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Unrenormalized intersection local time of
Brownian motion and its local time
representation

By

Hideaki UEMURA

Abstract
We consider the intersection local time of Brownian motion without
renormalization through It6-Wiener expansions. In order to recognize
the existence, we extend the Watanabe space. We also discuss how to
substitute Wiener functionals for parameters of a generalized Wiener
functional. As a consequence a relationship between the unrenormalized
intersection local time and the local time is clarified.

1. Introduction

Intersection local times of Brownian motion assume different aspects ac-
cording to the dimension of Brownian motion. Let {B,} be Brownian motion
on RY and py(t, =) the N-dimensional Gaussian kernel. Then the intersection
local time «(T") of planar Brownian motion is defined by the following limit in

L? sense (cf. Le Gall [8]);
/ / p2(e, By — s)det]> :

—hrr(1)</ /pgth s)dsdt —

It should be noticed that Nualart and Vives [10] showed that the above limit
holds in the Watanabe space Dg for all o < 1/2 (Precise definition of the
Watanabe space is stated in Section 2), and that Imkeller, Perez-Abreu and
Vives [5] proved later v(T') € DY for all a < 1.

In the case where N > 3,
/ /pNEBt s)dsdt],0<€§1}

T
{/ / pn (e, By — Bs)dsdt —
0o Jo

is no longer bounded in L?. In these cases we need the renormalization.

Received March 26, 2002



672 Hideaki Uemura

Imkeller, Perez-Abreu and Vives [5] showed that

1 T t
s ([ [ e ma
/T/tp3(€7Bt —Bs)dsdtD 0<e< 1}
0 0

is bounded in D% for all a < 1/2 if N = 3, and that

T pt
{s(N—?’)/Q (/ / pn (e, By — By)dsdt
0 0
T st
/ / pn(e, By — Bs)dsdt]> 0<e< 1}
0 0

is bounded in DF for all @ < (4—N)/2 if N > 4. Unfortunately the uniqueness
of limit points in weak topology has not yet been known in the case where
N > 3. We should note that Yor [17] showed that the sequence (1.1) converges
in distribution if we replace test functions ps(e,x) by continuous functions of
compact support which converge to delta function.

On the other hand, intersection local times without renormalization have
also been studied. For example, De Faria, Hida, Streit and H. Watanabe [2]
showed that the suitable subtracted counterpart of fET fot pn (g, By — Bg)dsdt
converges in the Hida distribution space as ¢ — 0. To state a little more
precisely, let Znezf I.,(frn) be the It6-Wiener expansion for some functional

—-F

- FE

F, where Z, denotes the totality of non-negative integers. Then its k th sub-
tracted counterpart F(*) means Z|n\>k n(fn), where |n| =n1+---+ny, n =

(n1,...,nn) € ZY. Let L(e f fo pn (g, By — Bs)dsdt. Then De Faria, Hida,
Streit and Watanabe [2] showed that L(®) () has the limit in the Hida distri-
bution space if k > N — 2.

In this paper we give another approach to recognize intersection local times
of Brownian motion without renormalization. For this sake, we extend Wata-
nabe spaces, and then show the existence of the intersection local time as an
element of this extended Watanabe space.

The second aim of this paper is to clarify a relationship between the un-
renormalized intersection local time of Brownian motion and the Brownian
local time. The multidimensional Brownian local times L(¢,x) was introduced
by Imkeller and Weisz [6] as a generalized Wiener functional. Roughly speak-

ing, it holds that
t
L(t,2) = / 5.(B
0

where §, denotes the Dirac delta function at 2 € RY. The unrenormalized
intersection local time of Brownian motion ~(7T') is formally represented as

//%& s — //%& M4
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Therefore rough argument leads the following equations;

(1.2)
T pt T
/ / 6p, (Bs)dsdt — / / 6p, (By)dsdt| = / LW (¢, By)dt,
0 0 0

where L) (t, ) denotes the first subtracted counterpart of the Brownian local
time L(t,z). In the expression above, we substitute By for z of LV (¢, 2). As
LM (t,z) is not a Wiener functional if N > 2, this substitution is invalid in the
pathwise sense.

We discussed in [15] how to substitute Wiener functionals for parameters of
a generalized Wiener functional: Let {®(z);z € RV} be a generalized Wiener
functional parametrized by z € RY and F a non-degenerate Wiener functional
in Malliavin’s sense. Then it should be natural to understand the substitution
O(F) as [pn P(2)0,(F)dx. In the case where @(x) is deterministic, the substi-
tution admits the integral representation as above. In the case where @(x) is a
generalized Wiener functional, however, the product of @(z) and ¢, (F') should
be considered carefully. We apply the Wiener product to the product above, as
is a natural extension of ordinary product. In this paper we show a relationship
(1.2) with some modifications through this definition. Details are discussed in
Sections 4 and 5.

Finally the author would like to express his sincere thanks to Professor
Satoshi Takanobu for his valuable comments.

2. Extended Watanabe space

In this section we introduce the extended Watanabe space. At first we
prepare some notation.

Let (W{, P) be the N-dimensional standard Wiener space: W& = {B; =
(BY,B2,...,BY) : [0,T] — R¥|B, is continuous and By = 0} and P is the
standard Wiener measure. Let n = (ny,ng,...,ny) € Zf, where Z, denotes
the totality of non-negative integers, and set |n| = ny +mns + - + ny. Let
L.(frn) be the n-ple It6-Wiener integral with the kernel function fy,,

fn—fn t15t27"' fn( (1)7" t’ELll)a" (N) t(N))

1 N
f’n / / f t( ) tsLll)a atg )a’tgzjz\\rr )dBtlgl) dB + D

n1

--dBﬁl]N) dB]YN)7

’VlN
where f,, belongs to L?([0,7]™l — R), and is symmetric with respect to

tgj),...,tsfj) for all fixed j (j = 1,...,N). We denote the totality of such
functions by L2 or L2(dt). Io(fo) represents a constant and we also use the
notation fo together with Io(fo). With the notation above, the Watanabe
spaces D3 of square integrable type are defined as follows:

Definition 2.1. Let s € R. We set
(2.1) D**" ={I(f) = To(fo),-- s In(frn)s--.) : fn € Lfl, ne Zﬂ\r’}
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and
(22) Ds=I(f)eD* :IIZ=D (1+n)" Y nlfal®> <oy,
n=0 In|=n

where n! = n;! x -+ x ny! and ||f|| denotes the L?-norm of f.

Note that D3 above coincides with D 4 in Ikeda and Watanabe [4] or D*2
in Nualart [9].

Let w, = wn(tgl),.. t%ll),~~~ ;t(lN) t(N)) be a symmetric function
whose essential infimum is positive. Since L%(wn dt) C L2(dt), the n-ple
Ito-Wiener integral I,(fn) of fn € L2 (wp dt) is well-defined. Therefore we
understand the n-ple It6-Wiener integral I, ( fn) of fn € L2 (w,,!dt) as a gen-
eralized Wiener functional satistying (In,(fn), In(gn))w = n!{ fn, gn )2 for any
gn € L*(wy dt), where (x,%)y denotes the pairing of Wiener functionals and
generalized ones, and (x,*)o the L?(dt)-inner product. Noticing the above, we
extend Watanabe spaces:

Definition 2.2.  Let W = {wpn;n € ZY} be a set of symmetric posi-
tive functions each of whose essential infimum is positive or each of which is
bounded. Let A = {a,;n € Z,} be a sequence of non-negative numbers. We
set

(2.3) D ={I(f) = (Io(fo),-- s In(fn), .- ) ¢ fn € L2 (wn dt), n € Zf}

and

(24) Dy = I(f) €D [1(F)lfy.a = Zan > nlllfalls, <oop,
In|=n

where || fn|w, denotes the L?(wy dt)-norm of f,,. We call this Banach space

(D, || - [lw,.4) the extended Watanabe space.
Let 6 € R. We denote ng)’" and D( 5) instead of Dy} and D{f‘v, respectively,
in the case where wy(t1,...,t,) = (t1 V --- Vi, —t1 A= At,)7%, where

sVt =max{s,t} and sAt = min{s,t}. In this case we use the notation || fr, |5
and || - [|(s),.4 instead of || fn||wn and || - |w,.4, respectively. Moreover we denote
D5y and || - [|s),s instead of D y and [ - [|(4),.a, respectively, in the case where

anf(lJrn) seR.

Remark 1. (1) Assume a, > 0 for all n. Set W™ = {w,,;};n € Z{}

and A™! = {a;';n € Z,}. Then Djj,_ "', can be identified with the dual space
of Di3,.

( ) Unless § = 0, we neglect the terms {I,(fr); |n| = 1} in the definition of
Digr. If 6 = 0, we set (t; — t1)° = 1. Therefore || fn||(0) = || fn]| and Dy = D;

()
hold.
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(3) Settlng ’ll)n(t]_, R 7tn) = (tl VeV tn)—’)’ and an = Cn(l =+ n)p, D{/4V

P)

coincides with Df(f , which appears in Uemura [13], [14].

3. Unrenormalized intersection local times of Brownian motion

Let ¢ € C°(RY), an RN -valued smooth function which and whose deriva-
tives of any orders are bounded, be positive. Suppose [¢(z)dr = 1. For
0 <e <1, set p.(x) =e Ny(z/e). Then we recognize the unrenormalized
intersection local time v(7") through the following theorem;

Theorem 3.1.  Assume N > 2. Let « <2—N/2 and 6 <3— N. Then

there exists v(T) € Dy, satisfying
T st
(3.1) /0 /0 ve(By — B)dsdt — / / we(By — dsdt] ~(T)
ase— 0 in Df,.

Remark 2. In the case where N = 2 we can choose § to be positive.
Therefore our result improves that of Imkeller, Perez-Abreu and Vives [5] men-
tioned in introduction.

Proof. At first we expand the left hand side of (3.1) into the It6-Wiener
chaos;

(3.2)
/ / o (B — dsdt] Z I (f2),

/ / ve(B s)dsdt — E
[n|>1
81N\ ASp 1 n T )
_ H, | —— | pn(t—s,ex
n! /81\/~~~\/sn~/0 (Vt_3> /RN (Vt_s ( )

() dr x 1 (51 V-V s,) dsdt,

where n = |n/, and for x = (21,...,2x5) € RY and n = (ny,...,ny) EZf,

x) = H Hy, (J%)

H,, denoting the Hermite polynomial;

_(_1\nx%/2 d" —z2/2
(3.4) Hy(z) = (—1)"e P , x eR.
x

Hermite polynomials admit the uniform estimate (see, for instance, Imkeller,
Perez-Abreu and Vives [5, Proposition 3]),

sup |Hy(z)e ™ /2| < CVnl(nv 1)~1/4,
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C being a constant independent of n. Taking account of this estimate, we set

_ 1 1/4 T S1NNSn 1 n+N
fn=—=(mV1)" / / < ) 1o (s1V---Vsy,) dsdt,
\/m 81V---VspJ0 \/m [0.7]

where nV1=(n1V1,...,nyV1)and n® = nf x---xng, (n=(ng,...,nn)).
Since | fE| < C1 fn for all n, it is enough to show that

oo

(3.5) S (+n)* > nll|fallts) < oo

n=2 \n\:n

By a slight computation we have

T S1/AASnp, 1 n+N 2
1 stV -V sy,)dsdt
/ /[O,T]“ /slvm\/sn /0 (\/t - 5) o7)(s1 )

($1V-- Vs, —5s1A- /\sn)_‘sdsln-dsn

et ([ [t

X (tQ — 82)_(7L+N)/2d81d82dt1dt2

t1 to
/ / / / ”/2 N/2— 5(t —31)_(n+N)/2d81d82dt2dt1}

2n(n —1)
o1y R

It is easy to see that

2 2T 2-N—§
L=(—— ty — 59)2 N
o) [ [0

T (tl _ Sz)nié(T _ 52)17n/27N/2t}—n/2—N/2
_ (T _ 82)1—7L/2—N/2(t1 _ 82)1+n/2—N/2—6

- tifn/ZfN/2(t1 _ 82)1+7L/2_N/2_6}d82dt1.

If § < 3 — N, then we can easily know that all of four integrals above are
uniformly bounded from above. The second term I, is computed explicitly;

1 1

1
= S TN s 1 na-N2—572 3-N—3

o 1
4—N-§

Therefore we have ) )
1fnlls) < 025(7" v 1)_1/25,

C5 being a constant. Noting that there exists a constant Cs satisfying
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Z (n\/ 1)—1/2 < C3TLN/2_1

In|=n

(see, for instance, Imkeller, Perez-Abreu and Vives [5, Proposition 6]),

o0 (o)
D+ Y nllfalty < CaY (14 n) R

holds with a constant Cy, and the right hand side of the inequality above is
finite if o < 2— N/2. Therefore (3.5) is satisfied if 6 < 3— N and o < 2—2/N,
which completes the proof. O

Remark 3. Letting ¢ — 0 in (3.2) and (3.3) we obtain the chaos rep-
resentation of the unrenormalized intersection local time +(7T') of Brownian
motion;

1 81N\ ASp n+N
T = | —F/=— / / ( > dsdt
< \% QW) ' s1V---Vsy,
1 o 1 ” S1N--ASp n+N
— ) (-1 n/2 / / ( ) dsdt,
( \% 27T> S$1V---Vsy, S
N

n € (2Z4)
0, n ¢ (2Z+)
wheren—1= (n1—1,...,ny—1) and n!! = ny!Ix---xny!l, (n = (ny,...,ny)).

We set (—1)!I = 1.

4. Substitution for parameters of generalized Wiener functionals

We discussed in [15] how to substitute Wiener functionals for parameters
of a generalized Wiener functional. In this section we introduce the substitution
discussed in [15] in a little more mild situation. Our idea is naive. Let {®(x); x €
RN} be a generalized Wiener functional parametrized by = € RY and F a non-
degenerate Wiener functional in Malliavin’s sense. Then, formally, it holds
that

B(F) = /R ()6, (F)da

We define the product @(x)d,(F) through the Wiener multiplication, as is a
natural extension of usual multiplication, and we apply Bochner integral to the
integration above.

To begin with, we define the Wiener product in our situation. For this
sake we introduce the contraction of functions; Let n,m,r € Zf . Suppose
r<nAm. (Forn = (ni,...,ny),m = (my,...,my) € Z¥, n < m means
n; < m; foralli =1,...,N and n Am = (ng Amq,...,ny Amy).) For
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fn € L2 and g, € L2, the contraction f, ®; gm of r indices of f,, and g, is
defined by

N
fn®rgm://fn(*;t§1);atyq)a 7*at(1 )77t5’1]};))
X g (e, 8t Dt e gD )

If r =0, f, ® gm means the tensor product f,, ® gm. We denote the sym-
metrization of fy, ®y gm DY fr®rgm. We define the Wiener product as follows:

Definition 4.1. Let FF =) I,(fn) and G = > I,(gn) belong to D*".
Let W = {wn;n € ZY'} be a set of symmetric positive functions each of whose
essential infimum is positive or each of which is bounded. Suppose

(4.1) = Y r!(f) <z)gp®qu

p+q—2r=n

converges in L2 (wnpdt), where, for n = (ny,...,ny) and k = (k1,...,kx),

n n;
(o) -11()
Then the Wiener product F'o; G € Dyy" of F' and G is defined by

Fo1 G =Y In(hn).

Remark 4. (4.1) is derived from the Wiener product formula:

42 iltnom) = S () (7)o (farm).

- r)\r
Summing up the adequate kernels on the right hand side of (4.2), we obtain
(4.1). We should mention that Wiener product is also investigated in the
framework of white noise analysis. Refer, for instance, Obata [11], Yan [16],
Chung and Chung [1].

Remark 5. In [15] we assumed that the right hand side of (4.1) con-
verges absolutely. In this paper we modify to assume that the right hand side
of (4.1) converges in L2 (wy,dt). From this modification we have that

I (Z r!(f) (:);;p@,,fq) — In(hn)  in D

finite

The definition of the substitution for parameters of a generalized Wiener
functional is as follows;
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Definition 4.2. Let &(z) € D3 for dz-almost all # € RY. Let F be
a non-degenerate smooth Wiener functional in Malliavin’s sense. Let W =
{wn;n € Zf } be a set of symmetric positive functions each of whose essential
infimum is positive or each of which is bounded. Let A = {an;n € Z4;}
be a sequence of non-negative numbers. Suppose that there exists ®(z) ¢y
6,(F) in D53, and moreover that it is Bochner integrable. Then we define the
substitution ¢(F) € Dsy, as follows:

B(F) = / B(z) o1 5, (F)dz.

Remark 6. If we restrict ourselves to the case where w,, = 1 in Defini-
tions 4.1 and 4.2, then we can also define the Wiener product and the substi-
tution in the framework of an abstract Wiener space in the same manner; Let
(B, H, i) be an abstract Wiener space. Let £2(H) be the totality of real val-
ued symmetric n-ple continuous linear functionals on H®" of Hilbert-Schmidt
class. We denote the n-ple Wiener integral of f, € £2(H) by I,(f.). Set
D*°", D3, D;&" and D5y, as those in (2.1), (2.2), (2.3) and (2.4), respectively,
in the case where N = 1. (We replace L2 by £2(H) in (2.1) and apply the
Hilbert-Schmidt norm for || - || in (2.2). Since we assume that w,, = 1, we also
replace L2 (wndt) by £2(H) in (2.3) and apply the Hilbert-Schmidt norm for
II'“ |, in (2.4).) Then the Wiener product and the substitution are defined in
the same way as those in Definitions 4.1 and 4.2. (We understand g, ®, f; as
follows;

oo

gp ®7‘ fq: Z gp(*’hnl""vhm-)fq(*ahnn“~ahn,,.);

Nyyee,Np=1

where {h;}5°, denotes a complete orthonormal system of H.)

5. Local time representation of intersection local time

We study a local time representation of intersection local time v(T") of
Brownian motion. In introduction we lead the relationship (1.2) through the
formal argument. In this section we decompose the right hand side of (1.2) and
then justify each component arisen from this decomposition. In the process of
justification we regret to make some modifications to (1.2). Finally we show a
local time representation. Our assertions are as follows;

Proposition 5.1.  Assume 7 < t and x # 0. Let L(7,z) be the N-
dimensional Brownian local time. Let A1 = {an;n € Zi} be a sequence of
non-negative numbers satisfying

Zan(lln V1M (n v 1) 2log(t/7) ™" < .

Then L(7,x)010,(By) exists in Dé; , and moreover is Bochner integrable ( There-

fore L(t, Bt) can be read as an element of DE‘&).
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Proposition 5.2.  Assume § <2—N and o < 1— N/2. Then L(7, By)
exists in D(og). Moreover LV (1, By) is continuous in D%) with respect to T, and

LV (t—, By) = }_i}% LW (7, By)

is Bochner integrable in D%) with respect to t.

Theorem 5.1. It holds that
T
(5.1) (T) = / LW (t—, B,)dt.
0

To prove Proposition 5.1 we prepare some lemmas. For the uniform es-
timate of Hermite polynomials, Imkeller, Perez-Abreu and Vives [5] obtained
the following lemma. Refer also Szegé [12]:

Lemma 5.1 ([5], [12]). Let 1/4 < 6 < 1/2 and n € N. Then there
exists a constant C which is independent of 6 such that

Hy(z)e™ | < CVnl(n v 1)~ ®-D/12,

sup
P
We note the following estimate concerning Stirling’s formula:
Lemma 5.2.  There ezxist positive constants C1 and Cy satisfying that
C1V2r(n 4 1) 12e™ =1 < nl < Cyv2r(n 4 1)" /271
foralln=0,1,2,....

The lemma above is easily obtained from the following estimate (cf. Lebe-
dev [7, §1.4]):

Lemma 5.3.  Let I'(x) be the gamma function. Set
I(z) = V2ra® 12 {1 4 r(x)}.
Then, for x > 0, it holds that
Ir(z)] <el/1?® 1.

Proof of Proposition 5.1. We first show that L(7,z) o1 05(B:) € D5
Note that L(7,z) and §,(B;) admit the following It6-Wiener chaos expan-

sions (cf. Uemura [13], [14], Imkeller and Weisz [6]);

L(Tv :B) = ZITL( n(T’ $)),

i) = 2 [T(G2) () st x ¢ d(sn) s
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and

= ZIn(gn(ta J)))

onts) = 1 (52) i (2 ) p(te) 1) 5 x L)

where n = |n|. Then we set (formally)

(5.2)
hn(T,t,) = p;q:n Z r! (p j ’“) (q : ’“) pir () @ fain(T,)
- p;q:nz,; p! q'r‘ / < ) ¥ Har (%) P (s:)

x 1pg,5(51) X -+ X 1o 4(8q) ds

1 ptr x
. (ﬁ> Hyeo (ﬂ> Pt )L (sg1) X - X Lp.g(sn),

where p = |p|, ¢ = |g| and r = |r|. We prove that the right hand side of (5.2)
converges in L2 (ds). To this end it is enough to show that

oY (%)ﬁr "Hyir (%)pzv(s,x)

ptg=n r
X 1,5 (81) X -+ X 1o 5(8q) ds

1\**" T
X (%) Hyi o (%> pN(tax)l[O,t](Sq-i-l) XX 1[O,t](5n)

Appealing to Lemma 5.1, it is easy to see that

pq'r'

< 00.

T 1 q+r T
/0 (ﬁ) s"Hgirp <$> PN (8, 2) 15 (51) X -+ X Lo 4(84) ds

pt+r 2
x (%) Hpir <$) PN (t )0, (Sq41) X -+ X Lo 41 (sn)
<CW g+ (p+r)! ((g+r)v1)~EaD2((p 4 )y 1)~ BaD/12

/ Sr/2—q/2—N/2e—B|w\2/81[073](31) X e X 1o 4(84) ds
0

X

X tfr/zfp/2fN/2efﬁ|m\2/tl[o 4

$q+1) X oo X 1[07t](5n)

< Cov/(g+7)/(p+) (t)T/Q <ﬁ)pt—l)/2—N/26—ﬁlx2/t

X / sTUEENIZOL G G (51) % - X Lo ) (84) ds
0
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X 1[O,t](5q+1) X oo X 1[07,5] (Sn)

b

where o € [1/4,1/2), 5 =1/2 — a and p > 0. It is easy to see that

2

(5.3)
T T T
/0 /0 (/0 S_q/z_N/2+p1[0,s](81)"'1[0,5](8q)d81[0,t](8q+1)"'1[O,t](8n))

dsy---dsy,
C
<
p+aq/2
if p> N/2—1/2, C being a positive constant. From (5.2) and (5.3) we have

> XTI Yl 0 0 Sy ()]

pP+qg=n 7

<C{< 1 )pt—N/z —M%f
1 . 1
- Bla|? p

ap3 ﬁzgwqwmpw(;)”2}.

p+g=n

P

Applying Lemma 5.2 we have

L@ (2)"

t
< Cy(q+r+ 1)V2H/204 (g 4 1)P/24T/241/4

r/2
X (r+1)"""Y/2e"P/2ma/2 (%)

r/2 r/2
< Cylg+r+ D)2 (p+r+1)P2 (Z) < Cy(n+r+1)"2 (I)
t t
r/2
< Cy(n+1)"2(r + 1)"/2 (Z)
t

r/2

< Cgm(n + 1)_1/4e"/2(r + 1)”/2 (%) ,

where n = p+¢. Put ¢ = y/t/7 > 1. A slight computation gives

0o n/2
n/2 —r n/2 —x nVvl1 —n/2
g (r+1)"*c §/0 (I1+x)"=c dx+c<210gc e

and

> n/2 —x c
/0 (1+x)Vc %dx < 7(logc)”/2+1p(n/2+1)
C

< O (n/2 + 1)/ 242
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Noting that

ﬂ (% + 1)7"/2 < ﬂ (g + 1)7”/2 - (g + 1)n/2 (n=ny+--+ny),

i=1 i=1

we obtain
2
n! Z Z r! (p :._ T) (q —: T) Ip+r(t, @) Op fqin(T, @)
ptg=n r
2
(5.4) < nl ((Ptry(atr
s Z Z’I’. r r ||gp+'r'(ta (E) Qp fq—&—v‘('ra {E)H
pP+q=n 7

2p
<ot <L> =N =281 1t (4 1) (n v 13V/2 log(t/7) ",
p \Blz|?

which ensures that the right hand side of (5.2) converges in L2 (ds) and more-
over that L(7,x) o1 6,(By) € DE%;.

Since hy(7,t,x) is continuous with respect to & # 0, L(7,x) ¢1 0,(B;) is
continuous in DE%; with respect to x # 0. From (5.4) we easily know that
| L(7, z) 01 02(Bt)l|(0),4, is dz-integrable if p < N/2. Setting N/2 —1/2 < p <
N/2, we find that L(7,z) o1 §,(B:) is Bochner integrable. This completes the
proof. O

For the proof of Proposition 5.2 we note the following formula on Hermite
polynomials. Refer, for instance, Gradshteyn and Ryzhik [3, 7.374].

Lemma 5.4 ([3]). Let {H,} be Hermite polynomials as in (3.4) and
a € R. Then it holds that

o0 2 !
/ H2m+n(ax)Hn(x)e_w2/2 dx =/ 27?2‘"’@((12 —1)™a".
oo m!

We also note the following lemma;

Lemma 5.5. It holds that
(n!)? o n! '

In|=n

We easily have the lemma above from the equation below, so we omit the

proof;
Z (2:>xk = (1—4z)"Y/2,

k>0

Proof of Proposition 5.2. From Proposition 5.1 L(7, B;) admits the It6-
Wiener chaos expansion in DE%;;

L(1,By) = Zln(nn(Tv t),

(T, 1) = ha(7,t,2) dz,
RN
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where hy,(7,t,2) is as in (5.2). We find 1, (7,t) more explicitly. By a slight
computation we have

/RN /oT (%)ﬁr S Harr (%) N(8,2) (0,5 (81) X =+ X Lg 5(8q) ds

1\ T
() o () pxlt Mo oen) % x L) do
:/ s"Lo,5(s1) X =+ X Ljg,51(85¢) X Ljg,1(Sq+1) X -+ X Lo ¢ (5n)
0

x/ (—=1)9703 " pN (5, 2) (= 1)PTTOP T pN (t, ) dz ds

RN

:/ s"Lo,5(s1) X =+ X Ljg,51(8¢) X Ljg,1(Sq+1) X -+ X Lo ¢ (5n)
0

X / (—1)‘7”8;”27"171\;(8, x) - pn(t,x) dxds
RN

T n+2r N
= - -1 % +2an+2T % m
[ Lo () o (2) (g

XpN(tS/(t+$) )d.T,Xl ]( )X--~X1[Q7S](Sq)

X 1[0,t] (Sq+1) -x1 [0 t]( ) ds
N

= PR Y S S —njo—r (M +27)! 5 1\ T
/0( D < 27r(t—|—s)> 2 (n/2+7)! <t+s>

X 1[0,5](81) X o+ X 1[0,5](8,1) X 1[07t](8q+1) X -ee X l[O,t](sn) ds,

where n = p + q. The last equality holds from Lemma 5.4 if n € (2Z,)",
otherwise the above integral vanishes. 0P denotes OF!/QxP' --- 9PN /OzPN if
p=(p1,...,pn). We then consider only 12, (7,t). Noting that

212_r(2n+2r)! s\ _ @) (t+s (2n+1)/2
r! (n+r) \t+s o \1—s ;

(s

we obtain

v —n—r
ol () T ()

X 1j0,5(81) X -+ X 1j0,5(8¢) X Lio,4)(8g+1) X + =+ X L 41(s20) ds

[ () T

X 1[0’5](51) X X 1[0’5] (Sq) X 1[0’t](8q+1) X X 1[0’15](82”) ds.
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It is easy to see that

2n)!
S > (2n) (—1)P1p,5(51) X =+ X L9 4(Sq) X Lo, (Sq1) X -+ X L4 (52n)

S denoting the symmetrization operator. Hence we have

N n
772n(T»t)=(2_nl7i!/0 (ﬁ) (tis) L(s(s1) %+ X1 (5 4 (520n) ds.

Set

1 ¢ 1 N 1 \"

Then a slight computation gives

(5.5)
1725 (£) 175

(NN 2n(2n — 1) y 1 L
o\ 2r 2nn!l) 2n—-0)2n—-1-90) 2n+2-N-§ 2-N-9§
ifn>1and § <2— N. Applying Lemma 5.5 we get

Z (2n)! 17720 ()15

|n|=n

1 N —2 N -2 N —2
. o= A M I 2-N-§
s <ol (1052 (15 052) L (1 Y22,

< ConN/2-242-N=3,

where the last inequality above is due to the following estimate;

o (10552) (1552) - (152}

N—-2 N-2 N -2 N -2
<Cg{—+—+"'+7}<04 2 log n.

Since [n2n(7,1)| < 72n(t), we conclude that L(7, B;) € Dy and is continuous
with respect to 7 in Dy if § <2—N and a <1—N/2. Aslim; ~ no(7,t) = o0
and lim, ~ on (7,t) = (—1)"72n(t), we also have

LY (t—, B,) = llfmt LY (7, By)

in D(Cg), where
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In order to show that L(l)(ﬁ—7 Bt) is continuous with respect to ¢ in D(Og), it is
sufficient to prove

sup ||72n (£)' 72| (5) < o0
0<t<T

for some € > 0. As (fot |f(2)]dx)?(Fe) < tzg(fot |f(z)]tdx)?, it is enough to
estimate |75, (t)|(s), where

. 1 t 1 N(1+e) 1 n(l4¢)
772n(t) = Ty | _
2nn! 0 27‘((t — 3) t—s

X L(s(81) X -+ X 1(g 4 (S2n) ds.

From the same computation as that in (5.5) we obtain

sup |{[zp[|(5) < o0
0<t<T

if e < (2— N —6)/(2n+ N). Therefore L") (t—, B;) is continuous with respect
to t in Df;. The di-integrability of the D) norm of LM (t—, By) is easily
obtained from (5.6). Thus we conclude that L(*)(t—, B;) is Bochner integrable

in D%), which completes the proof. O

Proof of Theorem 5.1. Obviously it holds that

WQHZA (—1)”772”(75) dt.

Therefore we easily obtain (5.1) applying Propositions 5.1 and 5.2, which com-
pletes the proof. O
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