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On dense orbits in the boundary of a Coxeter
system™

By
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Abstract
In this paper, we study the minimality of the boundary of a Coxeter
system. We show that for a Coxeter system (W, S) if there exist a maxi-
mal spherical subset 7" of S and an element so € S such that m(so,t) > 3
for each t € T and m(so, to) = oo for some to € T, then every orbit W«
is dense in the boundary 9% (W, S) of the Coxeter system (W, S), hence
0X(W, S) is minimal, where m(so, t) is the order of sot in W.

1. Introduction and preliminaries

The purpose of this paper is to study the minimality of the boundary of a
Coxeter system. A Cozeter group is a group W having a presentation

(S| (st)™=t) =1 for s,t € S),

where S is a finite set and m : S x S — NU {oo} is a function satisfying the
following conditions:

(1) m(s,t) = m(t,s) for each s,t € S,

(2) m(s,s) =1 for each s € S, and

(3) m(s,t) > 2 for each s,t € S such that s # ¢.

The pair (W, S) is called a Cozeter system. Let (W, S) be a Coxeter system.
For a subset T' C S, Wr is defined as the subgroup of W generated by T, and
called a parabolic subgroup. If T is the empty set, then Wy is the trivial group.
A subset T' C S is called a spherical subset of S, if the parabolic subgroup Wy
is finite.

Every Coxeter system (W,S) determines a Davis-Moussong complex
X(W, S) which is a CAT(0) geodesic space ([4], [5], [6], [10]). Here the 1-skeleton
of X(W,S) is the Cayley graph of W with respect to S. The natural action of
W on X(W, S) is proper, cocompact and by isometry. We can consider a certain
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fundamental domain K (W, S) which is called a chamber of 3(W, S) such that

WK((W,S) =X(W,S) ([5], [6]). If W is infinite, then (W, S) is noncompact

and X(W, S) can be compactified by adding its ideal boundary 0X(W, S) (]2],

[5, §4]). This boundary 0X(W, S) is called the boundary of (W, S). We note

that the natural action of W on (W, S) induces an action of W on 0%(W, S).
The following theorem was proved in [8].

Theorem 1.1.  Let (W, S) be a Coxeter system. Suppose that there exist
a mazximal spherical subset T of S and an element sg € S such that m(sg,t) > 3
for each t € T and m(sg,tg) = oo for some tg € T. Then Wa is dense in
OX(W, S) for some o € (W, S).

Suppose that a group G acts on a compact metric space X by homeomor-
phisms. Then X is said to be minimal, if every orbit Gz is dense in X.

For a negatively curved group I' and the boundary OI' of I', by an easy
argument, we can show that '« is dense in OI" for each o € 0T, that is, OI is
minimal.

We note that Coxeter groups are non-positive curved groups and not nega-
tively curved groups in general. Indeed, there exist examples of Coxeter systems
whose boundaris are not minimal as follows.

Example 1.1. Let S = {s,t,u} and let
W =(S]s*=t>=u? = (st)® = (tu)® = (us)® = 1).

Then (W, S) is a Coxeter system and (W, .S) is the flat Euclidean plane. For
any a € 0X(W, S), Wa is a finite-points set and not dense in X(W, S) which is
a circle. This example implies that we can not omit the assumption “m(sg, tg) =

2

00” in Theorem 1.1.
Example 1.2. Let S = {s1, s2, 83,54} and let
W ={(S] s% = 53 = sg = si = (3132)2 = (5253)2 = (3354)2 = (5451)2 =1).

Then (W,S) is a Coxeter system and (W, S) is the Euclidean plane. For
any « € 9X(W, S), Wa is a finite-points set and not dense in 9%(W, S) which
is a circle. Here we note that {s,s2} is a maximal spherical subset of S,
m(s1,83) = oo and m(se, s3) = 2. This example implies that we can not omit
the assumption “m(sg,t) > 3” in Theorem 1.1.

The purpose of this paper is to prove the following theorem as an extension
of Theorem 1.1.

Theorem 1.2.  Let (W, S) be a Coxeter system which satisfies the con-
dition in Theorem 1.1. Then every orbit Wa is dense in 0X(W,S), that is,
OX(W, S) is minimal.

2. Lemmas on Coxeter groups and the Davis-Moussong complexes

In this section, we recall and prove some lemmas for Coxeter groups and
the Davis-Moussong complexes which are used later.
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Definition 2.1.  Let (W, S) be a Coxeter system and w € W. A repre-
sentation w = s1 -+ s; (s; € 5) is said to be reduced, if £(w) = I, where £(w) is
the minimum length of word in S which represents w.

Definition 2.2.  Let (W, S) be a Coxeter system. For each w € W, we
define S(w) = {s € S|l(ws) < ¢(w)}. For a subset T' C S, we also define
WT ={weW|S(w)=T}.

The following lemma is known.

Lemma 2.1 ([1], [3], [4], [6], [9]). Let (W,S) be a Cozeter system.

(1) Let w € W and let w = s1---s; be a representation. If {(w) < I, then
W=81--8 -85 forsomel <i<j<I.

(2) For each w € W and s € S, l(ws) equals either {(w) + 1 or f(w) — 1,
and {(sw) also equals either £(w) + 1 or L(w) — 1.

(3) For each w € W, S(w) is a spherical subset of S, i.e., Wg(y is finite.

(4) Forw € W and a spherical subset T of S, there exists a unique element
of longest length in Wrw.

(5) For w € W and a spherical subset T of S, v € Wpw is the element
of longest length in Wrw if and only if £(tv) < £(v) for any t € T. Moreover,
then £(v) = £(vw™1) + £(w).

We prove the following technical lemma.

Lemma 2.2.  Let (W, S) be a Cozeter system, T be a spherical subset of
S, and let w € W and s € S satisfy {(ws) = L(w)+1. Moreover, let x,2’ € Wrp
be the unique elements such that xw and x'ws are the elements of longest length
in Wrw and Wrws respectively, given by Lemma 2.1 (4). If x = t1...ty, is
a reduced representation, then either @’ = & or @’ = ty---t;---t, for some
1€ {1,...,m}. In particular, we have £(x') < £(x).

Proof. By Lemma 2.1 (2), either ¢(zws) = ¢(zw)+1 or £(zws) = {(zw)—
1.

We first suppose that ¢(zws) = £(zw) + 1. Since zw is the element of
longest length in Wrw, £(tzw) < ¢(xw) for any ¢ € T by Lemma 2.1 (5). Then
for each t € T,

Utzws) < L(tzxw) + 1 < L(zw) + 1 = l(aws).

Hence £(txws) < £(zws) for any t € T. Thus zws is the element of longest
length in Wrws, i.e., ' = x.

Next we suppose that {(zws) = {(zw) — 1. Since (ws) = £(w) + 1 and
L(zw) = L(z) + L(w),

zws = (ty - ty)ws = (t1 -t ty)w

for some i € {1,...,m} by Lemma 2.1 (1). Now zw is the element of longest
length in Wrw. Here

Wrw = Wr(ty -t - ty)w = Wpaws = Wrws.
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Hence zw is the element of longest length in Wpws.  Since zw =
(ty £ tm)ws, we obtain @’ =ty -+ &5+ tp. O

The following lemma was proved in [8].

Lemma 2.3 ([8, Lemma 2.4]).  Let (W, S) be a Cozxeter system, w € W
and sg € S. Suppose that m(sg,t) > 3 for each t € S(w) and that m(sg,ty) = 0o
for some to € S(w). Then wsy € Wi},

We can obtain the following lemma by the same argument as the proof of
[7, Lemma 4.2].

Lemma 2.4. Let (W,S) be a Cozeter system and let o € 95(W,S).
Then there exists a sequense {s;} C S such that sy ---s; is reduced and

d(Sl s 'Si,Imfa) S N

for each i € N, where N is the diameter of K(W,S) in X(W,S) and &, is the
geodesic ray in X(W,S) such that £,(0) =1 and £,(00) = a.

3. Proof of the main theorem
Using the lemmas above, we prove Theorem 1.2.

Proof of Theorem 1.2. Let (W,S) be a Coxeter system. Suppose that
there exist a maximal spherical subset T" of S and an element sy € S such that
m(sg,t) > 3 for each t € T and m(sg,tg) = oo for some tg € T. Let a €
0X(W, S). By Lemma 2.4, there exists a sequense {s;} C S such that s;---s;
is reduced and d(sq - - s;,Im&,) < N for each i € N, where N is the diameter
of K(W,S) in ¥(W,S) and &, is the geodesic ray such that £,(0) = 1 and
€a(00) = a. Let w; = s1---s;. For each i, there exists a unique element x; €
Wr such that z;w; is the element of longest length in Wrw; by Lemma 2.1 (4).
Now w;t1 = w;8;1+1 and £(w;y1) = £(w;) + 1. By Lemma 2.2, {(x;41) < €(x;)
for every i. Hence there exists a number n such that ¢(z;) = €(x;41) for each
i > n. Then x; = x;41 for every ¢ > n by Lemma 2.2. Let x = x,,. Then zw; is
the element of longest length in Wyrw; for each i > n. Since {(tzw;) < £(zw;)
for any t € T, T C S((xw;)~'). Here S((zw;)~"') is a spherical subset of S by
Lemma 2.1 (3) and T is a maximal spherical subset of S. Hence S((zw;)~!) =T
for each i > n. By Lemma 2.3, (sozw;)~' € W%} and (tgsozw;)~t € Wito}
for each i > n. Hence (W1%})~1 contains the sequence {tosorw; }i>, which
converges to tpspxa. By the proof of [8, Theorem 4.1], Wigspza is dense in
0X(W,S). Here Wipsoza = Wa. Hence Wa is a dense subset of 9X(W, S).
Thus every orbit Wa is dense in 90X (W, S), that is, X(W, S) is minimal. [
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