On dense orbits in the boundary of a Coxeter system[∗]

By

Tetsuya Hosaka

Abstract

In this paper, we study the minimality of the boundary of a Coxeter system. We show that for a Coxeter system (W, S) if there exist a maximal spherical subset T of S and an element $s_0 \in S$ such that $m(s_0, t) \geq 3$ for each $t \in T$ and $m(s_0, t_0) = \infty$ for some $t_0 \in T$, then every orbit $W\alpha$ is dense in the boundary $\partial \Sigma(W, S)$ of the Coxeter system (W, S) , hence $\partial \Sigma(W, S)$ is minimal, where $m(s_0, t)$ is the order of $s_0 t$ in W.

1. Introduction and preliminaries

The purpose of this paper is to study the minimality of the boundary of a Coxeter system. A *Coxeter group* is a group W having a presentation

$$
\langle S | (st)^{m(s,t)} = 1 \text{ for } s, t \in S \rangle,
$$

where S is a finite set and $m: S \times S \to \mathbb{N} \cup {\infty}$ is a function satisfying the following conditions:

(1) $m(s,t) = m(t,s)$ for each $s, t \in S$,

 (2) $m(s, s) = 1$ for each $s \in S$, and

(3) $m(s,t) > 2$ for each $s, t \in S$ such that $s \neq t$.

The pair (W, S) is called a *Coxeter system*. Let (W, S) be a Coxeter system. For a subset $T \subset S$, W_T is defined as the subgroup of W generated by T, and called a *parabolic subgroup*. If T is the empty set, then W_T is the trivial group. A subset $T \subset S$ is called a *spherical subset of* S, if the parabolic subgroup W_T is finite.

Every Coxeter system (W, S) determines a *Davis-Moussong complex* $\Sigma(W, S)$ which is a CAT(0) geodesic space ([4], [5], [6], [10]). Here the 1-skeleton of $\Sigma(W, S)$ is the Cayley graph of W with respect to S. The natural action of W on $\Sigma(W, S)$ is proper, cocompact and by isometry. We can consider a certain

²⁰⁰⁰ *Mathematics Subject Classification*(*s*). 57M07, 20F65, 20F55 Received March 16, 2005

Revised June 13, 2005

[∗]Partly supported by the Grant-in-Aid for Young Scientists (B), The Ministry of Education, Culture, Sports, Science and Technology, Japan. (No. 15740029).

fundamental domain $K(W, S)$ which is called a *chamber* of $\Sigma(W, S)$ such that $WK(W, S) = \Sigma(W, S)$ ([5], [6]). If W is infinite, then $\Sigma(W, S)$ is noncompact and $\Sigma(W, S)$ can be compactified by adding its ideal boundary $\partial \Sigma(W, S)$ ([2], [5, §4]). This boundary $\partial \Sigma(W, S)$ is called the *boundary of* (W, S) . We note that the natural action of W on $\Sigma(W, S)$ induces an action of W on $\partial \Sigma(W, S)$.

The following theorem was proved in [8].

Theorem 1.1. *Let* (W, S) *be a Coxeter system. Suppose that there exist a* maximal spherical subset T of S and an element $s_0 \in S$ such that $m(s_0, t) \geq 3$ *for each* $t \in T$ *and* $m(s_0, t_0) = \infty$ *for some* $t_0 \in T$ *. Then* $W\alpha$ *is dense in* $\partial \Sigma(W, S)$ *for some* $\alpha \in \partial \Sigma(W, S)$ *.*

Suppose that a group G acts on a compact metric space X by homeomorphisms. Then X is said to be *minimal*, if every orbit Gx is dense in X.

For a negatively curved group Γ and the boundary $\partial \Gamma$ of Γ, by an easy argument, we can show that $\Gamma \alpha$ is dense in $\partial \Gamma$ for each $\alpha \in \partial \Gamma$, that is, $\partial \Gamma$ is minimal.

We note that Coxeter groups are non-positive curved groups and not negatively curved groups in general. Indeed, there exist examples of Coxeter systems whose boundaris are not minimal as follows.

Example 1.1. Let $S = \{s, t, u\}$ and let

$$
W = \langle S | s^2 = t^2 = u^2 = (st)^3 = (tu)^3 = (us)^3 = 1 \rangle.
$$

Then (W, S) is a Coxeter system and $\Sigma(W, S)$ is the flat Euclidean plane. For any $\alpha \in \partial \Sigma(W, S)$, $W\alpha$ is a finite-points set and not dense in $\partial \Sigma(W, S)$ which is a circle. This example implies that we can not omit the assumption " $m(s_0, t_0)$ " ∞ " in Theorem 1.1.

Example 1.2. Let $S = \{s_1, s_2, s_3, s_4\}$ and let $W = \langle S | s_1^2 = s_2^2 = s_3^2 = s_4^2 = (s_1 s_2)^2 = (s_2 s_3)^2 = (s_3 s_4)^2 = (s_4 s_1)^2 = 1 \rangle.$

Then (W, S) is a Coxeter system and $\Sigma(W, S)$ is the Euclidean plane. For any $\alpha \in \partial \Sigma(W, S)$, W α is a finite-points set and not dense in $\partial \Sigma(W, S)$ which is a circle. Here we note that $\{s_1, s_2\}$ is a maximal spherical subset of S, $m(s_1, s_3) = \infty$ and $m(s_2, s_3) = 2$. This example implies that we can not omit the assumption " $m(s_0, t) \geq 3$ " in Theorem 1.1.

The purpose of this paper is to prove the following theorem as an extension of Theorem 1.1.

Theorem 1.2. Let (W, S) be a Coxeter system which satisfies the con*dition in Theorem* 1.1*. Then every orbit* $W\alpha$ *is dense in* $\partial\Sigma(W, S)$ *, that is,* $\partial \Sigma(W, S)$ *is minimal.*

2. Lemmas on Coxeter groups and the Davis-Moussong complexes

In this section, we recall and prove some lemmas for Coxeter groups and the Davis-Moussong complexes which are used later.

Definition 2.1. Let (W, S) be a Coxeter system and $w \in W$. A representation $w = s_1 \cdots s_l$ $(s_i \in S)$ is said to be *reduced*, if $\ell(w) = l$, where $\ell(w)$ is the minimum length of word in S which represents w .

Definition 2.2. Let (W, S) be a Coxeter system. For each $w \in W$, we define $S(w) = \{s \in S \mid \ell(ws) < \ell(w)\}\$. For a subset $T \subset S$, we also define $W^T = \{w \in W \mid S(w) = T\}.$

The following lemma is known.

Lemma 2.1 ([1], [3], [4], [6], [9]). *Let* (W, S) *be a Coxeter system.* (1) Let $w \in W$ and let $w = s_1 \cdots s_l$ be a representation. If $\ell(w) < l$, then $w = s_1 \cdots \hat{s_i} \cdots \hat{s_j} \cdots s_l$ for some $1 \leq i < j \leq l$.

(2) For each $w \in W$ and $s \in S$, $\ell(ws)$ equals either $\ell(w)+1$ or $\ell(w)-1$, *and* $\ell(sw)$ *also equals either* $\ell(w)+1$ *or* $\ell(w)-1$ *.*

(3) For each $w \in W$, $S(w)$ is a spherical subset of S, i.e., $W_{S(w)}$ is finite.

(4) For $w \in W$ and a spherical subset T of S, there exists a unique element *of longest length in* $W_T w$.

(5) For $w \in W$ and a spherical subset T of S, $v \in W_T w$ is the element *of longest length in* $W_T w$ *if and only if* $\ell(tv) < \ell(v)$ *for any* $t \in T$ *. Moreover, then* $\ell(v) = \ell(vw^{-1}) + \ell(w)$ *.*

We prove the following technical lemma.

Lemma 2.2. *Let* (W, S) *be a Coxeter system,* T *be a spherical subset of* S, and let $w \in W$ and $s \in S$ satisfy $\ell(ws) = \ell(w)+1$. Moreover, let $x, x' \in W_T$ be the unique elements such that xw and x'ws are the elements of longest length *in* $W_T w$ *and* $W_T w$ *s respectively, given by Lemma* 2.1 (4)*.* If $x = t_1 \dots t_m$ *is a reduced representation, then either* $x' = x$ *or* $x' = t_1 \cdots t_i \cdots t_m$ *for some* $i \in \{1, \ldots, m\}$ *. In particular, we have* $\ell(x') \leq \ell(x)$ *.*

Proof. By Lemma 2.1 (2), either $\ell(xws) = \ell(xw) + 1$ or $\ell(xws) = \ell(xw) - \ell(xw)$ 1.

We first suppose that $\ell(xws) = \ell(xw) + 1$. Since xw is the element of longest length in $W_T w$, $\ell(t x w) < \ell(x w)$ for any $t \in T$ by Lemma 2.1 (5). Then for each $t \in T$,

$$
\ell(txws) \le \ell(txw) + 1 < \ell(xw) + 1 = \ell(xws).
$$

Hence $\ell(txws) < \ell(xws)$ for any $t \in T$. Thus xws is the element of longest length in $W_T ws$, i.e., $x' = x$.

Next we suppose that $\ell(xws) = \ell(xw) - 1$. Since $\ell(ws) = \ell(w) + 1$ and $\ell(xw) = \ell(x) + \ell(w),$

$$
xws = (t_1 \cdots t_m)ws = (t_1 \cdots \hat{t}_i \cdots t_m)w
$$

for some $i \in \{1, \ldots, m\}$ by Lemma 2.1 (1). Now xw is the element of longest length in $W_T w$. Here

$$
W_T w = W_T(t_1 \cdots \hat{t}_i \cdots t_m) w = W_T x w s = W_T w s.
$$

Hence xw is the element of longest length in $W_T ws$. Since $xw =$ $(t_1 \cdots \hat{t_i} \cdots t_m)$ ws, we obtain $x' = t_1 \cdots \hat{t_i} \cdots t_m$. \Box

The following lemma was proved in [8].

Lemma 2.3 ([8, Lemma 2.4]). *Let* (W, S) *be a Coxeter system,* $w \in W$ *and* $s_0 \in S$ *. Suppose that* $m(s_0, t) \geq 3$ *for each* $t \in S(w)$ *and that* $m(s_0, t_0) = \infty$ *for some* $t_0 \in S(w)$ *. Then* $ws_0 \in W^{\{s_0\}}$ *.*

We can obtain the following lemma by the same argument as the proof of [7, Lemma 4.2].

Lemma 2.4. *Let* (W, S) *be a Coxeter system and let* $\alpha \in \partial \Sigma(W, S)$ *. Then there exists a sequense* $\{s_i\} \subset S$ *such that* $s_1 \cdots s_i$ *is reduced and*

$$
d(s_1\cdots s_i,\operatorname{Im}\xi_\alpha)\leq N
$$

for each $i \in \mathbb{N}$ *, where* N *is the diameter of* $K(W, S)$ *in* $\Sigma(W, S)$ *and* ξ_{α} *is the geodesic ray in* $\Sigma(W, S)$ *such that* $\xi_{\alpha}(0) = 1$ *and* $\xi_{\alpha}(\infty) = \alpha$ *.*

3. Proof of the main theorem

Using the lemmas above, we prove Theorem 1.2.

Proof of Theorem 1.2. Let (W, S) be a Coxeter system. Suppose that there exist a maximal spherical subset T of S and an element $s_0 \in S$ such that $m(s_0, t) \geq 3$ for each $t \in T$ and $m(s_0, t_0) = \infty$ for some $t_0 \in T$. Let $\alpha \in$ $\partial \Sigma(W, S)$. By Lemma 2.4, there exists a sequense $\{s_i\} \subset S$ such that $s_1 \cdots s_i$ is reduced and $d(s_1 \cdots s_i, \text{Im } \xi_\alpha) \leq N$ for each $i \in \mathbb{N}$, where N is the diameter of $K(W, S)$ in $\Sigma(W, S)$ and ξ_{α} is the geodesic ray such that $\xi_{\alpha}(0) = 1$ and $\xi_{\alpha}(\infty) = \alpha$. Let $w_i = s_1 \cdots s_i$. For each i, there exists a unique element $x_i \in$ W_T such that x_iw_i is the element of longest length in $W_T w_i$ by Lemma 2.1 (4). Now $w_{i+1} = w_i s_{i+1}$ and $\ell(w_{i+1}) = \ell(w_i) + 1$. By Lemma 2.2, $\ell(x_{i+1}) \leq \ell(x_i)$ for every *i*. Hence there exists a number *n* such that $\ell(x_i) = \ell(x_{i+1})$ for each $i \geq n$. Then $x_i = x_{i+1}$ for every $i \geq n$ by Lemma 2.2. Let $x = x_n$. Then xw_i is the element of longest length in $W_T w_i$ for each $i \geq n$. Since $\ell(t x w_i) < \ell(x w_i)$ for any $t \in T$, $T \subset S((xw_i)^{-1})$. Here $S((xw_i)^{-1})$ is a spherical subset of S by Lemma 2.1 (3) and T is a maximal spherical subset of S. Hence $S((xw_i)^{-1}) = T$ for each $i \geq n$. By Lemma 2.3, $(s_0 x w_i)^{-1} \in W^{\{s_0\}}$ and $(t_0 s_0 x w_i)^{-1} \in W^{\{t_0\}}$ for each $i \geq n$. Hence $(W^{\{t_0\}})^{-1}$ contains the sequence $\{t_0s_0xw_i\}_{i\geq n}$ which converges to $t_0s_0x\alpha$. By the proof of [8, Theorem 4.1], $Wt_0s_0x\alpha$ is dense in $\partial \Sigma(W, S)$. Here $Wt_0s_0x\alpha = W\alpha$. Hence $W\alpha$ is a dense subset of $\partial \Sigma(W, S)$. Thus every orbit $W\alpha$ is dense in $\partial\Sigma(W, S)$, that is, $\partial\Sigma(W, S)$ is minimal. 口

> Department of Mathematics Utsunomiya University Utsunomiya, 321-8505 **JAPAN** e-mail: hosaka@cc.utsunomiya-u.ac.jp

References

- [1] N. Bourbaki, *Groupes et Algebrès de Lie*, Chapters IV-VI, Masson, Paris, 1981.
- [2] M. R. Bridson and A. Haefliger, *Metric spaces of non-positive curvature*, Springer-Verlag, Berlin, 1999.
- [3] K. S. Brown, *Buildings*, Springer-Verlag, 1980.
- [4] M. W. Davis, *Groups generated by reflections and aspherical manifolds not covered by Euclidean space*, Ann. of Math. **117** (1983), 293–324.
- [5] , *Nonpositive curvature and reflection groups*, in Handbook of geometric topology (Edited by R. J. Daverman and R. B. Sher), pp. 373–422, North-Holland, Amsterdam, 2002.
- [6] , *The cohomology of a Coxeter group with group ring coefficients*, Duke Math. J. **91**-2 (1998), 297–314.
- [7] T. Hosaka, *Parabolic subgroups of finite index in Coxeter groups*, J. Pure Appl. Algebra **169** (2002), 215–227.
- [8] , *Dense subsets of the boundary of a Coxeter system*, Proc. Amer. Math. Soc. **132** (2004), 3441–3448.
- [9] J. E. Humphreys, *Reflection groups and Coxeter groups*, Cambridge University Press, 1990.
- [10] G. Moussong, *Hyperbolic Coxeter groups*, Ph.D. thesis, The Ohio State University, 1988.