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Magnetic Schrödinger operators and the
∂-equation

By

Friedrich Haslinger∗

Abstract

In this paper we characterize compactness of the canonical solution
operator to ∂ on weigthed L2 spaces on C. For this purpose we consider
certain Schrödinger operators with magnetic fields and use a condition
which is equivalent to the property that these operators have compact
resolvents. We also point out what are the obstructions in the case of
several complex variables.

1. Introduction

Let ϕ : C −→ R be a C2-weight function and consider the Hilbert spaces

L2
ϕ =

{
f : C −→ C measureable : ‖f‖2

ϕ :=
∫

C

|f(z)|2 e−2ϕ(z) dλ(z) < ∞
}

.

It is essentially due to L. Hörmander [H] that for a suitable weight function
ϕ and for every f ∈ L2

ϕ there exists u ∈ L2
ϕ satisfying ∂u = f. In fact there exists

a continuous solution operator S̃ : L2
ϕ −→ L2

ϕ for ∂, i.e. ‖S̃(f)‖ϕ ≤ C‖f‖ϕ and
∂S̃(f) = f, see also [Ch].

Let A2
ϕ denote the space of entire functions belonging to L2

ϕ and let

Pϕ : L2
ϕ −→ A2

ϕ

denote the Bergman projection. Then S = (I−Pϕ)S̃ is the uniquely determined
canonical solution operator to ∂, i.e. ∂S(f) = f and S(f) ⊥ A2

ϕ.
In this paper we discuss the compactness of the canonical solution operator

to ∂ on weighted L2-spaces. The question of compactness of the solution oper-
ator to ∂ is of interest for various reasons—see [FS1] and [FS2] for an excellent
survey and [C], [CD], [K], [L].

A similar situation appears in [SSU] where the Toeplitz C∗ -algebra T (Ω) is
considered and the relation between the structure of T (Ω) and the ∂-Neumann
problem is discussed (see [SSU]).
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The connection of ∂ with the theory of Schrödinger operators with mag-
netic fields appears in [Ch], [B] and [FS3].

For the case of one complex variable we use results of Iwatsuka ([I]) to
discuss compactness of the canonical solution operator to ∂ (see also [HeMo]).

Multiple difficulties arise in the case of several complex variables, mainly
because the geometric structures underlying the analysis become much more
complicated. We try to point out the different situation and the obstructions
which appear in the case of several complex variables.

2. Schrödinger operators with magnetic fields in one complex vari-
able

A nonnegative Borel measure ν defined on C is said to be doubling if there
exists a constant C such that for all z ∈ C and r ∈ R

+,

ν(B(z, 2r)) ≤ Cν(B(z, r)).

D denotes the set of all doubling measures ν for which there exists a constant
δ such that for all z ∈ C,

ν(B(z, 1)) ≥ δ.

Let ϕ : C −→ R be a subharmonic function. Then ∆ϕ defines a nonnegative
Borel measure, which is finite on compact sets.

Let W denote the set of all subharmonic C2 functions ϕ : C −→ R such
that ∆ϕ ∈ D.

Theorem 2.1. Let ϕ ∈ W . The canonical solution operator S : L2
ϕ −→

L2
ϕ to ∂ is compact if and only if there exists a real valued continuous function

µ on C such that µ(z) → ∞ as |z| → ∞ and∫
C

Sφ(z) φ(z) dλ(z) ≥
∫

C

µ(z) |φ(z)|2 dλ(z)

for all φ ∈ C∞
0 (C), where

S = − ∂2

∂z∂z
− ∂ϕ

∂z

∂

∂z
+

∂ϕ

∂z

∂

∂z
+
∣∣∣∣∂ϕ

∂z

∣∣∣∣
2

+
∂2ϕ

∂z∂z
.

Proof. Consider the equation ∂u = f for f ∈ L2
ϕ. The canonical solution

operator to ∂ gives a solution with minimal L2
ϕ-norm. We substitute v = u e−ϕ

and g = f e−ϕ and the equation becomes

Dv = g , where D = e−ϕ ∂

∂z
eϕ.

u is the minimal solution to the ∂-equation in L2
ϕ if and only if v is the solution

to Dv = g which is minimal in L2(C).
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The formal adjoint of D is D = −eϕ ∂
∂z e−ϕ. As in [Ch] we define Dom(D) =

{f ∈ L2(C) : Df ∈ L2(C)} and likewise for D. Then D and D are closed un-
bounded linear operators from L2(C) to itself. Further we define Dom(DD) =
{u ∈ Dom(D) : Du ∈ Dom(D)} and we define DD as D ◦ D on this domain.
Any function of the form eϕ g, with g ∈ C2

0 belongs to Dom(DD) and hence
Dom(DD) is dense in L2(C). Since D = ∂

∂z + ∂ϕ
∂z and D = − ∂

∂z + ∂ϕ
∂z we see

that

S = DD = − ∂2

∂z∂z
− ∂ϕ

∂z

∂

∂z
+

∂ϕ

∂z

∂

∂z
+
∣∣∣∣∂ϕ

∂z

∣∣∣∣
2

+
∂2ϕ

∂z∂z

= −1
4

((d − iA)2 − ∆ϕ),

where A = A1 dx + A2 dy = −ϕy dx + ϕx dy. Hence S = DD is a Schrödinger
operator with electric potential ∆ϕ and with magnetic field B = dA, ([CFKS]).

Now let ‖u‖2 =
∫

C
|u(z)|2 dλ(z) for u ∈ L2(C) and

(u, v) =
∫

C

u(z)v(z) dλ(z)

denote the inner product of L2(C).
In [Ch] the following results are proved : If u ∈ Dom(D) and Du ∈

Dom(D), then

‖Du‖2 = (D(Du), u).

DD is a closed operator and

‖u‖ ≤ C‖DDu‖

for all u ∈ Dom(DD). Moreover, for any f ∈ L2(C) there exists a unique
u ∈ Dom(DD) satisfying DDu = f. Hence S−1 = (DD)−1 is a bounded
operator on L2(C).

Now we claim that the canonical solution operator S : L2
ϕ −→ L2

ϕ to ∂ is
compact if and only if S−1 : L2(C) −→ L2(C) is compact.

For this we remark that v is the minimal solution to ∂v = g in L2
ϕ if

and only if u = v e−ϕ is the minimal solution to Du = g e−ϕ in L2(C). Hence
the canonical solution operator S to ∂ is compact if and only if the canonical
solution operator to Du = f is compact. By the above properties of the
operators D and D we have

‖DS−1f‖2 = (DD(DD)−1f, (DD)−1f) = (f, (DD)−1f) ≤ ‖S−1‖‖f‖2,

hence

‖DS−1f‖ ≤ ‖S−1‖1/2 ‖f‖
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and T = DS−1 is a bounded operator on L2(C) with DTf = f and Tf ⊥ kerD,
which means that T is the canonical solution operator to Du = f. Since S−1

is a selfadjoint operator (see for instance [I]) it follows that

S−1 = T ∗T.

Since T is compact if and only if T ∗T is compact (see [W]), our claim is proved.
To prove the theorem we use Iwatsuka’s result ([I]) that the operator S

has compact resolvent if and only if the condition in Theorem 2.1 holds.

Theorem 2.2. If ϕ(z) = |z|2, then the canonical solution operator S :
L2

ϕ −→ L2
ϕ to ∂ fails to be compact.

Proof. In our case the magnetic field B is the form B = dA = B(x, y)dx∧
dy = ∆ϕdx ∧ dy. Hence for ϕ(z) = |z|2 we have ∆ϕ(z) = 4 for each z ∈ C. Let
Qw be the ball centered at w with radius 1. Then∫

Qw

(|B(x, y)|2 + ∆ϕ(z)) dλ(z)

is a constant as |w| → ∞, so the assertion follows from [I] Theorem 5.2.

Theorem 2.3. Let ϕ ∈ W and suppose that ∆ϕ(z) → ∞ as |z| → ∞.
Then the canonical solution operator S : L2

ϕ −→ L2
ϕ to ∂ is compact.

Proof. Since in our case |B(x, y)| = ∆ϕ(z) → ∞, as |z| → ∞ the conclu-
sion follows from the proof of Theorem 2.1 and [AHS], [D] or [I].

Remark 2.1. In [Has2] it shown that for ϕ(z) = |z|2 even the restric-
tion of the canonical solution operator S to the Fock space A2

ϕ fails to be
compact and that for ϕ(z) = |z|m, m > 2 the restriction of S to A2

ϕ fails to be
Hilbert Schmidt.

3. Several complex variables.

In [Sch] it is shown that the restriction of the canonical solution operator
to the Fock space A2

ϕ fails to be compact, where

ϕ(z) = |z1|m + · · · + |zn|m,

for m ≥ 2 and n ≥ 2. Hence the canonical solution operator cannot be compact
on the corresponding L2-spaces.

Here we investigate the solution operator on L2-spaces and try to generalize
the method from above for several complex variables.

Let ϕ : Cn −→ R be a C2-weight function and consider the space

L2(Cn, ϕ) =
{

f : C
n −→ C :

∫
Cn

|f |2 e−2ϕ dλ < ∞
}
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and the space L2
(0,1)(C

n, ϕ) of (0, 1)-forms with coefficients in L2(Cn, ϕ).
For v ∈ L2(Cn) let

Dv =
n∑

k=1

(
∂v

∂zk
+

∂ϕ

∂zk
v

)
dzk

and for g =
∑n

j=1 gj dzj ∈ L2
(0,1)(C

n) let

D
∗
g =

n∑
j=1

(
∂ϕ

∂zj
gj −

∂gj

∂zj

)
,

where the derivatives are taken in the sense of distributions. It is easy to see
that ∂u = f for u ∈ L2(Cn, ϕ) and f ∈ L2

(0,1)(C
n, ϕ) if and only if Dv = g,

where v = u e−ϕ and g = f e−ϕ. It is also clear that the necessary condition
∂f = 0 for solvability holds if and only if Dg = 0 holds. Here

Dg =
n∑

j,k=1

(
∂gj

∂zk
+

∂ϕ

∂zk
gj

)
dzk ∧ dzj .

Then

D D
∗
g = D


 n∑

j=1

(
∂ϕ

∂zj
gj −

∂gj

∂zj

)

=
n∑

k=1


 n∑

j=1

(
∂2ϕ

∂zj∂zk
gj −

∂2gj

∂zj∂zk
+

∂gj

∂zk

∂ϕ

∂zj
− ∂gj

∂zj

∂ϕ

∂zk
+

∂ϕ

∂zj

∂ϕ

∂zk
gj

) dzk.

Proposition 3.1. The operator D D
∗

defined on DomD
∗ ∩ kerD has

the form

n∑
k=1


 n∑

j=1

(
2

∂2ϕ

∂zj∂zk
gj −

∂2ϕ

∂zj∂zj
gk − ∂2gk

∂zj∂zj

+
∂gk

∂zj

∂ϕ

∂zj
− ∂gk

∂zj

∂ϕ

∂zj
+

∂ϕ

∂zj

∂ϕ

∂zj
gk

)]
dzk.

Proof. The condition Dg = 0 means that

∂gj

∂zk
+

∂ϕ

∂zk
gj =

∂gk

∂zj
+

∂ϕ

∂zj
gk,

for j, k = 1, . . . , n. Now we apply the differentiation ∂
∂zj

on both sides and
obtain

∂2ϕ

∂zj∂zk
gj +

∂2gj

∂zj∂zk
+

∂gj

∂zj

∂ϕ

∂zk
=

∂2ϕ

∂zj∂zj
gk +

∂2gk

∂zj∂zj
+

∂gk

∂zj

∂ϕ

∂zj



254 Friedrich Haslinger

Using this for the formula for D D
∗

we get

D D
∗
g = D


 n∑

j=1

(
∂ϕ

∂zj
gj −

∂gj

∂zj

)

=
n∑

k=1


 n∑

j=1

(
2

∂2ϕ

∂zj∂zk
gj −

∂2ϕ

∂zj∂zj
gk − ∂2gk

∂zj∂zj

+
∂gk

∂zj

∂ϕ

∂zj
− ∂gk

∂zj

∂ϕ

∂zj
+

∂ϕ

∂zj

∂ϕ

∂zj
gk

)]
dzk.

Remark 3.1. The only term where gj appears in the last line is

2
∂2ϕ

∂zj∂zk
gj ,

and we will get a diagonal system if we restrict to weight functions of a special
form, for instance ϕ(z) = |z1|2 + · · · + |zn|2, the case of the Fock space.

Proposition 3.2. Suppose that the weight function ϕ is of the form

ϕ(z1, . . . , zn) = ϕ1(z1) + · · · + ϕn(zn),

where ϕj : C −→ R are C2-functions for j = 1, . . . , n.

Then the equation D D
∗
g = h, for h =

∑n
k=1 hk dzk, splits into the n-

equations

2
∂2ϕ

∂zk∂zk
gk +

n∑
j=1

(
− ∂2ϕ

∂zj∂zj
gk − ∂2gk

∂zj∂zj

+
∂gk

∂zj

∂ϕ

∂zj
− ∂gk

∂zj

∂ϕ

∂zj
+

∂ϕ

∂zj

∂ϕ

∂zj
gk

)
= hk,

for k = 1, . . . , n. These equations can be represented as Schrödinger oper-
ators Sk with magnetic fields, where

Skv = 2
∂2ϕ

∂zk∂zk
v

+
n∑

j=1

(
− ∂2ϕ

∂zj∂zj
v − ∂2v

∂zj∂zj
+

∂v

∂zj

∂ϕ

∂zj
− ∂v

∂zj

∂ϕ

∂zj
+

∂ϕ

∂zj

∂ϕ

∂zj
v

)

and v is a C2-function. The operators Sk can be written in the form

Sk =
1
4


− n∑

j=1

(
∂

∂xj
− iaj

)2

−
n∑

j=1

(
∂

∂yj
− ibj

)2

+ Vk,



Magnetic Schrödinger operators and the ∂-equation 255

where zj = xj + iyj and aj = − ∂ϕ
∂yj

, bj = ∂ϕ
∂xj

, for j = 1, . . . , n and

Vk = 2
∂2ϕ

∂zk∂zk
−

n∑
j=1

∂2ϕ

∂zj∂zj
,

for k = 1, . . . , n.

Remark 3.2. (a) If the weight function ϕ is of the form

ϕ(z1, . . . , zn) = ϕ1(z1) + · · · + ϕn(zn),

where ϕj : C −→ R are C2-functions for j = 1, . . . , n, then the magnetic field
of the Schrödinger operators Sk is the 2-form

B =
∑
j<l

Bjl dx̃j ∧ dx̃l,

where x̃2j−1 = xj , x̃2j = yj , ã2j−1 = aj , ã2j = bj for j = 1, . . . , n and

Bjl =
1
4

(
∂ãl

∂x̃j
− ∂ãj

∂x̃l

)
.

If we write

|B| =


∑

j<l

|Bjl|2



1/2

,

then the assumptions on the weight function ϕ imply that

|B| =
1
4


 n∑

j=1

(
∂2ϕ

∂x2
j

+
∂2ϕ

∂y2
j

)2



1/2

.

The electric potentials Vk have the form

Vk = 2
∂2ϕ

∂zk∂zk
−

n∑
j=1

∂2ϕ

∂zj∂zj

=
1
2

(
∂2ϕ

∂x2
k

+
∂2ϕ

∂y2
k

)
− 1

4

n∑
j=1

(
∂2ϕ

∂x2
j

+
∂2ϕ

∂y2
j

)
.

Hence the the socalled effective potentials (see [KS] , Corollary 1.14)

V δ
k,eff = Vk +

δ

n − 1
|B| , δ ∈ [0, 1)

do not tend to infinity as |z| tends to infinity for weight functions like

ϕ(z) =
n∑

j=1

|zj |2,

causing the obstructions for the Schrödinger operators Sk to have compact
resolvents.
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