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Cohomology of classifying spaces of central
quotients of rank two Kac-Moody groups

By

Jaume Aguadé, Carles Broto, Nitu Kitchloo and Laia Saumell

The goal of this paper is to compute the mod p cohomology algebra
—including the action of the Steenrod algebra and the Bockstein spectral
sequence— of the classifying spaces of the quotients of (non-afine) Kac-Moody
groups of rank two by finite central p-groups. These classifying spaces may be
realized as a homotopy pushout of the classifying spaces of two compact Lie
groups, intersecting along the classifying space of their common maximal torus.
Such decompositions have recently been observed by S. Anjos and G. Granja
[5] in their study of the symplectomorphism groups of S2 × S2. In particular,
Anjos and Granja show that the classifying space of the symplectomorphism
group of S2×S2 with a suitable symplectic form may be written as the homo-
topy pushout of the classying spaces of two compact Lie groups, intersecting
along the classifying space of their common sub-torus. We therefore believe
that the results of this paper are useful in the study of such pushouts.

Kac-Moody groups are simply connected topological groups, generally in-
finite dimensional, associated to Kac-Moody Lie algebras. The study of their
topological properties was first considered by V. Kac and D. Peterson [14] and
further developed by N. Kitchloo [16]. It turned out that in many respects they
closely resemble compact (simply connected) Lie groups. For example they ad-
mit (finite dimensional) maximal tori and a Weyl group. These Weyl groups
are crystallographic groups, but not necessarily finite. The present paper is
part of a more general project which, roughly speaking, aims to investigate
the homotopy theory of the Kac-Moody groups with the tools that have led
to the development of the homotopy theory of compact Lie groups (see, for
instance, the surveys [11] and [18]). We would like to point out the papers [7]
and [1] as further examples of how some of the homotopy theoretical results
and techniques of compact Lie groups can be extended, with some appropriate
reformulation, to Kac-Moody groups.

One of the most important invariants of compact Lie groups is the co-
homology ring of the classifying space. This has played a central role in the
development of the homotopy theory of compact Lie groups, including the
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450 Jaume Aguadé, Carles Broto, Nitu Kitchloo and Laia Saumell

central results about homotopy uniqueness of Dwyer-Miller-Wilkerson [9], or
Notbohm [17], among others. Although, comparable results are expected in
the case of infinite dimensional Kac-Moody groups, the theory will be more
involved due to the existence of exterior generators in the cohomology rings,
linked to polynomial generators by higher Bockstein operations. Cohomology
rings with comparable structure have been considered in [2], where a deep un-
derstanding of the cohomology rings of the spaces involved and their homotopy
central quotients was required.

The investigation of Kac-Moody groups demands similar arguments and
therefore the understanding of the cohomology rings of their classifying spaces
and of the classifying spaces of their central quotients. However, the wise have
taught us (cf. Ithaca in [8]) that in the trips which are really worth doing what
we see and learn along the trip always turns out to become more important
than the final destination. We think that the present work might be an ex-
ample of this. The rank two Kac-Moody groups have a large family of central
subgroups which yield a rather complex series of interesting unstable algebras
over the Steenrod algebra, and when we started computing these cohomology
algebras we learned that in order to study them in a systematic way we needed
to relate them to representation theory and to invariant theory. In this context,
we believe that the relationship between rank two Kac-Moody groups, repre-
sentations of the infinite dihedral group, invariant theory of pseudoreflection
groups and cohomology algebras that we display here is more interesting than
the particular values of each cohomology algebra.

As it has been the case in different situations in homotopy theory it turns
out that a better description of the mod p cohomology rings and a deeper un-
derstanding of its structure is obtained by merging the classifying spaces of
Kac-Moody groups and of their central quotients in a larger class of spaces
sharing similar homotopy theoretic properties with them [7]. For the case of
rank two Kac-Moody groups K and their quotients K/F , by central subgroups
F of K, it is convenient to restrict to a family of spaces —the family which
we call S∗— which can be viewed as a homotopy theoretic generalization (and
also a p-adic completion) of the spaces B(K/F ). The spaces in the set S∗

can be parametrized by matrices in GL2(Ẑp) plus some extra data. A better
parametrization of S∗ is given by a set called R∗ whose elements are faith-
ful representations of the infinite dihedral group D∞ in GL2(Ẑp) plus some
obstruction classes, modulo the action of the outer automorphisms of D∞.
Hence, our results depend on the integral p-adic representation theory of the
infinite dihedral group. This theory has been developed in [3] and we would
like to point out that the work in [3] was motivated by the present paper and,
moreover, the cohomological results in the present paper helped us in shaping
the results in [3].

The present paper is organized as follows. In section 1 we recollect the
notation on Kac-Moody groups and their central quotients that we use later.
In section 2 we introduce the colimit decomposition of B(K/F ) that we will use
to compute the cohomology and we define the family of spaces S∗ which contains
all spaces B(K/F ). In section 3 we relate the spaces in S∗ to representations of
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D∞ and we introduce a set R∗ of representation data with obstruction classes
which parametrizes S∗. Moreover, we review the results on representations of
D∞ which we proved in [3], in a form which is more appropriate to our needs.
Then, in the next three sections, we compute, for each data element of R∗, the
mod p cohomology of the space in S∗ corresponding to this data. The first of
these three sections gives some generic information and the two other sections
consider the case of the prime two and the case of the odd primes, respectively.
We use the invariant theory of finite reflection groups as developed in [19]. In
the final section, we return to Kac-Moody groups and we compute, for each
quotient K/F , the representation data in R∗ which gives B(K/F ) and we have
in this way enough information to compute the mod p cohomology algebras,
the Steenrod algebra actions and the Bockstein spectral sequences of all spaces,
of the form B(K/F ), but a few cases.

We are grateful to the Centre de Recerca Matemàtica for making possible
several meetings of the authors of this paper. J. Aguadé wants to thank the
Department of Mathematics of the University of Wisconsin-Madison for its
hospitality during the final stages of the preparation of this paper.

1. Rank two Kac-Moody groups and central quotients

We choose positive integers a, b such that ab > 4. Throughout this paper
K will always denote the unitary form of the Kac-Moody group associated to
the generalized Cartan matrix (

2 −a
−b 2

)
.

Sometimes we write K(a, b) instead of K when we want to make explicit the
values of a and b used to constructK. The integers a and b can be interchanged,
since the group associated to (a, b) is isomorphic to the group associated to
(b, a). The case ab < 4 gives rise to compact Lie groups while the case ab =
4 is called the affine case and will be left aside. These infinite dimensional
topological groups and their classifying spaces BK have been studied from a
homotopical point of view in several works, like [13], [12], [15], [16], [7], [1]. We
recall here some properties of K and BK which we will use throughout this
work and which can be found in the references that we have just mentioned.

By construction, K comes with a standard maximal torus of rank two TK
which is a maximal connected abelian subgroup of K. Any two such subgroups
are conjugate. The Weyl group W of K is an infinite dihedral group acting
on the Lie algebra of TK through reflections ω1 and ω2 given, in the standard
basis, by the integral matrices:

w1 =
(−1 b

0 1

)
, w2 =

(
1 0
a −1

)
.

The matrices of determinant +1 in W form a subgroup W+ of index two which
is infinite cyclic generated by ω1ω2.
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The cohomology of K and BK was computed by Kitchloo ([16]) using,
among other tools, the existence of a Schubert calculus for the homogeneous
space K/TK .

The center of K is also well understood ([13]):

ZK =

{
2Z/(ab− 4)× Z/2, a ≡ b ≡ 0 (mod 2)
Z/(ab− 4), otherwise.

Hence, we have a family of central p-subgroups F of K and the purpose of
this paper is to study the spaces B(K/F ).

Let us fix now the notation that we will use in this paper to refer to
the various quotients of K by central subgroups. We denote by νp the p-adic
valuation.

• If p is an odd prime or p = 2 and a or b is odd then there is a unique
central subgroup F of K of order pm for any 0 ≤ m ≤ νp(ab− 4). We denote
K/F by PpmK.

• If p = 2 and a and b are both even then the 2-primary part of the
center of K is non-cyclic of the form Z/2t×Z/2, t = ν2((ab− 4)/2). There are
several quotient groups. We denote by PR2 K the quotient of K by the right
subgroup of the center of order two. We denote by PL2mK, 0 ≤ m ≤ t the
quotient of K by the left subgroup of the center of order 2m. We denote by
PD2mK, 0 < m ≤ t the quotient of K by the diagonal subgroup of the center of
order 2m. Finally, we denote by PN2m+1K, 0 < m ≤ t the quotient of K by the
non-cyclic subgroup of the center of order 2m+1.

2. Colimit decompositions of BK and B(K/F ) and the spaces in S∗

A fundamental result in the homotopy theory of the classifying spaces of
Kac-Moody groups is the following (cf. [16]). If L is any Kac-Moody group
with infinite Weyl group and {PI} are the parabolic subgroups of L indexed
by proper subsets I of {1, . . . , rank(L)} then there is a homotopy equivalence

BL � hocolim
I

BPI .

Let us give a more precise description of this homotopy colimit in the case of
the rank two group K = K(a, b).

There are group homomorphisms ϕi : SU(2) → K, i = 1, 2, such that the
images of ϕ1 and ϕ2 generate K. If D is the unit disc in C and we write

zi(u) = ϕi

(
u (1− ||u||2)1/2

−(1− ||u||2)1/2 ū

)
thenK has a presentation with generators {zi(u) |u ∈ D, i = 1, 2} and relations

(i) zi(u)zi(v) = zi(uv) if u, v ∈ S1.
(ii) zi(u)zi(−ū) = zi(−1) if u ∈ D\S1.
(iii) zi(u)zi(v) = zi(u′)zi(v′) if u, v ∈ D\S1, u �= v, for some unique u′ ∈

D\S1 and v′ ∈ S1.
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(iv) zi(u)zj(v)zi(u)−1 = zj(uaijv)zj(u−aij ) if u ∈ S1, v ∈ D and (aij) is
the Cartan matrix of K.

Then BK is a homotopy push out

BTK � BH1

BH2

�
� BK

�

where H1 and H2 are rank two compact Lie groups which contain the maximal
torus TK and can be described from the generators zi(u) in the following way:
Hi is generated by zi(u) for u ∈ D and zj(λ) for j �= i and λ ∈ S1. Hence,
these groups are split extensions

Hi = SU(2) � S1

and the action of S1 on SU(2) can be read from relation (iv) above and it turns
out to be

(2.1) λ ·
(
x y
z t

)
=
(
x λ−cy
λcz t

)
where c = b for H1 and c = a for H2. The Weyl group of both H1 and H2 is of
order two. Depending on the parity of the integer c, this group is isomorphic
to either SU(2)× S1 or U(2):

Proposition 2.1. Let H be the split extension of S1 by SU(2) with
action given by (2.1). Then

H ∼=
{
S1 × SU(2), c even
U(2), c odd.

Proof. If c = 2c′ then consider the isomorphism

H = SU(2) � S1 ψ� S1 × SU(2)

(A, τ ) �
(
τ, A

(
τ−c

′
0

0 τ c
′

))
If c = 2c′ + 1 then consider the isomorphism

H = SU(2) � S1 ψ� U(2)

(A, τ ) � A

(
τ−c

′
0

0 τ c
′+1

)
.

This proposition gives concrete descriptions of the push out diagrams for
BK for any value of a and b. We have:
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• a ≡ b ≡ 0 (mod 2). Then

BK � hocolim
{
BS1 ×BSU(2) �

(
1 0
−a2 1

)
BTK

(
0 1
1 − b

2

)
� BS1 ×BSU(2)

}
.

• a ≡ b ≡ 1 (mod 2). Then

BK � hocolim
{
BU(2) �

(
1−a
2 1

1+a
2 −1

)
BTK

(
1 1−b

2

−1 1+b
2

)
� BU(2)

}
.

• a ≡ 0, b ≡ 1 (mod 2). Then

BK � hocolim
{
BS1 ×BSU(2) �

(
1 0
−a2 1

)
BTK

(
1 1−b

2

−1 1+b
2

)
� BU(2)

}
.

Here each matrix M written above an arrow means a map B(i ◦ ρ) where
i : TK ↪→ K is the inclusion and ρ : TK → TK is the homomorphism inducing
M on the Lie algebra level.

If we want to work one prime at a time (and we will want to do so) then we
can complete the above push out diagrams and obtain BK∧

p as the p-completion
of a push out of the form (BH)∧p ← BT∧

p → (BH ′)∧p .
Notice that the distinction between the three different types of diagrams

above is only important at the prime two, since BU(2) and BS1×BSU(2) are
homotopy equivalent at any odd prime. Moveover, If N denotes the normalizer
of TK in K then the natural map BN → BK is a mod p homotopy equivalence
for any odd prime p (see [16]).

Notice also that the classifying spaces of the central quotients of K have
also a colimit decomposition of this same form:

B(K/F ) � hocolim {B(H/F )← B(TK/F )→ B(H ′/F )} .
The above considerations suggest considering the family S of all spaces X

which can be constructed out of two rank two compact Lie groups H, H ′ with
Weyl group of order two, as a push out BH ← BT → BH ′. We introduce the
following definition:

Definition 2.1. Choose a prime p (which will be omitted from the no-
tation) and choose a matrix M ∈ GL2(Ẑp). Let T be a torus of rank two.
Then:

1. If p is odd, define X (M) as the p-completion of the push out

(BS1 ×BSU(2))∧p �M (BT )∧p
id� (BS1 ×BSU(2))∧p .

2. If p = 2, define Xk,l (M), k, l ∈ {0, 1, 2} as the 2-completion of the
push out

(BHk)∧2 �M (BT )∧2
id� (BHl)∧2 ,

where H0 = S1 × SU(2), H1 = S1 × SO(3) and H2 = U(2).
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The map called id is induced by the inclusion of the standard maximal torus
and the map called M is induced by the self equivalence of BT∧

p given by M (in
the standard basis) followed by the inclusion of the standard maximal torus.

Notice that a space obtained from a push out of the form

(BH)∧p �M (BTK)∧p
N� (BH ′)∧p

fits also in the above definition as Xk,l
(
MN−1

)
for some k, l. Hence, the set

S of all (homotopy types of) spaces of the form Xk,l (M) contains all spaces
that we want to study in this paper. Notice also that if we turn around the
diagram used to define Xk,l (M) we get the diagram for X l,k

(
M−1

)
and so

both spaces are homotopy equivalent. Hence, we can assume k ≤ l without loss
of generality.

Hence, we have enlarged the set of spaces that we are going to consider in
this paper in a way that we obtain a more general framework which will allow
us a more systematic study of the classifying spaces of the central quotients of
the rank two Kac-Moody groups. This larger family of spaces S is parametrized
by a set M of diagrams {M ; {k, l}}, in the following way. We define M as the
set of diagrams

(BHk)∧p �M (BT )∧p
id� (BHl)∧p

with M ∈ GL2(Ẑp) and k ≤ l in I, where I = {0} for p > 2 and I = {0, 1, 2}
for p = 2. The assignment {M ; {k, l}} 
→ Xk,l (M) gives a surjection M � S.

We can associate to each element {M ; {k, l}} ∈ M a subgroup W <

GL2(Ẑp) in the following way. W is the subgroup generated by the matri-
ces Al and M−1AkM with

A0 = A1 =
(

1 0
0 −1

)
, A2 =

(
0 1
1 0

)
.

This group W is a quotient of the infinite dihedral group and so it is either
finite or infinite dihedral. We denote by M∗ the set of elements in M whose
corresponding group is infinite dihedral, and we denote by S∗ the image of M∗

in S. Notice that the spaces (BK/F )∧p that we want to investigate in this paper
are in S∗. The surjection

Φ: M∗ �� S∗

gives a parametrization of the set S∗ in terms of p-adic matrices (with some
indices, if the prime is 2). In the next section we present another parametriza-
tion of S∗ which will be more appropriate for our research of the cohomology
of the spaces in S∗.

3. Spaces in S∗ and representations of D∞

In this section we give another parametrization of the set S∗ which is
related to the integral p-adic representation theory of the infinite dihedral group
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and which will allow us to give a more intrinsic view of the spaces Xk,l (M)
and will be useful to organize the cohomological computations of the following
sections of this paper.

We denote by R∗ the set of equivalence classes of pairs (ρ, c) where ρ is a
faithful representation of the infinite dihedral group D∞ in GL2(Ẑp) and c is
an obstruction class in H3(D∞;L), for L a 2-dimensional Ẑp-lattice with the
action of D∞ induced by ρ. The equivalence classes are taken with respect to
the natural action of Out(D∞) on the set of representations and on H∗(D∞;L).

Remark 1. From a different point of view, we could denote by R =
Ext(D∞, (T 2)∧p ) the set of equivalence classes of fibrations

(BT 2)∧p � BN � BD∞ ,

where two fibrations are equivalent if there are homotopy equivalences f ′, f ,
and f ′′ such that the diagram

(BT 2)∧p � BN1
� BD∞

(BT 2)∧p

� f ′

�
� BN2

� f

�
� BD∞

� f ′′

�

is homotopy commutative. Such a fibration is known to be determined by a
homomorphism ρ : D∞ � GL2(Ẑp), and an extension class c ∈ H3(D∞;L),
for L the 2-dimensional Ẑp-lattice with the given action of D∞. Moreover,
two fibrations determined by (ρ1, c1) and (ρ2, c2) respectively are equivalent if
and only if ρ1 and ρ2 are conjugate and c1 = c2, up to the induced action of
Out(D∞).

In case of Kac-Moody groups, BN would be a fibrewise p-completion of
the maximal torus normalizer. In the general case it might be understood as a
homotopy theoretic maximal torus normalizer. However, we do not plan here
to go deeper into these considerations.

We are interested in the case where the representation ρ is faithful. Con-
sistently with our notation in the previous section for S∗ and M∗, we have thus
chosen to denote by R∗ the subset of equivalence classes of R determined by
pairs (ρ, c) where ρ is a faithful representation of D∞.

Recall that D∞ is generated by two involutions and the only non trivial
outer automorphism of D∞ permutes these two involutions. A representation ρ
of D∞ in GL2(Ẑp) is given by two matrices of order two, R1, R2 and, according
to [3], for p > 2 these matrices are conjugate to A1 =

(
1 0
0 −1

)
, while for p = 2

they are conjugate to either A1 or A2 = ( 0 1
1 0 ). We write ρ ∈ Repi,j , i ≤

j, to indicate that ρ is defined by two involutions conjugate to Ai and Aj ,
respectively. Notice that Out(D∞) identifies Repi,j and Repj,i. Since D∞ ∼=
Z/2 ∗Z/2, we see that H3(W ;L) ∼= H3(Z/2;L)⊕H3(Z/2;L) and this vanishes
if p > 2. Hence, the obstruction class c is irrelevant in the odd prime case
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and R∗ is just the set fRep(D∞) of faithful representations of D∞ in GL2(Ẑp),
modulo the action of the outer automorphisms of D∞. This set is equivalent
to the set of all conjugacy classes of infinite dihedral subgroups of GL2(Ẑp).

For p = 2, an elementary computation shows that

H3(D∞;L) ∼=


0, ρ ∈ Rep2,2

Z/2, ρ ∈ Rep1,2

Z/2⊕ Z/2, ρ ∈ Rep1,1 .

Out(D∞) acts as the identity if ρ ∈ Rep2,2

∐
Rep1,2 and permutes the two

summands if ρ ∈ Rep1,1. We can summarize the structure of R∗ in this way:
• If p is odd then the elements of R∗ are the conjugacy classes of infinite

dihedral subgroups W < GL2(Ẑp), i.e., R∗ = fRep(D∞)/Out(D∞).
• If p is even then R∗ splits as a disjoint union of four sets:

– The set of all (ρ, c) with ρ ∈ fRep2,2 /Out(D∞) and c = 0.
– The set of all (ρ, c) with ρ ∈ fRep1,2 and c = 0 or c = 1.
– The set of all (ρ, c) with ρ ∈ fRep1,1 /Out(D∞) and c = 0 or c =

(1, 1).
– The set of all (ρ, c) with ρ ∈ fRep1,1 and c = (0, 1).

There is a surjection Ψ: M∗ �� R∗ which assigns to {M ; {k, l}} the rep-
resentation ρ : D∞ → GL2(Ẑp) given by the matrices R1 = Al, R2 = M−1AkM
and the obstruction class given by

M∗ R∗

M ; {0, 0} [M ] ∈ Rep1,1 c = (1, 1)

M ; {0, 1} [M ] ∈ Rep1,1 c = (0, 1)

M ; {1, 1} [M ] ∈ Rep1,1 c = 0

M ; {0, 2} [M ] ∈ Rep1,2 c = 1

M ; {1, 2} [M ] ∈ Rep1,2 c = 0

M ; {2, 2} [M ] ∈ Rep2,2 c = 0

Remark 2. This assignment of an obstruction class is done in a way
which reflects the non-splitting of the maximal torus normalizer of SU(2) in
contrast to the splitting of the maximal torus normalizer of SO(3).

Then, we have a diagram

M∗ Φ�� S∗

R∗

Ψ
��
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and we claim now that Φ factors through R∗, up to homotopy. This is an easy
consequence of the following result.

Proposition 3.1. Let D be the subgroup of diagonal matrices in
GL2(Ẑp) and let Y be the subgroup of matrices ( x yy x ) ∈ GL2(Ẑp). Then:

(1) D is the centralizer of A0 = A1 and Y is the centralizer of A2.
(2) Xk,l (M) � X l,k

(
M−1

)
.

(3) Xk,l (M) � Xk,l (AMB) for any A in the centralizer of Ak and B in
the centralizer of Al.

Proof. The proof of part 1 is straightforward and part 2 has already been
discussed in the preceding section. To prove part 3, notice that the corollary
3.5 in [10] shows that any diagonal matrix lifts to self equivalences of (BS1 ×
BSU(2))∧p and (BS1×BSO(3))∧p while any matrix in Y lifts to a self equivalence
of BU(2)∧p . Using this, it is not difficult to construct an equivalence between
the diagram for Xk,l (M) and the diagram for Xk,l (AMB).

We have thus obtained a surjection (up to homotopy)

Φ̄ : R∗ �� S∗

which allows us to parametrize the homotopy types of spaces in S∗ by (faith-
ful integral p-adic) representations of D∞, plus (for p = 2) some obstruction
classes.

Remark 3. An interesting question which arises naturally in this con-
text is whether the map Φ̄ is injective. The injectivity of Φ̄ could be interpreted
as saying that the spaces in S∗ and, in particular, the completions of the classi-
fying spaces of central quotients of rank two Kac-Moody groups, are determined
by the normalizer of a maximal torus. We are not going to consider these type
of problems here.

Hence, the study of the homotopy type of the classifying spaces of the
central quotients of rank two Kac-Moody groups has led us, in a natural way, to
the representation theory ofD∞ inGL2(Ẑp). This theory is developed in [3] in a
purely algebraic way and thus a complete description of these representations is
available. We reproduce here the results of [3] with a slightly different notation
which is more convenient for the applications in the next sections of this paper.

First of all, the set Rep(D∞) of representations of D∞ in GL2(Ẑp) splits
as a disjoint union

Rep(D∞) =
∐
i,j∈I

Repi,j

where the index set I is {0, 1, 2, 3} for p = 2 and {0, 1, 3} for p > 2. Repi,j
contains all representations such that the two generating involutions r1, r2 of
D∞ are conjugate to Ai and Aj , respectively, where

A0 = I, A1 =
(

1 0
0 −1

)
, A2 =

(
0 1
1 0

)
, A3 = −I.
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Given a matrix M ∈ GL2(Ẑp) and given representations σi, σj of Z/2 given
by matrices Ai, Aj , we can consider the representation ρ ∈ Repi,j given by
ρ(r1) = Ai and ρ(r2) = M−1AjM . This assignment yields a bijection

C(Aj)
∖
GL2(Ẑp)

/
C(Ai) ∼= Repi,j

where C(A) denotes the centralizer of A in GL2(Ẑp). After this identification,
the non trivial outer automorphism of D∞ interchanges Repi,j and Repj,i and
acts on Repi,i by M 
→ M−1. To avoid trivial cases, we only need to consider
Rep1,1 for p > 2 and Rep1,1, Rep1,2 and Rep2,2 for p = 2. Each of these sets
has a description by double cosets:

Rep1,1
∼= D∖GL2(Ẑp)

/D
Rep1,2

∼= Y∖GL2(Ẑ2)
/D

Rep2,2
∼= Y∖GL2(Ẑ2)

/Y
where the subgroups D and Y are as defined in 3.1. We use the notation Repi,j
to denote the mod p reductions of the representations in Repi,j .*1

Proposition 3.2 ([3]). The functions Γ1,1, δ1 and δ2 defined on
GL2(Ẑp) by

δ1

(
x y
z t

)
= νp(xz),

δ2

(
x y
z t

)
= νp(yt),

Γ1,1

(
x y
z t

)
=

xt

xt− yz ∈ Ẑp,

are well defined in Rep1,1 and are a complete system of invariants. Using these
invariants, Rep1,1 is tabulated in table 1.

Here and below, when we say that some functions form a complete system
of invariants we mean that two matrices M and N are in the same double
coset if and only if these functions take the same value in M and N . One can
check easily that the table 1 gives a complete set of representatives for Rep1,1

without repetition. One sees also that the range of the invariants Γ1,1, δ1, δ2
is Ẑp × {0, . . . ,∞}2, subject only to the restriction:

δ1 + δ2 = νp(Γ1,1) + νp(Γ1,1 − 1)

The non-trivial outer automorphism of D∞ leaves Γ1,1 invariant. It also
leaves δ1 and δ2 invariant in the types III to VI in the table and permutes δ1
and δ2 in the other types.

For p = 2 it remains to describe Rep1,2 and Rep2,2.
*1Notice that Repi,j does not give a classification of representations in GL2(Fp).
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Proposition 3.3 ([3]). The functions Γ1,2 and δ3 defined on GL2(Ẑ2)
by

Γ1,2

(
x y
z t

)
=
zt− xy
xt− yz ∈ Ẑ2.

δ3

(
x y
z t

)
=

{
0 yt even
1 yt odd.

are well defined on Rep1,2 and are a complete system of invariants.

Proposition 3.4 ([3]). The functions Γ2,2, ε1, ε1 and ε2 defined by

Γ2,2

(
x y
z t

)
=
x2 + t2 − y2 − z2

xt− yz ∈ Ẑ2

ε1 = ν2(x+ z − y − t)
ε1 = ν2(x+ z + y + t)

ε2 = min
(
ν2(x2 + z2 − y2 − t2), ν2(xz − yt)

)
form a complete system of invariants for Rep2,2.

Remark 4. Any coset [( x yz t )] of Rep2,2 has a representative of the form
( 1 u

0 v ) (cf. [3, Proposition 5]), but u and v are not uniquely determined.
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Rep1,1 Rep1,1 Γ1,1 δ1 δ2

I
(

0 1
1 0

) (
ps 1
1 x

)
,

(
0 1
1 ps

)
,

(
0 1
1 0

)
s > 0, x ≡ 0 (mod p)

psx
xps−1 , 0 > 0 > 0

II
(

1 1
1 0

) (
1 1
1 x

)
x ≡ 0 (mod p)

x
x−1 0 > 0

II′

(
0 1
1 x

)
x �= 0

(
ps 1
1 x

)
,

(
0 1
1 1

)
x �≡ 0 (mod p), s > 0

xps

psx−1 , 0 > 0 0

III
(

1 0
0 1

) (
1 pr

x 1

)
,

(
1 0
ps 1

)
,

(
1 0
0 1

)
x ≡ 0 (mod p), r, s > 0

1
1−prx , 1 > 0 > 0

IV

(
1 0
x 1

)
x �= 0

(
1 pr

x 1

)
,

(
1 0
1 1

)
x �≡ 0 (mod p), r > 0

1
1−prx , 1 0 > 0

V
(

1 1
0 1

) (
1 1
x 1

)
x ≡ 0 (mod p)

1
1−x > 0 0

VI

(
1 1
x 1

)
x �= 0, 1

(
1 1
x 1

)
x �≡ 0, 1 (mod p)

1
1−x 0 0

Table 1. Representations of type (1, 1). Classes I, II, II’ correspond to
Γ1,1 ≡ 0 (mod p). Classes II and II’ are permuted by Out(D∞). Classes III,
IV, V, VI correspond to Γ1,1 �≡ 0 (mod p). Class VI is void for p = 2.
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Rep1,2 Rep1,2 Γ1,2 δ3

I
(

1 0
0 1

) (
1 0
z 1

)
z ≡ 0 (mod 2)

z 0

II
(

1 0
1 1

) (
1 0
z 1

)
z �≡ 0 (mod 2)

z 0

III
(

1 1
0 1

) (
1 y
0 1

)
y �≡ 0 (mod 2)

−y 1

Table 2. Representations of type (1, 2), p = 2.

Rep2,2 Rep2,2 Γ2,2

I
(

1 1
0 1

) (
1 1
0 v

)
v ≡ 1 (mod 2)

v

II
(

1 0
0 1

) (
1 u
0 v

)
u ≡ 0, v ≡ 1 (mod 2)

1−u2+v2

v

Table 3. Representations of type (2, 2) p = 2. In class II, different matrices
( 1 u

0 v ) might represent the same element in Rep2,2 (see Proposition 3.4).
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4. Cohomology computations. I: General

Now, for any representation data (ρ, c) ∈ R∗, we want to compute the mod
p cohomology of the associated space X = Φ̄(ρ, c) ∈ S∗, including the action of
the Steenrod algebra and the Bockstein spectral sequence. Since X is defined
as (the mod p completion of) a push out

(BT 2)∧p
id� (BH1)∧p

(BH2)∧p

M

�
� X

�

the obvious tool to compute the cohomology of X is the Mayer-Vietoris long
exact sequence associated to this push out diagram.

The first observation that we want to point out is that a knowledge of the
matrix M modulo some p-th power pn is enough to determine the structure of
H∗(X) up to level n, in the following sense.

Theorem 4.1. Assume that p > 2, n ≥ 1 or p = 2, n > 1. Let M and N
be matrices such that M = N mod pn. Then H∗(Xk,l (M)) and H∗(Xk,l (N))
are isomorphic as algebras. Moreover, this isomorphism respects the action of
the Steenrod operations Pi(Sq2i if p = 2) and the higher Bockstein homomor-
phisms β(r) of height r < n.

Proof. Let A be the mod pn reduction of the matrices M and N . Let
T (n) denote the abelian subgroup of the torus T 2 of elements of order smaller
than or equal to pn. Define the space X(A) as the push out

(BT (n))∧p
id� (BH1)∧p

(BH2)∧p

A

�
� X(A)

�

It is easy to verify using the Mayer-Vietoris sequence that the natural map
X(A) → Xk,l (M) induces a monomorphism in cohomology. We may investi-
gate this map further as follows.

Let I ⊂ H∗(BT (n)) be the ideal consisting of nilpotent elements. It is clear
from the definition that I is a H∗(X(A))-submodule of H∗(BT (n)), where the
H∗(X(A))-module structure on H∗(BT (n)) is given by restriction. Notice that
I is invariant under the Steenrod operations Pi (Sq2i if p = 2) and the higher
Bockstein homomorphisms β(r) of height r < n. Let J = δ(I) be the image
of I under the boundary homomorphism δ : H∗(BT (n)) → H∗+1(X(A)) in
the Mayer-Vietoris sequence. It follows from standard facts that δ is a map
of H∗(X(A))-modules. Hence J is an ideal in H∗(X(A)) invariant under the
above operations.
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Using the Mayer-Vietoris sequence, we see that the natural map
H∗(Xk,l (M))→ H∗(X(A))/J is an isomorphism of algebras which commutes
with the action of the cohomology operations mentioned earlier. The same
holds for the matrix N and thus the proof is complete.

The computation of the cohomology of the spaces in S∗ is done in the
following two sections of this paper: the first deals with the prime 2 and the
next deals with the odd primes.

5. Cohomology computations. II: The even prime case

Throughout this section we work at the prime 2, (ρ, c) will be an element
in R∗ and X will denote the space Φ̄(ρ, c) ∈ S∗. We choose a matrix M =(
α β
λ µ

)
∈ GL2(Ẑ2) and indices k, l such that X = Xk,l (M). We consider

separately the cases of Rep1,1, Rep1,2 and Rep2,2 and we denote by Γ1,1, Γ1,2,
Γ2,2, δ1, δ2, δ3, ε1, ε̄1 and ε2 the invariants defined in section 3.

5.1. Representations of type Rep1,1

According to table 1, these representations fall into five classes I to V.
(Notice that Out(D∞) identifies the classes II and II’, and the class VI is void
for p = 2.) The obstruction class may take three different values: c = (1, 1),
c = (0, 1) or c = 0.

Theorem 5.1. If W is of type Rep1,1 and c = (1, 1) then the cohomol-
ogy algebra of X and the action of the Steenrod algebra and the higher Bockstein
operations are as described in table 4.

Proof. The Mayer-Vietoris long exact sequence associated to the push
out which defines X has the form

(5.1)

· · · � Hi(X) � Hi(BS1 ×BSU(2))⊕Hi(BS1 ×BSU(2))
M̄t+j�

� Hi(BT 2) � Hi+1(X) � · · ·
and it is a sequence of H∗(X)-modules. The map labelled M̄ t is induced by
the transpose of the mod 2 reduction of the matrix M and j indicates the map
induced by the inclusion of the standard maximal torus of S1 × SU(2).

For simplicity, we write P0 = H∗(BT 2) = F2[u, v] and we identify H∗(BS1

×BSU(2)), with its canonical image F2[u, v2] in H∗(BT 2). In order to distin-
guish between the two components in the Mayer-Vietoris sequence (5.1), we will
write P1 = F2[ū, v̄2] for the first component and P2 = F2[u, v2] for the second
one. Using this notation, and by degree reasons the sequence (5.1) becomes

(5.2) 0 � Heven(X) � P1 ⊕ P2
ϕ� P0

� Σ−1Hodd(X) � 0

with ϕ = M̄ t + j. In particular, Heven(X) ∼= Kerϕ and Hodd(X) ∼= Σ Cokerϕ.
We distinguish between two cases.
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Cohomology ring Steenrod squares BSS

I P [x4, y4] ⊗ E[z5] Sq4z5 = 0
β(s)y4 = z5

s = min{δ1, δ2} + 1 ≥ 2

II P [x4, y4] ⊗ E[z5]
Sq4z5 = 0

Sq1y4 = z5

III P [x2, y4] ⊗ E[z3] Sq2y4 = Sq2z3 = 0

β(δ1)x2 = z3

β(s)x
2
2 = x2z3 ⇔ δ1 = min{δ1, δ2}

β(s)y4 = x2z3 ⇔ δ2 = min{δ1, δ2}
s = min{δ1, δ2} + 1

IV P [x4, y4] ⊗ E[z5]
Sq1y4 = z5

Sq4z5 = 0

V P [x2, y4] ⊗ E[z3]
Sq2y4 = Sq2z3 = 0

Sq1y4 = x2z3

β(δ1)x2 = z3

Table 4. Rep1,1 and obstruction c = (1, 1).

• Type I, II, or IV; that is β ≡ 1 mod 2 In this case ϕ(ū) = αu + v and
ϕ(v̄2) = λu2 + µv2, while ϕ(u) = u and ϕ(v2) = v2, hence, the sequence (5.2)
gives H2(X) = 0 and in degree 4 we get that F2[ū2+αu2+v2, v̄2+λu2+µv2] ⊂
Kerϕ. In particular, there are elements x4, y4 ∈ H∗(X; F2) that project to
ū2 +αu2 + v2 and v̄2 +λu2 +µv2 respectively, thus P [x4, y4] is a subalgebra of
H∗(X) and (5.2) might be seen as an exact sequence of P [x4, y4]-modules.

After dividing out by P2 in P1 ⊕ P2 and in P0, (5.2) is simplified to

(5.3) 0 � Kerϕ � P [ū, v̄2]
[ϕ]� [v] F2[u2, v2]⊕ [uv] F2[u2, v2] �

� Cokerϕ � 0

where [ϕ](ū) = [αu+ v] = [v]. It follows that Kerϕ ∼= P [x4, y4] and Cokerϕ ∼=
[uv]P [u2, v2] ∼= [uv]P [x4, y4].

Therefore, we have a splitting exact sequence of P [x4, y4]-modules

(5.4) 0 � Σ[uv]P [x4, y4] � H∗(X) � P [x4, y4] � 0 .

The action of the Steenrod squares on uv is easily computed in P0 = P [u, v]
and it follows that the action on its class [uv] in [uv]P [u2, v2] is trivial. Now,
if we call z5 the image in H∗(X) of the suspension of [uv], we have that the
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Steenrod squares act trivially on z5 and in particular that z2
5 = Sq5z5 = 0,

hence

H∗(X) ∼= F2[x4, y4]⊗ E(z5) .

• Type III, or V; that is β ≡ 0 mod 2 In this case ϕ(ū) = αu and we ob-
tain a generator of Kerϕ, ū+ αu, in degree two. Also, as in the previous case
v̄2 +µu2 +λv2 is a generator in degree four of Kerϕ, and F2[ū+αu, v̄2 +µu2 +
λv2] ⊂ Kerϕ. Thus, we obtain now a subalgebra P [x2, y4] of H∗(X) and then
(5.2) is an exact sequence of P [x2, y4]-modules. Now, the quotient by P2 in
(5.2) gives a new exact sequence

(5.5) 0 � Kerϕ � P [ū, v̄2]
[ϕ]� [v] F2[u, v2] � Cokerϕ � 0

with [ϕ] = 0, so that Kerϕ ∼= P [x2, y4] and Cokerϕ ∼= [v]P [u, v2] ∼=
[v]P [x2, y4], as P [x2, y4]-modules. Again the Steenrod squares act trivially
on the class [v], so therefore if z3 is the image in H∗(X) of the suspension of
[v], we have

H∗(X) ∼= P [x2, y4]⊗ E(z3) .

Finally, notice that Sq2(y4) = 0 in the quotient P [x2, y4], and then, by degree
reasons it is also trivial in H∗(X). The action of all other Steenrod opera-
tions, besides Sq1, follows from the properties of the Steenrod squares, in a
straightforward way.

Finally, it remains to compute, for all cases, the action of the higher Bock-
stein operations, including the primary Bockstein β = Sq1.

The argument uses the Mayer-Vietoris long exact sequence with coefficients
in Ẑ2

(5.6) 0 � Heven(X; Ẑ2) � Ẑ2[ū, v̄2]⊕ Ẑ2[u, v2]
ϕ� Ẑ2[u, v] �

� Σ−1Hodd(X; Ẑ2) � 0

in low dimensions. A first observation is that Kerϕ is torsion free. Cokerϕ is,
in each degree, a finitely generated Ẑ2-module that can be easily classified in
terms of the homomorphism ϕ; that is, in terms of the matrix M t. We obtain
in degree 2 Cokerϕ(2) ∼= Ẑ2/βẐ2. Hence in case β ≡ 0 mod 2; that is, for types
III, or IV, we have H3(X; Ẑ2) ∼= Ẑ2/βẐ2

∼= Ẑ2/2ν2(β)
Ẑ2. Notice that ν2(β)

coincides with the invariant δ1 in these cases (see Proposition 3.2), hence the
result β(δ1)(x2) = z3.

Finally, we compute the cokernel of ϕ in degree four and we get

Cokerϕ(4) ∼= Ẑ2

/
2 gcd(αβ, λµ) · Ẑ2 .

Again, ν2(αβ) = δ1 and ν2(λµ) = δ2 (see Proposition 3.2), so, if we write
s = 1 + min{δ1, δ2}, then H5(X; Ẑ2) ∼= Ẑ2/2sẐ2.

We can choose generators such that Sq1y4 = z5 in cases II and IV, and
β(s)y4 = z5, s ≥ 2, in case I. In cases of type III, or V we already have
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β(δ1)x2 = z3, hence β(r)(x2
2) = 0 for r ≤ δ1, and β(δ1+1)(x2

2) = x2z3, if these
classes survive to the δ1 + 1 page of the Bockstein spectral sequence. We
have then that Sq1y4 = x2z3 in case V, and for case III, s ≥ 2 and then
β(s)x

2
2 = x2z3 if δ1 = min{δ1, δ2} but β(s)y4 = x2z3, otherwise.

All other calculations in this section use the same kind of arguments and we
will omit the proofs. The interested reader will have no difficulty in completing
the missing details.

Theorem 5.2. If W is of type Rep1,1 and c = (0, 1) then the cohomol-
ogy algebra of X is

H∗(X) ∼= J =
P [z2, z3, z4, z5]

(z2
5 + z2

3z4)

and the action of the Steenrod algebra and the higher Bockstein operations are
as described in table 5.

Notice that here we are using subscripts as in Ji to denote different Steen-
rod algebra actions on the same algebra J.

Theorem 5.3. If W is of type Rep1,1 and c = 0 then the cohomology
algebra of X is

H∗(X) ∼= K = P [w2, w3, w̄2, w̄3]/(w3w̄3)

and the action of the Steenrod algebra and the higher Bockstein operations are
as described in table 6.
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Cohomology ring Steenrod squares and BSS

I J1 =
P [z2, z3, z4, z5]

(z2
5 + z2

3z4)

Sq1z2 = z3, Sq1z4 = Sq1z5 = 0,

Sq2z3 = z2z3, Sq2z4 = 0, Sq2z5 = z5z2 + z4z3,

Sq4z5 = z4z3z2

β(s)z4 = z5 ⇔ δ1 = min{δ1, δ2}
β(s)z

2
2 = z5 ⇔ δ2 = min{δ1, δ2}
s = min{δ1, δ2} + 2 ≥ 3

II J2 =
P [z2, z3, z4, z5]

(z2
5 + z2

3z4)

Sq1z2 = z3, Sq1z4 = 0, Sq1z5 = z2
3 ,

Sq2z3 = z5, Sq2z4 = z2
3 , Sq2z5 = 0,

Sq4z5 = z5z4 + z3
3

β(2)z
2
2 = z5 + z3z2

II′ J1 =
P [z2, z3, z4, z5]

(z2
5 + z2

3z4)

Sq1z2 = z3, Sq1z4 = Sq1z5 = 0,

Sq2z3 = z2z3, Sq2z4 = 0, Sq2z5 = z5z2 + z4z3,

Sq4z5 = z4z3z2

β(2)z4 = z5

III J3 =
P [z2, z3, z4, z5]

(z2
5 + z2

3z4)

Sq1z2 = Sq1z3 = Sq1z4 = 0, Sq1z5 = z2
3 ,

Sq2z3 = z5, Sq2z4 = z2
3 , Sq2z5 = 0

Sq4z5 = z5z4 + z3
3

β(δ1+1)z2 = z3

β(s)z4 = z2z3 ⇔ δ2 = min{δ1, δ2}
β(s)z

2
2 = z2z3 ⇔ δ1 = min{δ1, δ2}
s = min{δ1, δ2} + 2 ≥ 3

IV J2 =
P [z2, z3, z4, z5]

(z2
5 + z2

3z4)

Sq1z2 = z3, Sq1z4 = 0, Sq1z5 = z2
3 ,

Sq2z3 = z5, Sq2z4 = z2
3 , Sq2z5 = 0,

Sq4z5 = z5z4 + z3
3

β(2)z
2
2 = z5 + z3z2

V J3 =
P [z2, z3, z4, z5]

(z2
5 + z2

3z4)

Sq1z2 = Sq1z3 = Sq1z4 = 0, Sq1z5 = z2
3 ,

Sq2z3 = z5, Sq2z4 = z2
3 , Sq2z5 = 0,

Sq4z5 = z5z4 + z3
3

β(δ1+1)z2 = z3 , β(2)z4 = z2z3

Table 5. Rep1,1 and obstruction c = (0, 1).
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Cohomology ring Steenrod squares and BSS

I K1 = P [w2, w3, w̄2, w̄3]/(w3w̄3)
Sq1w2 = w3, Sq1w̄2 = w̄3,

Sq2w3 = w2w3, Sq2w̄3 = w̄2w̄3

β(s)w
2
2 = w2w̄3 s = min{δ1, δ2} + 2

II K2 = P [w2, w3, w̄2, w̄3]/(w3w̄3)
Sq1w2 = w3, Sq1w̄2 = w̄3,

Sq2w3 = w2w3, Sq2w̄3 = w̄2w̄3 + w2w̄3

β(2)w̄
2
2 = w̄2w3

III K3 = P [w2, w3, w̄2, w̄3]/(w3w̄3)
Sq1w2 = w3 + w̄3, Sq1w̄2 = 0,

Sq2w3 = w2w3, Sq2w̄3 = w2w̄3

β(δ2+1)w̄2 = w̄3

β(s)w
2
2 = w̄2w3 ⇔ δ1 = min{δ1, δ2}

β(s)w̄
2
2 = w̄2w̄3 ⇔ δ2 = min{δ1, δ2}

s = min{δ1, δ2} + 2

IV K4 = P [w2, w3, w̄2, w̄3]/(w3w̄3)
Sq1w2 = w3 + w̄3, Sq1w̄2 = w̄3,

Sq2w3 = w2w3, Sq2w̄3 = w2w̄3

β(2)w̄
2
2 = w2w̄3 + w̄2w̄3

V K5 = P [w2, w3, w̄2, w̄3]/(w3w̄3)
Sq1w2 = w3 + w̄3, Sq1w̄2 = 0,

Sq2w3 = w2w3, Sq2w̄3 = w2w̄3 + w̄2w̄3

β(δ1+1)w̄2 = w̄3

β(2)w̄
2
2 = w2w3

Table 6. Rep1,1 and obstruction c = 0.
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5.2. Representations of type Rep1,2

According to table 2, these representations fall into three classes I, II and
III. The obstruction class c may take two different values: c = 0 or c = 1.

Theorem 5.4. If W is of type Rep1,2 and c = 1 then the cohomology
algebra of X and the action of the Steenrod algebra and the higher Bockstein
operations are as described in table 7.

Cohomology ring Steenrod squares and BSS

I P [x4, y8] ⊗ E[z9] Sq4y8 = x4y8, Sq4z9 = x4z9, Sq8z9 = 0

β(s)y8 = z9 s = 1 + ν2(Γ1,2) ≥ 2

II P [x4, y8] ⊗ E[z9]
Sq1y8 = z9, Sq4y8 = x4y8, Sq4z9 = x4z9

Sq8z9 = 0

III
P [x2, y8]

⊗
E[z3, z7]/(x2z3, z3z7)

Sq1y8 = x2z7, Sq2y8 = 0, Sq2z7 = 0

Sq4y8 = y8x
2
2, Sq4z7 = z7x

2
2 + z3y8

β(s)x2 = z3, s = ν2(Γ1,2 + 1)

β(2s)x
3
2 = z7

Table 7. Rep1,2 and obstruction c = 1.

Theorem 5.5. If W is of type Rep1,2 and c = 0 then the cohomology
algebra of X is

H∗(X) ∼= L =
P [z2, z3, z4, z5]

(z2
5 + z5z3z2 + z4z2

3)

and the action of the Steenrod algebra and the higher Bockstein operations are
as described in table 8.

5.3. Representations of type Rep2,2

Here we use the classification in types I and II of table 3. We obtain the
following result.

Theorem 5.6. If W is of type Rep2,2 then the cohomology algebra of
X and the action of the Steenrod algebra and the higher Bockstein operations
are as described in table 9.
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Cohomology ring Steenrod squares and BSS

I L1 =
P [z2, z3, z4, z5]

(z2
5 + z5z3z2 + z4z2

3)

Sq1z2 = z3, Sq1z4 = z5 + z3z2, Sq1z5 = z2
3 ,

Sq2z3 = z5, Sq2z4 = z4z2, Sq2z5 = 0

Sq4z5 = z5z4 + z5z
2
2 + z3

3 + z3z4z2

II L2 =
P [z2, z3, z4, z5]

(z2
5 + z5z3z2 + z4z2

3)

Sq1z2 = z3, Sq1z4 = z5,

Sq2z3 = z2z3, Sq2z4 = z4z2, Sq2z5 = z4z3

Sq4z5 = z5z
2
2 + z4z3z2

III L3 =
P [z2, z3, z4, z5]

(z2
5 + z5z3z2 + z4z2

3)

Sq1z4 = z2z3, Sq1z5 = z2
3 ,

Sq2z3 = z5, Sq2z4 = z2z4 + z2
3 , Sq2z5 = 0

Sq4z5 = z5z4 + z5z
2
2 + z3

3 + z4z3z2

β(s)z2 = z3 s = ν2(Γ1,2 + 1) + 1 > 1

Table 8. Rep1,2 and obstruction c = 0

Cohomology ring Steenrod squares and BSS

I P [x4, y6]⊗ E[z7]
Sq2x4 = y6, Sq2y6 = 0, Sq4y6 = x4y6

Sq4z7 = x4z7,

β(s)y6 = z7 s = ν2(Γ2,2 + 1)

II P [x2, y4]⊗ E[z3] Sq2z3 = x2z3 Sq2y4 = x2y4

β(ε1)x2 = z3

β(ε2)x
2
2 = x2z3 ⇔ ε1 + ε1 = ε2

β(ε2)y4 = x2z3 ⇔ ε1 + ε1 ≥ ε2

Table 9. Rep2,2.
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6. Cohomology computations. III: The odd prime case

Throughout this section we work at a fixed odd prime p. We choose an
element in R∗ and we want to compute the mod p cohomology of the space X
in S∗ associated to that element in R∗. As we saw in section 3, for an odd prime
p, the elements in R∗ are just conjugacy classes of infinite dihedral subgroups
in GL2(Ẑp). Hence, we have such a subgroup which we denote by W and
which can be given either by a two by two matrix M ∈ GL2(Ẑp) or by three
invariants Γ = Γ1,1, δ1, δ2. The classification of these groups is summarized in
table 1. We organize the statements in this section according to the six types
of representations of the group W , labelled I to VI in table 1. Notice that
we do not need to consider type II’. We denote by XW the space in S∗ which
corresponds to the group W .

Let us point out that the invariants Γ, δ1, δ2 classify all representations
of D∞, including those which are not faithful, while we are only interested in
the spaces XW for W of infinite order. The following result provides a partial
answer to the question of which values of Γ, δ1 and δ2 yield Weyl groups of
infinite order.

Proposition 6.1 ([3]). Let ρ : D∞ → GL2(Ẑp) (p odd) be a represen-
tation with invariants Γ, δ1 and δ2. Assume Γ ≡ 0, 1 (p). Then ρ(D∞) has
finite order if and only if δ1 = δ2 =∞ or p = 3 and Γ = 3/4, 1/4.

This proposition implies that in the case in which δ1 +δ2 > 0 (i.e. all types
except type VI) we only have to eliminate the representations given by the
matrices (

0 1
1 0

)
,

(
1 0
0 1

)
, for any prime;

(
3 1
1 −1

)
,

(
1 1
1 −3

)
,

(
1 3
−1 1

)
,

(
1 1
−3 1

)
, for p = 3.

Let L be the p-adic lattice of rank two with a W -action given by the
inclusion of W in GL2(Ẑp) and let us denote by P the symmetric algebra on the
Fp-vector space Hom(L,Fp). P is thus a polynomial algebra on two generators
P = Fp[u, v] which we grade by assigning degree two to the variables u and v. P
inherits an action of the group W and we are interested now in the subalgebra
of invariant elements PW . Notice that the action of W on P is dual to the
representation of W on L. Moreover, if we denote by Wp the mod p reduction
of W then the action of W on P factors through Wp. The group Wp is finite
dihedral and throughout this section we denote by k the integer defined as

k =
|Wp|

2
.

Let us call W exceptional if it belongs to types III or IV and let us call it
ordinary otherwise.

We will use tools from the invariant theory of reflection groups. A very
useful reference is the beautiful book [19].
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Proposition 6.2. The ring of invariants of W is a polynomial algebra
on two generators, PW ∼= Fp[x, y], with deg(x) deg(y) = 8k. If W is exceptional
then x has degree 2 and if W is ordinary then x has degree 4.

Proof. Obviously, PW depends only on the group Wp and we only need
to study the mod p reductions of the matrices in table 1, which are displayed
in the column labelled Rep1,1.

In the exceptional case we have the identity matrix and the matrices Aλ =
( 1 0
λ 1 ). In the case of the identity matrix (i.e. type III), we have that Wp has

order two and is generated by the linear map which fixes u and sends v to −v.
The invariants are Fp[u, v2].

The representations corresponding to Aλ are those of type IV. One sees
easily that Wp is conjugate to

Wp =
〈(

1 0
0 −1

)
,

(
1 0
−1 −1

)〉
.

This dihedral group has order 2p and its invariant theory is discussed in pages
128–129 of [19]. The invariants are polynomial in degrees 2 and 4p namely
PW = Fp[t1, (t2t

p−1
1 − tp2)2], if we denote by t1, t2 the new basis elements.

Let us discuss now the case in which W is ordinary. Table 1 provides the
matrices

B =
(

0 1
1 0

)
; Cλ =

(
1 1
λ 1

)
, λ �= 1; D =

(
1 1
1 0

)
.

The matrix B produces type I. Wp is the representation of the elementary
abelian 2-group of order 4 by t1 
→ ±t1, t2 
→ ±t2. Then PW = Fp[t21, t

2
2].

The matrix C0 gives the representation

Wp =
〈(

1 0
0 −1

)
,

(
1 2
0 −1

)〉
.

This is again a dihedral group of order 2p and this representation is also studied
in pages 128–129 of [19]. The invariants are polynomial in degrees 4 and 2p,
namely PW = Fp[t22, t1(t

p−1
1 − tp−1

2 )]. This is type V.
The matrix D gives a group conjugate to

Wp =
〈(

1 0
0 −1

)
,

(−1 −2
0 1

)〉
.

It is a dihedral group of order 4p and has a subgroup H of index two which
is of the type C0 that we have just studied. Then PH = Fp[x4, y2p] and one
sees that W/H fixes x and sends y to −y. Then PW = Fp[t22, t21(t

p−1
1 − tp−1

2 )2].
This is type II.

Let us consider finally the case of the matrices Cλ for λ �= 0, 1. This is type
VI. k is then the order of the matrix obtained multiplying the two generating
reflections of Wp. This matrix is

τ =
1

1− λ
(

1 + λ 2
2λ 1 + λ

)
.
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The discriminant of the characteristic polynomial of this matrix does not vanish.
Hence, τ diagonalizes over Fp2 and so the order of τ is a divisor of p2− 1. This
implies that the order of Wp is coprime to p and, since Wp is generated by
reflections, the classical Shephard-Todd theorem ([19, 7.4.1]) implies that PW

is a polynomial algebra. λt21 − t22 is an invariant of degree 4 and there are no
invariants of degree 2. Hence, PW = Fp[x4, y2k].

Along the proof of the previous proposition we have obtained a computa-
tion of the value of k = |Wp|/2:

Proposition 6.3. The value of k is given by
• Type I: k = 2.
• Type II: k = 2p.
• Type III: k = 1.
• Types IV and V: k = p.
• Type VI: k is equal to the multiplicative order in Fp2 of the roots of

the polynomial X2 − 2(2Γ− 1)X + 1.

We determine now the mod p cohomology of the spaces XW . As usual,
we use subscripts to denote the degrees of the generators of an algebra and we
denote by E(x, y, . . .) the exterior Fp-algebra with generators x, y, . . .

Theorem 6.1. Let p be an odd prime and let W be an infinite dihedral
subgroup of GL2(Ẑp). Put k = |Wp|/2. Then:

(1) Heven(XW ) = H∗(BT )W .
(2) If W is ordinary then H∗(XW ) ∼= Fp[x4, y2k]⊗ E(z2k+1).
(3) If W is of type III then H∗(XW ) ∼= Fp[x2, y4]⊗ E(z3).
(4) If W is of type IV then Heven(XW ) ∼= Fp[x2, y4p] and we have

H∗(XW ) ∼= Heven · 1⊕
( p−2⊕
i=0

Heven

x2Heven
· z4i+3

)
⊕Heven · z4p−1

as an Heven(XW )-module.

Proof. The proof uses the Mayer-Vietoris sequence of the push out dia-
gram (BH2)∧p ← BT∧

p → (BH1)∧p with BH1 = BH2 = BS1×BSU(2). Notice
that, since p is odd, H∗(BHi) ∼= H∗(BT )〈ωi〉 for i = 1, 2, where ω1, ω2 are
the generating reflections of W . For simplicity, let us write P = H∗(BT ),
H = Hodd(XW ). Then the even cohomology of XW coincides with the invari-
ants of P under the action of the Weyl group, while the odd cohomology is
given by the exact sequence

0→ PW → Pω1 ⊕ Pω2 → P → Σ−1H → 0.

Notice that this is an exact sequence of PW -modules. The Poincaré series of
PW can be deduced from the information provided by 6.2. Then, the above
exact sequence gives the Poincaré series of Hodd(XW ).

Assume first that W is ordinary. Then one sees easily that the Poincaré
series of H is the same as the Poincaré series of the free PW -module z2k+1P

W .



�

�

�

�

�

�

�

�

Central quotients of rank two Kac-Moody groups 475

Let us prove that H is indeed a free PW -module. By [19, 6.1.1], it is enough
to prove that TorP

W

1 (Fp, H) = 0. By [19, 6.7.11], the above exact sequence is
a free resolution of H as a PW -module, hence

TorP
W

1 (Fp, H) =
Ker

(
Fp ⊗PW (Pω1 ⊕ Pω2)→ Fp ⊗PW P

)
Im
(
Fp ⊗PW PW → Fp ⊗PW (Pω1 ⊕ Pω2

) .
Now, since p is odd, we can use the averaging map x 
→ (x+ωi ·x)/2 and we see
that Fp⊗PW Pωi = (Fp⊗PW P )ωi and the diagonal inclusion PW → Pω1⊕Pω2

has a section. Hence, Fp⊗PW PW → Fp⊗PW (Pω1 ⊕Pω2) is a monomorphism
and

Ker
(
Fp ⊗PW (Pω1 ⊕ Pω2)→ Fp ⊗PW P

)
= (Fp ⊗PW P )W .

If the order of Wp is prime to p then it is well known ([19, 7.5.2],) that
Fp ⊗PW P is the regular representation of Wp. Hence (Fp ⊗PW P )W = Fp and
TorP

W

1 (Fp, H)
= 0.

If the order of Wp is not prime to p then Fp ⊗PW P is not the regular
representation ([19, p. 221]). When this happens, we have seen in the proof of
6.2 concrete descriptions of the invariants PW . From these descriptions, it is
not difficult to write down explicitly the coinvariants Fp ⊗PW P and see that
there are no invariants of positive degree.

We have to consider now the case in which there is an invariant in degree
2, i.e. the case in which W is exceptional. In this case, we have also seen in
the proof of 6.2 concrete descriptions of the ring of invariants PW . If δ1 �= 0
then it is very easy to compute the cokernel directly. If δ1 = 0 then the above
proof breaks down because H is not a free PW -module anymore. However, one
can also compute directly H as a cokernel, at least as a PW -module. We have
PW = Fp[u, (vup−1 − vp)2] and we want to compute the cokernel H of

ϕ : Fp[u, v2]⊕ Fp[u, (u+ v)2]→ Fp[u, v]

as a PW -module. ϕ is a linear map between free PW -modules. We can
take basis in the following way: 1, v2, . . . , v2p−2 is a basis of Fp[u, v2]; 1, (u +
v)2, . . . , (u + v)2p−2 is a basis of Fp[u, (u + v)2] and 1, v, . . . v2p−1 is a basis of
Fp[u, v]. Then, if we study the matrix of ϕ in these basis, we see easily that
z4i+3 = δ(v2i+1) for i = 0, . . . , p−1 generate H as a PW -module (δ denotes the
connecting homomorphism of the Mayer-Vietoris exact sequence). Also, we see
that uv2i+1 ∈ Imϕ for i = 0, . . . , p− 2. This gives an epimorphism( p−2⊕

i=0

Heven

x2Heven
· z4i+3

)
⊕Heven · z4p−1 � H.

Then, a computation of the Poincaré series which is left to the reader proves
that this is an isomorphism.

The results of these last two propositions are displayed in the column
“cohomology rings” of table 10.
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We want to compute now the action of the mod p Steenrod powers on
H∗(XW ) and the differentials in the mod p Bockstein spectral sequence. Since
the even dimensional part of H∗(XW ) coincides with the invariants of the mod
p Weyl group Wp, we only need to describe the values of the Steenrod powers
on the odd dimensional generators. If x and y are in H∗(XW ) the notation
β(r)(x) = y means that β(i)(x) = 0 for i < r (i.e. x survives to the Er-page of
the Bockstein spectral sequence) while β(r)(x) = y + Imβ(r−1). We consider
each type I to VI separately.

• Type I. In this case

H∗(XW ) ∼= Fp[x4, y4]⊗ E(z5).

The integral representation is given by a matrix
(
pδ1 1
1 λ

)
with νp(λ) = δ2

(cf. table 1). The integral cohomology of BH1 and BH2 is given by Ẑp[pδ1u+
v, (u+λv)2] and Ẑp[u, v2] respectively. As an integral lift of the class z5 we can
take the element δ(uv). Then, in a similar way as we did above, one sees that
there are Bockstein relations β(δ1)(y4) = z5 and β(δ2)(x4) = z5. The action of

the Steenrod powers on z5 is given by the relation P1(z5) = (x
p−1
2

4 + y
p−1
2

4 )z5.

• Type II. We have

H∗(XW ) ∼= Fp[x4, y4p]⊗ E(z4p+1).

The integral representation is given by a matrix
(

1 1
1 λ

)
with λ = Γ1,1

Γ1,1−1 and

νp(λ) = δ2 (cf. table 1). The integral cohomology of BH1 and BH2 is given by
Ẑp[u+ v, (u+ λv)2)] and Ẑp[u, v2] respectively. Then,

(a) Analyzing the map

ϕp : Fp[u, v2]⊕ Fp[u+ v, u2]→ Fp[u, v]

we observe that PW = Kerϕp = Fp[u2, v2(up−1 − vp−1)2], furthermore, in
degrees 4p and 2(3p−1) we see that uv2p−1 /∈ Imϕp while 2upv2p−1−uv3p−2 ∈
Imϕp.

(b) Analyzing the map

ϕp2 : Z/p2[u, v2]⊕ Z/p2[u+ v, u2]→ Z/p2[u, v]

in degree 4p (notice that λ2 ≡ 0 (p2)) we see that puv2p−1 ∈ Imϕp2 , except for
the case in which p = 3 and λ ≡ 3 (9).

From these facts, we can conclude that we can take as generator z4p+1

any non trivial multiple of δ(uv2p−1). Also, z4p+1 has to be in the image
of a primary Bockstein (except for p = 3 and λ ≡ 3 (9)) and we can define
z4p+1 = β(y4p). The identity P1(uv2p−1) = upv2p−1 − uv3p−2 shows that
P1(z4p+1) = −x(p−1)/2z and the Adem relation P1βPp−1 = −βPp + Ppβ
determines the value of Pp(z4p+1). The exceptional case in which p = 3 and
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λ ≡ 3 (9) can be investigated directly. We obtain that there is a Bockstein of
order two joining y12 and z13 and also P3(z13) = (y12 +x3

4)z13. The description
of H∗(XW ) is then complete.

• Type III. In this case

H∗(XW ) ∼= Fp[x2, y4]⊗ E(z3).

The integral representation is given by a matrix
(

1 pδ2

λ 1

)
with νp(λ) = δ1

(cf. table 1). The integral cohomology of BH1 and BH2 is given by Ẑp[u +
pδ2v, (λu + v)2] and Ẑp[u, v2] respectively. As an integral lift of the class z3
we can take the element δ(v). Then, notice that pδ2v ∈ Im{Pω1 ⊕ Pω2 → P}.
This produces a relation β(δ2)(x2) = z3. On the other side, one sees that
pδ1uv ∈ Im{Pω1 ⊕ Pω2 → P} and so there is a relation β(δ1)(y4) = x2z3.

The action of the Steenrod powers on z3 is given by the relation P1(z3) =

y
p−1
2

4 z3. This follows from z3 = δ(v) and the fact that the Steenrod powers
commute with the connecting homomorphism.

• Type IV. We will not compute the action of the Steenrod algebra nor the
Bockstein spectral sequence for the spaces of this (quite weird) type.

• Type V. This case is quite similar to the case in type II. We have

H∗(XW ) ∼= Fp[x4, y2p]⊗ E(z2p+1).

The integral representation is given by a matrix
(

1 1
λ 1

)
with λ = Γ1,1−1

Γ1,1
and

νp(λ) = δ1 (cf. table 1). The integral cohomology of BH1 and BH2 is given by
Ẑp[u+ v, (λu+ v)2)] and Ẑp[u, v2] respectively. We leave as an exercise to the
reader to check that the following holds:

(a) Analyzing the map

ϕp : Fp[u, v2]⊕ Fp[u+ v, v2]→ Fp[u, v]

in degrees 2p and 2(2p−1) we see that up−1v /∈ Imϕp while up−1vp−u2p−2v ∈
Imϕp.

(b) Analyzing the map

ϕp2 : Z/p2[u, v2]⊕ Z/p2[u+ v, v2]→ Z/p2[u, v]

in degree 2p (notice that λ2 ≡ 0 (p2)) we see that pup−1v ∈ Imϕp2 , except for
the case in which p = 3 and λ ≡ 6 (9).

From these facts, we can conclude that we can take as generator z2p+1 any
non trivial multiple of δ(up−1v). Also, z2p+1 has to be in the image of a primary
Bockstein (except for p = 3 and λ ≡ 6 (9)) and we can define z2p+1 = β(y2p).
The identity P1(up−1v) = up−1vp − u2p−2v shows that P1(z2p+1) = 0 and the
Adem relation P1βPp−1 = −βPp + Ppβ yields Pp(z2p+1) = x

p(p−1)/2
4 z2p+1.
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The exceptional case in which p = 3 and λ ≡ 6 (9) can be investigated
directly. We obtain that there is a Bockstein of order two joining y6 and z7
and also P3(z7) = x3

4z7.
In this way we have a complete description of the algebra H∗(XW ), in-

cluding the Steenrod operations and the Bockstein spectral sequence.

• Type VI. First of all, there is a Bockstein of height r which connects y2k
and z2k+1 where the integer r is given by the following lemma:

Lemma 6.1. The integer r such that β(r)(y2k) = z2k+1 is given by
• r is such that |Wp| = |Wp2 | = · · · = |Wpr | < |Wpr+1 |.
• Let (λn) be the sequence defined recursively by λ0 = 0, λ1 = 1,

λ2n = λ2n−1 − λ2n−2

λ2n+1 = 4Γλ2n − λ2n−1.

Then r is the p-adic valuation of λk and λi is prime to p for i < k.

Proof. To prove the second part of the lemma, notice that the order of
the finite dihedral group Wpr is equal to twice the order in GL2(Z/prZ) of the
matrix

τ =
(

2Γ− 1 2Γ
2Γ− 2 2Γ− 1

)
which is the product of the two generating reflections of W . In particular, k is
the smallest integer such that τk ≡ I (p) and r is the largest integer such that
τk ≡ I (pr). The linear transformation(

0 1
1/2Γ −1

)
transforms τ into the matrix A associated to the iterative system which pro-
duces the sequence {λi} defined above. Then, an easy induction proof shows
that

Aj =
(
λ2j+1 −4Γλ2j

λ2j −λ2j−1

)
.

If Aj ≡ I (pn), then λ2j ≡ 0 (pn) and λ2j−1 ≡ −1 (pn). Consider the
sequence λ0, λ1, . . . , λ2j−1, λ2j . If we compute the value of the central term λj
starting from both extremes of the sequence, we obtain λj ≡ −λj (pn) and so
λj ≡ 0 (pn).

Conversely, if λi ≡ 0 (pn) and i is odd, i = 2j + 1, then

Aj ≡
(

0 −4Γλ2j

λ2j −4Γλ2j

)
.

Since A has determinant equal to one, we obtain 4Γλ2
2j ≡ 1 (pn). Then, a

computation shows that Ai ≡ I (pn). If i is even, i = 2j, then we have

Aj ≡
(
λ2j+1 0

0 λ2j+1

)
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with λ2j+1 ≡ ±1 (pn), so A2j ≡ I (pn).
From this relationship between the order of the matrix A and the p-adic

valuation of the elements in the sequence {λi} the second part of the proposition
follows easily.

While we have been obtaining all the results in this paper in a pure alge-
braic and homotopy theoretic way, the proof of the first part of the proposition
will be done using the geometric structure of the Kac-Moody groups. Let M
be a matrix which yields the space XW . According to proposition 4.1, the co-
homology algebra of XW and the Bockstein spectral sequence will not change
if we choose any other matrix M ′ ≡ M (pN ), for some large N . The matrix
M is characterized by its invariant Γ1,1 which is any p-adic integer �≡ 0, 1 (p).
On the other side, if we start with a Kac-Moody group K(a, b), we obtain a
space of the form X(M ′) where M ′ has invariant Γ1,1 = ab/4 (see proposi-
tion 7.1). This shows that it is possible to find values of a and b such that
the Kac-Moody group K = K(a, b) has the property that BK∧

p � X(M ′) with
M ′ ≡ M (pN ) for some large N . Hence, the action of the higher Bockstein
operations on XW should be the same as the action on BK. This action was
computed by Kitchloo ([16]), using the geometric structure of the homogeneous
space K/TK (i.e. the Schubert calculus) and it agrees with the values given in
this proposition.

Using what we have seen in the proof of the above proposition, we can pro-
duce now concrete descriptions of the generators x4, y2k ∈ H∗(XW ) in terms of
the generators u, v ∈ H2(BT ). Let {λi} denote the sequence defined recursively
in the previous proposition. Then we can choose

x4 = u2 − 4Γuv + 4Γv2

y2k =
k∏
j=1

(λ2ju− λ2j−1v)

and this allows us, in principle, to compute the action of the Steenrod algebra
on the even dimensional part of H∗(XW ).

Let us see now how we can compute the action of the Steenrod powers
on the odd dimensional generator z2k+1. If we write H = Hodd(XW ), then
H = z2k+1P

W and the Steenrod algebra action can be described by means of
the Mayer-Vietoris exact sequence (see Theorem 6.1)

0→ PW → Pω1 ⊕ Pω2 → P → Σ−1H → 0 ,

thus, the action of the Steenrod algebra on the class z2k+1 is determined if we
are able to obtain a representative J ∈ P for this class. We will show that the
jacobian

J = det

(
∂x4
∂u

∂x4
∂v

∂y2k

∂u
∂y2k

∂v

)
is a representative for z2k+1. This is a non trivial element of P , relative invariant
to the determinant; that is, for any g ∈Wp, g(J) = det(g) ·J . This implies that
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J , does not belong to the image of Pω1 ⊕ Pω2 → P . Assume otherwise that J
can be written as J = p1 + p2, with p1 invariant by w1 and p2 invariant by w2.
Apply w1 to the equality J = p1 +p2 and combine to get 2J = p2−w1p2. Now
apply w2: −2J = p2 − (w2w1)p2. Observe that J is invariant by w2w1, and
therefore we can obtain, inductively −2nJ = p2−(w2w1)np2. Hence −2kJ = 0,
and since k is coprime to p, this contradicts the fact that J �= 0.

We have shown that J represents a non trivial element in H. It has to be
z2k+1, up to a unit of Fp, by degree reasons.

Remark 5. Notice that z2k+1P
W ∼= H is a Thom module in the sense

of [6]. For any linear character χ : W → F
∗
p, the relative invariants

PWχ =
{
x ∈ P ∣∣ w(x) = χ(w)x

}
form a Thom module over PW ; that is, a PW -U-module which is free of rank one
as PW -module [6]. The relative invariants of any non modular pseudoreflection
group with respect to the determinant are computed in [19, p. 227] (notice that
in our case we have det = det−1): PW

det−1 = J · PW , where J = det ∂fi

∂tj
, if we

have PW = Fp[f1, . . . , fd]. With this notation, the above argument shows that
the composition PWdet ⊂ P → Σ−1H is an isomorphism of Thom modules.

7. Back to Kac-Moody groups

In section 2 we have included the family of the p-completions of the clas-
sifying spaces of the central quotients of the rank two Kac-Moody groups in a
larger family which we called S∗. In section 3, we have seen how the spaces in
S∗ are parametrized by a set R∗ which is closely related to the representations
of the infinite dihedral group. Then, in the next sections, we have computed
the cohomology of all spaces in S∗, as a function of the corresponding repre-
sentations. In this final section we go back to Kac-Moody groups and we will
describe, for each space of the form B(K/F ), its parameters as an element
of S∗ or R∗ and so we will obtain in this way a complete description of the
cohomology of the classifying spaces of the central quotients of the rank two
Kac-Moody groups.

We start with a lemma which identifies some central quotients of compact
Lie groups of rank two.

Lemma 7.1. We have the following Lie group isomorphisms:

(1)
(
pm 0
0 pn

)
:

T

〈(e2πi/pm , 1), (1, e2πi/pn)〉
∼=→ T .

(2)
(
pm −1
0 1

)
:

T

〈(e2πi/pm , e2πi/pm)〉
∼=→ T .

(3)
(

2m−1 1
2m−1 −1

)
:

S1 × SU(2)
〈(e2πi/2m ,−I)〉

∼=→ U(2).

(4)
(

2m−1 2m−1

1 −1

)
:

U(2)
〈e2πi/2mI〉

∼=→ S1 × SO(3).
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Rep1,1 Cohomology ring Steenrod powers BSS

I

„
0 1
1 0

«
Fp[x4, y4] ⊗ E(z5)

P1(z) =

(x(p−1)/2 + y(p−1)/2)z

β(δ1)(y) = z

β(δ2)(x) = z

II

„
1 1
1 0

«
Fp[x4, y4p] ⊗ E(z4p+1)

P1(z) = −x(p−1)/2z

Pp(z) = P1βPp−1(y) + βPp(y)
β(y) = z

except p = 3,
Γ1,1

Γ1,1−1
≡ 3 mod 9: β(2)(y) = z

III

„
1 0
0 1

«
Fp[x2, y4] ⊗ E(z3) P1(z) = y(p−1/2)z

β(δ1)(y) = xz

β(δ2)(x) = z

IV

„
1 0
1 1

«
−

V

„
1 1
0 1

«
Fp[x4, y2p] ⊗ E(z2p+1)

P1(z) = 0

Pp(z) = xp(p−1)/2z
β(y) = z

except p = 3,
Γ1,1−1

Γ1,1
≡ 6 mod 9: β(2)(y) = z

VI

„
1 1
x 1

«

x �= 0, 1

Fp[x4, y2k] ⊗ E(z2k+1)
β(r)(y) = z

(see 6.1)

Table 10. Odd primary cohomology rings. The degrees of the generators of
the cohomology rings are specified by subscripts (which are omitted in columns
four and five).



�

�

�

�

�

�

�

�
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(5)
(

2m 0
0 2

)
:

S1 × SU(2)
〈(e2πi/2m , 1), (1,−I)〉

∼=→ S1 × SO(3).

Proof. Of course, the matrices that appear in the lemma represent the
linear maps induced by each isomorphism on the Lie algebra of the maximal
torus. The isomorphisms in (1), (2) and (5) are obvious and we only need to
discuss (3) and (4).

Notice that if A is a matrix in U(2) then A/
√

detA has an indeterminacy
in SU(2) but it is well defined in SO(3) = SU(2)/±I. This fact allows us to
define an epimorphism ϕ : U(2)→ S1×SO(3) by A 
→ (detA2m−1

, A/
√

detA).
The kernel of ϕ is a central subgroup in U(2) generated by e2πi/2

m

I and one
can easily check that ϕ is given, on the maximal torus level, by the matrix(

2m−1 2m−1

1 −1

)
. This proves claim (4) in the lemma.

We also have an epimorphism ψ : S1 × SU(2) → U(2) given by (λ,A) 
→
λ2m−1

A, which describes U(2) as a quotient of S1 × SU(2) by the central
subgroup of S1 × SU(2) generated by (e2πi/2

m

,−I). Again, on the maximal

torus level, one sees easily that ψ is given by
(

2m−1 1
2m−1 −1

)
and we have proven

claim (3) in the lemma.

We can now represent the classifying spaces of the central quotients of K
as spaces of the form Xk,l (M). We do first the case of an odd prime.

Proposition 7.1. Let p be an odd prime and 0 ≤ m ≤ νp(ab−4). Write
Pp0K = K. We have

BPpmK∧
p � X

(
b/2 pm

(4− ab)/4pm −a/2
)
.

Proof. The case m = 0 is trivial. For m > 0 we have

B((S1 × SU(2))/MF )∧p �M (BT/F )∧p
id� B((S1 × SU(2))/F )∧p

where M =
(

b/2 1
(4− ab)/4 −a/2

)
and F is the cyclic subgroup of T generated

by (e2πi/p
m

, 1). Since pm divides 4−ab, we see that MF is the cyclic subgroup
of T generated by (e2πi/p

m

, 1). Now the diagram above is equivalent to the
diagram for X(N) for

N =
(
pm 0
0 1

)
M

(
1/pm 0

0 1

)
=
(

b/2 pm

(4− ab)/4pm −a/2
)
.

From the above description we can immediately recover the representation
associated to the space BPpmK(a, b)∧p as the one given by the invariants

Γ1,1 =
ab

4
, δ1 = νp(4− ab) + νp(b)−m, δ2 = νp(a) +m.
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In particular, this shows that, for p odd, any representation of D∞ whose
invariants are such that 4 < 4Γ1,1 ∈ Z and δ1 + δ2 < ∞ appears as a space of
the form BPpmK(a, b)∧p for some a, b, m.

Let us consider now the case of the even prime. This case is more involved
since we have to take into account the parities of a and b. Moreover, in some
cases there are central 2-subgroups which are not cyclic. Let us distinguish
three cases.

• a ≡ b ≡ 1 (mod 2). In this case, there are no central 2-subgroups and
we only need to consider the case of the simply connected group K. We have

BK∧
2 � X2,2

(
(1−a)(1+b)

4 + 1 (1−a)(b−1)
4 + 1

(1+a)(1+b)
4 − 1 (1+a)(b−1)

4 − 1

)
.

• a ≡ 0 b ≡ 1 (mod 2). In this case, for each m such that 2m divides
ab− 4 there is only one central subgroup of K of order 2m and it is cyclic. To
simplify the notation, let us write a = 2a′, b = 2b′ + 1. Then we have

BK∧
2 � X0,2

(
1 + b′ b′

1− a′ − a′b′ 1− a′b′
)
.

The matrices corresponding to the groups P2mK are given by:

Proposition 7.2. Let a = 2a′, b = 2b′ + 1. Then

BP2mK∧
2 �



X0,1

(
b 2m−1

4−ab
2m+1 −a′2

)
0 < m < ν2(ab− 4);

X1,2

(
a′
2 + 2m−2 a′

2 − 2m−2

4−ab
2m+1 − b

2
4−ab
2m+1 + b

2

)
m = ν2(ab− 4).

Proof. Notice that the matrices above are inGL2(Ẑ2) because ν2(ab−4) =
1 when a′ is odd. Let us recall that BK is a push out

B(S1 × SU(2)) �M BT
id� BU(2)

with M =
(

1 + b′ b′

1− a′ − a′b′ 1− a′b′
)

and we have to divide out by a central

cyclic subgroup F of order 2m. This subgroup will be generated by the element
(e2πi/2

m

, e2πi/2
m

) in T and U(2). To compute the image of this element in
S1 × SU(2) we need to apply the matrix M to the vector (1/2m, 1/2m). We
get (b/2m, (4 − ab)/2m+1) and two possibilities arise. If m < ν2(ab − 4) then
(4−ab)/2m+1 is an integer and the image of F by M is the subgroup generated
by (e2πi/2

m

, 1) in S1 × SU(2). If m = ν2(ab− 4) then (4− ab)/2m+1 is half an
integer and so the image of F by M is generated by (e2πi/2

m

,−I) in S1×SU(2).
In either case, we have to transform a diagram

(∗) S1 × SU(2)
〈(e2πi/2m ,±1)〉

�M T

〈(e2πi/2m , e2πi/2m)〉
id� U(2)
〈e2πi/2mI〉
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in a diagram like the one used to define the spaces Xk,l (N) for some k, l and
N . Apply the isomorphisms of lemma 7.1. We see that the right hand side of
the diagram (∗) is equivalent to A : T → S1 × SO(3) with

A =
(

2m−1 2m−1

1 −1

)(
1/2m 1/2m

0 1

)
.

If m < ν2(ab − 4) then the left hand side of (∗) is equivalent to B : T →
S1 × SU(2) with

B =
(

2m 0
0 1

)(
1 + b′ b′

1− a′ − a′b′ 1− a′b′
)(

1/2m 1/2m

0 1

)
.

If m = ν2(ab− 4) then the left hand side of (∗) is isomorphic to U(2). In either
case, we can easily check the matrices in the proposition.

• a ≡ b ≡ 0 (mod 2). In this case we need to take into account the
various groups PL2mK, PR2 K, PD2mK and PN2m+1K for 0 < m ≤ ν2((ab− 4)/2).
Put a = 2a′, b = 2b′. One checks immediately that

BK∧
2 � X0,0

(
b′ 1

1− a′b′ −a′
)
.

Proposition 7.3. Let a = 2a′, b = 2b′ and let 0 < m ≤ ν2((ab− 4)/2).
Then

1. If b′ is even then m = 1 and

BPL2 K � X0,1

(
2a′ 1

1− a′b′ −b′/2
)
.

2. If b′ is odd then

BPL2mK∧
2 �



X0,0

(
b′ 2m

(1− a′b′)/2m −a′
)

0 < m < ν2((ab− 4)/2);

X0,2

(
a′ + 2m−1 a′ − 2m−1

1−a′b′
2m − b′

2
1−a′b′

2m + b′
2

)
m = ν2((ab− 4)/2).

Proof. The proof of this is similar to the proofs of 7.1 and 7.2. BPL2m is
given by a diagram which is obtained from the diagram of Lie groups

S1 × SU(2)
〈M(e2πi/2m , 1)〉

�M T

〈(e2πi/2m , 1)〉
id� S1 × SU(2)
〈(e2πi/2m , 1)〉

with M =
(

b′ 1
1− a′b′ −a′

)
. When we apply the matrix M to the vector

(1/2m, 0) we obtain (b′/2m, (1−a′b′)/2m) and we have to distinguish the cases of
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b′ even and b′ odd and also the cases when m < ν2(2−a′b) and m = ν2(2−a′b).
Finally, we need to use the identifications given by Lemma 7.1. We leave the
details to the reader.

The computations for the other central quotients PR2 K, PD2mK and PN2m+1K
can be done using the same ideas and we will omit the proofs.

Proposition 7.4. Let a = 2a′, b = 2b′. Then
1. If a′ is even then

BPR2 K
∧
2 � X0,1

(
2b′ 1

1− a′b′ −a′/2
)
.

2. If a′ is odd then

BPR2 K
∧
2 � X1,2

(
(a′ + 1)/2 (a′ − 1)/2

1− b′ − a′b′ 1 + b′ − a′b′
)
.

Proposition 7.5. Let a = 2a′, b = 2b′ and 1 ≤ m ≤ ν2(2− a′b). Then
1. If a′b′ is odd, then

• BPD2 K∧
2 � X1,2

(
(b′ + 1)/2 (b′ − 1)/2

1− a′b′ − a′ 1− a′b′ + a′

)
.

• BPD2mK∧
2 � X2,2

(
1−a′b′

2m + b′−a′
2 + 2m−2 1−a′b′

2m + b′+a′
2 − 2m−2

a′b′−1
2m + b′+a′

2 + 2m−2 a′b′−1
2m + b′−a′

2 − 2m−2

)
, if

1 < m < ν2(2− a′b).
• BPD2mK∧

2 � X0,2

(
b′ + 2m−1 b′ − 2m−1

1−a′b′
2m − a′

2
1−a′b′

2m + a′
2

)
, if m = ν2(2− a′b).

2. If a′ and b′ are both even, then m = 1 and

BPD2 K
∧
2 � X2,2

(
b′−a′b′−a′

2 + 1 b′−a′b′+a′
2

b′+a′b′+a′
2

b′+a′b′−a′
2 − 1

)
.

3. If a′ is even and b′ is odd, then m = 1 and

BPD2 K
∧
2 � X1,2

(
(b′ + 1)/2 (b′ − 1)/2

1− a′b′ − a′ 1− a′b′ + a′

)
.

4. If a′ is odd and b′ is even, then m = 1 and

BPD2mK∧
2 � X0,2

(
b′ + 1 b′ − 1

(1− a′b′ − a′)/2 (1− a′b′ + a′)/2

)
.

Proposition 7.6. Let a = 2a′, b = 2b′ and 1 ≤ m ≤ ν2(2− a′b). Then

BPN2m+1K � X1,1

(
b′ 2m−1

(1− a′b′)/2m−1 −a′
)
.
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This completes the description of the spaces B(K/F )∧p as spaces in S∗.
From the above computations it is straightforward to determine, for each central
quotient of each rank two Kac-Moody group, the values of their parameters in
R∗ and then to use the computations in the preceding sections to determine the
cohomology of its classifying space. In the case of the prime 2, the description
of the invariants associated to each space has not the simple form that it has
for the odd primes, except for the case in which the representation turns out to
be in Rep1,1, when we always have Γ1,1 = ab/4. The table 11 displays a part
of the information which we have obtained in the above propositions in a more
user-friendly way.

p > 2

Rep1,1

Γ1,1 = ab
4

δ1 = νp(4 − ab) + νp(b) − m
δ2 = νp(a) + m

PpmK

p = 2

c = 0
P N

2m+1K

m ≤ ν2(2 − ab
2

)

Rep1,1

Γ1,1 = ab/4
c = (0, 1)

P2mK
m < ν2(ab − 4)
a ≡ 0, b ≡ 1 (2)

P R
2 K

a ≡ 0 (4)
P L

2 K
b ≡ 0 (4)

c = (1, 1)
K

a ≡ b ≡ 0 (2)

P L
2mK

m < ν2( ab−4
2

)
b ≡ 2 (4)

c = 0
P2mK

m = ν2(ab − 4)
a ≡ 0, b ≡ 1 (2)

P R
2 K

a ≡ 2 (4)
P D

2 K
b ≡ 2 (4)

Rep1,2 c = 1
K

a ≡ 0, b ≡ 1 (2)

P L
2mK

m = ν2( ab−4
2

)
b ≡ 2 (4)

P D
2mK

1 < m = ν2( ab−4
2

)
or a ≡ 2, b ≡ 0 (4)

Rep2,2 c = 0
K

a ≡ b ≡ 1 (2)

P D
2mK

1 < m < ν2( ab−4
2

)
or a ≡ b ≡ 0 (4)

Table 11.
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