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Introduction

1. Let G be a countable discrete group, K;(G) the set of all positive
definite class functions f on G normalized as f(e) = 1, and E(G) the set of
all extremal elements in the convex set K;(G), where e denotes the identity
element of G. In [Thol], a canonical bijective correspondence between E(Q)
and the set of characters of all factor representations of finite type is established
(cf. 1.2 below). In this sense every element f € E(G) is called a character of
G.

The purpose of this paper is to give explicitly all the characters of the
wreath product groups G = G (T) = Doo(T) X G4 of any finite groups T
with the infinite symmetric group G,. This problem of determining all the
characters of factor representations of finite type, or the problem of giving a
general character formula for f € E(G), was worked out in [Tho2] for G = S.
The result for G = GL(co, F;) with a finite field F, was given in [Sk].

The case of infinite symmetric group attracted interests of many mathe-
maticians and we cite here, among others, works of Vershik-Kerov [VK], Kerov-
Olshanski [KO] and Biane [Bi] in which they worked principally from the point
of view of approximation from finite symmetric groups &,, (n — cc). Recently
in [Hi3]-[Hi4], we reexamined the case of & from the standpoint of taking
limits of centralizations of positive definite functions obtained as matrix ele-
ments of simple unitary representations. Since this is one of our main ideas, let
us explain it briefly here. For a subgroup G’ of G a centralization of a function
F on G with respect to G’ is by definition

P =g ¥ Pldad™) (<@

g'eq’

Taking an appropriate series of increasing subgroups Gy ,/ G as N — oo,
we consider pointwise limit f(g) = limy .o, F%~(g). Here as a function F,
we choose a positive definite matrix element of an induced representation p =
Ind$ of a (not necessary irreducible) unitary representation 7 of a subgroup
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H of wreath product type. In [Obl]-[Ob2] and [Hil]-[Hi2], it is shown that
appropriate choices of H and 7 give us a big family of irreducible unitary
representations p of G. However here, to get characters of G as limits f of this
kind, we found as a result that it is better to choose p rather far from to be
irreducible.

Next to G, we proceed to the case of wreath products G (T') with finite
abelian groups 7', and of their canonical subgroups. This case contains the
cases of infinite Weyl groups Wp_ = 65,(Z2) of type B /Co and Wp__ of
type Do, and limits G (Z,.) of complex reflexion groups G(r,1,n) as n — oo
(for finite complex reflexion groups, cf. [Ka] and [Sh]). For this abelian case,
a general explicit formula for characters f € E(G) is given in [HHI1] with a
sketch of proof, and so all the factor representations of finite type are classified
for G = 6(T), T abelian.

Thus, we now come to the present case of G (T") with any finite group 7.

2. This paper is organized as follows. In §1, we define the wreath product
group G = G (T), and review the theory of characters of discrete groups. In
§2, the structure of G is studied and conjugacy classes are given in Theorem 1,
and then finite-dimensional irreducible representations are classified.

In §3, a general character formula for f € E(G) is given in Theorem 2 for
G = 65 (T) with T any finite group, whose proof occupies §§7-11 and §§13-16.
Then, in §4, the case where T is abelian is treated. The character formula in
this case has a much simpler form (Theorem 3). In §5, a canonical subgroup
G® =65 (T) = D¢ (T) x 64 with T abelian is treated (Theorem 4). In §6,
the infinite Weyl groups Wp__ = 6(Z3) and its subgroup Wp_ = 65 (Z>2)
are treated (Theorem 6 and Theorem 7 respectively).

In §7, our method of proving Theorem 2 is explained, the first part of the
proof in 7.1 and the second part in 7.2. The first part occupies §§8—11 and
§813-14. In §8, the centralization of positive definite functions, is treated. In §9,
an inducing up of a matrix element of 7 to that of p = Indgﬂr is discussed. In
§10, we discuss choices of H and 7, refering the results in [Hil]-[Hi2] and [Hi3]-
[Hi4]. In §11, choices of series of increasing subgroups G * G is discussed.
Actually, our choices of the series give us as pointwise limits a big set LZM of
positive definite class functions, which later turns out to be equal to E(G).

In §12, we consider, for each (¢,£) € T x {0,1}, a series of a special kind
of irreducible representations p,, of &,(T) converging to an irreducible repre-
sentation p of G = G (T'), and calculate limits of trace characters F¢.(g) :=
lim,, 00 tr(pn(g))/ dim p, (g € G) (Theorem 9). This result is applied in §16.

In §13, according to the choice in §11 of Gy = &, (T) = Dy, (T) x &,
with Jy /N, a partial centralization FP~ of F with respect to the subgroup
Dyn = Dy, (T) of Gy is discussed (Proposition 10). In §14, the centralization
with respect to another subgroup Sy = &, of Gy is performed on FP~ to
get finally F~ = (FPN)9~ | Thus we get a set LIM of positive definite class
functions f, all of which are factorizable in the sense that f(gg’) = f(g9)f(9)
if the supports of g and ¢’ are mutually disjoint. The set LZM coincides with
the set F4 = { fa} of class functions f4 in Theorem 2 corresponding to a
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parameter A = ((‘J‘QE)(c,s)efx{o,l} : ,u). Here every a¢. = (Qcei)ien 1S a
decreasing sequence of non-negative real numbers, and p = (u¢) et is a set of
non-negative real numbers, which altogether satisfy the condition

S>> e

ceT e€{0,1}

|+ el <1,

with [lacell = X ien e ol =2 ceqpe. Since we get LIM = Fy, it is
proved that every f4 is positive definite (Proposition 11). This completes the
first part of the proof of Theorem 2, giving the assertion F4 C K1(G).

The second part of our proof of Theorem 2 is to prove that every f4 is
extremal, and that F4 = E(G). In §15, generalizing Satz 1 in [Tho2], we give
a criterion for a positive definite class function f € K;(G) to be extremal.
Theorem 12 says that f is extremal if and only if f is factorizable. Then we
see that every f € LIM is extremal since f is factorizable, and so we have
LIM C E(G).

In §16, the converse inclusion LIM D E(G) is proved (Proposition 13).
To do so, we define a Fourier transform of a factorizable positive definite class
function f with respect to F . and calculate it explicitly (Lemma 16.2). Thus
the second part of the proof of Theorem 2 is now completed.

In §17, we deduce Theorem 4, character formula for the subgroup &¢_(T") in
the case of T abelian, from Theorem 2. In §18, the wreath product A (T) =
Do (T) % Ao of a finite group T with the infinite alternating group s is
discussed and its character formula is given in Theorem 14. In the case where
T is abelian, we have also a canonical subgroup ¢ (T') and its character formula
is given in Theorem 15.

In Appendix, we give several lemmas on integrals of matrix elements and
characters for compact groups (containing finite groups).

1. Wreath product groups and characters

Let G = 6 (T) be a wreath product of a finite group T with the infinite
symmeric group &.,. The purpose of this paper is to give all the extremal
(or indecomposable) positive definite class functions on G. The set E(G) of
such functions f, normalized as f(e) = 1, covers all the characters of factor
representations of finite type, type II; or type I, n < 0o, of G. Here e denotes
the identity element of G.

In this section, we first give a definition of wreath product groups, and
then review briefly the relation between positive definite class functions and
characters of factor representations of finite type, for countable discrete groups.

1.1. Wreath product groups with the infinite symmetric group

For a set I, denote by &; the group of all finite permutations on I. A
permutation o on I is called finite if its support supp(o) :={i € I; o(i) #1i}
is finite. The permutation group & on the set of natural numbers IV is called
the infinite symmetric group and the index N is frequently replaced by co. The
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symmetric group &,, is naturally imbedded in &, as the permutation group
of the set I, :={1,2,...,n} C N.

Let T be a finite group. We consider a wreath product &;(T) of T with a
permutation group &y as follows:

(1.1) S/(T)=Di(T)x &, DI(T)=1l;c;T;, Ti=T (i € I),

where the symbol H/ means the restricted direct product, and o € & acts on
D(T) as

(12) D](T) >d= (ti)iel s O'(d) = (t;)iel S D](T), t; = to—l(i) (Z S I)

Identifying groups D;(T") and & with their images in the semidirect prod-
uct &;(T), we have o do~! = o(d). The group &y, (T) is denoted as &,,(T),
then G := G, (T) is an inductive limit of G,, := &,(T), and G = lim,,_, G,
is countably infinite.

In the case where T is abelian, we put

(1.3) P](d) = Hti e T for d= (ti)iel € l)](T)7
iel

and define a subgroup of &;(T) as

S5(T) = DS(T) x 6

(14 with  DY(T) := {d = (t;)ics ; Pr(d) =er},

where er denotes the identity element of T

This kind of wreath product groups contain the infinite Weyl groups of
classical type, Wa_ = 6o, Wi, = 650(Z2) and Wp__ = & (Z3), and more-
over the inductive limits G (Z,) = lim,_ G(r,1,n) of complex reflexion
groups G(r,1,n) = 6,,(Z,) (cf. [Ka], [Sh]).

1.2. Characters and positive definite functions on infinite discrete
groups

Let G be an infinite discrete group. Denote by C.(G) the x-algebra of all
compactly supported functions on G with the operations

(1.5) (1% 2)(g) ==Y di(gh™ " a(h), ¢ *(g) =v(g~D),

heG

for Yn,12,¢ € Co(G), and g € G. Then it has a basis {J, ; g € G}, where
04 denotes a function on G having the value 1 at g, and zero elsewhere. The
identity element of C.(G) is given by J. . The completion of C.(G) with respect
to a certain special norm is the C*-algebra C*(G) of G.

A unitary representation 7 of G corresponds bijectively to a non-degenerate
representation of C.(G) and that of C*(G) through

() = geq ¥(9)m(9) (¢ € Ce(G)).
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We refer [Di, §6] for the theory of traces and characters of representations
of C*-algebras, and for our special case of discrete groups, we refer also [Thol].

For a C*-algebra, a character t is, by definition, a trace which is semifinite,
semicontinuous from below, and such that any such trace majorized by t is
proportional to ¢. This is translated on the level of C.(G) as follows. A trace
t on C.(G) is a positive definite functional satisfying

(1.6) t(Y1 % 92) = t(P2 xh1) (1,92 € Ce(G)).
It is determined by a positive definite invariant (or class) function f as
(1.7) t: Ce(G) 3¢ — f(¥) =2 e fl9)¥(g) €C.

A trace t is a character in the sense of C*-algebras if and only if the corre-
sponding f is extremal or indecomposable ([Thol, Korollar 2 to Lemma 2]).
Let us explain a little more. In general, for a non-zero positive definite
function f on G, we can associate, by GNS construction, a cyclic representation
ws as follows. Introduce in A := C.(G) a positive semidefinite inner product as

(Wr, )= > F(h ) vn(g)da(h) = fs" x¢b1) (1,02 €A).

g,heG

Then, this is invariant under left G-action: (L(go)®)(g) := ¥(gy '9) (90,9 €
G). Let Jy be the kernel of (-, - ), and take a completion of the quotient space
A; = A/Jy, we get a Hilbert space $5, on which a unitary representation
is induced from L(go) (g0 € G). Let vy € V(my) := H be the image of §. € &,
then it is a cyclic vector of 7y, and moreover the original f is recovered as a
matrix element as f(g) = (77(g)vo, vo)-

Let K(G) be the set of all positive definite class functions on G, and K;(G)
the set of all f € K(G) normalized as f(e) = 1, then K;(G) is a convex subset.
Denote by E(G) the set of all extremal points in K1(G). If we take f € K;(G),
since f is invariant, the kernel Jy is a two-sided *-ideal and Ay = A/Jy is a
x-algebra. The left and right multiplications of 2; generate respectively rep-
resentations ¢ (1)), pr(¢¥) of Ay and accordingly of A. They generate von
Neumann algebras Uy := 7p()", Uy := ps(A)”, which are mutually commu-
tants of the other. The common center ;N reduces to C-I if and only if f
is extremal or f € E(G), where I denotes the identity operator on 9 ([Thol],
cited above).

When ¢ is a factor representation, it is of finite type, and the character
assosiated to it is given by t: C.(G) 2 v — f(3) € C, or on the level of von
Neumann algebras by

U mp()— f(Y) € C (Y € Ce(@) ).

This character has a finite value 1 at the identity operator I € s, since
m5(0e) = I, f(dc) = f(e) = 1. Hence, when dimmy = oo, the factor is of type
II;, and when dim7; < o0, it is of type I, with n such that n < dim7y < n?
because 7 is cyclic.
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Actually, for the present case of G = &, (T), finite-dimensional irreducible
unitary representations (= IURs) are necessarily of dimension one (by Lemma
2.3 below). Therefore, if a factor representation 7 is finite-dimensional, it is
necessarily a one-dimensional character of G.

1.3. Present problem

Our present problem is to determine explicitly all elements of E(G) for
the groups G = G4 (T) for any finite groups T. As explained above, E(G)
corresponds bijectively to the set of all characters of factor representations of
finite type of G. For the infinite symmetric group S, the problem was worked
out in [Tho2], and it is reexamined in [VK], [KO], [Bi] etc. from the point of
view of approximation from &,, (n — 00), and recently in [Hi3]-[Hi4] from the
standpoint of taking limits of centralizations of simple positive definite matrix
elements of representations induced from subgroups of wreath product type of
S . For the case where T is abelian, a general explicit formula for f € E(G)
has been given in [HH1], and so all characters have been classified.

2. Structure of wreath product groups &.,(T) = Doo(T) X S0

Fix a finite group T, and take the wreath product group S (T") of T with
G

(21) 6oo(T) = Do(T) ¥ Goo, Duoo(T) :=[l,enTi, Ti=T (i€ N).

Here 0 € 6 actsond = (t;)ieN € Doo(T) as o(d) = (t,-1¢;))icn. We identify
frequently d and o with their images in G, (T) respectively, then ocdo~! = o(d)
and

(d,o)(d,0") = (d(od'c™"),00") (d,d € Doo(T), 0,0 € Gy).

Notation. For d = (¢;)ier € D;(T), I C N, put supp;(d) := {i €
I; t; # er} and we omit the suffix T if I = N or I is specified from the
context.

2.1. Standard decomposition of elements and conjugacy classes
An element g = (d,0) € G = 6 (T) is called basic in the following two
cases:

CASE 1: o is cyclic and supp(d) C supp(o);
CASE 2: ¢ =1 and for d = (t;)ienN, tq # er only for one ¢ € N.

Here 1 € &4 denotes the trivial permutation, and the element (d,1) in Case
2 is denoted by &,, and put supp(§,) := supp(d) = {q }.

For a cyclic permutation o = (i1 42 ... 4g) of £ integers, we define its
length as £(o) = £, and for the identity permutation 1, put ¢(1) =1 for conve-
nience. In this connection, £, is also denoted by (4, (¢)) with a trivial cyclic
permutation (g) of length 1. In Cases 1 and 2, put ¢(g) = £(o) for g = (d,0),
and ¢(§,) = 1.
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An arbitrary element g = (d,0) € G, is expressed as a product of basic
elements as

(2.2) 9="E808q €0, 9192 Im

with g; = (d;,0;) in Case 1, in such a way that the supports of these com-
ponents, ¢i,q2,..., ¢r, and supp(g;) = supp(o;) (1 < j < m), are mutu-
ally disjoint. This expression of g is unique up to the orders of &, ’s and
g;’s, and is called standard decomposition of g. Note that ¢(§, ) = 1 for
1 <k <rand{(gj) =¥(c;) >2for 1 <j<m,and that, for &,-components,
0= 01090, gives a cycle decomposition of o.

To write down conjugacy class of g = (d,o), there appear products of
components t; of d = (¢;), where the orders of taking products are crucial when
T is not abelian. So we should fix notations well.

We denote by [t] the conjugacy class of ¢ € T, and by T/~ the set of all
conjugacy classes of T, and t ~ ¢’ denotes that ¢,¢' € T are mutually conjugate

in T'. For a basic component g; = (d;,0;) of g, let o; = (i1 ij2 ... ij¢,) and
put K :=supp(o;) = {ij1, ij2, - - ., ij¢ } With £; = £(0;). For d; = (t;)ick;,
we put

(23)  Poy(dy) i= [ty ty,_q--toty] € T/~ with t =t (1<k<{).

ij,k
Note that the product Py, (d;) is well-defined, because, for t1,ts,...,t; €

T, we have tity -ty ~ tptgyy - tety - - - ty—1 for any k, that is, the conjugacy
class does not depend on any cyclic permutation of (¢1,ts,...,%).

Lemma 2.1. (i) Let 0 € 6 be a cycle, and put K = supp(c). Then,
an element g = (d,0) € S (T) =: Gk (put) is conjugate in it to ¢’ = (d',0) €
G with d' = (t;)ier, t; = er (i # io), [t;,] = Po(d) for some ip € K.

(ii) Identify T € G with its image in G = G (T). Then we have, for
g=(d,o),

and P,/(d") = P,(d).

Proof. (1) We may assume that 0 = (1 2 .-+ ¢) and so K = I, =
{1,2,...,¢}. Then, for s = (s1,52,...,8¢) € Dg(T) — Sk(T), we have
sgs~t = (d" o) with d’ = (t!)ick,

t;/ = Siti(sg—l(i))_l = Siti(si_l)_l (1 < 1 < f, 0= é)

Therefore t]t]_| -4t} = s¢(tete_1 - tat1)s, ', and so P,(d") = P,(d).

Take s; = ep,s1 = t; 5,89 = (tot1)™, ..., 80-1 = (tg_1---tat1)”", then
we get t7 = ep (1 <i</{)and ] =toty_q---taty.
(i) With o above, we have 7o~ ! = (7(1) 7(2) -+ 7(¢)), and d' =

7(d) = (t))jex, K' = 7(K), with tj = t.—1(;) and so ¢/ ;) ={; (i € K). Hence
t/r(e)t/r(e—l) e t’T(2) t’T(l) = tyty_1 - - - tat1. This proves the assertion. O
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Applying this lemma to each basic components g; = (d;,0;) of g € G in
(2.2), we get the following result.

Theorem 1.  Let T be a finite group. Take an element g € G = G (T)
and let its standard decomposition into basic elements be

9="58u8a €0, 9192 Gm

in (2.2), with &, = (tg.,(qx)), and g; = (d;,0;), o; cyclic, supp(d;) C
supp(c;). Then the conjugacy class of g is determined by

(24) [ty] €T/~ (1<k<r) and (Py(d)oy)) (1<) <m),

where Py, (dj) € T/~ and £(o;) > 2. ( Note that we put £(&,,) = 1, £(g;) =
é(O'j) > 2)

2.2. The case where T is abelian

In the case where T is abelian, the set T'/~ of conjugacy classes is equal to T’
itself. Take g € G, and take its standard decompositon (2.2). For g; = (d;, 0;),
put g; = (d},0;), where d; = (t})ien With t; = P(d;) = HieKj t; for some
ip € K, :=supp(o;), and t; = er elsewhere.

Lemma 2.2.  Let T be abelian. For a g = (d,0) € G (T), let its
standard decomposition be g = £4,&q, ++ g, 9192+ gm in (2.2). Define g} (1 <
/

j < m) as above and put ¢’ = £;,&4, - €4, 9195 G- Then, g and ¢’ are
mutually conjugate in Soo(T).

The conjugacy class of g; and gj is characterized by the pair of P(d;) =
P(d;) € T and £; = {(0;) > 2. Thus we get the following corollary.

Corollary. A complete set of parameters of the conjugacy classes of
non-trivial elements g € S (T) is given by

(2.5) {t1,ty, ... tp ) and {(u;,0;); 1<j<m},

where tj, =tq, € T* =T \{er}, uj=P(d;) €T, {; >2, andr+m > 0.

2.3. Finite-dimensional irreducible representations

Let us study finite-dimensional irreducible representations (= IRs) of G =
Suoo(T).

Let m be such an IR of G. Consider a series of subgroups G,, := &,(T).
Then G,, /' G as n — oo. Since dim7 < oo, there exists an n such that the
restriction 7|g, of m on G, is already irreducible. Then, 7(G,,) generates the
full operator algebra 9B of V(xr). Take the commutant Zg(G,) of G,, in G.
Then for any h € Zg(G,,), the operator 7(h) commutes with every element in
B, and so is a scalar operator.

On the other hand, any g € G is conjugate under G to an element h €
Zc(Gy). Therefore m(g) is a scalar operator together with 7(h). This means
that dim7 = 1. Thus we get the following result.
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Lemma 2.3. A finite-dimensional irreducible representation w of
Swo(T) is a one-dimensional character, and is given in the form m = m¢ .
with

m¢e(9) = C(P(d)) (sgng)” (0) for g=(d,0) € Go(T) = Doo(T) % S,

where ¢ is a one-dimensional character of T, P(d) is a product of components
t; of d = (t;), and sgng (o) denotes the usual sign of o and ¢ = 0,1. (Since
C(P(d)) = [Lien C(ti), the order of taking product for P(d) has no meaning
even if T is not abelian.)

In the case where T is abelian, we can prove similarly the following fact
for the subgroup 6¢,(T') of G (T).

Lemma 2.4.  Assume that T is abelian. Then, a finite-dimensional ir-
reducible representation m of &S (T) is a one-dimensional character, and is
given in the form

(g) = (sgng)” (o) for g=(d,0) € &L (T) = D5, (T) % G

3. Characters of wreath product group 6.,(7), T finite

In this section, we give our general results on characters of a wreath prod-
uct group G = G4 (T) for any finite group 7.

First let us introduce several notations. Let T be the dual of T consist-
ing of all equivalence classes of irreducible representations. We identify every
equivalence class with one of its representative. Thus ( € T is an IR and denote
by x¢ its character:

xe(t) =tr(C(t))  (teT),
then dim ¢ = x¢(er). Denote by 17 the identity representation of T, and put
T*:=T\{1r}, T* =T\ {er}. Then

(3.1) IT|ber = Z(dimg) X¢, as functions on T,
¢ceT
(3.2) O:Z(dimg))@ and 1=x1, =— Z(dimg)xg, on T*.
CeT CeT*

Take an element g € G = G, (T') and let its standard decomposition into
basic components be

(33) g = €q1€q2 T fq,-glg2 o dm

where the supports of components, ¢i,¢s,...,¢r, and supp(g;) := supp(c;)
(1 < j <'m), are mutually disjoint. Furthermore, &, = (¢4, (qx)),tq, # er,
with £(&,,) = 1 for 1 < k < r, and o; is a cycle of length ¢(s;) > 2 and
supp(d;) C K; = supp(o;). For & -components, 0 = 0103 ---0p, gives the
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cycle decomposition of 0. For d; = (t;)icx,; € Dk, (T) — Doo(T), put Py, (d;)
as in (2.3).
For one-dimensional characters of G, we introduce simple notation as

(3.4) X:(0) :=sgng(0)° (0 €6; €=0,1).

As a parameter for characters of G = &, (T'), we prepare a set

(3.5) ace (C€T,e€{0,1}) and p=(ue)eep

of decreasing sequences of non-negative real numbers
ace = (Aei)ieN, Qel Z0cep Zaces> - 205

and a set of non-negative real pc >0 (¢ € f), which altogether satisfy the
condition

(3.6) DY lacel + lul <1,

Ce’f EG{ 0,1 }

with = ZiEN a{,s,ia Hu’” = Z(Gf IU‘C .

Then we have the following result.

Theorem 2. Let G = S (T) be a wreath product group of a finite
group T with &,. Then, for a parameter

(3.7) A= ((O‘Cvf)«,s)efx{oﬁl} ; “>’

n (3.5)—(3.6), the following formula determines a character fa of G: for an
element g € G, let (3.3) be its standard decomposition, then

(3.8)

fa@ =TI (2 X X Gt + gime | xolta)

1<k<r \¢eT \e€{0,1} ieN

@ (03)
AN S S ()™ o ) et |

1<j<m (cer \ee{0.1} ieN

where x:(0;) = sgng(0;)¢ = (=1)s¢o)=1),
Conversely any character of G is given in the form of fa.

The parameter A of character is not necessarily unique because of the linear
dependence (3.2) on T of functions x¢, ¢ € T. To establish uniqueness of
parameter, we transfer from the parameter A, to another parameter B = ¢(A)
given by

(3.9) B = ¢(A) = ((ac,e)(c,aefx{o,l} ; "””) ’

with & = (K¢)eeqe > ke = pc — (dim¢)? pa, (C€T7).
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Then, we have from (3.1)—(3.2),

E : t‘]k): E .HC 'XC(tQk)v
dlmC dim ¢
ceT™
E K¢ = E e — |T‘ Hig,

CeT* ceT

and the uniqueness of parameter is established. However the inequality (3.6)
for the range of parameter A containing u cannot be translated in a compact
form in the parameter ¢(A) containing « in place of .

Note that the multiplicative factor for &, = (¢4, (¢x)) in the formula is
rewritten as

X< (tQk)
me+wﬂwdaa—

ceT

= 3 hacall + faal) - %6000 1 37 e Al

CET (GT*

In this connection, we can propose two other choices of normalization of
the parameter p = WC)(GT? pe > 0. The first one is given by taking into
account of the relation (3.2) and

s s :
< dim¢ X Z @moye  (dmOxe
CG CeT

as the following minimum condition:
3.10 MIN min{ ,CGT}O.
(310)  (MIN) e

The second one, in the case where T is non-trivial, is the following maxi-
mum condition on the parameter A, whose merit is that the character formula
(3.8) is valid even for t;,, = er (not necessarily ¢, € T™), whereas this is not
the case in other normalizations:

(311)  (MAX) S llacell+lull =1

ceTe€{0,1}
4. Characters of wreath product group 6, (7), T abelian

When T is abelian, the general character formula (3.8) for 6. (1) =
Doo(T) x 64 with a finite group T has a simplified form.

First let us check simplification of notations. In this abelian case, T is
nothing but the dual group consisting of all one-dimensional characters of T,
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and for each ¢ € f, its character x. is identified with ( itself. The character
identities (3.1)—(3.2) are written as

(4.1) |T|ber = Z ¢, as functions on T,
ceT
(4.2) 0=> ¢ and 1=1p=-» (, on T"
CeT ceT~

Take an element g € G = G, (T). Let its standard decomposition be

(43) g = flhé-qz o '5(],«9192 o dm,

with &, = (tg,, (qx)),tq, # er, for 1 <k <r, and g; = (dj,0;) for 1 < j <m.
Put K; = supp(o;), and for d; = (t;)icx,; € Dk, (T) — Doo(T), put

(4.4)  Pg,(dj) =Iliex, ti,  C(d) = C(Pr,(d;)) = [iex, C(t:) -
As a parameter for characters of G = &,(T'), we prepare a set
(4.5) ace (C€T,e€{0,1}), and p=(uc)ecr

of decreasing sequences of non-negative real numbers a¢ . = (¢.ci)ien , and
a set of non-negative real pc > 0 (¢ € T'), which satisfy the condition

(4.6) YooY lace

ceT e€{0,1}

|+ el <1

Theorem 3. Let G = G (T) be a wreath product group of a finite
abelian group T with S,. Then, for a parameter A = ((ag,s)(c )eTx {01} u) ,

in (4.5)—(4.6), the following formula determines a character fa of G: for an
element g € G, let (4.3) be its standard decomposition, then

@) fa@ =TT S22 Do Do aces + ne | Cltg)

1<k<r \¢ceT \e€{0,1} ieN
EO']’
< TT 330 3 S (aced)™ xelo)) | ¢ldy) ¢
1<j<m \¢eT \e€{0,1} i€N

where x:(0;) = sgng(0;)° = (1))~ "and ((d;) as in (4.4).
Conversely any character of G is given in the form of fa.

The parameter A of a character is not necessarily unique just as for Theo-
rem 2. To establish uniqueness of parameter, we transfer from A to B = ¢(A)
given by

(4.8) B =¢(A) = ((acve)(c,s)efx{oyl} : ”) ’

with k= (/@g)CEf* y Ko = e — pag (CETT).
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Then the uniqueness of parameter is established. Except the case of T = Z5
or the case of the infinite Weyl group of type Bs/Coso, the inequality (4.6) for
the range of parameter A cannot be translated in a compact form in B = ¢(A).

Note that the multiplicative factor for &, = (¢4, (¢x)) in the formula is
rewritten as

> lacoll + llagall + pe) - C(ta,)

ceT

=> (lacol + llacal) - + > ke C(tg,)

€€T (GT*

Another normalization condition (MIN) for p = (u¢), pte > 0, is written as
(MIN) min{uC;CEf}:O,
and one more normalization condition (MAX) is just as in (3.11).

Example 4.1.  The case where a1 = 1 for a fixed (¢, ¢) € Tx{0,1}
and all other parameters in A are zero, whence a¢ . = (1,0,0,...), corresponds
to one-dimensional character . of G’ in Lemma 2.3. Except these cases of
one-dimensional representations of G, a character f, given above corresponds
to a factor representation of G of type II;. R

The case “ace = (acei)ien = 0 for all (¢,e) € T x {0,1} and p =
(tee) ce? = 0”7 corresponds to the regular representation Ag of G.

Consider the case where |lac ol + |laci]l +pe =1 for a fixed ¢ € T and
all other parameters in A are zero. Put @ = a¢ 0,8 = ¢ 1, and let f, g be the
character of G, given in [Tho2] (cf. (6.2) in 6.1). Denote by ¥ the natural
homomorphism from G onto &, = G/D with normal subgroup D = D (T),
and put f 5 = fa,p 0. Then the character fa(g) in this case is equal to

fjﬁ (9) - m¢,0(g) with a one-dimensional character m¢ o of G in Lemma 2.3 (with

¢ = 0). In particular, the case where ¢ = 1 for a fixed ¢ € f, corresponds
to the induced representation Ind%(p, where (p(d) := ((P(d)),d € D, is a
one-dimensional character of D = Dy (T') (cf. 2.3). The character f4 is equal
to (p on D — G, and zero outside of D. In the case ( = 17, this induced
representation is nothing but the regular representation of G/D = &

5. Characters for the subgroup &¢ (T) C 6, (T), T abelian

Assume T be abelian. For the natural subgroup G¢ := &¢(T') = D5 (T') x
G4 with

(5.1)  DL(T) :={d=(ti)ien ; P(d) =er}, P(d):=][lienti

we deduce a general character formula from the one for G := & (T).
Take an element g € G¢ = G¢_(T) and let its standard decomposition be

(5.2) 9="E6080 60,9192 Gm
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with &, = (tq., (qx)) and g; = (dj,05),d; = (t:)ick,, K; = supp(o;). Note
that each component £, does not belong to G, and that the component g; =
(dj,o;) belongs to G¢ if and only if P(d;) = [[;ck, ti = er. However, after
careful discussions on the relation between G¢ and G, we obtain the following
result for the subgroup G¢ from the result for G.

Theorem 4.  Let T be abelian, and let G¢ = G (T') be the subgroup of
G = 6 (T) given by (5.1). Then, for a parameter

(5.3) A= ((0‘475)(<,s)efx{071} : M) ’

n (4.5)—(4.6), the following formula determines a character f§ of G°: for an
element g € G¢, let (5.2) be its standard decomposition, then

(5.4) fa(g) = H Z Z ZO‘Cys,i + e | Ctg,)

1<k<r | ¢eT \e€{0,1} ieN

X H Z Z Z(ac,a,i)e(gj)'Xa(Uj) C(dj) s

1<j<m |\ ¢eT \e€{0,1} i€N

where xe(0j) = sgng (o) = (=1)5@)=Y "and ¢(d;) as in (4.4).
Conversely any character of G¢ is given in the form of f§.

The parameter A = ((ag,g)(c eTx {01} i ,u) for f4 is not unique even

under the normalization condition (MAX). To describe the correspondence of

parameters, we introduce a translation R((y) on A by an element (y € T as
follows:

(5.5) R(6o)A = (04 ¢ et o+ BlGon)
with a( —Oé ¢Co -1 € ((Ca ) € j—\‘ X {07 1 })a R(<O)M = (IU’IC)CE'fv /1'/( = Mg‘go_l

Proposition 5. Let T be abelian. Assume that two parameters for
characters

A= <(O‘C7€)((,s)€f“><{0,1} ; :“) and A’ = ((O/C,E)((,E)GT\X{O,I} ) F‘/)
satisfy the normalization condition (MAX) for u and u' respectively. Then, they

determine the same character, that is, f4 = f%., if and only if A’ = R(({)A
for some (p € T.

By Lemma 2.3, we know all one-dimensional characters of G = &, (T')

= Do(T) X 6. Among them take those which depend only on D (T')-

component d = (t;);en,t; € T, of g = (d,0) € G. Then they are given for
= (d,o) in (5.2) as

Teo(g) = ((P (Ht> =[] ¢t = I[ ¢ta) T <ldy).

ieN iEN 1<k<r 1<j<m
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for some ( € T. Therefore we see that, as characters on G D G¢,

far(g) =7e0(9) - falg) (9€G)  for A" = R((o)A.

6. Characters for the infinite Weyl groups

The infinite symmetric group G, is the Weyl group of type A, and the
symmetric group &, which is the Weyl group of type A,,, is imbedded in
S as 6, = &5, with I, :={1,2,...,n} C N. Take 0 # 1 from G, and
decompose it into a product of mutually disjoint cycles (= cyclic permutations)
as

(6.1) 0 =002 0m, 05 =(ij1 ij2 - ije,)-

By definition, £; = {(o;) is the length of the cycle ¢;, and put ne(c) = ’{] il =
(}| the number of cycles o; with length £. The set of multiplicities { (o) ; £ >
2} determines the conjugacy class of o.

6.1. Review of the case of infinite symmetric group G,

The formula of characters of Wa__ = G in [Tho2] is written as follows.
As a parameter for such a character, take (o, 8) with o = (@;)i>1,8 = (8i)i>1,
decreasing sequences of non-negative real numbers satisfying ||| + ||8] < 1.
Then

(6.2) fap@) =TI D a'+ D) > 8¢

>2 \1<i<oo 1<i<oo

ne(o)

We rewrite this in the form of our formula for & (7"). Put

Xe(0) = (sgne(a))E (0 €6); api=0y, ai; =0,
for e = 0,1, and ¢ = 1,2,.... For a cycle o; in the decomposition o =
01020y of 0 € Gu, we have sgng(o;) = (—1)%°)~1 and the formula
above is rewritten as

(6:3) fap@) =TI | 20 xelon) D0 (ac)"

1<j<m \e=0,1 1<i<oo

In [Hi3]-[Hid4], it is shown that all these characters f, g are obtained as
various limits of centralizations of one matrix element F' = Ind% f, of a uni-
tary representation p = Indgw, induced from one-dimensional character w of a
certain subgroup H of wreath product type (cf. [Hi4, §15], in particular).

6.2. Character formula for infinite Weyl group of type B.,/C+

For the infinite Weyl group G = Wg__ of type Boo/Coo, all the characters
or extremal positive definite class functions are given as follows [HH1]. Recall
that G is naturally realized as a semidirect product group as

(6.4) G=Wp_ =6y(T)=Du(T) xSy with T =2Z,.
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A one-dimensional character of G is given as a tensor product of such ones
(sgnp)® of D = Do (T) and (sgng)® of Gu: for g = (d,0) € G = D x &,

(6.5) Xap(9) = (sgnp)*(d) - (sgne)’(0) (a,b€ {0,1}),

with sgnp(d) = [[;cn ti for d = (t;)ien € D.
We prepare a set of parameters (a, 3,7,0, k) as

a=(a;)ien, a1 >az>--->0,
B=(Bi)ien, B1=PB2>---20,
(6.6) v=(Vi)iens M=72=--2>0,
6= (0i)ien, O61=02>---2>0,
and x, a real number.

Here «, 8,7, 6 and k satisfy the condition
(6.7) ledl + 1181 + vl + I8l + [sl < 1, or
=L+ ([lell + 181+ Iyl + 1161 < & < 1= (llall + 181 + [V + 1161]),
with
lall =2 icicoo@is 18Il = Xi<icos Bis
vl = Zl§i<oo Vi, ol = Zl§i<oo 0i -
Take a g € G and let
(69) g = €q1§q2 T Englg2 o dm

be a standard decomposition with &, = (t4,, (qk)) and g; = (d;,0;). Here, for
d; = (ti)ien € Dn(T'), we have supp(d;) C K; := supp(c;), and sgnp(d;) =
Pr,(dj) = [liexk, ti- Put €(g;) = £(0;), and by definition, £(§,,) = 1. For
(a,b) € {0,1} x {O 1}, we put

(6.8)

Xaw(95) = senp(d)* - seng (07)" = (Tiex, 1) - (~1)!1@) 7D,

Theorem 6 ([HH1]). Let G = Wp__ = 6(T) with T = Z3 be the
infinite Weyl group of type Boo. To a character of G, there coreseponds uniquely
a parameter (e, 3,7, 0, k) given in (6.6)—(6.7), and it is expressed as fo,3.~.5x
in the following formula: for a g € G, express it as in (6.9), then

fa,p.66(9) =51 % H Z " 4 xoa Z AN

1<j<m \1<i<oo 1<z<oo

¢
+x1,0(95) Z %9 4 xa(g Z 5,/

1<i<o0 1<z<<>o

(6.10)
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with

(6.11) s1 =810+, s = [lall + 18] = (vl + 6] -

Another expression of characters. We can rewrite the formula
(6.10) in more compact form. For a,b € {0,1}, put agp; > 0 as

(6.12) Qo0 =04, 0o =i, Qros =%, Q115 =0 (k>1).

For a basic element h = (d, o) € G with £ = £(h) := £(0),sgnp(d) = €l (e = %),
we have x,.5(h) = (¢1)® - (=1)*~1 and put

6.13) o) = > Xan(h) Y (ap)™

a,be{0,1} 1<i<o0
= > Ao+ (D)TIB A () (D) TS T = se
1<i<o0

In case ¢ = 1, we have £(&;) = 1,sgnp(&;) = sgnp(ty) = —1 for & =
(tg: (), and

(6.14) ?(&) = Za,bG{O,l} Xab(&q) (Z1gi<oo O‘a,b%i)
= lleell + 181 = [Iv[l = N1 -

We define s_.; adding some deviation  to ¢(&,) as

(6.15) (&) + =51
The formula (6.10) of positive definite function f, .5 is Written as
(616) fozﬂ,'y,é,ﬁ(g) = H (¢ qu +I€ H ¢ gj

1<k<r 1<j<m

For ¢ > 2 and € = =+, let nce(g) be the multiplicity of g; = (d;,0;) with
{(o;) = and sgnD(d-) =el:

Neo(g ‘{J Ug;) =1, &10(g5) =sgnp(d; —61}|
and let n_.1(g) = r be the multiplicity of &, in (6.9). Then, the formula (6.16)

is written as

(6.17) fapeoran(g) = (s-) " 1@ [ (se)".
e==+,0>2

6.3. Characters for the infinite Weyl group Wp_ of type D

For the infinite Weyl group GP := Wp__ of type Dy, all the characters
of G are given explicitly as follows. Recall that GP is realized as a semidirect
product group as

(6.18) GP =Wp_ =6° (T) =D (T) x &y with T = Z,,
D5 (Z3) ={d= (ti)ieNn € Dxs(Z2), sgnp(d) =1},
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where sgnp, (d) = [[;,cn ti - For asubset I C N, we put also sgnp(d) = Pr(d) =
Hie[ t; for d = (ti)iEI S D[(ZQ) — DOO(ZQ)

A one-dimensional character of the group GP is given as (sgng)®,b =0, 1.
However we need one-dimensional characters of so-called wreath product type
subgroups H of GP, and so we keep notations in the case of the Weyl group
GB = WBoc'

Similarly as in the case of Wg__, we prepare a parameter («, 3,7, d, k) just
as in (6.6) which satisfies the inequality (6.7).

Take a g € GP and let g = £,&p, &,.9192 gm be a standard
decomposition with basic components &, = (i4,(qx)) and g; = (d;,0;).
We have supp(d;) C K; = supp(o;), and d; = (ti)icx; € Dk,(Z2) —
Doc(Zs), sgnp(d;) = Px, (d;).

Note that each component &,, does not belong to G but to GP, and that
g; = (dj,0;) belongs to GP if and only if sgn,(d;) = 1.

Theorem 7 ([HH1]). Let GP = Wp_ = &°,(Z>) be the infinite Weyl
group of type Dog. Let fo 3.6, be a character of GP =Wg_ = 64(Z,) with
a parameter (a, 3,7,0,k) in (6.6)—(6.7), and [ 6.5, be its restriction onto
GP c GB. Then, [ g5 18 @ character of GP and is expressed by the same
formaulas as (6.10)—(6.11).

Conversely any character of GP is equal to f& 8.5 for some parameter
(o, 8,7,0,k) in (6.6)—(6.7).

Two parameters («,,v,0,k) and (/,5',~',0' k") determine the same

character of GP, or aByom = Jar g6 o U and only if they coincide with
each other or
(619) (O/yﬂ/) = (775)7 (’}/76,) = (aaﬂ)y K = —kK.

7. Method of proving Theorem 2

Let us explain our method of proving Theorem 2 (for this, see also the
part 2 of Introduction). Our proof consists of two parts. The first part is to
prepare seemingly sufficiently big family of factorizable (hence extremal by the
criterion in the second part) positive definite class functions on G = S (T).
The second part is to guarantee that actually all extremal positive definite class
functions or characters have been already obtained in the first part.

7.1. The first part of the proof

The first part of our proof has two important ingredients.

One is a method of taking limits of centralizations of positive definite func-
tions. This method, which will be explained in the next section, §8, has been
applied in [Hi3]-[Hi4] to the case of & and reestablished the results in [Tho2],
and also applied in [HH1] to the case of the wreath product groups G, (T') with
T abelian to get the character formula, which is given here as Theorem 3 in §4.

The other is inducing up positive definite functions from appropriate sub-
groups. After choosing subgroups H and their representations m appropriately,
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we use their matrix elements f, as positive definite functions on H to be in-
duced up to G, and then to be centralized.

We have constructed in [Hil] a huge family of irreducible unitary repre-
sentations (= IURs) of a wreath product group G = G (T) = Do (T) % G
with any finite group 7', by taking so-called wreath product type subgroups H
in a ‘saturated fashion’, and their IURs 7 of a certain form to get IURs of G
as induced representations p = Ind% .

For our present purpose of getting (possibly) all extremal positive definite
class functions on G as pointwise limits of centralizations of their matrix el-
ements, we choose simpler subgroups of degenerate wreath product type and
their JURs. In this case, we get unitary representations p = Indfﬂr which are
very far from being irreducible, but enough for our purpose to get a sufficiently
big set LZM of positive definite class functions, as such limits of centralizations.
This ingredient will be discussed in §§9-10.

Altogether the first part occupies §§8-11 and §§13-14.

7.2. The second part of the proof

The second part contains also two important ingredients.

The first one is a criterion for a positive definite class function f to be
extremal or indecomposable. Our criterion is given in §15 as Theorem 12 which
says that f is extremal if and only if it is factorizable.

The second one is a kind of partial Fourier transform of class functions on
G = Doo(T) x G with respect to the subgroup Do, (7). We utilize it in §16
to reduce the problem “when is a factorizable class function f on G positive
definite 7” to the level of the infinite symmetric group G, and then appeal
to [Tho2, Korollar 1 to Satz 2].

As the results, such a factorizable class function f is positive definite if
and only if it has the same form as f4 in Theorem 2 with a parameter A =
((ag,g)(gs)efx{o,l} ; 1) satisfying the same condition as in §3.

Altogether the second part occupies §§15-16, and the result in §12 is ap-
plied in §16.

8. Centralizations of positive definite functions

Let us explain our method of taking limits of centralizations of positive
definite functions. For a function f on a countable discrete group G and a
finite subgroup G’ C G, we define a centralization of f with respect to G’ as

(8.1) ' (g) = ﬁ S flgag ).

QIGG/

Taking an increasing sequence of finite subgroups Gy / G, we consider a
series fON of centralizations of f with respect to Gy and study its pointwise
convergence limit, limy_.o f&~, which depends heavily on the choice of the
series Gy /" G.

In our previous papers [Hi3]-[Hi4], we studied positive definite functions
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f(o) on G = & of three different types given in [Bo], [BS]: for o € G,
rlol (—1<r<1); ¢l (0<qg<1); sen(o)dlol (0<qg<),

where r and ¢ are constants. Here |o| denotes the usual length of a permuta-
tion o coming from its reduced expressions by simple transpositions, and | o||
denotes the block length of o, which is by definition the number of different
simple transpositions appearing in a reduced expression of ¢. Then we have
proved the following.

Theorem 8. Let f be one of the above positive definite functions, and
Gy =6xn (N >1). Assume |r| <1 or 0 < g <1 correspondingly. Then the
series of centralizations fON of f converges pointwise to the delta function §.
on G =64 as N tends to .

In other words, in the topology of weak containment of unitary representa-
tions, this means that each of the representations ¢, associated to f by GNS
construction, contains weakly the regular representation Ag of G = .

We have also calculated various limits of centralizations of positive defi-
nite matrix elements of irreducible or non-irreducible representations which are
induced from subgroups of wreath product type.

In the recent paper [HH1], we have treated the case of & (T) with T any
finite abelian group, which contains the case of infinite Weyl groups Wg_, and
Wp.,.
Especially we observed in [Hi3]-[Hi4] and in [HH1] the following fact, for
the infinite symmetric group &, and wreath product groups S (T") with T
abelian.

Observation.  For a certain choice of a subgroup H and one of its uni-
tary representation w, the family of limits of centralizations of matriz elements
of the induced representation p = Indgﬂ covers all the characters of the group

G.

9. Inducing up of positive definite functions

9.1. Matrix elements of induced representations

In a general setting, let G be a discrete group, and H its subgroup. Take a
unitary representation 7 of H on a Hilbert space V' (7), and consider an induced
representation p = Indfﬂr.

The representation space V(p) of p is given as follows. For a vector v €
V (), and a representative gg of a right coset Hgo € H\G, put

(9.1) Eyo(g) = { g(h)v Egg; fﬁgogl € H),

Let V be a linear span of these V' (7)-valued functions on G, and define an inner
product on it as

_ fAm(h)v, ") if hgo =g{ (3h € H),
(92) (Bogor Bvr.gy) = { 0 if Hgo # Hagj.
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The space V(p) is nothing but the completion of V.

The representation p is given as p(g1)E(g9) = E(g991) (91,9 € G, E €
Vip)).

Now take a non-zero vector v € V(r) and put E = E, . € V(p). Consider
a positive definite function on H associated to m as

(9.3) fr(h) = (m(h)v,v) (h € H),
and also such a one on G associated to p as

(9.4) F(g9) = (p(9)E,E) (g€ G).
Then, we can easily prove the following lemma.

Lemma 9.1.  The positive definite function F on G in (9.4) associated
to p= Indgﬂ s equal to the inducing up of the positive definite function fr on
H associated to w: F = Indgf7T , which is, by definition, equal to fr on H and
to zero outside of H.

9.2. Centralizations of F = Ind% f,

Let G " G be an increasing sequence of finite subgroups going up to G,
and consider a series of centralizations FE~ of F.

Since F is zero outside of H, the value of centralization F&¥ (g) is # 0
only for elements g which are conjugate under G to some h € H. Moreover,
for h € H, we get

(9.5) FON(h) = S LY.

g'€GN:g'hg’ ~'€H

The condition ¢'hg’ ' € H for ¢’ € Gy, is translated into certain com-
binatorial conditions, and to get the limit as N — oo, we have to calculate
asymptotic behavior of several ratios of combinatorial numbers.

The details in the case of G = G are given in [Hi3]-[Hi4]. For the
infinite Weyl groups, G = Wgp_, and Wp__, and moreover for wreath product
groups G = 6, (T) with T any finite abelian groups, essential parts of these
calculations are sketched in [HH1].

10. Subgroups and their representations for &, (7))

10.1. IURs of 6,(T), T a finite group, as induced representations
In the previous paper [Hil], we have constructed a big family of ITURs by
the method of inducing up from wreath product type subgroups. Let us review
it briefly.
Take a subgroup H of G = 6 (T) of the form
(101) H=Hyx[[,epHy, Ho=6(T),
Hy =6,,(Ty) = Dy, (T,) x 61, ,



568 Takeshi Hirai and Etsuko Hirai

where Ij is a finite subset (we admits empty set), and I,,’s are infinite subsets
of N all mutually disjoint, and 7},’s are subgroups of T'. Thus H is determined
by the datum

= (107(Ipsz)pEP)

and is denoted also by H¢. To get IURs as induced representations from H =
H¢, we assume that H is “saturated” in G in the sense that N = IoU (Upeply)
is a partition of IV.

As an IUR of H, we take so-called factorizable one:

(10.2) =Ty (®p€P7TP) for Hp x HpeP

Here b = (by)pepr,bp € V(mp), ||bpll = 1, is a reference vector to take ten-
sor product of m,’s, when P is infinite, and IURs my and m, are given as
follows. First choose an IUR ¢, € T}, (resp. (o € T'). Then, for the sub-

group DI (T) (resp. DIO (T)), we take an IUR given as a tensor product

) = 161 Cpis Cpi = G (resp. 7 = ®ierCoi, Coi = (o), where

ap = (am)zejp s api € VI(Cpi), llapill =1, is a reference vector with respect to
which the infinite tensor product of (pi = (p (i € 1) is taken. Then, a o € &7,
acts on the space V := ®Z€I V((pi) as a permutation of components as
(10.3) I(0): V 3 v =Qicr,vi —— Ricr,v; €V, vj =Vp-1()

where v; € V((p),i € I,. Take a one-dimensional character x5 of Sy, then
we get an IUR 7, of H, = &, (T},) by the formula:

Wp((d,(f)) :zﬂf(d)[(a)xg(a) ((dJ)GDI( )MGI)

and similarly for Hy = &,(T). In case (, is one-dimensional or P is finite, the
reference vector a, or b is not necessary.
Thus the IUR 7 of H = H°® is determined by the datum (c,d) with

= ((C07X06)5 (CZNG/PvXS)PEP; b>7

and is denoted also by 7(c,0). We know in [Hil] that, under the saturation
condition: N = IoU (Upepl,), the induced representation

p(c,0) = Ind§n(c,0)

is irreducible, and equivalence relations among these IURs are also clarified
there.

In the previous paper [HH1], we gave Conjecture 2002-5 to generalize this
method of constructing IURs. One point is that, to have the irreducibility for
induced representation p = Indgw, we may start with 7 coming from H, and
7p in (10.2) such that the full group T is taken as T}, and a cyclic representation
of T as (p, and a, = (ap,i)icr, With cyclic vectors a,; € V((p,i) = V((p)-
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10.2. Subgroups and their representations for matrix elements f

In place of the purpose in [Hil] of getting IURs, our present purpose is
to get all the characters of G = 6,,(T') as limits of centralizations of matrix
elements F' = Indg frof p= Indgﬂ, where f, is a positive definite matrix
element of a UR 7 of H. To this purpose, we look for the best choice of a pair
of H and m, following principally the case of [Hil], but simplifying the situation
without paying attention on irreducibility of the induced representation.

To give such subgroups H, we take first a partition of IN as

(10.4) N = (I—l(c,s)efx{o,u (Upepg,alp> ) |—| (Uceflc) I—Ile’

where each Pr. is an infinite index set, and the subsets I, are all infinite.
Corresponding to this partition, we define a subgroup

(105) H= (H(C,s)efx{o,l} (ngpcys Hp)) x (1‘[<ef HC) x H,
with HPZGIP(T), HC:DIC(T)’ H.={e}.

Here e is the identity element of GG, and we consider H. as a trivial subgroup
of &1, (T"). We call this kind of subgroups of degenerate wreath product type.
For a representation 7w of H to be induced up to G, we take

be.e
(10.6) = (®(<7€)ef><{071} <®pce’p<,a7rp) ) ® (®Cef 7T¢) ®1py, .

Here b¢ . = (by)pep, . is a reference vector with b, € V(7,), byl =1 (p € Pre),
and for p € P, m, for H, = & (T') is given as

o m((d0)) = (52, G(t:)) I(o) sene (0)°

for d:(ti)ielp EDIP(T),O'EGIP,
where a, = (a;)ie1, is a reference vector with a; € V(G;), [Jai|| = 1, and ¢; = ¢
as a representation of T; = T (i € I,), and I(0) as in (10.3); and for ¢ € T, e
for He = Dy (T') is given as
(108) W((d) = ®?é14<i(ti) for d = (ti)iEIC S HC’

where a¢c = (a;)ie1, is a reference vector with a; € V(G), [las|| = 1, and ¢; = ¢
as a representation of T; =T (i € I¢).

11. Increasing sequences of subgroups Gy /' G = & (T).

Depending on the choice of increasing series G~ G of subgroups, we get
various positive definite class functions of G as limits of centralizations FE~
for F = Indgf7T , which turn out to be characters. We choose a series Gy as
Gy =6,,(T),Jny / N, and demand an asymptotic condition as

|Ip mJN| N
||

[1c N JIN| =~

(11.1) T e (CeT)

Ap (p€P),
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where P := U ef, (0,111 15 the union of index sets. Note that even in
this case, limy_,o0 [Ie N Jn|/|Jn| may not exist. Anyhow we have
(11.2) Sperde + Seerhe < 1.

For each (C,2) € Tx{0,1}, let reorder the numbers {Ap; p€ Pc}inthe
decreasing order and put it as o . 1= (¢ e )ien, and also put p = (u¢)
Then,

ceT "

Yo lacel + llull < 1,

(¢,e)eT x{0,1}

which is nothing but the condition (3.6). As a pointwise limit of the series of
centralizations FC~ | we obtain the character f4 with

A= ((ag,a)(cﬁ)efx{&l} ; M)

in Theorem 2. The calculation will be given later in §§13-14, and it is also
explained in detail in [Hi3]-[Hi4] in the case of .

Finally we remark that, to obtain all the characters of G, it is actually
sufficient for us to use only one set of H and 7 above, and this means that the
induced representation p = Indgw contains weakly all the factor representations
of finite type of G.

Example 11.1.  Non-existence of limy_,oo |Jy N Ic|/|Jn| happens due
to |P| = oco. Let us give an example. Let the index set P be equal to IN.
We define Jy as a disjoint union of Jy C UpenI, and le\/, C I. (we put I;’s
aside, for simplicity). Choose J}; in such a way that |JJ'V N In‘ =N-n(n<
N); [Jy N1, =0 (n> N). Then, |Jy| = N(N —1)/2 and so

. ‘JNmIn‘ . |J]/len|
0< X\, =1 — < ————— =0 (Vn).
To define JJ/\/,7 we determine N7 < Ny < --- inductively as follows. Put

Ny =1and J; =0, and for Ny < N < Njy1, put Jyy = Jy . Here N1 is
the first integer N' > Ny, for which ey := |y NIl /|In| = [Ty, |/(IT5] + | Ty, )
becomes smaller than 1/10**1. Then put JJ/\/ka = J]/\/[k L J,;”, where J,;” c I
is so taken as

11

|JNk+1 mI‘3| _ |‘]Nk| + |Jk ‘

[Tneal 1y

Ak+1 =

7 777 2 1
|+ 1 Tn [+ 1T 2

k+1

Since ey for N < N < Npy1 decreases from ay to < 1/10]’”‘1, we have
limy_oceny = limg_o0ar > 1/2; and limy_, ey = 0.
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12. Limits of trace characters of representations of &,,(T)

In certain cases, we can calculate characters of G = G (T') as limits of
trace characters of representations of Gy, = &,,(T') as n — oo. This result will
be applied later. R

First we take IURs of a degenerate form. Take a ( € T, and put I = N.
Define tensor product representation of D;(T) as

®ierCi with G =( for T; =T (iel=N)

with respect to a reference vector a = (a;)icr,a; € V((;), ||ai|| = 1, for which
the representation space is V = ®{.;V((;). For 0 € &, put

I(0)( ®fcs vi) == ®fevo-1(5y with v; € V(G), v; = a; (i > 1).
Then, for (¢, ¢) € T x {0,1}, we get an IUR p of G: for g = (d,0) € G,d =
(ti)ier,
(12.1) plg) = p((d,0)) = (@fes Gi(t:))I(o) sgn(o)*.
Now for I,, = {1,2,...,n}, we take a similar representation p,, of G,.

This is given on the space V,, := ®;er, V() and, for ¢ = (d,0) € G, =
G,.(T) = Dy, (T) x 6&,,

(12.2) pn(9) = pn((d,0)) = (®ier, Gi(ti))I(o) sgn(o)*.

Then, we may consider as V,, /' V, and then p,, / p acccording to G,, /
G.

Take a g € G. Then, starting from a certain n, g belongs to G,,, and so we
can consider the limit of trace characters as lim,, .., trace (pn (g)) As a result,
it is better to consider the normalized one as trace(p,(g))/ dim py,.

Theorem 9.  Let p, be an IUR of G,, = &,(T) constructed from (¢,¢)
€ Tx{0,1} as above. Then, there exists a pointwise limit F¢ . on G = G4 (T)
given as follows. For g = (d,o) € G, let
9= 6(]15(]2 e gqrgl.QZ Gmy é-q = (tqa (q))7 gj = (d]7 Uj)7

be a standard decomposition, i.e., a decomposition into mutually disjoint basic
elements. Then,

. trace(pn(g)
Feelg) = nlgrolo du(n;)

12.3
- Xclta) X H Msgn(aj)s
1<k<r dim ¢ 1<5<m (dim ¢)#(@3)
where, for oj = (ir iz ... i) with {; = (o), and dj = (ti)iek, with

K, := supp(o;),
Py, (dy) = [t ),y -~ tht)] € T/~ with #}, = t;, .
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Proof. Since ( is unitary, we have an orthonormal basis { e, ea,...,em }
with m = dim ¢ of the representation space V' ({). Then, a basis of V,, is given
by

{6]\/[; M= (.jlana"'ajn)vj13j27"'ajn eIm}
with ey =ej, ®e;, @ --- Qej,.

Take a basic element ¢’ = (d',0’) € 6,(T) = Dy, (T) x &,, with a cycle
o'=(12 ... n)and d’ = (t;)iecr, - On the space V,,, it operates as

pn(g") = pu((d', o)) = (®ier, Gi(t:)) I(o”) sgn(o’)".

Let us calculate the trace of p,(¢'). Recall that I(7)ep = erpr with M =
(ijl(l),ijl(z), . ,j.,——l(n)). Let the matrix elements of C(t) with respect to
the basis { e; ; 1 < j < m} be (jx(t), that is, ((t)ex = D1 <;<,, (u(t)e;. Then,
taking into account of 0=1(i) =i—1 (1 < i < n, 0 = n), we get for ¢’ = (d’,0’),

trace(pn(g/)> = Z<pn(g/)eMa em)
M
= sgn(o’)® Z Z R Z H (C(tiej, 1,y €5:)

1<ji<m 1<jasm  1<j.<m i€l
=sgn(0’)® > Y D G () G () o G (E0)
1<j1<m 1<jasm  1<jn<m

= sgn(0”)° trace((tntn—1 - tat1)) =sgn(o’)® x¢ (P (d')).

The calculation is similar for other choice of cycle ¢/, and the proof is now
complete. 0

Note 12.1. (i) The positive definite class function F¢ . is a special case
of fa in (3.8) in Theorem 2, for which a¢ . = (1,0,0,...) and other parameters
aer e and e are all zero.

(i) For ¢ = 17 € T, the trivial representation of T', we have Fi,:(9) =
sgn(o)¢ for g = (d,o) € G, and for any ¢ € T, Feelg) = Feo(g) Fire(g) (9 €
G).

13. Partial centralization with respect to D, (T)

As an increasing sequence Gy /" G = G4 (T) of subgroups, we have
chosen Gy = 65, (T) = Dy (T) x &, with Jy /' N. Put Dy = Dy, (T)
and Sy = &, for simplicity, then Gy = Dy x Sy, and we identify d’ € Dy
and ¢’ € Sy with their images in G respectively. Our task is to calculate
centralizations F@~ of a positive definite matrix element F = Indf[ frof p=
Ind%n, and to determine their limits. From the formula (9.5) for FS~ and the
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explicit form of the subgroup H in (10.5), we see that for h € H,

FON(h) = 1 > Fxlg'hg ™)

|GN‘ g'€GN:g’'hg’ " '€H

1 —~ _
= X flehdTh,

o'€SN :0’ho’~1'eH

(13.1)

where ?; is a partial centralization of f, with respect to Dy = T/~ defined as

(13.2) Fal) = A Fo @B d Y dupy (d) (W € H),

with the normalized Haar measure dup, on Dpy. (Hereafter we apply the
notations in the case of compact groups by using the integration instead of the
summation.)

Note that for a finite number of h’ € H, the partial centralization jf;(h’ )
is stable as IV is sufficiently large. To calculate it, we apply the explicit form of
representation 7 of H given in (10.6)—(10.7). Then we see that it is essentially
enough to treat two cases of basic elements:

(i) b = &4 = (tq, (¢)) with t, € T*, and

(ii) B’ = (d',0") with ¢’ a cycle and supp(d’) C supp(o’).

For this, we prepare two lemmas, one for a compact group 7', and the other
for a wreath product group &, (T) of a compact group T with the symmetric
group G,,.

Lemma 13.1.  Let T be a compact group and ¢ € T. Take v,w € V((),
then

t
(13.3) [ ctsts oo durs) = XU o),
where dur denotes the normalized Haar measure on T.
Put K ={1,2,...,0},and let 0 = (1 2 ... ¥) be a cycle with supp(c) =
K and g = (d,o0) a basic element in S (T) with d = (¢;)icx. Then, for
d' = (s;)icx € Dg(T), we have
dgd ™" =(d",0)

(13.4) o
with  d’ =d'd-o(d™") = (sitis; 1 )iex  (0=1).

On the other hand, for a decomposable vector v = ®;cxv; € V( Rick Cl-)
with v; € V((;), ¢ = ¢, the subrepresentation II of m, for Gk (T) C &, (T) is
given as

(g)v = Qicx (C(ti)ve—1(5)) = Ryex (C(ti)vio1).
Therefore the partial centralization with respect to Dg(T) is given as
follows.
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Lemma 13.2.  Let ®;ex(; be a tensor product representation of Dy (T)
=TK of ;=C of T; =T (i € K), and take decomposable vectors v = ;e xv;
and w = ;e gw; from V(®i€K Q) with vy, w; € V({). Then, as an integration
with respect to the normalized Haar measure dup, (r)(s) = [[;cx dpr(si), s =
(8i)icx € TH = Dy (T), we have

| @Gsgs™ow) dupn ()
Dn(T)
= /D . <®16K (C(S iiS; _11)11: 1) ®16sz> dpip (1) (8)

/ / C(sitis, v, wi)(C(satasy vr, wa) -+ (C(setes, 1 )ve—1, we)
dpr(s1) dpr(s2) - - - dur(se)

_xeltteoy o toty) pr o xeBod)
N (dim()é zle_}[<< v z> - (dim()‘ Zle_}[{< i z>-

For a proof, see Lemma A.5 in Appendix.

Take v = ®;egv; with unit vectors v; € V({;), and put w = v in Lemma
13.2, then we get x¢(Pr(d))/(dim¢)* as the result of partial centralization
above.

Let H be a subgroup of G given by (10.4)—(10.5), and 7 its unitary
representation given in (10.6)—(10.8). For a unit vector v € V(rw), we put
fx(h) = (w(h)v,v) (h € H). Since we are now concerned with centralizations
with respect to finite subgroups Gy, the role of reference vectors is not im-
portant, and we may take v as a tensor product of unit vectors from V(¢;) for
i€l pe P, for every (¢,e), and similarly for I.’s. Then, by Lemmas 13.1
and 13.2, we get the following result.

Proposition 10.  Take a g = (d,0) from H and let
9= 5111&12 e fq,,.9192 rGmy fq = (tqa (q))7 gj = (dja o-j)a

be a standard decomposition. Then, the partial centralization }\;(g) of matriz
element fr is giwen as follows. Let K(C) be the set of k, 1 < k < r, such
that &g, € Hy, with p € U.eqo,13FPce or &, € He, and J((,€) be the set of
J» 1 < j <m, such that g; = (d;,0;) € Hy with p € Pr .. Then,

(13.5)
f'n’(g) =
X Pﬂj(d')
H H XC (Ik H H C( ((i.> sgn(aj)e ’
N TS
ceT keK(Q) (¢,e)eT x{0,1} JEJ(Ce)
where, for o; = (i1 i2 ... ig;) with {; = L(0o;) and dj = (t;)ick, with K; :=
supp(a;),

Py (dy) := [ty 1),y - tty] € T/~ with #}, = t;, .
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14. Limits of centralizations of positive definite functions

We are now on the way of calculating centralizations of FE~ of a positive
definite matrix element F = Ind§ f, of p = IndGm with respect to Gy =
D;,(T) x & ,, and to determine their limits. Recall the formula (13.1) as

(14.1) FGN<g>:‘Si| S frgrh)  (gen),
N TeESN :TgT1€H

where Sy = G, and the partial centralization }; with respect to Dy =
D, (T) is defined by (13.2) and is calculated in Proposition 10.

14.1. Limit of centralizations for a ‘ monomials’ term
For any element in G, there exists an element in H conjugate to it. There-
fore it is enough for us to determine the value FE~ on H. Take g = (d,0) € H

and let g =380 €q,.9192 Gm, &g = (tq, (q)), g; = (dj,05), be its stan-
dard decomposition. Put P = |—|(C SeTx{01} P ¢, then,

H = (H;GP Hp) x (Hcef HC) x He,

and the condition g € H means that each &, belongs to one of H, and H,
and that each g; belongs to one of H),. Furthermore, the latter condition can
be expressed by means of supports as

supp(§g,) ={aqr } C I, or C ¢

(14.2)
and K = supp(g;) = supp(o;) C I,.

For p € P, choose ((,¢) such that p € P ., and put for basic elements
§q = (tqv (Q)) and g9; = (dj,O'j) in H,,

t *
Xp(&q) = fiﬁr(nqc) for toeT™;

X (de(dj))
Xp(gj) = W

(14.3)

sgn(o;)°.

Then the formula (13.5) for };(g) is rewritten as

(14.4)
frlg) =

x¢(tq,)
11 M T T wiew < TT e |-
Cef k:qr€lc pEP \k:qr€l, j:K;CI,

where 1 < k < r,1 <j <m. The term corresponding to ( in the first product
comes from ¢, € H¢, and the term corresponding to p € P in the second
product comes from &, € H, and g; € H),.
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Let Q(g,Ic) be the union of supports {gqy} = supp(§y,) C Ic, and
QK (g,I,) be the union of supports {¢r} C I, and K; = supp(g;) C I,.
Since g € H, they give a partition of supp(g). Let their orders be n(¢) and
n(p) respectively, then

(Ceer Qo 10)) U (Zyer @K (9:1,)) = supp(g),
Yeern(Q) + Lyepn(p) = Isupp(g)l.

Now, for 7 € S, put g = 7977 1,7¢, = 7€, and Tg; = 197
Then, the standard decomposition of "¢ into mutually disjoint basic elements
is given as

(14.5)

"9="8"€0m T80, 91792 T G,
&y = (tg, (7(a))), Tg; = (r(dy),ToyT ).

For &,, we have x,(7&,) = xp(&) if 7&, is still in H,, or equivalently
if 7(¢) € I,. For d; = (ti)ieKj7 recall that 7(d;) = (trfl(i/))i'ET(Kj)a and
Py r-1(7(d;)) = Py, (dj) and so x,(7g;) = xp(g;) if 7g; is still in Hj, or
equivalently if 7(K;) C I,,.

Let us now consider a partial sum of (14.1), where 7 € Sy = &, runs
over all such elements that it preserves Q¢ := Q(g, I¢) and QK, := QK (g, 1)
inside of I and I, respectively.

Suppose that N is sufficiently large so that g is contained in H NG, then
this condition on 7 € Sy is written as

(146) T(QC) CfcﬂJN, T(QKP) CcI,NnJn.

Put Q:={Q¢ (€ T), QK, (p € P)}, and denote by 7(Q, N) the set of
T € Sy = 6, satisfying the condition (14.6). Then, for 7 € 7(Q, N), we see
from the above consideration that jf;(Tg) = };(g) Therefore the partial sum
over 7 € T(Q, N) is calculated as

(14.7) L Grg=TE&NMF)

!
¥ 7@ [Tl

Let us calculate the order |7(Q, N)|. For n(¢) numbers of i € Q¢, 7(i)’s
can be freely chosen inside of I NJy. Therefore the number of possible choices
is

N(<) = |IC ﬁJN‘(uC ﬁJN‘ — 1)(|I§ﬂJN| —2) (|IC ﬁJNl —n(C)—i—l)

Similarly, the number of possible choices of 7(i),i € QK,, inside of I, N Jy is
equal to

Np) =L, NIn|(I, N In| = 1) ([T, N In|=2) - ([T, N In| —n(p) +1).

Recall that the union of Q.’s and QK,’s is supp(g). After choosing 7(i),7 €
supp(g), we can choose 7(i) for i € Jx \ supp(g) freely from Jy \ 7(supp(g)).
Hence the number of possible choices is |Jy \ supp(g)|!.



Characters of wreath products of finite groups with & 577

Thus we can evaluate, under the asymptotic condition (11.1),

(14.8)
7(Q,N)| _ 1 |
Il = Tl HN(C) x I N x | Jn \ supp(g)|!
peEP
“I e <1 oot
UN\"(C |JN|n \JN\(|JN|—1)"'(\JN\—|SUPP(9)|+1)
ceT peP

Applying the formulas (14.7) and (14.4), we obtain

lim b Z /f;(Tg): lim Mﬁr()

=11{ 1I

Ceff k: qk€I<

<TI 1 II Mo II AN |,

peP \k:quel, jiK;ClI,

dnn ¢ X¢(ta,)

where for p € P, (C,¢) € T x {0,1},
Ap
dTnCXc(tqk),
oo >\p L(aj)
)\p (U])Xp(gj) — <d1m<> X¢ (PU]. (d])> Sgn(gj)a.

ApXp (&) =

The above calculation for a partial sum over 7 € 7(Q,N) C &, can be
applied to other partial sums. These partial sums come from possible cases of
g corresponding to which of I or I, contains supp("&,, ) = 7(gx), and which
of I, contains supp(7g;) = 7(Kj;). All these cases give us limits of partial
centralizations similarly as above, and they correspond altogether exactly to
all the ‘monomial’ terms of the expansion of the right hand side of (3.8) in
Theorem 2 into ‘ monomials’ as explained below.

14.2. Summing up all ‘ monomial”’ terms to the whole formula

Put newly Pr. = {((,¢,4);i € N} for ((,e) € T x {0,1}, and P =
u(g,s)efx{o,l}PCaE' For p € P, put X,(&,) for & = (t4,(q)) and X,(g;) for
g; = (dj,0;) as in (14.3), then

1
(14.9) X)) <1, [Xp(€) <1, [Xp(gi)| < W <L
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Let further {\,;p € P .} be a reordering of {ca¢ ;3¢ € N}. Then by (3.6) we
have

(1410) de’f /'LC + ZpGP )‘p S 17
and the formula (3.8) of f4(g) is rewritten as
(14.11)
falg) =
= H Z )‘po(qu) + Z 1228 Xc(qu) ’ H Z Apl(gj)Xp(ga)
1<k<r \peP CGT\ 1<j<m \peP

Note that by (14.9) each multiplicative factor in (14.11) is evaluated in its
absolute value as < 1.

Let P, be the set of all partitions 6 = {J, (p € P)} indexed by P of the
set of indices j € I, = {1,2,...,m} of g;’s, and Q, be the set of all partitions
vy={K¢:(Ce T), K, (p € P)} be the set of partitions indexed by T U P of the
set of indices k € I, of &,’s. Put v-6 := {K¢ (( € T), K,, J, (p € P)},
and let J be the set of all these - 6. Then the expansion of f4(g) of the
right hand side of (14.11) into monomial terms are parametrized by the set
v-0 € KT as

fale)= Y Eys(9);

vy 0EKT
Zs(9) =TT I meXe(€a)
CGT keK¢
(14.12) < TT{ I Ao XoCéa) - TT Ao Xu(9))
peEP \keK, Jj€JTp
=TT TI xct)- TT | TT %ot TT Xo(a)

ceT keKe¢ peP \ k€K, j€JIp

< T1u - TR,
keK peEP

where the product over p € P are actually finite, and
n(¢) = [K¢|, nlp) = [Kp| + Zjer (o)) = [Kp| + Zjejp |supp(g;)|.

Now we come back to the centralization FGN in 14.1. Take v -6 =
{Kc(CeT), Ky, J, (p€ P)}, and put
1
N ._ .
Y, 5(9) == Sul Z fw with
T€T (v-9)

T(v-0)={re€SNn;"&, € H (k€ K¢),&, € Hy (k€ Kp),"g; € Hy(j € Jp)}-
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Then, by a similar calculation as in 14.1, we have

(14.13) FON(g) = Y Y

vy 0EKT
N nyvé
(9) = H H XC(qu)' H H Xp(qu) H Xp(gj) \J “7
ceT keK¢ peEP \keK, jeT,

where C»]y\.l(s := |7 (v-0)|. Note that T (-9) is defined by the following condition
onT€E Sy:

Tq, € IcenNJn (ki S Kc), Tqi € I,NJn (k’ S Kp),
T(supp(g;)) C I, N Jn (j € Jp).

Then, similarly as in 14.1, the order C} Ns =T (v 6)| can be calculated as in
(14.8) and so

(14.14)

CGT peP

We note that, for Q = {Q (¢ € f), QK, (p € P)} in 14.1, there corre-
spondsavy-0 ={K¢((eT), Kp, J, (p € P)} given by

KCZ{kEIT;quEHc},
Ky,={kel,; &, € Hy}, Jy={j€ln;yg;€H}t

Now we can prove the following proposition, a half of Theorem 2.

Proposition 11.  Let T be a finite group. Let fa be the class function
on G = 64 (T) given by the formula (3.8) in Theorem 2, with parameter in
(3.7):

A= ((ac,s)(c,e)efx{m} ; M) ’

(1) If the parameter A satisfies the conditions (3.5)—(3.6), then fa is ob-
tained as a pointwise limit of centralizations of a positive definite function
F = Ind% b fx with (H,7) given above. The limit is taken according to an
appropriate increasing sequence of subgroups Gn = &y, (T) with Jy / N
obeying the asymptotic condition (11.1). Moreover if the equality holds in (3.6)
or Y coyetx oy locell + [lull = 1, then the limit is obtained according to any
such increasing sequence.

(ii) All the class functions fa thus obtained are positive definite under the
conditions (3.5)—(3.6).

Proof. Note that the equality in (3.6) is nothing but the equality in
(14.10). Under this equality condition we evaluate |fa(g) — F¥V(g)| as fol-
lows. The case where the inequality holds in (3.6) or in (14.10) can be treated
after these discussions in the equality case.
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(1) Let €, \, 0 (n — o0) be a decreasing sequence of positive numbers.
Let P, C P be a finite subset such that

(14.15) ZCET e + ZPEP” )\p > 1—¢,.

[Ic N JIn| [T, N Jn|
Put Aoy = TR Ay = T then Duger i + Duper A =
1. Since pe.n — Ao Ap v — Ap (N — 00) by assumption, we can take N,

sufficiently large so that for any N > N,

(14.16) Z(ef |NC - NC,N| + Zpepn Ap = Apnv| < én.
Then we have
(14.17) Zpean Ap < enp, Zngn Ap, N < 2ep.

(2) Let £J,, be the set of v-d = { K¢ (¢ € T), K,, J, (p € P)} such
that K, = J, = 0 for p & P,. Then K£J,, is finite. In the formula (14.12) of
fa(g), we divide the sum over v -6 € KJ of Z,.5(¢g) into two cases depending
on 7 - d belongs to K£J,, or not as

(14.18) falg) = fi(9) + F3'(9),
)= 3 Zusle). o= Y Z.u.
v-0EKT n VOEKT

Similarly, in the formula (14.13) of F&~(g), we divide the sum over v-§ € KJ
of Yﬂ; (g) into two cases according as v-6 € KT, or v-d ¢ KJ,, as above, and
express FON as

(14.19) FON(g) = FON"(g) + O~ (g),
Then we have

falg) = FE¥(g)| < |fi(9) — FE¥™(g)| + |5 (9)] + [FEx(g).

(3) We denote by Ry v, Ro.n and Rs n the first, the second and the third
term in the right hand side respectively. Then R; n is a finite sum of the
terms =..5(g) — Y,Y]_\%(g) each of which tends to 0 as N — oo. So we can choose
N} > N, such that, for any N > N/, we have Ry n < €.

For the second term Rj n, using the evaluation (14.9) and the note just
after (14.11), we get

Rony < Z (Z )\p) + Z (Z )\Zf(‘”)) < (r+m)e,.

1<k<r p¢P, 1<j<m pgPy,

For the third term Rj v, first evaluate each [Y5(g)| as

YN(9) < CNs/lInI < C Tleer Aed™  Thoer Ap ™
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where C is a constant, for example, we can take C' = 2/"PP@] if N > 2|supp(g)|.
Then, a similar evaluation as that for Ry y (using A¢c n, Ap v instead of A¢, Ap
respectively) gives us Rz ny < C (r+m) - 2e,,.

Thus altogether we get for any N > N/,

[falg) = FO¥(g)| < {14 (r+m)+2C(r+m)}ep.

15. Criterion for extremal positive definite class functions

In this section, we give a criterion for extremality as follows (cf. [Tho2,
Satz 1]). This is the first ingredient of the second part of the proof of Theorem
2.

Theorem 12.  Let T be a finite group, and f a positive definite class
function on G = G4 (T) normalized as f(e) = 1. Then f is extremal if and
only if it has one of the following properties which are mutually equivalent:

(FTP) [ Factorizability Property | For any g = (d,o) € G, let

9=880 8¢, 9192 Gm, &g = (tqv (Q))v gj = (djaaj)’

be a standard decomposition. Then,

(15.1) flg) = ngkgr f(€q) x H1§jgm f(g5)-

(FTP’) For any two elements g,q' € G with disjoint supports, f(gg’') =
f(9)f(g")-

Let us rewrite these conditions in another form. As is proved in Theorem
1, conjugacy classes of basic elements in G is given by the set  of the following
objects w:

w=([t],l=1) with [t] € T*/~,

(15.2)

and  w=([t],0) € (T/~) x{{=>2]},
and the conjugacy class of g € G\ { e } with the above standard decomposition
is determined by the collection of

([tQk]?g = 1) (1 < k § 7‘)
(153 and (P (dy), loy)) (1<) <m).

Denote by n,(g) the multiplicity of w € Q for g = £, &g, - £g,.9192 - G-

Put Zso:={n € Z; n >0} and denote by (Z>0)? the set of all n =
(Nw)wen, Nw € Z>o, with n, = 0 for almost all w. Then, n(g) = (nw,(9))wen
is an element of (Zx()?, and the correspondence

®: G/~ [g] — n(g) € (Z0)
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gives a bijective map from the set of all conjugacy classes [g] of g € G, g # e,
onto (Z>0) .

For w = ([t],£) € Q, put w™t := ([t71],£). Then, if w is the conjugacy
class of &, = (t4,(q)) or of g; = (d;,0;), then w™! is that of fq_l or of gj_1
respectively. Hence, n,(g~1) = n,-1(g), and the transformation [g] +— [¢7}]
in the set G/~ of conjugacy classes of elements in G induces an involutive
transformation ¢ on (Z 20)(9) given as

v (Z50)Y 3n=(ny)weq — 1 = (n])ueq Wwith 0/, =n,1 (we Q).
For a positive definite class function f on G, put s(f) = (Su,)weq with

5w = f(9.), where g, denotes a basic element in the class w. Then, since w™!
is represented by ¢!, and since f(g~!) := f(g),9 € G, we have

(15.4) Su-1 =8, (complex conjugate).

Define a positive definite class function f by f(g) = f(9) (9 € G), then
s(f) = s(f). Here, for s = (s,)weq, We put 3 := (33)weq with 3, = s, for
WEQe ={we;wl=w}l

Put Q.. ={weQ;w'l#w} then Q=Q,. . UQ.. Let I, :=[-1,1] C R
for w € Qpe, and D, := {z € C ; |z] < 1} C C for w € ., and put
S = S, X S, with

(15.5)  Spe:= H I,, S.:= { (2w)wen, € H D, ; z,-1 =%, (Vw) }

WEN e we,

Every s = (5,)weq € S defines a function Wy on (Z50)Y = G/~ by

0, (ZZO)(Q) 3n=(ny)weq H s, € K,
weN

where K = R or C according as Q. = 0) or # (). Then we get a class function
fs =V 0® on G satistying fs(¢7") = fs(9)-
Now the condition (FTP) above is rewritten in these notations as follows:
(FTP") There exists an s = (Sy,)weq in S = Spe X S. such that f = fs, that
is, that for a g € G with standard decomposition g = £4,8q, *+£4.9192 " * gm,
let n,(g) be the multiplicity of w € Q in these basic components, then

(15.6) f(g) =1l,eca 5" 9 where s =1

Proof of Theorem 12.
1. The proof of “only if” part is carried out similarly as for [Tho2, Satz
1] with several appropriate changes.

2. For the proof of “if” part, we utilize a kind of Stone-Weierstrass theo-
rem on the uniform convergence of continuous functions on a compact set. For
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any pair {w,w™!} in Q,, choose once for all a representative, say w, from the
pair, and denote by 2., the set of all such representatives. Put

S =S x S, with S := Hweﬂ’c D,, and Q' =Q..UQ.,
then S’ is isomorphic to S = Sy X S, as a compact space through an isomor-
phism I': S 3 s = (8u)weq — 8 = (Sw)weqy € 5’ Let C(S’) be the space of
all K-valued continuous functions F' on the compact set S’ = S, x S-.

For an element n = (ny,)ueco € (Z50)“?, consider ¥,(n) = [Locq s, as
a function of s’ = (s,,)weq € S’, we have a monomial function

Po(s) = [ sJ™ x [[ (s,sam™).

WEDe weq,

Lemma 15.1.  The set P of the following monomial functions in s’ =
(Sw)wGQ/ c S,

Pn(sl)v n = (nw)wEQ € (ZZO)(Q)a

is total in C(S’) with uniform convergence norm.

Let K1(G) be the set of all positive definite class functions f on G nor-
malized as f(e) =1, and E(G) the set of all extremal points of the convex set
K1(G). With the pointwise convergence topology Ki(G) is compact. Then,
we can apply here the Choquet-Bishop-de Leeuw representation theorem ([BL,
Theorem 5.6]) for the compact convex subset X := K;(G) in a real locally
convex linear space (spanned by K(G)) and the set X, := E(G) of its extremal
points. Denote by 28 the o-ring generated by X. and the Baire subset of X.
Each f° € X has a representation of the form

P = /X f du(f)

with respect to a non-negative measure p on 9B such that u(X) = pu(Xe) = 1.

Let M C K;(G) be the subset consisting of factorizable f or of the form
fs = Vg 0® with s € S, then it is closed and so compact. By the “only if” part
mentioned above, we have E(G) C M. The above measure p can be considered
as a measure on M such that u(M) = u(E(G)) = 1. We map M C K;(G) into
S by f +— s through f = f; (put s = s(f)), then M is homeomorphic to its
image M in S. Let E be the image of E(G).

Now take f* = foo € M and prove that fO is extremal or f° € E(G).
Through the correspondence f +— s(f), we discuss this in the space S. So, it
should be proved that s* = s(f0) € M actually belongs to E. Corresponding

to the integral expression of f© given above, we have, as functions on (Z 20)(9)7

0 is expressed as an integral on M with respect to a measure i for which

(M) = i(B) = 1:

sV = /~sdﬁ(s) or U= /~ U, dp(s).
M M
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Evaluate the latter integral at each point n = (nw)weg e(Z >0)( ), and rewrite
it on S’ through the isomorphism I' : S > s +— s’ € §’, and with a probability
measure i’ := 1o '~ on a compact subset I'(M ) of S’, supported by I'(E),
we have

Pal) = [ Pals)di(s)  for = (m)ecn € (Z50) .
(M)
By Lemma 15.1, it follows from this that
F((s%)) :/ F(s')dp'(s")  for any F e C(9").
(M)

From this, we see that i’ is supported by one point set { (s°)’ }. This means
that (s°) € I(E) or s° € E and so f° = f. € E(G).
Thus the proof of the “if” part of Theorem 12 is now complete.

16. Final step of the proof of Theorem 2

By the “only if” part of the proof of Theorem 12, for each f € E(G), there
corresponds an element s € S such that f = fs = ¥, 0 ®. As the final step of
the proof of Theorem 2, we specify the parameter s = (s, )weq and prove the
following.

Proposition 13.  An extremal positive definite class function (or a
character) f on G = 6, (T), normalized as f(e) = 1, is given in the form of fa
in the formula (3.8) in Theorem 2, with parameter A = (0‘475)(( efx{o1} i M
in (3.7) satisfying the condition (3.6).

Proof. By the “only if” part already proved, we should examine a positive

definite class function f of the form (15.6). We define a class function on T' by
putting

1 for t=ep,
X(t _{ s(g,1y for teT™,

where 5(;,1) = 5, for w = ([t], 1) € Q. Then, since X is a class function on T,

it is expressed as a linear combination of x¢,( € ZA“, as

(16.1) X(t)=> bexelt) (teT)

ceT

(16.2) with by = /T X xc(®) dpr(t), H (dim¢)be = 1.

ceT

For ¢ > 2, we define also a class function Y;(¢) on T by putting

Yo(t) = sy (t€T),
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where 51,0y = 5, for w = ([t],£) € Q. Then, similarly as for X, it is expressed
as

(16.3) Yi(t) =Y acexc(t) (teT)
ceT

(16.4) with ace = /T Yo(t) xc(t) dur(t).

Then, for g = &, &g, - - &4,9192 - * - m , We have from (15.1) and (15.6)

(16.5) f(9)= [T D2 bexclta) | x TI D2 actoy xc(Poy(dy))

i<k<r \¢ef 1<j<m \¢eT
Now we apply the following lemma.

Lemma 16.1. (i) Let f1 and fo be positive definite functions on a group
G, then the product (f1f2)(g) := f1(g)f2(g9) (g € G) is again positive definite.

(ii) Let D be a compact normal subgroup of a locally compact group G. For
a continuous positive definite function f on G, put

folg) == /D f(gd) dyup (d),

where dup denotes the normalized Haar measure on D. Suppose that for each
g € G, the automorphism D > d — gdg~' € D is measure-preserving. Then,
1 gives a continuous positive definite function on the quotient group G/D, and

it is also expressed as f°(g) = [, f(d'g)dup(d’).

Proof. Let us prove (ii). Take g1,99,...,9, € G, d1,d2,...,d, € D and
A, A2, ..., An € C. Then,

ST NN flgdid g > 0.
1<i,j<n
Integrate this inequality with respect to dup(dy)dup(de) -+ dup(dy), then
we get

0< Y AT /D F(gidg;™) dup(d)

1<i,j<n
= > NN / f(gig;”'d) dup(d).
1<i,j<n b
This proves that the function f° is positive definite. O

Fix a ({p,¢) € T x {0,1}, and take a positive definite class function F¢, .
in (12.3) in Theorem 9: for g =&;,&y, -+ £0.9192 - Gm, &g = (tq, (q))7 gj =
(dj,05),

X¢o (tq,) Xco (Po, (d5)) .
F, ,5( ) = — X s et Sgn(a-) .
Co 1<h<r dim Co 1§];£m (dlm CO)Z(O']) J
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Then the product f'(g) := (fFep.c)(9) = f(9) Feoc(g) is positive definite.
Take a subgroup D,, := Dy (T) with n sufficiently large so that supp(g) C I,.
Fourier transform F¢, en(f) of f with respect to F¢, . is by definition the
integral of f’ with respect to D,,:

Feyem(F)(9) = /D (d'9) Fae(d'g) dup, (d).

Let us calculate F¢, 0.n(f)(g). Taking multiplicative factors of F¢, o, we
put

Xy = 3o v = 2B e,

Then, by (16.1)—(16.4), we need the following formulas. Firstly,

- b

X(t) X¢, () dur(t) = ° .

| xO X0 durtt) = -

Secondly, for a basic element (d’,¢") with d' = (¢1,t0,...,ts), 0’ =(1 2 -+ £),
we have P,/(d") = tety—1 - - - tat1, and therefore

/T/z (Ye Yoo ) (teto—y -+ - toty) dugp(ty)dpur(tz) - - dup(te) = (dgflio’éo)f-

Lemma 16.2. Let f be a factorizable positive definite class function
[ in (15.6) given as f(g9) = [l,ca 5" 9 Then, through (16.1)—(16.3), it is
expressed as in (16.5), and the Fourier transform F¢y 0. (f) of f with respect
to F¢, 0 is given as follows: foro € G, leto = 0102 -+ oy, be its decomposition
into mutually disjoint cycles, then

n—|supp(o)|
b Qo0 oj
Feo0m(f)(0) = (Q)) < 11 Co.lloy)

dim ¢y 1<i<m (dim p)“(@s)

By Lemma 16.1(ii), the Fourier transform F, o.,(f) is a positive definite
class function on the symmetric group G,, for any n.

We continue the proof of Proposition 13. For 0 € G, let ny(o) be as in
86, the multiplicity in o of disjoint cycles of length ¢. For a series of complex
numbers s = (sy, S2,...), consider a class function a? on each subgroup &,
given by

o (o) == sln—\SUDp(U)ISan(U) . S;z(a) (0 € By),

where 2ns(0)+3ns(o)+---+£€ny(o) = |[supp(c)| < n. Then, [Tho2, Korollar
1 of Satz 2| says that

(x) The class function o is positive definite on &,, for alln > 1 if and only
if there exist series of non-negative real numbers o = (a;)ien, B = (Bi)ien
with ||| < 400, ||8]| < +o0, such that

ol + 18l <s1, se=>_ af + (D> 8L (£>2).

€N i€EN
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In our case, by (), we have & = (a;)ien, B = (Bi)ien (naturally de-
pending on (p) such that

bC
< 50
ol + 18] < g

Sl (DT = et (622),

iEN iEN
Rearrange a;’s and 3;’s in decreasing order and put
: 2 : 2
a0, = (dim o) e, aga = (dim¢o)” B,

aco,0 = (Q¢o,0,)ieN s a1 = (Qg,1,i)ieN
H¢o = (dimCo) bCo - ”O‘CO’OH - HaCo,lH‘

Then we have

ool Nlag.tll Boo
dimco dimco dimco Go>
¢ ¢
Q0. r—1 Qo 1,6
Z(dimgo) + (=D Z(dim@) e (£22)
€N ieN

Now put A = ((ag’g)(ga)efx{o’l} ; ,u) with p = (pi¢) ez - Then we have

from (16.2)
ST e

ceT €€{0,1}

|+ el =1,

which is nothing but the maximum condition (MAX) in (3.11) on the parameter
A.
Finally we get the following. For w = ([t],1) with ¢ € T*, the value

Sw = f(&,) for & = (t,(q)) is given by

e ey = s (Il ol ey

CeT
and for w = ([t],£),£ > 2, the value s, = f((d,o0)) for a basic (d,o), with
P,(d) = [t] and £(0) = ¢, is given by

»

€

Il
kﬁ
=
&

Q
SN—
N—

Il

(5 () + s (5) o

ceT \ieEN ieN

This completes the proof of Proposition 13. O

Hence the proof of Theorem 2 is now complete.

(For a historical reason, we add here the reference [ASW] in addition to
[Tho2].)
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17. Deduction from &, (T) to &¢,(T), T abelian

17.1. Proof of Theorem 4

To prove Theorem 4, first we quote some results from [Thol]. As a general
setting, let G be a countable discrete group and N its normal subgroup. Let
K1(G), E(G), F(G) be as in §15, and further let K (N, G) be the set of positive
definite class functions f on N which is normalized as f(e) = 1, and invariant
under G, and let E(N, G) be the set of all extremal points in the convex compact
set K1(N,G). Then, [Thol, Lemma 14 and Lemma 16] assert respectively the
following.

(1) For an F € E(Q), its restriction f = F|y on N belongs to E(N,G).

(2) Let f € E(N,G) and F = Ind§ f € K1(G) the trivial inducing up of f.
Ezxpress F' as an integral on the closure F(G) of E(G) as F = fF(G) F'du(F"),
where [ is a measure on the compact set F(G) such that u(F(G)\ E(G)) = 0.
Denote by supp(F) the support of the measure p. Then, each F' € supp(F)
is an extension of f onto G. In particular, F' € supp(F) N E(G) # 0 is an
extremal extension of f.

Now we apply these results to the case of G = 6, (T) and N = G°¢. Then,
we see that every element in E (N, G) is a restriction of some element in E(G).

On the other hand, remark that a conjugacy class in G is either disjoint
with N or equals to a conjugacy class in N = G¢. This means that K;(N,G) =
K,(N) and so E(N,G) = E(N).

Therefore, each element of E(N) = E(G€) is equal to a restriction of some
element in F(G). This proves Theorem 4. O

17.2. Proof of Proposition 5
To prove Proposition 5, we study the surjective correspondence

E(G) 3 far— fa = (fa)lee € E(G"),

in detail and prove that fa|ge = far|ge if and only if A’ = R({y)A, or if and
only if far(g) = m¢y,0(9) falg) (9 € G), when the condition (MAX) in (3.11) is
assumed both for A and A’. For g € G, let

(17.1) 9=80.80 80,9192 Im s Eqp = (tQk’ (ax)); 9; = (dja Uj)a

be its standard decomposition. Denote the number m of disjoint cycles in o
by m(g) = m(o), then it is a class function on G and also on S.,. Here the
supports of components, qi,¢s,-..,qr, and supp(g;) := supp(o;) (1 < j < m),
are mutually disjoint, and o; is a cycle of length £(c;) > 2 and supp(d;) C
supp(c;) =: K;. For A = ((ozg,g)(C )eTx{01} u) in (3.5), we assume the
condition (MAX), instead of (3.6), that is,

(172)  (MAX) S Jacell + lull = 1.

(¢,e)eTx{0,1}



Characters of wreath products of finite groups with & 589

The formula of a character f4 of G in Theorem 2 is rewritten as

(17.3) falg) = TI Yilta) x TI Yo (Px,(d),

1<k<r 1<j<m
where fj = E(O'j), PKj (dj) = HiEKj t; for dj = (ti)ieKja and }/g(t) (€ > 1,t e
T), are the multiplicative factors of f given as

i) => | D D acei + pc|C),

¢ceT \e€{0,1} ieN

i =Y | 3 Y (ace) (17 | ) (=2

¢ceT \e€{0,1} ieN

Since the condition (MAX) is assumed for A, the above formula is valid even
in the case where t,, = er because Yi(er) = 1.
For another A’ := (alq,s)(g,e)efx{o,l} ; u') a character fa/ of G is given

similarly as

(17.4) far(g H Yl a) X H YZ/J-(PKj(dj))v

1<k<r 1<5<m

Y/(t) (¢ >1,t € T), are similarly given corresponding to the parameter A’.

Now assume that falge = far|ge. Put n = r + m, and denote newly by
{s,ts) ; 1 <s<n}, €, >1,t, €T, the set of the pairs (1,t,,),1 <k <7
(here £ = 1), and ({;,t}), 1 < j < m, with {; > 2,t, = Pg,(d;) € T, we see
that the above condition is equivalent to

(17.5) I Yot = J] Y.t under ] t. =er,

1<s<n 1<s<n 1<s<n

for any choice of pairs (¢s,t5) € N x T (1 < s < n) satisfying the condition
H1<s<n ts =er.

Put T(¢) = {t € T ; Yg(t) # 0}. Then, T(¢) is stable under the map
t +— t=1 because Y;(t~1) = Y,(t). Moreover, T'(¢) is just the set of such t € T
that Y/ (£) # 0, because Y;(1)Ye(t™) = Y/(O)Y/(£)). Put xe(t) = Y/(£)/Yil(t)
on T(f), then |x,(t)] = 1, xe(t71) = Xg(t)_l. For a set of elements t, €
T(ls),1 <s<n, the equality (17.5) gives us

Il x.to=1 it ] te=er.

1<s<n 1<s<n

1

From this we obtain in particular x,(t) = xe(t) for t € T() N T(¢).
Putting x(t) = xe(t) for t € T'(¢), and taking into account of the above equality,
we see that xy on 7" := Up>1T'(¢) can be extended to a one-dimensional chatacter
on the group (T”) — T generated by T".
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Since (T") is determined by the parameter A, we denote it by T4. Put
Do (Th) := H;eN Ty, Tai =Ta (i € N), then the character f4 of G vanishes
outside of G (T4) = Doo(Ta) X 6o C G. Since Tar = T4, we have similar
fact for fa.. The formulas (17.3) and (17.4) gives us

far(9) =x(9) - falg) (9 € 6x(Ta)) with x(g) :=x(P(d)) for g =(d,0).

Take a one-dimensional character (y € T extending x on Ty to T', then we

get far(g) = C(P(d)) - falg) for g = (d,0) € G. Since m¢,,0(9) = Co(P(d)) by
definition, this is written as fas = m¢,.0 - fa, as desired.
The proof of Proposition 5 is now complete. O

17.3. The case where the parameter A is unique for f§
As seen above, the parameter A = ((0@75)(C eTx {01} u) for the char-

acter f§ = falge is not unique in general, even under the condition (MAX)
on p = (ue) et However, in a very special case of A, the parameter becomes
unique. This case is characterized by

R(G)A = A (¥ eT).

Let us study the explicit form of the character f4 in this special case. From
the above condition on A, we have a¢e = 1,6, fi¢ = p1, for any ¢ € T.
Then put

a=()ien =170, B=(Bi)ieNn =0a1,1, V=pa,.
Then, by the condition (MAX) on A, we have
(17.6)  [T[(lall + I8 + ») =1 or [T|([all + [8]) < 1.
Hence the multiplicative factors Y;(t) in this case are
Yi(t) = (lledl + 181 + v) Xoeer C(t) = der(t)
Yi(t) = (ZieN af + (=11 dlien 5%) def ¢(t)
=|T| (ZieN al + (1)1 YieN 5ié) der (1) (¢ =2),

where ., denotes the delta function on 7" supported by the unit element er .

It follows from these formulas for multiplicative factors Y7 and Y} that, for
g € G in (17.1), the value of the character f4(g) is not zero only if » = 0, and
for each j, 1 < j < m, the Dk, (T)-component d; of g; = (d;,0;) has product
Pk, (d;) = er. This condition on g means exactly that g = (d, o) is conjugate
to o € 6o — G, so that f,4 is supported by the set of conjugacy classes having
representatives from &.,. Thus we have

falg) =

|T|™) £, 5(c) if g=(d,o) is conjugate to o € S,
0 if ¢ is not conjugate to any T € G,
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where m(o) denotes the number of disjoint cycles in o, and f, g(co) denotes the
character of G in 6.1 with parameter («, ).

18. Wreath product of a finite group with 2

18.1. The case of the group 2. (7T)
Let us consider a normal subgroup e (T') := Do (T) XA of G = G (T)
for the infinite alternating group 2. Here we prove the following result.

Theorem 14.  All the characters of the group G’ := A (T') are given
as restrictions of those of the group G = G (T).
For two characters fa and fa on G with parameters

A= ((ac,s)(g,a)efx{o,u ; :“) and A’ = <(a/<,e)(g,e)efx{o,1} ) /‘/)

as in (3.5) respectively, their restrictions on G’ coincide with each other if and
only if far = (sgng)®fa (a =0 or 1), or, under the condition (MAX) for both
of A and A', if and only if A’ = A or A’ =tA, where

A= <(a/<,7s)(g,e)ef“x{o,1} “H)
is defined as

O/C/,O = Qg1 0/4,71 = Q¢ (Cej_\'), and lu/, = U.

Proof. The first assertion can be proved just as in 17.1.

For the second assertion, if the above condition holds between A and A’,
then we see easily that the equality fa|lgr = fa|g’ holds. Therefore it rests
only to prove the converse. N

Suppose falg: = far|gr. For the parameter A, put for { € T,

A
Zex = llacoll + llacall + pe,

Z8 = >0 DS (=1 (ac) (0= 2),

ee{0,1} iEN

and similarly put Zé; (£>1) for A'.
1. Firstly take a basic element g = &, = (¢, (¢)) € Doo(T') C G’ and write
down the relation f4(g) = fA/(g), then we have

+ x¢(t)
= z4 T).
Z ¢l dnn( <70l dim ¢ (teT)
ceT CeT

2. Secondly take a basic element g = (d, o) with o a cycle and supp(d) C
supp(c). Suppose £ = (o) is odd, then g € G'. Put t = P,(d), then the
relation fa(g) = far(g) gives us

_ A Xe(t)
Z “dlmg CTZCg(dImO (teT).
S
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3. Thirdly take g = (dy,01)(d2,02) a product of two basic elements with

¢, = L(ok) both even and P,, (di) = tx, then g € G'. We get from fa(g) =
far(g) the following:

xeltr) A Xc(tr)

= 75, (t1,t2 € T).
kl_ll,z CEZT ka (dim €)%+ kl_ll,z por Gl (dim ¢)®x
From these equations, we get

(18.1) |
(18.2) Z8, =274,  (£>2, odd)

A A A A -
ZChfl ZCsz = ZCl N ZC27€2 (Cl’ GeT; bt even)'
From the third equation, there exists a = 0,1 such that
(18.3) Z8, = (-1)°Z&, (¢ even).

The equations (18.1)—(18.3) prove that far = (sgng)®fa.

Furthermore, fix ¢ and put o = a¢,8 = ac1 and o/ = 0/4’0,6' -
Then, |laf|+ 18] <1, |&/||+ 18]l <1, and the equations (18.2)—(18.3) give us
for a = 0 or 1 respectively, as meromorphic functions on C,

_ (af)? B
zjl—aZ _zjl—l—ﬁz Zl—a;z_;l—i-ﬁl’»z’

i>1 i>1
(e)” (8)?
or ;17042 ZlJrﬂz_ Z:lJra;z—i_;lfﬂgz

Comparing poles in both sides, we can conclude for i > 1, o; = o, 5; = [,
or ay; = (3, 0; = «, according as a = 0 or 1. Hence, O‘C,e = o, for any ((,¢),
or 04270 = 04@/1\, O/Q1 = a¢,0, according as a = 0 or 1. In any case we get
pe = pe (C€T).

This complets the proof of Theorem 14. 1

Example 18.1. Let us study the case where the restriction fa|g has
its unique parameter A. By Theorem 14, this corresponds to the case of A such
that A = A. Then, ac1 = acpo (¢ € T). From the formula (3.8), we have
in this case the following expression of f4. For g = (d,o) € G with standard

decomposition g = &5, &g, €0, 9192 Gm, g = (tq, (q))7 g; = (dj,0;) with
o) = 2,

falg) =0, if some of {(0;) is even; and otherwise,

Fato) = T (32 Clacal + o) Xelae)

m acoi L(oy)
AL S (52) T el @)
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18.2. The case of the group 2 (7T'), T abelian
Assume T be abelian, then we have another normal subgroup

AL(T) = {g=1(d,0) € 6o(T); sgng(0) =1, P(d) =er}

of G = 6,,(T). For this group, we can prove the following result, analogously
as for G¢ = 6¢(T) and G’ = A (T).

Theorem 15.  Let T be abelian. Then for the normal subgroup G'¢ =
A (T) of G = &(T), every character of G'° is given as the restriction of
some characters of G.

Two characters fa and far of G with parameters

A= ((O‘C’f)(c,aefx{o,l} ; “) and A’= ((agﬁ)(@e)efx{ovl} ; “/)

have the same restriction on G'° if and only if far = 7¢y.afa with a one-
dimensional character

Teo,a(9) = Co (P(d)) (sgng)®(o) for g=(d,0) € Do(T) X G,

in Lemma 3, where (y € f, a =0,1. This corresponds to the following relation
between parameters A and A’ both satisfying the condition (MAX),

A"'=R((p)A in (5.5) in case a=0,
A" = R(¢o)(*A) in case a=1.

19. Appendix: Lemmas for compact groups

A finite group T is a kind of compact group, and we see in our discussions
above that it is sometimes simpler to use notations and notions for the case of
compact groups. For example, the notations

1
m Z F(t) and /TF(t) dp(t),

teT

when T is finite or compact respectively, can be unified with the latter one.
Here |T'| denotes the number of elements in T, and du denotes the nomalized
Haar measure on a compact group 7. The Haar measure p on a finite group 7'
is given by u({t}) =1/|T| (t € T).

In the present paper, when induced representations p = Indfﬂr from sub-
groups H of wreath product type are taken as ingredients, we have chosen rep-
resentations 7 of H in (10.5) constructed as in (10.6)—(10.7) from irreducible
representations ( € T of components = T'. However, as we remarked in 10.1,
some TURs p of G can be constructed starting from 7 given by means of cyclic
representations of T'. Therefore it is worthwhile to check what happens when
we use, in our discussions, cyclic representations w of T' instead of irreducible
ones ( € T. Actually we have done the calculations for this cyclic case on
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the way of preparing this paper, and on doing this, the following lemmas on
representations of compact groups were utilized. So, we expose them here in a
little more general form than directly necessary in the present paper.

Now let T" be a compact group and any representation of 7' treated here
is assumed to be unitary. An equivalence class in T is identified with a repre-
sentation in that class.

Take a finite dimensional representation (w, V(w)) of T with represen-
tation space V(w). Its character, denoted by X, is a positive definite class
function on T. For a ¢ € T, denote by m(¢) = [w : ¢] the multiplicity of ¢
in w, and by V; the subspace of V(w) consisting of vectors on which T' acts
according to a multiple of ¢, then an irreducible decomposition of w is given as

(19.1) V(w) = @Vg ; Ve = @ Ve,
©

ceT 1<k<m

where VCI~C denote mutually orthogonal subspaces isomorphic to V({) as T-
modules.

Lemma A.1. Letv,w € V(w) and ve,we € Ve (€ € T) be their com-
ponents in the direct sum decomposition (19.1). Then

(19.2) /T (o (sts™ Yo, w) du(s) = gfrffg_ (ve, we).
ceT

Lemma A.2. Let ¢ € T and vy, ve, wy, wy € V(¢). Then,

1
(193) [ () € ) dls) = o
Lemma A.3. Let v;,w; € V(w) (i = 1,2) and vf)c,wf)c € ng ¢ €
ZA“, 1 <k <m(Q)) be their components in the finer direct sum decomposition
(19.1): v = 32 7 D 1<k<m(c) Uzk,( etc. Denote by f)ﬁc the image of Uzk,( under

<’Ul, w2><v2, w1>.

a fized equivalence map from ng onto V(¢). Then
/(w(st)vl,w;l)(w(s_l)vg,w2> du(s) =
T

1 A Ny
(19.4) = Z Z <<(t)vlf,1g= w§?<><U§f<a wlf<>
ceT

dim ¢ 1<k, k2<m(¢)

Proof. Tt is enough to prove the equality for ¢ = e, the identity element
of T'. Then,

LW%MWﬂWWM:
:Z/ S ()b, oLy C(sT Yok ) du(s).

ce? 7T 1<kt ka<m(0)

Here we apply Lemma A2. O
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Lemma A.4.  Let v, w; € V(w) (1 < i <£) and vf,,wi. € VF (¢ €

T.1 <k < m(C)) be respectively their components in the finer direct sum
decomposition (19.1). Then

/T~-~/T<W(81t18[1)111,w1><w(32t231_1)”2,w2>"'<W(Sft254—_11)w’w2>
du(s1) du(s2) - - du(se)

X¢(tete—1 -+ -tat1) ke Ak ko1 Ak
_Z (dim ¢)° Z <”/g=w/11<><U5£1<vw2222g> -
ceT 1<k, k2, . ke <m(C)

k ~k k ~k
<U2247 w11c><1’11(a we[§>

For the proof, we apply Lemmas A2 and A3.

Lemma A.5. Letv; € V(w) (1<i<¥) andv;c €V (€ € T) be their
components in the direct sum decomposition (19.1). Then

/T~ . ~/T<w(81tls[1)vg, Ul><w(32tzsfl)ul, vg) <w(35tgsg:11)w,1, vg)
du(s1) du(sz) -+ - du(se)

Xc¢(tete—y - -taty)
Z (dim ¢)¢ H |

CET 1<i<t

Proof.  Let vzk,i € Vck (¢ € T,1 <k < m(C)) be the components in the
finer direct sum decomposition (19.1). By Lemma A4, the integral is equal to

Xc(tete—1---taty) SRe=1 12 phe=2 12
> (@m 0! > 19027 c 17 100257 17 -

ceT 1<ky,k2,....ke<m(C)

Akl

Ake

O
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