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Bessel-like processes and SDE

By

Ayako Yasue

1. Introduction

The Bessel process (Xt, Px) with the fractional dimension γ > 0 is a dif-
fusion process on [0,∞) determined by the local generator

L =
1
2

(
d2

dx2
+

γ − 1
x

d

dx

)

with the point 0 as

a reflecting boundary if 0 < γ < 2,

an entrance boundary if γ ≥ 2

(cf. [4]). When the dimension γ is a positive integer n, this process is nothing
but the radial part of the n-dimensional Brownian motion. If we consider
the squared process {Yt := X2

t }, then Yt is represented as a pathwise unique
solution of the following stochastic differential equation (SDE):

(1.1) dYt = 2
√

Yt dBt + γdt, Yt ≥ 0 (t ≥ 0),

where {Bt} is an Ft-Brownian motion defined on a standard probability space
(Ω,F , P ; {Ft}t≥0) with a filtration.

Generalizing the SDE (1.1), we first consider the following SDE:

(1.2) dYt = 2
√

Yt dBt + b(Yt)dt, Yt ≥ 0 (t ≥ 0),

where we assume that b is a continuous function on [0,∞) satisfying that

b(0) = γ > 0, |b(y)| ≤ C(1 + y) for some constant C.

Then, applying Yamada-Watanabe’s pathwise uniqueness theorem ([6]) and
Yamada’s comparison theorem ([5]), we can see that for any Y0 = y ≥ 0, the
SDE (1.2) has a pathwise unique solution Yt, which defines a diffusion process
on [0,∞). For this process Yt of (1.2), we define its square root {Xt :=

√
Yt},
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800 Ayako Yasue

which is also a diffusion process on [0,∞). We call the diffusion process (Xt, Px)
the γ-dimensional Bessel-like process.

In this paper we discuss the possibility of describing the process Xt by an
SDE. If we apply the Itô formula formally to u(y) =

√
y, we have the following

equation in terms of stochastic differentials:

(1.3) Xt = X0 + Bt +
∫ t

0

b(X2
s ) − 1

2Xs
ds,

whenever Xt > 0. However, the behavior of Xt when it takes value 0 is delicate
so that the SDE (1.3) does not hold globally in time, generally. It even happens
that Xt is not a semimartingale, in general. Indeed, the second term in the
left-hand side of (1.3) cannot be a global stochastic differential in the case
0 < γ < 1, as we shall see. So our basic problem should be to ask when Xt is
a semimartingale.

Let us define Nt by

(1.4) Xt − X0 =
√

Yt −
√

Y0 = Bt + Nt.

We first confirm that (1.4) coincides with the Fukushima decomposition for
additive functionals of the process (Yt, Py) so that Nt is an additive functional
locally of zero energy.

We next obtain a precise condition on b(x) so that Nt is a process of
bounded variation. Finally we give a new representation of Nt in terms of the
local time in general situation.

2. Results

As in Introduction, let (Yt, Py) be the diffusion process on [0,∞) governed
by the SDE (1.2) and (Xt, Px) be the γ-dimensional Bessel-like process defined
by setting Xt =

√
Yt, where γ = b(0) > 0. The local generator of (Yt, Py) is

given by

(2.1) A = 2y
d2

dy2
+ b(y)

d

dy
.

Let σ0 be the hitting time to 0 of (Yt, Py). It is easy to see that Py(σ0 < ∞) > 0
for every y ≥ 0 if and only if

(2.2)
∫ 1

0

exp
(∫ 1

y

b(z)
2z

dz

)
dy < ∞.

Throughout this paper, we assume this condition (2.2), otherwise, (1.3) is
easily verified. Then the scale function s(y) and the speed measure m(dy) of
the process (Yt, Py) are given by

(2.3) s(x) =
∫ x

0

s′(y)dy, s′(y) = exp
(
−

∫ y

1

b(z)
2z

dz

)
,
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and

(2.4) m(dy) = m′(y)dy = (2ys′(y))−1dy.

The Dirichlet form (E ,F) associated with (Yt, Py) is defined by

E(u, v) =
∫ t

0

u′(x)v′(x)(s′(x))−1dx,

F = {u : E(u, u) < ∞} ∩ L2([0,∞); m).

Theorem 2.1. (i) Nt of (1.4) is a continuous additive functional lo-
cally of zero energy in the sense of Dirichlet form theory.
(ii) If 0 ≤ t1 < t2 satisfy that Xt1 = Xt2 = 0 and Xs > 0 for all s ∈ (t1, t2),

(2.5) Nt2 −Nt1 =
∫ t2−

t1+

b(X2
s ) − 1

2Xs
ds,

where the integral should be read as an improper integral.

Proposition 2.1. The following limits (2.6) (when x > 0) and (2.7)
exist and we call LX

t (x) and �t the local time at x and the local time at 0 of the
process (Xt, Px), respectively.

(2.6) LX
t (x) = lim

ε→0

1
2ε

∫ t

0

I[x−ε,x+ε](Xs)dx,

and

(2.7) �t = lim
ε→0

2γ

εγK(ε)

∫ t

0

I[0,ε](Xs)dx.

Here K(x) is a slowly varying function defined by

(2.8) K(x) = exp
∫ x

1

b(y2) − γ

y
dy.

Lt(x) is continuous in (t, x) ∈ [0,∞) × (0,∞) Px-a.s. and satisfies that

(2.9)
∫ t

0

f(Xs)ds =
∫ ∞

0

f(x)LX
t (x)dx,

for any bounded Borel function f(x) on [0,∞). Furthermore, it holds that for
any 0 < α < γ/2

(2.10) LX
t (x) − 1

2
xγ−1K(x) �t = o(xα) (x ↘ 0).

Theorem 2.2. Suppose that

(2.11)
∫ 1

0

|b(y2) − 1|
y

exp
(∫ y

1

b(z2) − 1
z

dz

)
dy < ∞.
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Then Nt is of bounded variation locally in t ≥ 0 Px-almost surely.
Moreover, it holds that

∫ t

0
|b(X2

s )−1|
Xs

ds < ∞ Px-a.s. and

(2.12) Xt = x + Bt +
∫ t

0

b(X2
s ) − 1

2Xs
ds + c �t,

where c is given by the following limit which is shown to exist :

(2.13) c = lim
ε↘0

εγ−1K(ε)
4

∈ [0,∞).

We remark that if γ > 1, the condition (2.11) is satisfied and c = 0. In the
case γ = 1, under the condition (2.11), c > 0 holds if and only if

∫ 1

0+
b(y2)−1

y dy
exists.

Theorem 2.3. Suppose that

(2.14)
∫ 1

0

|b(y2) − 1|
y

exp
(∫ y

1

b(z2) − 1
z

dz

)
dy = ∞.

Then Nt is of unbounded variation in each bounded interval [0, t] P0-almost
surely.

Next we would like to describe the Bessel-like process (Xt, Px) by another
kind of stochastic equation involving the local times LX

t (x) and �t. In the
situation of Theorem 2.3, it follows from (2.9) that the SDE (2.12) can be
rewritten as

(2.15) Xt = X0 + Bt +
∫ Mt

0

b(x2) − 1
2x

LX
t (x)dx + c �t,

where

(2.16) Mt = sup
0≤s≤t

Xs.

We introduce a renormalized local time L̃X
t (x) defined by

(2.17) L̃X
t (x) = LX

t (x) − 1
2
γxγ−1K(x)�t.

Then the equation (2.15) can be written as

(2.18) Xt = X0 + Bt +
∫ Mt

0

b(x2) − 1
2x

L̃X
t (x)dx + F (Mt)�t,

where

(2.19) F (x) =
1
4

∫ x

0

(b(y2) − 1)γyγ−2K(y)dy + c.
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It is easy to see by integration by parts that

(2.20) F (x) =
1
4
xγ−1K(x) (x > 0).

We have thus rewritten the SDE (2.12) in the form (2.18) with F given
by (2.20) when the condition (2.11) holds, that is, when the process Nt is of
bounded variation. If we note (2.10), however, the integral in the right-hand
side of (2.18) is convergent, so that the right-hand side of (2.18) is meaningful,
even in the case that the condition (2.14) holds. And, indeed, we have the
following theorem which holds for all cases of Bessel-like processes.

Theorem 2.4. Xt satisfies the following equation:

(2.21) Xt = X0 + Bt +
∫ Mt

0

b(x2) − 1
2x

L̃X
t (x)dx + F (Mt)�t,

where F (x) is given by (2.20).

3. Proofs

Let (Yt, Py) be the diffusion process associated with the SDE (1.4), of
which local generator is (2.1).

Lemma 3.1.

(3.1)
∫ t

0

I{0}(Ys)ds = 0.

Proof. Define a sequence of functions {fn} by

f ′
n(y) = ((−ny + 1) ∨ 0) ∧ 1, fn(y) =

∫ y

0

f ′
n(z)dz.

Since Afn(y) ≥ 2y
(
−nI[0, 1

n ](y)
)

+ b(0)I{0}(y), for sufficiently large n, we have

Ey[fn(Yn) − fn(Y0)] =
∫ t

0

Ey[Afn(Ys)]ds

≥
∫ t

0

Ey

[
−2nYsI[0, 1

n ](Ys)
]
ds + b(0)

∫ t

0

Ey[I{0}(Ys)]ds,

which implies (3.1) with n → ∞.

For the scale function s(y) of (2.3) we denote

a(y) = 4ys′(y)2 (y ≥ 0).
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Lemma 3.2. Let Yt be the solution of (1.2) with Y0 = y ≥ 0. Then
there exists a reflected Brownian motion Wt starting at s(y) such that

(3.2) Yt = s−1(WAt
) (t ≥ 0),

where

At =
∫ t

0

a(Ys)ds.

Proof. First we claim that

(3.3) s(Yt) − s(y) =
∫ t

0

s′(Ys)2
√

YsdBs + ϕt,

where ϕt increases only at time t with Yt = 0.
In order to see this, let us define sn(y) by

sn(y) =
∫ y

0

s′
(

z ∨ 1
n

)
dz.

Since Asn(y) = s′( 1
n )I[0, 1

n ](y)b(y), by the Itô formula

sn(Yt) − sn(y) =
∫ t

0

s′
(

Ys ∨ 1
n

)
2
√

YsdBs + s′
(

1
n

) ∫ t

0

I[0, 1
n ](Ys)b(Ys)ds.

Noting that the left-hand side converges to s(Yt) − s(y), the first term of the
right-hand side is represented using some Brownian motion B̃t as

∫ t

0

s′
(

Ys ∨ 1
n

)
2
√

YsdBs = B̃R t
0 s′(Ys∨ 1

n )24Ysds,

and the last term is nonnegative and non-increasing in n, we see that
∫ t

0

a(Ys)ds < ∞,

and (3.3) is valid. Next, we set

At =
∫ t

0

a(Ys)ds.

Since At is strictly increasing by Lemma 3.1, for 0 ≤ t < A∞

Bt =
∫ A−1

t

0

s′(Ys)2
√

YsdBs

is a Brownian motion up to A∞. Thus (Wt = s(YA−1
t

), �̄t = ϕA−1
t

) solves the
Skorohod equation for the reflected Brownian motion up to A∞;

Wt = s(y) + Bt + �̄t (0 ≤ t ≤ A∞).
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Hence Wt is a reflected Brownian motion on [0,∞) starting at s(y), which yields
the conclusion.

3.1. Proof of Theorem 2.1
For u ∈ Floc the additive functional A[u] is defined by

A
[u]
t = u(Yt) − u(Y0).

By the Fukushima decomposition ([2]), we have the following: For any quasi-
continuous function u ∈ Floc, A[u] can be decomposed uniquely as

(3.4) A
[u]
t = M

[u]
t + N

[u]
t ,

where M [u] is a martingale additive functional locally of finite energy and N [u]

is an additive functional locally of zero energy.
Let u(y) =

√
y. Since u ∈ Floc, we have the decomposition (3.4) with this

u, so that it suffices to show that for each R > 0

(3.5) M
[u]
t∧τR

= Bt∧τR
,

where τR stands for the hitting time to R > 0 of (Yt, Py).
For n ≥ 1 define un(y) by

un(0) = 0, u′
n(y) = u′

(
1
n
∨ y

)
=

1

2
√

1
n ∨ y

.

Applying Itô formula, we obtain

(3.6) M
[un]
t =

∫ t

0

√
Ys√

1
n ∨ Ys

dBs,

and

(3.7) N
[un]
t =

∫ t

0

I[ 1
n ,∞)(Ys)

b(Ys) − 1
2
√

Ys

ds +
∫ t

0

I[0, 1
n ](Ys)

√
n

2
b(Ys)ds.

We choose a ρR ∈ C∞
0 ([0,∞)) satisfying

ρR(y) = 1 (0 ≤ y ≤ 1).

Then it holds that uR = u · ρR, uR
n = un · ρR ∈ F and

lim
n→∞ E(uR

n − uR, uR
n − uR) = 0,

which implies

lim
n→∞ Em(|M [uR

n ]
t∧τR

− M
[uR]
t∧τR

|2) = 0.
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On the other hand, it follows from (3.6) that

lim
n→∞Em(|M [uR

n ]
t∧τR

− Bt∧τR
|2) = 0.

Thus we obtain

M
[u·ρR]
t∧τR

= Bt∧τR
,

yielding (3.5).
For (ii), let any t′1, t

′
2 with t1 < t′1 < t′2 < t2 be fixed. Since mins∈[t′1,t′2] Ys >

0, a simple use of Itô formula to (1.2) with u(y) =
√

y gives

Xt′2 − Xt′1 = Bt′2 − Bt′1 +
∫ t′2

t′1

b(X2
s ) − 1
Xs

ds,

so that it holds

Nt′2 −Nt′1 =
∫ t′2

t′1

b(X2
s ) − 1
Xs

ds.

Since Nt is continuous, letting t1 ↘ t1, t2 ↗ t2, we obtain (2.5).

3.2. Proof of Proposition 2.2
Let LW

t (y) be the local time of the reflected Brownian motion Wt on [0,∞)
starting at s(y), that is jointly continuous in (t, x) ∈ [0,∞)×[0,∞) and satisfies
that

(3.8)
∫ t

0

f(Ws)ds =
∫ ∞

0

f(x)LW
t (x)dx

for every bounded Borel function f(x) on [0,∞). Since Xt =
√

Yt, by Lemma
3.2 and (3.8)

∫ t

0

f(Xs)ds =
∫ t

0

f
(√

s−1(WAs
)
)

ds

=
∫ At

0

f(
√

s−1(Wr))
dr

a(s−1(Wr))

=
∫ ∞

0

f(
√

s−1(z))
1

a(s−1(z))
LW

At
(z)dz

=
∫ ∞

0

f(x)LW
At

(s(x2))
2xs′(x2)
a(x2)

dx.

Note that by (2.8)

2xs′(x2)
a(x2)

=
xγ−1

2
K(x),

so that, setting

(3.9) LX
t (x) = LW

At
(s(x2))

xγ−1

2
K(x), �t = LW

At
(0),
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we see that (2.9) is valid. Furthermore, observe that

LX
t (x) − xγ−1

2
K(x)�t = (LW

At
(s(x2)) − LW

At
(0))

xγ−1

2
K(x)

and use a fact on the Brownian local time that for any 0 < η < 1/2,

LW
At

(y) − �t = o(yη) (y → 0).

Then we obtain (2.10).
Finally (2.6) and (2.7) follow from (2.9) and (3.9).

3.3. Proof of Theorem 2.3
Recalling (3.7), we set

(3.10) Nn,1
t =

∫ t

0

I[ 1√
n

,∞)(Xs)
b(X2

s ) − 1
2Xs

ds,

and

(3.11) Nn,2
t =

∫ t

0

I[0, 1√
n

](Xs)
√

n

2
b(X2

s )ds.

Note that the condition (2.11) can be expressed as
∫ 1

0

|b(x2) − 1|xγ−2K(y)dy < ∞.

Using this, Lemma 3.1 and (2.10) of Proposition 2.1, we have
∫ t

0

|b(X2
s ) − 1|
Xs

ds =
∫ ∞

0

LX
t (x)

|b(x2) − 1|
x

ds < ∞,

and

lim
n→∞Nn,1

t =
∫ t

0

b(X2
s ) − 1

2Xs
ds.

Moreover, noting that
∫ 1√

n

0

b(x2)xγ−1K(x)dx ∼ n− γ
2 K

(
1√
n

)
(n → ∞),

we obtain

lim
n→∞Nn,2

t = lim
n→∞

1
4
n

(1−γ)
2 K

(
1√
n

)
�t = c �t.

3.4. Proof of Theorem 2.4
Note that the condition (2.14) can be expressed as

∫ 1

0

|b(x2) − 1|xγ−2K(x)dx = ∞.
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Denote the total variation of {Ns}0≤s≤t by Vt(N ). By Theorem 2.1 we see that

Vt(N ) ≥
∫ t

0

I(Xs>0)
|b(X2

s ) − 1|
2Xs

ds.

Thus, by (2.10)
∫ t

0

I(Xs>0)
|b(X2

s ) − 1|
2Xs

ds =
∫ ∞

0

|b(x2) − 1|
2x

LX
t (x)dx

=
1
4

∫ Mt

0

|b(x2) − 1|xγ−2K(x)dx �t + O(1)

= ∞,

which shows Vt(N ) = ∞.

3.5. Proof of Theorem 2.5
Note that Nn

t = N [un]
t of (3.7) satisfies

Nn
t =

√
n

2

∫ 1√
n

0

b(x2)L̃X
t (x)dx +

√
n

4

∫ 1√
n

0

b(x2)xγ−1K(x)dx �t

+
∫ Mt

1√
n

b(x2) − 1
2x

L̃X
t (x)dx +

1
4

∫ Mt

1√
n

(b(x2) − 1)xγ−2K(x)dx �t.

Using (2.10), we see that the first term vanishes and the third term converges
as n → ∞ to ∫ Mt

0

b(x2) − 1
2x

L̃X
t (x)dx.

For the remaining two terms, noting that

(yγK(y))′ = b(y2)yγ−1K(y), (yγ−1K(y))′ = yγ−2(b(y2) − 1)K(y),

we have

√
n

∫ 1√
n

0

b(x2)xγ−1K(x)dx +
∫ Mt

1√
n

(b(x2) − 1)xγ−2K(x)dx

= Mγ−1
t K(Mt).

Hence

lim
n→∞Nn

t =
∫ Mt

0

b(x2) − 1
2x

L̃X
t (x)dx +

1
4
Mγ−1

t K(Mt) �t,

completing the proof of Theorem 2.5.
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