + l without jumping as the case of (1 + y0)ph−1

. Let
1 + z = (1 + y0)(1 + x)−1, then we have z ∈ y0(1 + P ). So replacing y0 by z
is only the change of a representative of the same coset of k = R/P . Taking z

from the first, we have (1+ z)ph

= 1 and the situation is reduced to Case (c21).
Assume that 1 ≤ h′ < h. Take y1 such that vp(α1) = h′. The family

{yν}ν �=1 also generates a direct sum Zp-module, because (1 + y0)ph

and (1 +

y1)ph′
can be replaced with each other modulo l∞0 ({(1 + yν)Zp}ν �=0,1). Let H ′

be the completion of this direct sum.

(3.31) H ′ = l∞0 ({(1 + yν)Zp}ν �=1}).

Again we have H ′ 
 R as Zp-modules. Then 1 + P is generated by H ′ and
1 + y1. We have

(3.32) (1 + y1)ph′
=

∏
ν �=1

(1 + yν)βν , vp(β0) = h, vp(βν) = vp(αν) ≥ h′.

(In (3.30), if α1 = γph′
with γ ∈ Z×

p , then β0 = γ−1ph and βν = −γ−1αν). So

(1 + y1)ph′ ∈ H ′ph′
, therefore

(3.33) (1 + y1)ph′
= (1 + x)ph′

for some 1 + x ∈ H ′.

Put 1+z = (1+y1)(1+x)−1. Then 1+P is generated by H ′ and 1+z. (Replacing
y1 by z is only the change of the representative of the coset (1+P )/H ′). Since
(1 + z)ph′

= 1, we get

(3.34) 1 + P = H ′× < 1 + z >
 R × Z/ph′
Z.

Since H ′ is torsion free, 1 + P has no root of 1 other than < 1 + z >. This
completes the proof of Theorem 2.
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Remark. In Theorem 2 the order ph of K has a relation that l is a
multiple of ph−1(p− 1), as seen in the proof. So for a given l, h can not be so
large.

4. The case of the characteristic p

Suppose that both R and k has the characteristic p. Then R contains the
prime field Fp and the valuation is trivial on Fp. Since the primitive element
π is transcendental over Fp, R contains the ring of formal power series Fp[[π]].
So the additive group R becomes a Fp[[π]]-module.

On the other hand, the multiplicative group 1+P is torsion free, so it can
not be isomorphic to R.

Theorem 3. The additive group R is isomorphic to the completion of
the direct sum of many Fp[[π]]s as a Fp[[π]]-module. The multiplicative group
1 + P is a Zp-module and isomorphic to a countable direct product of the com-
pletions of direct sums of many Zps as a Zp-module.

Proof. Let {vλ} be a basis of k as a Fp-vector space, and vλ ∈ R× be a
representative of vλ ∈ k = R/P . Then all Fp-linear combinations of {vλ} form
a complete representative system of k = R/P . Similarly all Fp-linear combi-
nations of {vλπ} form a complete representative system of P/P 2, so on. This
implies that {vλ} generates a dense Fp[[π]]-module in R. The same argument
with §2 leads to the conclusion

(4.1) R 
 l∞0 ({Fp[[π]]vλ}) as a Fp[[π]]-module.

Next, we shall investigate the multiplicative group 1 + P . If n is not a
multiple of p, then

(4.2) (1 + x)n ∈ 1 + nx(1 + P ) where n ≡ n mod p and 1 ≤ n ≤ p− 1.

On the other hand, we have

(4.3) (1 + x)p = 1 + xp

since the characteristic is p. Repeating p-th powers, we get

(4.4) (1 + x)pj

= 1 + xpj

.

This situation resembles to that of §3 as the limit of l→∞. Since for a fixed x,
Z � n 
→ (1 + x)n is continuous in the p-adic topology, (1 + x)α can be defined
for α ∈ Zp and 1 + P becomes a Zp-module.

Let {uλ′} be a basis of a co-space of kp over Fp, then {vp
λ} ∪ {uλ′} is a

basis of k over Fp. The same argument with §3 shows that the family

(4.5) {(1 + vλπm)λ,m} ∪ {(1 + uλ′πm′
)λ′,m′}
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generates a dense Zp-module in 1 + P , where
(4.6)

m runs through all non-multiples of p, m′ runs through all multiples of p

Though the obtained Zp-module is a direct sum, the completion should be
taken in a topology different from the usual completion of the direct sum.

Suppose that 1+x =
∏

λ,m(1+vλπm)αλ,m
∏

λ′,m′(1+uλ′πm′
)αλ′,m′ where

αλ,m and αλ′,m′ ∈ Zp. Then we have

(4.7) v(x) = min
(
mpvp(αλ,m), m′pvp(αλ′,m′ )

)

If we take the multiplicative valuation on Zp with the base 1
p ,

(
namely|α| =(

1
p

)vp(α)
)

, then (4.7) becomes

(4.8) v(x) = min
(

m

|αλ,m| ,
m′

|αλ′,m′ |
)

.

Let the multiplicative valuation on R be taken with the base a, then we have
v(x) = loga |x|. The function 1

loga t is positive for small positive t, and tends
monotonically to zero as t→ 0. Thus the topology defined by the scale 1

loga |x|
is identical with that defined by the scale |x|, so the topology in question should
be taken in the norm

(4.9) sup
( |αλ,m|

m
,
|αλ′,m′ |

m′

)
.

The completion in this norm is the so-called weighted completion. We shall
discuss it in general in the next section. Here we state the result as follows.

(4.10) 1 + P 

∏
m

l∞0
({(1 + vλπm)Zp}λ

)×∏
m′

l∞0
({(1 + uλ′πm′

)Zp}λ′
)
.

The proof will be given in the next section.

5. The weighted completion of the direct sum

Let {Rλ} be an infinite family of complete valuation rings. Suppose that
a natural number nλ is given for each λ. Consider a norm on

∏
λ Rλ defined

by

(5.1) |x| = sup
λ

|xλ|
nλ

for x = (xλ).

The completion of
∑

λ Rλ in this norm is called the weighted completion of the
direct sum. If {nλ} is bounded, the weighted completion is identical with the
usual completion without weight.



�

�

�

�

�

�

�

�

644 Aiichi Yamasaki

Theorem 4. The weighted completion is isomorphic to

(5.2)
∞∏

n=1

l∞0 ({Rλ}λ∈Λn
),

where

(5.3) Λn = {λ ∈ Λ |nλ = n}.
Proof. Since the direct product is the closure of the direct sum in the

product topology, it suffices to show that the topology of the weighted com-
pletion is identical with the product topology of the topologies of the usual
completions without weight. This can be shown as follows.

supλ
|xλ|
nλ
≤ ε is equivalent to supλ∈Λn

|xλ| ≤ nε for ∀n. Since |xλ| ≤ 1 for
any λ, the condition is meaningless for n > 1

ε , so that it is equivalent to

(5.4) sup
λ∈Λn

|xλ| ≤ nε for 1 ≤ n ≤
[1
ε

]
.

Conversely, suppose that εn > 0 is given for n = 1, 2, . . . , N . Then

(5.5) sup
λ

|xλ|
nλ
≤ min

εn

n
implies sup

λ∈Λn

|xλ| ≤ εn for n = 1, 2, . . . , N.

This shows that the topology of the weighted completion is identical with
the product topology of the topologies of the usual completions without weight
on each Λn. This leads to the result of Theorem 4.
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