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Abstract

In this paper, we study the minimality of the boundary of a Coxeter
system. We show that for a Coxeter system (W, S) if there exist a maxi-
mal spherical subset T of S and an element s0 ∈ S such that m(s0, t) ≥ 3
for each t ∈ T and m(s0, t0) = ∞ for some t0 ∈ T , then every orbit Wα
is dense in the boundary ∂Σ(W,S) of the Coxeter system (W, S), hence
∂Σ(W,S) is minimal, where m(s0, t) is the order of s0t in W .

1. Introduction and preliminaries

The purpose of this paper is to study the minimality of the boundary of a
Coxeter system. A Coxeter group is a group W having a presentation

〈S | (st)m(s,t) = 1 for s, t ∈ S 〉,

where S is a finite set and m : S × S → N ∪ {∞} is a function satisfying the
following conditions:

(1) m(s, t) = m(t, s) for each s, t ∈ S,
(2) m(s, s) = 1 for each s ∈ S, and
(3) m(s, t) ≥ 2 for each s, t ∈ S such that s 	= t.

The pair (W, S) is called a Coxeter system. Let (W, S) be a Coxeter system.
For a subset T ⊂ S, WT is defined as the subgroup of W generated by T , and
called a parabolic subgroup. If T is the empty set, then WT is the trivial group.
A subset T ⊂ S is called a spherical subset of S, if the parabolic subgroup WT

is finite.
Every Coxeter system (W, S) determines a Davis-Moussong complex

Σ(W, S) which is a CAT(0) geodesic space ([4], [5], [6], [10]). Here the 1-skeleton
of Σ(W, S) is the Cayley graph of W with respect to S. The natural action of
W on Σ(W, S) is proper, cocompact and by isometry. We can consider a certain
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fundamental domain K(W, S) which is called a chamber of Σ(W, S) such that
WK(W, S) = Σ(W, S) ([5], [6]). If W is infinite, then Σ(W, S) is noncompact
and Σ(W, S) can be compactified by adding its ideal boundary ∂Σ(W, S) ([2],
[5, §4]). This boundary ∂Σ(W, S) is called the boundary of (W, S). We note
that the natural action of W on Σ(W, S) induces an action of W on ∂Σ(W, S).

The following theorem was proved in [8].

Theorem 1.1. Let (W, S) be a Coxeter system. Suppose that there exist
a maximal spherical subset T of S and an element s0 ∈ S such that m(s0, t) ≥ 3
for each t ∈ T and m(s0, t0) = ∞ for some t0 ∈ T . Then Wα is dense in
∂Σ(W, S) for some α ∈ ∂Σ(W, S).

Suppose that a group G acts on a compact metric space X by homeomor-
phisms. Then X is said to be minimal, if every orbit Gx is dense in X.

For a negatively curved group Γ and the boundary ∂Γ of Γ, by an easy
argument, we can show that Γα is dense in ∂Γ for each α ∈ ∂Γ, that is, ∂Γ is
minimal.

We note that Coxeter groups are non-positive curved groups and not nega-
tively curved groups in general. Indeed, there exist examples of Coxeter systems
whose boundaris are not minimal as follows.

Example 1.1. Let S = {s, t, u} and let

W = 〈S | s2 = t2 = u2 = (st)3 = (tu)3 = (us)3 = 1 〉.
Then (W, S) is a Coxeter system and Σ(W, S) is the flat Euclidean plane. For
any α ∈ ∂Σ(W, S), Wα is a finite-points set and not dense in ∂Σ(W, S) which is
a circle. This example implies that we can not omit the assumption “m(s0, t0) =
∞” in Theorem 1.1.

Example 1.2. Let S = {s1, s2, s3, s4} and let

W = 〈S | s2
1 = s2

2 = s2
3 = s2

4 = (s1s2)2 = (s2s3)2 = (s3s4)2 = (s4s1)2 = 1 〉.
Then (W, S) is a Coxeter system and Σ(W, S) is the Euclidean plane. For
any α ∈ ∂Σ(W, S), Wα is a finite-points set and not dense in ∂Σ(W, S) which
is a circle. Here we note that {s1, s2} is a maximal spherical subset of S,
m(s1, s3) = ∞ and m(s2, s3) = 2. This example implies that we can not omit
the assumption “m(s0, t) ≥ 3” in Theorem 1.1.

The purpose of this paper is to prove the following theorem as an extension
of Theorem 1.1.

Theorem 1.2. Let (W, S) be a Coxeter system which satisfies the con-
dition in Theorem 1.1. Then every orbit Wα is dense in ∂Σ(W, S), that is,
∂Σ(W, S) is minimal.

2. Lemmas on Coxeter groups and the Davis-Moussong complexes

In this section, we recall and prove some lemmas for Coxeter groups and
the Davis-Moussong complexes which are used later.
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Definition 2.1. Let (W, S) be a Coxeter system and w ∈ W . A repre-
sentation w = s1 · · · sl (si ∈ S) is said to be reduced, if �(w) = l, where �(w) is
the minimum length of word in S which represents w.

Definition 2.2. Let (W, S) be a Coxeter system. For each w ∈ W , we
define S(w) = {s ∈ S | �(ws) < �(w)}. For a subset T ⊂ S, we also define
WT = {w ∈ W |S(w) = T}.

The following lemma is known.

Lemma 2.1 ([1], [3], [4], [6], [9]). Let (W, S) be a Coxeter system.
(1) Let w ∈ W and let w = s1 · · · sl be a representation. If �(w) < l, then

w = s1 · · · ŝi · · · ŝj · · · sl for some 1 ≤ i < j ≤ l.
(2) For each w ∈ W and s ∈ S, �(ws) equals either �(w) + 1 or �(w) − 1,

and �(sw) also equals either �(w) + 1 or �(w) − 1.
(3) For each w ∈ W , S(w) is a spherical subset of S, i.e., WS(w) is finite.
(4) For w ∈ W and a spherical subset T of S, there exists a unique element

of longest length in WT w.
(5) For w ∈ W and a spherical subset T of S, v ∈ WT w is the element

of longest length in WT w if and only if �(tv) < �(v) for any t ∈ T . Moreover,
then �(v) = �(vw−1) + �(w).

We prove the following technical lemma.

Lemma 2.2. Let (W, S) be a Coxeter system, T be a spherical subset of
S, and let w ∈ W and s ∈ S satisfy �(ws) = �(w)+1. Moreover, let x, x′ ∈ WT

be the unique elements such that xw and x′ws are the elements of longest length
in WT w and WT ws respectively, given by Lemma 2.1 (4). If x = t1 . . . tm is
a reduced representation, then either x′ = x or x′ = t1 · · · t̂i · · · tm for some
i ∈ {1, . . . , m}. In particular, we have �(x′) ≤ �(x).

Proof. By Lemma 2.1 (2), either �(xws) = �(xw)+1 or �(xws) = �(xw)−
1.

We first suppose that �(xws) = �(xw) + 1. Since xw is the element of
longest length in WT w, �(txw) < �(xw) for any t ∈ T by Lemma 2.1 (5). Then
for each t ∈ T ,

�(txws) ≤ �(txw) + 1 < �(xw) + 1 = �(xws).

Hence �(txws) < �(xws) for any t ∈ T . Thus xws is the element of longest
length in WT ws, i.e., x′ = x.

Next we suppose that �(xws) = �(xw) − 1. Since �(ws) = �(w) + 1 and
�(xw) = �(x) + �(w),

xws = (t1 · · · tm)ws = (t1 · · · t̂i · · · tm)w

for some i ∈ {1, . . . , m} by Lemma 2.1 (1). Now xw is the element of longest
length in WT w. Here

WT w = WT (t1 · · · t̂i · · · tm)w = WT xws = WT ws.
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Hence xw is the element of longest length in WT ws. Since xw =
(t1 · · · t̂i · · · tm)ws, we obtain x′ = t1 · · · t̂i · · · tm.

The following lemma was proved in [8].

Lemma 2.3 ([8, Lemma 2.4]). Let (W, S) be a Coxeter system, w ∈ W
and s0 ∈ S. Suppose that m(s0, t) ≥ 3 for each t ∈ S(w) and that m(s0, t0) = ∞
for some t0 ∈ S(w). Then ws0 ∈ W {s0}.

We can obtain the following lemma by the same argument as the proof of
[7, Lemma 4.2].

Lemma 2.4. Let (W, S) be a Coxeter system and let α ∈ ∂Σ(W, S).
Then there exists a sequense {si} ⊂ S such that s1 · · · si is reduced and

d(s1 · · · si, Im ξα) ≤ N

for each i ∈ N, where N is the diameter of K(W, S) in Σ(W, S) and ξα is the
geodesic ray in Σ(W, S) such that ξα(0) = 1 and ξα(∞) = α.

3. Proof of the main theorem

Using the lemmas above, we prove Theorem 1.2.

Proof of Theorem 1.2. Let (W, S) be a Coxeter system. Suppose that
there exist a maximal spherical subset T of S and an element s0 ∈ S such that
m(s0, t) ≥ 3 for each t ∈ T and m(s0, t0) = ∞ for some t0 ∈ T . Let α ∈
∂Σ(W, S). By Lemma 2.4, there exists a sequense {si} ⊂ S such that s1 · · · si

is reduced and d(s1 · · · si, Im ξα) ≤ N for each i ∈ N, where N is the diameter
of K(W, S) in Σ(W, S) and ξα is the geodesic ray such that ξα(0) = 1 and
ξα(∞) = α. Let wi = s1 · · · si. For each i, there exists a unique element xi ∈
WT such that xiwi is the element of longest length in WT wi by Lemma 2.1 (4).
Now wi+1 = wisi+1 and �(wi+1) = �(wi) + 1. By Lemma 2.2, �(xi+1) ≤ �(xi)
for every i. Hence there exists a number n such that �(xi) = �(xi+1) for each
i ≥ n. Then xi = xi+1 for every i ≥ n by Lemma 2.2. Let x = xn. Then xwi is
the element of longest length in WT wi for each i ≥ n. Since �(txwi) < �(xwi)
for any t ∈ T , T ⊂ S((xwi)−1). Here S((xwi)−1) is a spherical subset of S by
Lemma 2.1 (3) and T is a maximal spherical subset of S. Hence S((xwi)−1) = T
for each i ≥ n. By Lemma 2.3, (s0xwi)−1 ∈ W {s0} and (t0s0xwi)−1 ∈ W {t0}

for each i ≥ n. Hence (W {t0})−1 contains the sequence {t0s0xwi}i≥n which
converges to t0s0xα. By the proof of [8, Theorem 4.1], Wt0s0xα is dense in
∂Σ(W, S). Here Wt0s0xα = Wα. Hence Wα is a dense subset of ∂Σ(W, S).
Thus every orbit Wα is dense in ∂Σ(W, S), that is, ∂Σ(W, S) is minimal.
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