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Abstract

We will propose a sufficient condition which guarantees the path-
wise uniqueness for jump type equations in multi-dimensional case. An
example given in Section 3 shows that the condition is nearly best pos-
sible. Comparing our results with those known in the case of Brownian
equations, we claim that essential difference between these two cases.
It seems to be remarkable that we could explain these phenomena in
the language of the Potential theory. Our principal method in the pa-
per is based on the Fourier analysis, where effective tools such as Bessel
functions, hypergeometric functions play essential roles.

1. Introduction

Stochastic differential equations driven by symmetric α stable processes
are becoming gradually important. The principal aim of the present paper is
to present a sufficient condition of the pathwise uniqueness. Related topics
such as, time-change problems, some properties of exponential martingales are
investigated.

We shall shortly refer to some results obtained in the case of d-dimensional
Brownian motions. Consider the following stochastic differential equation
(SDE), for each 1 ≤ i, j ≤ d, t ≥ 0:

(1.1) dXi(t) = σi
j(X(t))dW j(t), Xi(0) = xi(0)

where W = {(W 1(t), W 2(t), . . . , W d(t)); t ≥ 0} is a d-dimensional Brownian
motion. In this case, the best possible sufficient condition is stated differently
in each of following three cases: d = 1, d = 2, and d ≥ 3. See [9] and also [8]. In
one dimensional case, it is well known that the pathwise uniqueness holds when
σ is Hölder continuous of order 1

2 . On the other hand, in multi-dimensional
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case, [8] also discusses that the best possible condition in the case of d = 2
differs from that in the case of d ≥ 3.

Now consider the following SDE, for each 1 ≤ i ≤ d, t ≥ 0:

(1.2) dY i(t) = σi
j(Y (t−))dZj(t), Y i(0) = yi(0)

where Z = {(Z1(t), Z2(t), . . . , Zd(t)); t ≥ 0} is a d-dimensional symmetric α
stable process.

In one dimensional case, a corresponding result for a symmetric α stable
process, was given by Komatsu [4] (See also [3]). According to his result, if
coefficients are Hölder continuous of order 1

α , then the pathwise uniqueness
holds.

In multi-dimensional case, we will state a sufficient condition which guar-
antees the pathwise uniqueness for the equation (1.2) under the assumption:

(1.3) σi
j(x) = δijσ(x).

Under the above assumption, we can use freely, as you will see later, powerful
tools such as Bessel functions and hypergeometric functions in the calculus of
Fourier transforms to obtain several concrete estimates. This is the reason why
we should limit our consideration under the assumption (1.3) in the present
stage.

In our main theorem, the common best possible condition is obtained for
the case d ≥ 2. This result contrasts considerably with conditions in the case
of Brownian motion which we have mentioned in the above.

These phenomena could be understood, as you see in details in Section 3,
by the difference between Newton potential coresponding to Brownian motions
and Riesz potential to symmetric α stable processes. Indeed, in two dimensional
case the Newton potential is logarithmic which differs essentially from that in
the case d ≥ 3 where the essential part of the potential is |x|2−d. However the
essential part of Riesz potential is |x|α−d for d ≥ 2.

The paper is organized as follows. In Section 2 we introduce notions and
definitions, then present the main result. An example in Section 3 shows that
the condition is best possible in some sense. At last Section, the key lemma will
be proved in the use of Bessel functions and also of hypergeometric functions.

2. Pathwise uniqueness in d-dimensional case

2.1. Main theorem
Let (Ω,F , {Ft}, P ) be a filtered probability space and Z = {Z(t); t ≥ 0}

be a d-dimensional Ft-symmetric α stable process, for each t ≥ 0:

E[exp{i〈ξ, Z(t) − Z(s)〉}|Fs] = exp{−(t − s)|ξ|α} for every ξ ∈ Rd.

where Lévy measure ν is given by

(2.1) ν(dy) =
cν

|y|α+d
dy.
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In the present paper, let α ∈ (1, 2) and ρ be a increasing continuous func-
tion defined on [0, a) (a > 0) with ρ(0) = 0 and σ is bounded continuous
functions.

Consider the stochastic differential equation driven by Z(t),

dY (t) = σ(Y (t−))dZ(t) i = 1, 2, . . . d.

It means that,

(2.2) Y i(t) − Y i(0) =
d∑

j=1

∫ t

0

σi
j(Y (s−))dZj(s) i = 1, 2, . . . d.

Assumption 2.1. Assume that the coefficient matrix σ = [σi
j ] satisfies

σi
j(x) = δijσ(x)

Under the assumption, we consider the following equation,

(2.3) Y i(t) − Y i(0) =
∫ t

0

σ(Y (s−))dZi(s) i = 1, 2, . . . d.

The main theorem is here:

Theorem 2.2. Let ρ(u) satisfy
∫ ε

0

1
G(u)

du = ∞, for any ε > 0(2.4)

where G(u) := ρα(u
1

α−1 )u
−1

α−1 is concave.(2.5)

Then, for every σ such that

|σ(x) − σ(y)| ≤ ρ(|x − y|) for x, y ∈ Rd with |x − y| < a,

the pathwise uniqueness holds for the equation (2.3).

2.2. Remark
For examples,

ρ(ξ) = ξ, ρ(ξ) = ξ

(
log

1
ξ

)1/α

, ρ(ξ) = ξ

(
log

1
ξ

)1/α

log
(

(α − 1) log
1
ξ

)1/α

, . . .

satisfy (2.4) and (2.5).
Comparing our results with those known in Brownian motion case, the

examples of modulus of continuity function ρ are shown in the following table.
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Dimension Brownian Motion Symmetric α stable

d = 1 1
2 -Hölder [8] 1

α -Hölder [4](See also [3])

d = 2 [8]
ξ, ξ(log 1

ξ ), ξ(log 1
ξ )(log(log 1

ξ ))
1
2 . [T]

ξ

ξ(log 1
ξ )1/α,

d ≥ 3 [8] ξ(log 1
ξ )1/α(log((α−1) log 1

ξ ))1/α.
ξ, ξ(log 1

ξ )1/2, ξ(log 1
ξ )1/2(log(log 1

ξ ))1/2.

The situation in two dimensional case is crucial.

2.3. The proof of the theorem
A heuristic derivation is to use

L|x|α−1 = const.
1
|x|

where L is the generator of Z, we apply Ito’s formula. The key in the proof is
the next lemma, which will be proved in Section 4. Let F [resp. F−1] stands
for the Fourier transform [resp. the inverse Fourier transform] and {φn} be a
series of mollifier functions.

Key Lemma. Let

u(x) = |x|α−1, uε(x) = |x|α−1e−ε|x| and un = uε ∗ φn where
(

ε =
1
n

)
.

Then, we can choose a series of mollifier functions φn such that

|F−1[|ξ|α(Fun)[ξ]][x]| ≤ C(α, d)|x|−1 x ∈ Rd \ {0} holds,

where C(α, d) is a constant which depends on (α, d) but is independent of n.

Using the lemma, we will prove the main theorem.

The proof of the main theorem. Let (Y 1(t), Z(t)) and (Y 2(t), Z(t)) be
any two solution to (2.3) defined on the same probability space (Ω,F , {Ft}, P ).
Define

∆(t) := Y 1(t) − Y 2(t).

Using Ito formula [See Proposition 4.1], we have

un(∆(t)) − un(∆(0)) = cν

∫ t

0

|σ(Y 1(s−)) − σ(Y 2(s−))|αLun(∆(s−))ds

+ Mn(t)
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where cν is the constant given in (2.1), L is the generator of Z, and Mn is a
martingale. Then, by the key Lemma and also the condition (2.5), we obtain

|Eun(∆(t)) − un(∆(0))|

≤ cνE

∫ t

0

|σ(Y 1(s−)) − σ(Y 2(s−))|α|Lun(∆(s−))|ds

≤ cνC(α, d)E
[∫ t

0

ρ(|∆(s−)|)α 1
|∆(s−)|ds

]

= cνC(α, d)E
[∫ t

0

ρ(|∆(s)|)α

|∆(s)| ds

]

≤ cνC(α, d)
∫ t

0

GE|∆(s)|α−1ds.

As n goes to infinity, we have

E|∆(t)|α−1 ≤ cνC(α, d)
∫ t

0

GE|∆(s)|α−1ds.

By the condition (2.4), we can conclude

E|∆(t)|α−1 = 0

3. The result is nearly best possible

Here we will construct an example which shows the condition 2.4 is best
possible in some sense.

The next proposition is a modification of Propositon 3.1 in [5].

Proposition 3.1. Let H be an Ft-adapted such that

(3.1) E exp
{

θ

∫ t

0

|H(s)|αds

}
< ∞

for every θ, t > 0. Then for every λ ∈ Rd

εH(t) := exp
{

i〈λ,

∫ t

0

HdZ〉 + |λ|α
∫ t

0

|H|αds

}

is a complex-valued martingale.

Proof. To begin with considering the case that H is simple:

H(t) =
n∑

k=0

H(tk)1(tk,tk+1], 0 = t0 ≤ t1 ≤ · · · ≤ tn = t.
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Then, we have

εH(t) = exp

{
i

d∑
i=1

λi
n∑

k=0

H(tk)(Zi(tk+1) − Zi(tk))

+ |λ|α
{

n∑
k=0

|H(tk)|α(tk+1 − tk)

}}
.

We define, for u, v ∈ [0,∞) with u ≤ v,

εH(u, v) = exp

{
i

d∑
i=1

λiH(u)(Zi(v) − Zi(u)) + |λ|α|H(u)|α(v − u)

}
,

then we obtain

εH(t) =
∏n

k=0
εH(tk−1, tk),

and also we have

E[εH(u, v)|Fs] = εH(u, v)1{v≤s} + εH(u, s)1{u≤s≤v} + 1{s≤u} a.s. P.

Therefore, for s ≤ t, say s ∈ [tm, tm+1)(m ≤ n), we can conclude that

E[εH(t)|Fs] = εH(s) a.s. P.

The case of general H follows by Lebesgue convergence theorem.

The next proposition is also a modification of Theorem 3.1 in [5].

Proposition 3.2. Let H be an Ft-adapted satisfying

E

[∫ t

0

|H(s)|αds

]
< ∞,

such that random time τ (u) :=
∫ t

0
|H(s)|αds satisfies τ (u) → ∞ as u → ∞.

Consider the inverse of τ and Gt = Fτ−1(t), and the time changed stochastic
integrals for 1 ≤ i ≤ d,

Z̃i(t) :=
∫ τ−1(t)

0

H(s)dZi(s).

Then Z̃ = {(Z̃1(t), Z̃2(t), . . . , Z̃d(t)); t ≥ 0} is a Gt-symmetric α stable process.

Proof. The mapping t 	→ τ−1(t) is right continuous and nondecreasing Ft-
stopping time. We first assume additionally that H satisfies condition (3.1). It
follows from the above proposition 3.1 that the complex exponential martingale
εH(t) satisfies the equality

E[εH(t)|Fs] = εH(s) a.s. P.
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Applying Optional sampling theorem, we obtain

E[εH(τ−1(t))|Gs] = εH(τ−1(s)) a.s. P.

Then

E[exp{i〈λ, Z̃(t) − Z̃(s)〉}] = exp {−(t − s)|λ|α} a.s. P.

Now, the case of general H follows by the truncation argument, consid-
ering, instead of H satisfying the assumptions of the theorem, its restriction
Hn(t) := 1{τn≥t}H(t) the same as H up to time τn, where

τn := inf
{

t ∈ [0,∞);
∫ t

0

|H(s)|αds ≤ n

}
∧ n.

Here we refer briefly to some notions in the Potential theory.

Definition 3.1. Let {Y (t)} be a Lévy process on Rd with the transition
function P (t, x, B). For θ ≥ 0, x ∈ Rd, and B ∈ B(Rd), we define

(3.2) Uθ(x, B) :=
∫ ∞

0

e−θtP (t, x, B)dt

When x = 0, we write Uθ(0, B) = Uθ(B) and it is said the θ-potential measure.
If Uθ(B) is absolute continuous, then we call the density uθ(x) the θ-potential
density. As U0(B) denoted by U(B) and called the potential measure, we write
uθ(x) = u(x) and call it the potential density.

Proposition 3.3. In the case of a symmetric α stable process Z =
{Z(t)}t≥0, for d ≥ 2 and 1 < α ≤ 2,

(3.3) u(x) = K(d, α)|x|α−d,

where

K(d, α) =
Γ(d − α)

2απ
d
2 Γ(α

2 )
.

See [6, p.261].

Example. The condition (2.4) in the main theorem 2.1 is best possible
in some sense that, for d ≥ 2, if ρ defined on [0,∞), bounded and subaddi-
tive such that

∫
0+

1
G(u)du < ∞. Then there exists σ for which the pathwise

uniqueness for the equation (2.2) does not hold.

The proof of the example. Let σi
j(x) = δijρ(|x|) (x ∈ Rd), Then,

|σ(x) − σ(y)| ≤ |ρ(|x|) − ρ(|y|)| ≤ ρ(|x − y|).
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Consider the equation

(3.4)

{
dy(t) = σ(y(t−))dZ(t)
y(0) = 0

Let Z = {Z(t); t ≥ 0} be a d-dimensional Ft-symmetric α stable process
on a probability space (Ω,F ,P) such that Z(0) = 0. Let H(t) := ρ(|Z(t−)|)−1

and τ (t) :=
∫ t

0

ds

ρ(|Z(s−)|)α . We show that τ (t) is integrable for t ≥ 0. Note

that

E[τ (t)] = E

[∫ t

0

ds

ρ(|Z(s−)|)α

]
=
∫
Rd

∫ t

0

p(s, x)
ρ(|x|)α dsdx

≤
∫
|x|≤δ

dx

∫ t

0

p(s, x)
ρ(|x|)α ds +

∫
|x|≥δ

dx

∫ t

0

p(s, x)
ρ(|x|)α ds = I + II

where p(s, x) is the probability density of the symmetric α stable process. First,
applying the property of (3.3), we have

I ≤
∫
|x|≤δ

dx

∫ ∞

0

p(s, x)
ρ(|x|)α ds ≤ K(d, α)

∫
|x|≤δ

|x|α−d

ρ(|x|)α dx

≤ K(d, α)ωd−1

∫ δ

0

ξα−1

ρ(ξ)α dξ =
ωd−1K(d, α)

α − 1

∫ δα−1

0

du

G(u)
< ∞.

where ωd−1 is surface area of Sd−1. Second,

II ≤
∫
|x|≥δ

dx

∫ t

0

p(s, x)
ρ(δ)α ds ≤ ρ(δ)−α

∫ t

0

∫
Rd

p(s, x)dxds = ρ(δ)−α
t.

Thus we see E[τ (t)] < ∞. Since ρ is bounded function, τ satisfies τ (u) → ∞,
a.s. u → ∞.

Define Z̄ = {(Z̄1(t), Z̄2(t), . . . , Z̄d(t)); t ≥ 0} such that

Z̄i(t) :=
∫ t

0

ρ(|Z(s−)|)−1dZi(s) i = 1, 2, . . . d.

Then we have

(3.5) Zi(t) =
∫ t

0

ρ(|Z(s−)|)dZ̄i(s) i = 1, 2, . . . d.

On the other hand, in the use of Proposition 3.2, Z̃ = {Z̃(t); t ≥ 0} is a
Gt-symmetric α stable process, where

Z̃i(t) := Z̄i(τ−1(t)) =
∫ τ−1(t)

0

ρ(|Z(s−)|)−1
dZi(s) i = 1, 2, . . . d.
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Here, for 1 ≤ i ≤ d, we define Y i(t) := Zi(τ−1(t)). Then by (3.5) , Y =
{(Y 1(t), Y 2(t), . . . , Y d(t)); t ≥ 0} satisfies

Y i(t) =
∫ t

0

ρ(|Y (s−)|)dZ̃i(s) i = 1, 2, . . . d.

It means that (y(t) = Y (t), Z̃(t)) solves the equation (3.4). However, (y(t) =
0, Z̃(t)) is also a solution to the equation (3.4) and thus, the pathewise unique-
ness fails.

Remark 1. In symmetric α stable case, the condition given in the above
example shows that best possible condition for d ≥ 3 can not be be improved
for d = 2. But, in Brownian motions case, [8] (see the table in Section 2)
points out that the best possible condition for d ≥ 3 can be relaxed for d = 2.
These phenomena are due to the difference between the logarithmie potential
corresponding to two dimensional Brownian motion and the Riesz potential to
symmetric α stable processes d ≥ 2.

4. Key Lemma

At the begining of the Section, we will modify an Ito formula given in
[B, Proposition 2.1] to the multi-dimensional case. The proof can be shown by
similar method as in [B, Proposition 2.1]. Let N be the Poisson random measure
associated to the symmetric α stable process Z and Ñ be its compensated
Poisson random measure.

Proposition 4.1. Suppose 1 ≤ α ≤ 2, f ∈ S(Rd). Consider the fol-
lowing SDE, for each 1 ≤ i ≤ d and t ≥ 0,

Y i(t) = Y i(0) +
∫ t

0

∫
|x|<1

xiH(s)Ñ(ds, dx) +
∫ t

0

∫
|x|≥1

xiH(s)N(ds, dx)

where H is an Ft-adapted process such that

E

∫ T

0

|H(s)|αds < ∞.

Then

f(Y (t)) = f(Y (0)) + M(t) + cν

∫ t

0

|H(s)|αLf(Y (s−))ds

holds where L is the generator of Z and M = {M(t)} is a martingale.

In the second part of this Section, we concentrate to the proof of the key
lemma. To prove the key lemma we prepare following lemmas. In the next
lemma, we will discuss the convergence of a improper integral in the use of the
second mean-valued theorem.
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Lemma 4.1. Let φ(s, δ) and τ (s, δ) be monotone continuous functions
for fixed δ and bounded uniformly with respect to (s, δ). If the improper integral
of θ(s) converges and θ(s) is bounded, then the integral∫ ∞

0

φ(s, δ)τ (s, δ)θ(s)ds

converges uniformly with respect to δ.

Proof. Let L := sup
(s,δ)

{|τ (s, δ)| ∨ |φ(s, δ)|}. Since the improper integral of

θ(s) converges, for every η > 0, there exists Mη > 0 such that a, b ≥ Mη,∣∣∣∣∣
∫ b

a

θ(s)ds

∣∣∣∣∣ < η

2L

Note that τ (·, δ) is monotone continuous for fixed δ. By the second mean-valued
theorem, we can find some ξ in [a, b] such that∫ b

a

τ (s, δ)θ(s)ds = τ (a, δ)
∫ ξ

a

θ(s)ds + τ (b, δ)
∫ b

ξ

θ(s)ds.

Therefore ∣∣∣∣∣
∫ b

a

τ (s, δ)θ(s)ds

∣∣∣∣∣ < η

2
+

η

2
= η.

Thus, the improper integral of τ (s, δ)θ(s) converges uniformily with respect to
δ. Indeed, τ (s, δ)θ(s) is bounded uniformly with respect to (s, δ) and φ(·, δ)
is monotone continuous for fixed δ. Apply the second mean-valued theorem
again, the conclusion follows immediately.

Lemma 4.2. For d = 2, 3, the integral on [0,∞) of the function
s1− d

2 J d−2
2

(s) is convergent in the sense of improper integral. In the case of

d ≥ 4, the function s1− d
2 J d−2

2
(s) is integrable on [0,∞).

Proof. Note that the asymptotic behaviour of Bessel function for ν ≥ −1
2 :

Jν(x) = O(xν) as x → 0+,

Jν(x) = O(x− 1
2 ) as x → ∞.

There exists c1 such that∣∣∣∣
∫ 1

0

s1− d
2 J d−2

2
(s)ds

∣∣∣∣ ≤
∫ 1

0

s1− d
2 |J d−2

2
(s)|ds ≤ c1

∫ 1

0

s1− d
2 s

d−2
2 ds = c1 < ∞.

For d ≥ 4, we can find c2 such that∣∣∣∣
∫ ∞

1

s1− d
2 J d−2

2
(s)ds

∣∣∣∣ ≤
∫ ∞

1

|s1− d
2 J d−2

2
(s)|ds < c2

∫ ∞

1

s1− d
2 s−

1
2 ds < ∞.
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In the case of d = 2, 3,∫ N

1

s1− d
2 J d−2

2
(s)ds =

∫ N

1

s1−d(s
d
2 J d

2
(s))

′
ds

= [s1− d
2 J d

2
(s)]N1 + (d − 1)

∫ N

1

s−
d
2 J d

2
(s)ds = aN + (d − 1)bN , say.

For the sequense {aN}∞N=1, we can choose c3 as follows,

aN = N1− d
2 J d

2
(N) − J d

2
(1), N1− d

2 |J d
2
(N)| ≤ c3N

1−d
2 .

Then we have

lim
N→∞

aN = −J d
2
(1).

On the other hand, we can find c4 such that

|bN | ≤
∫ N

1

s−
d
2 |J d

2
(s)|ds ≤

∫ N

1

c4s
− d+1

2 ds < c4

∫ ∞

1

s−
d+1
2 ds < ∞

Then we see

| lim
N→∞

bN | < ∞.

Finally, we can conclude∣∣∣∣∣ lim
N→∞

∫ N

1

s1− d
2 J d−2

2
(s)ds

∣∣∣∣∣ < ∞.

Lemma 4.3. For a.e. x ∈ Rd,

F−1|ξ|αFuε[x]

= |x|− d−2
2 C1(α, d)

lim
N→∞

∫ N

0

ρα+ d
2

(ε2 + ρ2)
d+α−1

2

F

(
d + α − 1

2
,−α

2
;
d

2
;

ρ2

ε2 + ρ2

)
J d−2

2
(|x|ρ)dρ

=
1
|x|C1(α, d)

lim
N→∞

∫ N

0

sα+ d
2

(|x|ε2 + s2)
d+α−1

2

F

(
d + α − 1

2
,−α

2
;
d

2
;

s2

|x|ε2 + s2

)
J d−2

2
(s)ds

where F is a hypergeometric function and we define

C1(α, d) =

(
1
2

) d−2
2 Γ(d + α − 1)

Γ(d
2 )

Moreover this convergence is independent of ε and |x|.
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Proof. Since uε are rotation invariant, the Fourier transform of uε can be
represented in the use of Bessel functions. Thus we have

|ξ|αFuε[ξ]

= |ξ|α(2π)
d
2 |ξ|− d−2

2

∫ ∞

0

t
d
2 +(α−1)e−εtJ d−2

2
(|ξ|t)dt

=
2π

d
2 Γ(d + α − 1)

Γ(d
2 )

|ξ|α
(ε2 + |ξ|2) d+α−1

2

F

(
d + α − 1

2
,−α

2
;
d

2
;

|ξ|2
ε2 + |ξ|2

)
.

The second equality in the above is due to the formula concerning hypergeo-
metric functions [7, p.385].

Note that the function |ξ|αFuε[ξ] is again rotation invariant. Thus we
have

F−1|ξ|αFuε[x]

= |x|− d−2
2 C1(α, d)

lim
N→∞

∫ N

0

ρα+ d
2

(ε2 + ρ2)
d+α−1

2

F

(
d + α − 1

2
,−α

2
;
d

2
;

ρ2

ε2 + ρ2

)
J d−2

2
(|x|ρ)dρ.

Therefore we obtain the first equality in the lemma. The second equality fol-
lows making the change of variables. Now, let us concern the problem of the
convergence. Define

τ (s, δ) :=
sα+d−1

(δ2 + s2)
d+α−1

2

, φ(s, δ) := F

(
d + α − 1

2
,−α

2
;
d

2
;

s2

δ2 + s2

)

and

θ(s) := s1− d
2 J d−2

2
(s).

Note that τ (s, δ) is uniformly bounded with respect to (s, δ) and monotone
increasing function of s for fixed δ. By the definition of the hypergeometric
functions, φ(s, δ) is also uniformly bounded with respect to (s, δ) and monotone
decreasing function of s for fixed δ.

In the case of d ≥ 4, the uniform convergence with respect to δ of the
integral follows immediately by Lemma 4.2.

Applying lemma 4.1 and Lemma 4.2 to the case d = 2, 3, we can conclude
that the improper integrals of the function, τ (s, δ)φ(s, δ)J d−2

2
(s), is convergent,

which is independent of δ. Therefore, putting δ = |x|ε, we obtain the result.

Lemma 4.4. There exists a series of mollifier functions {φn} satisfying

(4.1)
( 1
| · | ∗ φn

)
(x) ≤ K

1
|x| x ∈ Rd.

where constance K is independent of n.
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Proof. It is easy to choose a series of functions φn satisfying
1. φn ∈ C∞(Rd)
2.
∫
Rd φn(x)dx = 1

3. supp φn ⊂ {x ∈ Rd; |x| ≤ 1
n}

4. 0 ≤ φn ≤ 2
Ωd

nd

where Ωd is the volume of a unit ball in Rd and ωd−1 is surface area of Sd−1.
In the case of |x| ≥ 2

n ,

1
| · | ∗ φn(x) =

∫
Rd

1
|y|φn(x − y)dy =

∫
|x−y|≤ 1

n

1
|y|φn(x − y)dy

holds. Then we have

1
| · | ∗ φn(x) ≤ 1

|x| − 1
n

∫
|x−y|≤ 1

n

φn(x − y)dy ≤ 1
|x| − 1

n

≤ 2
|x| .

On the other hand, in the case of 0 < |x| ≤ 2
n , we see

1
| · | ∗ φn(x) ≤ 2

Ωd
nd

∫
|x−y|≤ 1

n

1
|y|dy

≤ 2
Ωd

nd

∫
|y|≤ 3

n

1
|y|dy ≤ 3d−14ωd−1

(d − 1)Ωd

n

2
.

Therefore, setting

K := max
{

2,
3d−14ωd−1

(d − 1)Ωd

}

we obtain the inequality (4.1).

Finally we are now in the position to prove the key lemma.

The proof of Key Lemma. Choose the series of mollifier functions as in
Lemma 4.4. The notation is the same as in Lemma 4.3. Let η = 1, using
lemmma 4.3 we can choose M1 > 1 such that

∣∣∣∣
∫ ∞

M1

φ(s, δ)τ (s, δ)s1− d
2 J d−2

2
(s)ds

∣∣∣∣ ≤ 1.

Using asymptoie behaviours of Bessel functions such that Jν(s) = O(xν) (x →
0+), we have

∣∣∣∣∣
∫ M1

0

φ(s, δ)τ (s, δ)s1− d
2 J d−2

2
(s)ds

∣∣∣∣∣ ≤ c1L
2

∫ M1

0

s1− d
2 s

d−2
2 ds = c1L

2M1 < ∞
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where c1 is given in Lemma 4.2 and L in Lemma 4.1. Then we obtain

F−1|ξ|αFuε[x]

=
1
|x|C1(α, d) lim

N→∞

∫ N

0

τ (s, |x|ε)φ(s, |x|ε)s1− d
2 J d−2

2
(s)ds

≤ 1
|x|C1(α, d) lim

N→∞

(∣∣∣ ∫ M1

0

τ (s, |x|ε)φ(s, |x|ε)s1− d
2 J d−2

2
(s)ds

∣∣∣
+
∣∣∣ ∫ N

M1

τ (s, |x|ε)φ(s, |x|ε)s1− d
2 J d−2

2
(s)ds

∣∣∣
)

≤ 1
|x|C1(α, d)(c1L

2M1 + 1).

Setting C(α, d) = KC1(α, d)(c1L
2M1 + 1), we can conclude

F−1|ξ|αFun[x] = F−1|ξ|α(FuεFφn)[x] = (F−1|ξ|αFuε) ∗ φn[x]

≤ C1(α, d)(c1L
2M1 + 1)

( 1
| · | ∗ φ

)
(x) ≤ C(α, d)

1
|x| .

where ε =
1
n

.
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