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A partial horseshoe structure at an
indeterminate point of birational mapping

By

Tomoko Shinohara
∗

Abstract

In this paper, we show that, for some birational mapping F of P2

with an indeterminate point I1, there exists a partial horseshoe structure
at I1 and periodic points of F accumulate at I1. This is a new dynam-
ical model that gives a chaotic phenomenon in a neighbourhood of the
indeterminate point I1 at which F is not continuous.

1. Introduction

An indeterminate point of a rational mapping on the 2-dimensional com-
plex projective space P2 naturally appears in the dynamics of the Newton
method at a multiple root of a system of equations (cf. [3], [9]). Here let us
recall briefly this. Let R = (P,Q) be polynomials of variable (x, y) ∈ C2.
Consider the solution of the system of equations R(x, y) = (0, 0). The New-
ton method for R(x, y) = (0, 0) is defined by rational mapping F (x, y) =
(x, y) − (JR(x,y))−1 ◦ R(x, y), where (JR(x,y))−1 is the inverse of Jacobian
matrix of R at (x, y). If (x0, y0) is a multiple root of R(x, y) = (0, 0), that
is, R(x0, y0) = (0, 0) and det(JR(x0,y0)) = 0, then it is an indeterminate point
of F . Thus, to analyze local dynamical structure at an indeterminate point is
closely related to the Newton method for a multiple root, and this is one of
important problems on dynamical system of rational mappings of P2.

The investigation of the local dynamical structure at an indeterminate
point originated with Y. Yamagishi [11], [12]; in which he constructed uncount-
ably many stable manifolds of an indeterminate point. In view of his results, a
chaotic phenomenon occurs in a neighbourhood of the indeterminate point at
which the mapping is not continuous.

In this paper, we study exclusively the following birational mapping F of
P2 having the form:
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(∗) F : [x : y : t] �→ [x3 + axt2 − yt2 : bx2t : bxt2] with |a| > 1, b �= 0,

and give a partial horseshoe structure at its indeterminate point. Here, it should
be remarked that the horseshoe structure is known as a typical model which
induces a chaotic behavior (see [8]).

In order to state our Main Theorem, let us introduce some notations and
terminology. Let fi(x, y, t) (i = 0, 1, 2) be homogeneous polynomials of degree
d. Then by setting

F ([x : y : t]) = [f0 : f1 : f2] and F̂ (x, y, t) = (f0, f1, f2),

we have a rational mapping F on P2 and a polynomial mapping F̂ on C3

with π ◦ F̂ = F ◦ π on C3 outside some proper analytic sets, where π : C3 \
{(0, 0, 0)} → P2 is the canonical projection. A point p ∈ P2 is said to be
an indeterminate point of F if F̂ (p̂) = (0, 0, 0) for some point p̂ ∈ π−1(p).
In general, if p is an indeterminate point, then F is not continuous at p and⋂

Up
F (Up \ {p}) is not a singleton, where the intersection is taken over all open

neighborhoods Up of p. A rational mapping F of P2 is said to be birational if
there exists another rational mapping G of P2 such that F ◦G = id and G◦F =
id on P2 except some proper algebraic sets, where id is the identity mapping.
In such a case, G is called the inverse mapping of F .

Let us now return to our mapping F appearing in (∗). Then it is easy to
see that F has the inverse mapping G written in the form

G([x : y : t]) = [yt2 : y3 − bxyt+ ayt2 : t3].

Moreover, a straightforward computation shows that I1 := [0 : 0 : 1] is an
indeterminate point of F , G(I1) = I1 and the eigenvalues of the JGI1 are 0
and a. Thus, in order to analyse the dynamical structure of F near the point
I1, it suffices to consider the behavior of G near the fixed point I1.

Let U be an arbitrary small neighbourhood of I1. Then, noting that I1 is
a saddle fixed point of G by our assumption |a| > 1, we define a local stable set
W s

loc(I1) and the stable set W s(I1) of I1 by

W s
loc(I1) =

{
q ∈ U

∣∣∣ Gn(q) → I1

}
and W s(I1) =

∞⋃
n≥0

G−n(W s
loc(I1)),

respectively, and a local unstable set Wu
loc(I1) and the unstable set Wu(I1) of

I1 by

Wu
loc(I1) =

{
q ∈ U

∣∣∣ Fn(q) → I1

}
∪ {I1} and Wu(I1) =

∞⋃
n≥0

Gn(Wu
loc(I1)),

respectively, where {Fn} and {Gn} are, of course, the iteration of F and G,
respectively. It is remarked here that the definition of (local) unstable set is
slightly different from usual one (cf. [5, §6.4]), because F is not continuous at
I1. It then follows from the stable manifold theorem (see Theorem 3.2) that
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Wu(I1) �= ∅ and W s(I1) �= ∅. If W s(I1) and Wu(I1) intersect at some point
q with q �= I1, then q is said to be a homoclinic point. Moreover, q is said to
be a transversal homoclinic point if TqC2 is the direct sum of TqW

s(I1) and
TqW

u(I1): TqC2 = TqW
s(I1) ⊕ TqW

u(I1). Recall that, in general, if a Cr

diffeomorphism H on a differentiable manifold has a saddle fixed point with
a transversal homoclinic point, then some iteration Hk of H has a horseshoe
structure and its dynamical structure is described by symbolic dynamics (see
[8]). Notice that our G is not locally diffeomorphic near the point I1, so that
the general theory cannot be applied directly to our case. However, observing
the orbits of critical sets of G carefully, we can obtain a similar conclusion in
our situation. In fact, introducing the sets

Σ̂ :=
{
s = (. . . , si−1, si, si+1, . . .)

∣∣ si = 0, 1 for all i ∈ Z
}

and

E :=
{
s = (. . . , sn−1, sn, 0, 0, . . .) ∈ Σ̂

∣∣ n ∈ Z
}
,

we can prove the following:

Main Theorem. Let F : P2 → P2 be the birational mapping as in (∗).
Then, we have the following:
(1) There exists a homoclinic point q0 of I1.
(2) Moreover, suppose that q0 is a transversal homoclinic point with

q0 ∈ {[x : y : 1] ∈ P2
∣∣ y = 0

} \ {[a : 0 : b]}.

Then there exist a positive integer k, a set X ⊂ P2 and a homeomorphism
Ψ̂ : X → Σ̂ \ E such that X is invariant under G and σ ◦ Ψ̂ = Ψ̂ ◦ Gk on X,
where σ is the shift mapping on Σ̂ \ E.
In particular, periodic points of F accumulate at its indeterminate point I1.

As to the topological nature of X, see the remark in Section 4.
This paper is organized as follows. In Section 2, we collect some prelimi-

nary facts. Sections 3 and 4 are devoted to the proof of Main Theorem. In the
final Section 5, we give an example of the parameter (a, b) such that G has a
homoclinic point q0 ∈ {[x : y : 1] ∈ P2

∣∣ y = 0
} \ {[a : 0 : b]}. It goes without

saying that there are many rational mappings with the same point I1 as one of
their indeterminate points; and therefore, there exists the horseshoe structure
at I1. For the concrete description of such a mapping, see [10].

2. Fundamental properties of mappings F and G

In this section, we fix the notation which will be used throughout this
paper, and collect some preliminary facts on our F and G. First of all, we fix
an homogeneous coordinate system [x : y : t] in P2 once and for all; and we
shall often use the natural identification given by

C2 =
{

[x : y : t] ∈ P2
∣∣∣ t �= 0

}
and (x, y) = [x : y : 1].
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If z0 ∈ C and r > 0, we set, as usual,

∆r(z0) =
{
z ∈ C

∣∣ |z − z0| < r
}
, ∆r(z0)∗ = ∆r(z0) \ {z0}, ∆r = ∆r(0),

∆2
r(z0) = ∆r(z0) × ∆r(z0) and ∆2

r = ∆2
r(0).

We define the canonical projections

πi : C2 → C (i = 1, 2) by π1(x, y) = x and π2(x, y) = y,

and also define three points Ij and three curves Cj in P2 by

I1 = [0 : 0 : 1], I2 = [0 : 1 : 0], I3 = [1 : 0 : 0];

and C1 =
{

[x : y : t] ∈ P2
∣∣∣ x = 0

}
, C2 =

{
[x : y : t] ∈ P2

∣∣∣ t = 0
}
,

C3 =
{

[x : y : t] ∈ P2
∣∣∣ y = 0

}
.

Finally, we denote by IF , IG the sets of indeterminate points of F and G,
respectively. The verification of the following proposition is straightforward;
therefore, the proof is left to the reader.

Proposition 2.1. With the notation above, we have:
(1) IF = {I1, I2} and IG = {I3};
(2) IF =

⋃∞
j=0 F

−j(IF ) and IG =
⋃∞

j=0G
−j(IG);

(3) F
(
C1 ∪C2 \ {IF }

)
= {I3}, G

(
C2 \ {IG}

)
= {I2} and G

(
C3 \ {IG}

)
= {I1};

(4) F : P2\{C1∪C2} → P2\{C2∪C3} and G : P2\{C2∪C3} → P2\{C1∪C2}
are biholomorphic mappings.

3. Proof of (1) of Main Theorem

Throughout this section, we concentrate our attention on dynamics of G in
the chart C2. Observe that I1 = (0, 0) and the restriction of G to C2, which we
denote also by G, is written as G(x, y) = (y, y3 − bxy + ay). As an immediate
consequence of Proposition 2.1, (4), we have the following:

Proposition 3.1. Let n ≥ 1. Then
(1) C3 \ IG ⊂W s(I1);
(2) Gn

(⋃n−1
k=0 G

−k(C3)
)

= {I1};
(3) Gn : C2 \⋃n−1

k=0 G
−k(C3) → C2 \ C1 is a biholomorphic mapping.

In order to prove the assertion (1) of Main Theorem, we assume the con-
trary that

(3.1) there is no homoclinic point of I1.

For the proof, we need the following well-known result:
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Theorem 3.2 ([5, Theorem 6.4.3]). Let G be a holomorphic mapping
from an open subset U of C2 to C2 with a fixed point p ∈ U . Let α, β be
the eigenvalues of JGp and suppose that |β| < 1 < |α|. Then there exists a
holomorphic mapping H̃ : ∆ρ → U such that

(3.2) H̃(0) = p and G ◦ H̃(z) = H̃(αz) for z, αz ∈ ∆ρ.

In particular, we have H̃(∆ρ) ⊂Wu(p).

Applying Theorem 3.2 to our G, we obtain an entire holomorphic mapping
H : C → C2 satisfying the following:

(3.3) H satisfies (3.2) and is injective on ∆ρ and JH0 = t(1, a).

Here, t(1, a) is the transpose of (1, a). Indeed, let us define the holomorphic
mappings P, G̃ : C2 → C2 by

P (x, y) = (x+ y, ax), G̃ = P−1 ◦G ◦ P.
Then it is easy to see that

G̃(I1) = I1 and JG̃I1 =
(
a 0
0 0

)
.

Hence, by applying Theorem 3.2 to G̃ and I1, we obtain a holomorphic mapping
H̃ : ∆ρ → C2 satisfying (3.2) for G̃ and H̃ such that H̃(0) = I1 and JH̃0 =
t(1, 0) (for detail, see the proof of [5, Theorem 6.4.3]). Consider the composition
H0 := P ◦ H̃ : ∆ρ → C2. Owing to the fact (3.2), one can now define an entire
holomorphic mapping H by setting

H(z) = Gn ◦H0(z/an) for z ∈ ∆|a|nρ, n = 1, 2, 3, . . . .

Then, it is easy to see that H satisfies the conditions required in (3.3).

Proposition 3.3. (1) H(z) ∈Wu(I1) for z ∈ C.
(2) If H(∆ρ) ∩

⋃∞
n≥0G

−n(C3 \ IG) = {I1}, then H is injective on C.

Proof. (1) is a direct consequence of the definition of H and (3.2). Since
H is injective on ∆ρ, the assertion (2) follows from Proposition 3.1.

Here, if H is not injective on C, then there exists a homoclinic point by
Propositions 3.1 and 3.3. Therefore, recalling our assumption (3.1), we assume
in the reminder of this section that

(3.4) H is injective on C.

Set

P1(x, y) = y2 − bx+ a, P2(x, y) = y2(P1)2 − by + a, and

Σi =
{

(x, y) ∈ C2
∣∣∣ Pi(x, y) = 0

}
(i = 1, 2).
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It should be remarked here that Σi are irreducible components of the algebraic
sets G−i(C3) and Σi ⊂ W s(I1). Next, we write H = (h1, h2) by coordinates.
Then, both functions h1 and h2 are non-constant by (3.3). In the following
part of the proof of Main Theorem, (1), we will go along the same line as in
Jin [4, §2].

Lemma 3.4. At least one of h1 or h2 is a non-constant transcendental
entire function on C.

Proof. By the assumption (3.1), one can see that H(C) ∩ Σi = ∅ for
i = 1, 2. So, Pi ◦ H are non-zero constants or transcendental entire functions
with the exceptional value 0. Suppose that Pi◦H are constants, say, Pi◦H ≡ αi

for some αi ∈ C∗. Then

h2(z)2α2
1 − bh2(z) + a = α2 for all z ∈ C,

which contradicts the fact that h2 is a non-constant holomorphic function.
Thus, at least one of Pi ◦H is a transcendental entire function, as desired.

Without loss of generality, we may assume that

(3.5) h2 is a non-constant transcendental entire function.

Lemma 3.5. H(C) is not contained in any algebraic hypersurface in
C2.

Proof. Assume the contrary. Then, there exists a non-trivial polynomial
Q(x, y) such that

H(C) ⊂
{

(x, y) ∈ C2
∣∣∣ Q(x, y) = 0

}
.

It should be remarked here thatQ is a genuine two variables polynomial because
h1 and h2 are non-constant holomorphic functions. From (3.5) there are some
constant γ and infinitely many distinct points zν in C such that h2(zν) = γ
for all ν. Set δν = h1(zν). Then, H(zν) = (δν , γ) are infinitely many distinct
points by (3.4). On the other hand, Q(δν , γ) = Q ◦H(zν) = 0 for all ν. This
contradicts the fact that Q is a genuine two variable polynomial.

Let us return to the proof of (1) of Main Theorem. Set

P3(x, y) = {P2(x, y)}2 − bP1(x, y) + a, Σ3 =
{
(x, y) ∈ C2

∣∣∣ P3(x, y) = 0
}
.

Then, a simple computation shows that Σ3 ⊂ G−3(C3). Here, we assert
that polynomials Pi (i = 1, 2, 3) are non-constant, irreducible and relatively
prime, after rechoosing some irreducible components in place of Pi (i = 2, 3),
if necessary. Indeed, this follows from the assumptions that |a| > 1 and
b �= 0 and from the facts that (a/b, 0) ∈ Σ1, (a/b − a/b2, 0) ∈ Σ3 and
Σ2 ∩ {(x, y) ∈ C2|y = 0} = ∅.

Finally, recall the following:
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Theorem 3.6 ([6, Theorem 5.6], [7]). Let H : C → C2 be an entire
holomorphic mapping. Assume that the set of exceptional values of H contains
algebraic surfaces Σi =

{
(x, y) ∈ C2

∣∣∣ Pi(x, y) = 0
}

(i = 1, 2, 3), where Pi are
non-constant, irreducible and relatively prime polynomials. Then there exists
some polynomial Q(x, y) such that H(C) ⊂

{
(x, y) ∈ C2

∣∣∣ Q(x, y) = 0
}
.

Applying this theorem to our H and Σi, we conclude that H(C) is con-
tained in some algebraic surface. But this contradicts the fact in Lemma 3.5;
completing the proof of (1) in Main Theorem.

4. Proof of (2) of Main Theorem

We retain the terminology and notation in the previous section. Our con-
struction of a horseshoe mapping on a neighborhood of I1 is based on the
arguments in [5, §7.4] developed in the case of Hénon mapping. The proof will
be divided into four steps. Here, we need a few preparations. Since h2(0) = 0
and h′2(0) = a by (3.3), the inverse of h2 can be defined on some small disk
∆R, and H(∆ρ) can be locally described as

H(∆ρ) =
{
(x, y) ∈ C2

∣∣∣ x = h1 ◦ h−1
2 (y), y ∈ ∆R

}
.

Define the mappings φu : ∆R → C and Φ : ∆2
R → C2 by

φu(y) = h1 ◦ h−1
2 (y) and Φ(x, y) = (x− φu(y), y),

respectively. Clearly, Φ is a biholomorphic mapping and Φ(I1) = I1. Thus, the
inverse mapping Ψ = Φ−1 can be defined on ∆2

R′ for some R′ with 0 < R′ < R.
In what follows, the index j will run over 1, 2, . . . and the indices i and ij will
run over 0, 1, unless specified otherwise.

Step 1. The purpose of this step is to construct some fundamental do-
mains Vi and Wi on which a horseshoe mapping is defined. We now proceed
to define the vertical set lξ and the mapping Ψξ : ∆R′ → C2 for ξ ∈ ∆R′ by
setting

lξ =
{

(x, y) ∈ ∆2
R′

∣∣∣ x = ξ
}

and Ψξ(y) = Ψ(ξ, y), y ∈ ∆R′ .

Clearly, Ψξ is injective on ∆R′ and Ψ0(∆R′) = H(∆ρ). Set γξ = Ψ(lξ) for
ξ ∈ ∆R′ . By (1) of Main Theorem, there exists a homoclinic point p0 ∈
Wu(I1) ∩W s(I1) \ {I1}. Without loss of generality, we may assume that p0 ∈
H(∆ρ); accordingly, one can choose a point (0, y0) ∈ l0 such that Ψ0(y0) = p0.
By the argument in Section 3, we know that

{
H(∆ρ)∩

∞⋃
n≥0

G−n(C3 \IG)
}
\{I1} �= ∅, G(C3 \IG) = {I1}, C3 \IG ⊂W s(I1).
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Hence, there is a unique positive integer n0 such that

Gn0(p0) ∈Wu(I1) ∩
[
C3 \ {I1, I3}

]
.

Then, putting q0 = Gn0(p0), we have the following:

Lemma 4.1. There is a positive constant r2 such that

Gn0 ◦ Ψ0

(
∆r2(y0)

) ∩ C3 =
{
q0
}
.

Proof. If such an r2 does not exist, then Gn0 ◦ Ψ0(∆R′) ⊂ C3 by the
identity theorem. Then, H(∆ρ) ⊂ Gn0 ◦H(∆ρ) = Gn0 ◦ Ψ0(∆R′) ⊂ C3. This
contradicts the fact that h2 is non-constant by (3.3); completing the proof.

From now on, we assume that

(4.1) q0 is a transverse homoclinic point of I1 and q0 �= (a/b, 0).

Put q0 = (x0, 0), so that x0 �= a/b. From Proposition 3.1, (2), (3) and Lemma
4.1, Gn0 ◦Ψ0 : ∆r2(y0) → C2 is an injective holomorphic mapping and γ1

0,n0
=

Gn0 ◦Ψ0(∆r2(y0)) � q0. Moreover, Tq0γ
1
0,n0

⊕Tq0C3 = Tq0C
2 from the transver-

sality condition. Hence, there exists a tangent vector v = (α, β) ∈ Tq0γ
1
0,n0

with
β �= 0; and accordingly,

JGq0(v) =
(

0 1
0 −bx0 + a

)
v =

(
β

(−bx0 + a)β

)
�=
(

0
0

)
.

This implies that, for some r > 0, γ1
0,n0+1 is a one-dimensional submanifold of

C2 given by the graph of the holomorphic function x = (φ1
0)n0+1(y) on ∆r. On

the other hand, it is easy to see that the family of functions {π2◦Gn0 ◦Ψξ}ξ∈∆R′
converges to the function π2 ◦Gn0 ◦Ψ0 as |ξ| → 0, uniformly on every compact
subset of ∆r2(y0). Together with Lemma 4.1, Hurwitz’s theorem guarantees
that:

(4.2)

{
There exists a constant r1 with 0 < r1 < R′ such that, for each
ξ ∈ ∆r1 , π2 ◦Gn0 ◦ Ψξ(y) has a unique zero point yξ ∈ ∆r2(y0).

Let us put

V0 = ∆r1 × ∆r2 , V1 = ∆r1 × ∆r2(y0) and γi
ξ,n = Gn ◦ Ψ(lξ ∩ Vi).

As in the case of γi
0,n0+1, after rechoosing r1 and r2 if necessary, one can see

that γi
ξ,n0+1 is given by the graph of the holomorphic function x = (φi

ξ)n0+1(y)
on ∆r for every ξ ∈ ∆r1 . Since I1 ∈ γi

ξ,n0+1, one can set liξ,n0+1 = Φ
(
γi

ξ,n0+1

)
.

Before proceeding, we need to state a λ−lemma. To this end, define a
holomorphic mapping

G̃ : ∆2
R′ → C2 by G̃ = Φ ◦G ◦ Ψ.



A partial horseshoe structure at an indeterminate point of birational mappings 23

Then, G̃(I1) = I1 and I1 is a saddle fixed point of G̃. In particular, the local
stable and unstable sets of I1 for G̃ are contained in the x-axis and in the y-
axis, respectively. Moreover, G̃n is well-defined on some neighbourhood Un of
I1 such that

(4.3) G̃n is injective on Un \
n−1⋃
k=0

G̃−k(C3) and G̃n

(
n−1⋃
k=0

G̃−k(C3)

)
= I1.

Let φ : ∆r → C2 be an injective holomorphic mapping with φ(0) = I1. Write
φ(z) = (φ1(z), φ2(z)) and putD = φ(∆r). Then, we can now state our λ-lemma
as follows:

Lemma 4.2 (λ-lemma for G̃ at I1). Assume that D ∩ C3 = {I1} and
φ′2(0) �= 0. Then, there exists a family of holomorphic functions φn : ∆R′ → C
such that

φn(0) = 0 and G̃n(D) ∩ ∆2
R′ ⊃

{
(x, y) ∈ ∆2

R′

∣∣∣ x = φn(y), y ∈ ∆R′
}

for all sufficiently large n. In particular, {φn} converges locally uniformly to
the constant function x ≡ 0 on ∆R′ .

Since this lemma can be proved with exactly the same argument as in [8,
Lemma 7.1], we omit it. From Lemma 4.2, we obtain the following:

Lemma 4.3. There is an integer m0 such that

π1 ◦ G̃m0
(
liξ,n0+1

) ⊂ ∆r1/2, π2 ◦ G̃m0
(
liξ,n0+1

) ⊃ ∆R′ for all ξ ∈ ∆r1 .

To simplify discussion, we change notation and write G, F in place of
Φ ◦Gn0+m0+1 ◦ Ψ, Φ ◦ Fn0+m0+1 ◦ Ψ, respectively.

Noting that G(I1) = I1 and the iteration Gn is well-defined at I1 for every
n, we here concentrate our attention on dynamics of G in a local neighbourhood
∆2

R′ of I1. Rechoosing Vi if necessary, we may assume by Lemma 4.3 that

(4.4) π2 ◦G(Vi) = ∆R′ .

Let us here define the functions ψi
0 on ∆r1 by

ψ0
0(x) = 0, ψ1

0(x) = yx for x ∈ ∆r1 ,

where yx is the zero point appearing in (4.2), and set

(4.5) l̂i0 =
{
(x, y) ∈ Vi

∣∣∣ y = ψi
0(x), x ∈ ∆r1

}
.

Then, one can see that y = ψi
0(x) is holomorphic on ∆r1 . Indeed, from the

construction of Vi, we know that G−1(I1) =
⋃1

i=0 l̂
i
0 and l̂i0 is an analytic subset

of pure dimension one; and hence, y = ψi
0(x) is holomorphic on ∆r1 (cf. [7,

Theorem 4.4.1]). Therefore, putting Wi = G(Vi), we obtain the following:
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x

y

I1 = (0, 0)

V1

V0

l̂10

W0

l1ξ

W1

Figure 1

Lemma 4.4. G : V0 ∪V1 \
⋃1

i=0 l̂
i
0 →W0 ∪W1 \{I1} is a biholomorphic

mapping and G
(⋃1

i=0 l̂
i
0

)
= {I1}.

As seen in Figure 1, W0 ∪ W1 is pinched at I1. In this way, we
have constructed two domains Vi and Wi, which will play a crucial role in
our proof.

Before proceeding, we need to introduce some terminology. Let U be an
open subset of C2. Then we say that U is foliated by the leaves {�ξ}ξ∈∆r

if

(i) �ξ is a one-dimensional complex submanifold of U for every ξ ∈ ∆r;
(ii) U =

⋃
ξ∈∆r

�ξ; and

(iii) �ξ ∩ �ξ′ = ∅ for ξ, ξ′ ∈ ∆r with ξ �= ξ′.

Step 2. In this step, we want to show that both the domains Vi and Wi

have the structure of foliation. For this purpose, we put liξ = G(Vi ∩ lξ) for
ξ ∈ ∆r1 . Then, by Lemma 4.3, there is a holomorphic function φi

ξ on ∆R′ such
that

(4.6) |φi
ξ(y)| < r1/2 on ∆R′ and liξ =

{
(x, y) ∈Wi

∣∣∣ x = φi
ξ(y), y ∈ ∆R′

}
.

Thus, Wi \ {I1} is foliated by the vertical leaves
{
liξ \ {I1}

}
ξ∈∆r1

.
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Also, we wish to show that Vi has the structure of foliation. To this end,
define the horizontal sets

l̂η =
{

(x, y) ∈ ∆2
R′

∣∣∣ y = η
}

for η ∈ ∆R′ ,

l̂i1η = F (l̂η ∩Wi1) for η ∈ ∆∗
R and l̂i10 = G−1(l̂0 ∩Wi1) ∩ Vi1 .

Then, we have the following:

Lemma 4.5. For each η ∈ ∆R′ and i1, there exists a holomorphic func-
tion ψi1

η on ∆r1 such that

l̂i1η =
{

(x, y) ∈ Vi1

∣∣∣ y = ψi1
η (x), x ∈ ∆r1

}

and Vi1 is foliated by the horizontal leaves {l̂i1η }η∈∆R′ .

Proof. If η = 0, we can construct l̂i10 by (4.5). So, consider the case where
η ∈ ∆∗

R′ . Then, by Lemma 4.4, G−1 is an injective mapping on Wi1 \ {I1} and

l̂i1η = F (l̂η ∩Wi1) = G−1


l̂η ∩

⋃
ξ∈∆r1

li1ξ


 =

⋃
ξ∈∆r1

G−1(φi1
ξ (η), η).

Since G−1
(
φi1

ξ (η), η
)

is a single point contained in lξ ∩ Vi1 for every ξ ∈ ∆r1 , if
one defines a function ψi1

η on ∆r1 by the relation

G−1(φi1
ξ (η), η) = (ξ, ψi1

η (ξ)) for ξ ∈ ∆r1 ,

then

l̂i1η =
{

(x, y) ∈ Vi1

∣∣∣ y = ψi1
η (x), x ∈ ∆r1

}
.

On the other hand, G−1(l̂η ∩Wi1) is an analytic subset of pure dimension one;
accordingly, ψi1

η is a holomorphic function on ∆r1 by [7, Theorem 4.4.1].

Step 3. In this step, we shall show that the mappings Gn and Fn satisfy
the horseshoe condition for every n. For this purpose, writing Gn = (gn

1 , g
n
2 )

and Fn = (fn
1 , f

n
2 ) by coordinates, we define inductively the sets Vin...i1 and

the holomorphic mappings Gin...i1 : Vin...i1 → ∆r1 × ∆R′ by

Vin+1in...i1 = Vin+1 ∩G−1(Vin...i1) and Gin...i1(x, y) = (x, gn
2 (x, y))

for all ij with 1 ≤ j ≤ n. Here, we say that Gn satisfies the horseshoe condition
if Gin...i1 are biholomorphic mappings for all ij with 1 ≤ j ≤ n. With this
terminology, we have the following:

Lemma 4.6. Gn satisfies the horseshoe condition for every n.
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Proof. To prove this lemma, we proceed by induction on n. Let n = 1 and
assume that Gi1 is not injective. So, there are points (ξ, η), (ξ, η′) ∈ Vi1 with
η �= η′ such that g2(ξ, η) = g2(ξ, η′). On the other hand, since li1ξ = G(lξ ∩ Vi1)
is given by the graph of the function x = φi1

ξ (y), it then follows that g1(ξ, η) =
g1(ξ, η′); which contradicts the fact that G is injective on lξ ∩ Vi1 . Thus Gi1 is
injective. On the other hand, it is clear by (4.4) that Gi1 is surjective, and the
proof is completed in the case when n = 1.

Assume the lemma is proved for n ≥ 1. Then, since Gin...i1 is biholomor-
phic, there exists a holomorphic function ψin...i1

η on ∆r1 such that{
(x, y) ∈ Vin...i1

∣∣∣ gn
2 (x, y) = η

}
=
{

(x, y) ∈ Vin...i1

∣∣∣ y = ψin...i1
η (x), x ∈ ∆r1

}
.

Denoting this set by l̂in...i1
η , we see that Vin...i1 is foliated by the horizontal

leaves {l̂in...i1
η }η∈∆R′ . Define the holomorphic mapping

G̃in...i1 : Vin...i1∩G(Vin+1)\ l̂in...i1
0 → ∆r1×∆∗

R′ by (x, y) �→ (
f1(x, y), gn

2 (x, y)
)

and claim that this is biholomorphic. To do this, it is enough to show that the
set

l
in+1
ξ ∩ l̂in...i1

η =
{
(x, y) ∈ G(Vin+1) ∩ Vin...i1

∣∣∣ f1(x, y) = ξ, gn
2 (x, y) = η

}
=
{
(x, y) ∈ G(Vin+1) ∩ Vin...i1

∣∣∣ x = φ
in+1
ξ (y), y = ψin...i1

η (x)
}

consists of a single point. Indeed, since φin+1
ξ ◦ ψin...i1

η (∆r1) ⊂ ∆r1/2 by (4.6),

one can see that there exists a unique fixed point x̃ ∈ ∆r1 of φin+1
ξ ◦ψin...i1

η (cf.
[5, Theorem 6.3.5]). Thus, for any (ξ, η) ∈ ∆r1×∆∗

R′ , there exists a unique point
(x̃, ψin...i1

η (x̃)) ∈ Vin...i1 ∩G(Vin+1) \ l̂in...i1
0 with G̃in...i1

(
x̃, ψin...i1

η (x̃)
)

= (ξ, η).
Consequently, G̃in...i1 is a biholomorphic mapping.

Next, put l̂in+1...i1
η = G−1

(
l̂in...i1
η ∩G(Vin+1)

)
for every η ∈ ∆R′ and in+1.

As in the proof of Lemma 4.5, we here assert that there exists a holomorphic
function ψin+1...i1

η on ∆r1 such that

l̂in+1...i1
η =

{
(x, y) ∈ Vin+1 ∩G−1(Vin...i1)

∣∣∣ y = ψin+1...i1
η (x), x ∈ ∆r1

}
.

Indeed, by construction we have

l̂in+1...i1
η = G−1(l̂in...i1

η ∩G(Vin+1)) = G−1


 ⋃

ξ∈∆r1

l̂in...i1
η ∩ lin+1

ξ


 .

So, repeating the same argument as above, one can see that, for any given ξ ∈
∆r1 , l

in+1
ξ intersects l̂in...i1

η at only one point, which we denote by
(
φ

in+1
ξ (yη), yη

)
∈ l̂in...i1

η ∩lin+1
ξ . If yη �= 0, thenG−1

(
φ

in+1
ξ (yη), yη

)
is given by a single point con-

tained in G−1(Vin...i1)∩lξ, so it can be written in the form
(
ξ, ψ

in+1...i1
η (ξ)

)
, and
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ψ
in+1...i1
η is a holomorphic function on ∆r1 by [7, Theorem 4.4.1]. If yη = 0, then
l
in+1
ξ ∩ l̂in...i1

η = {I1}. By (4.5), we have that (ξ, ψin+1...i1
η (ξ)) = (ξ, ψin+1

0 (ξ))

and l̂in+1...i1
η = l̂

in+1
0 .

Finally, consider the mapping

G̃in...i1 ◦G : G−1
(
Vin...i1 ∩G(Vin+1) \ l̂in...i1

0 ) ∩ Vin+1 → ∆r1 × ∆∗
R′ .

Then, by Lemma 4.4, it follows that

G−1
(
Vin...i1 ∩G(Vin+1) \ l̂in...i1

0

)
= G−1(Vin...i1) ∩ Vin+1 \ l̂in+1...i1

0 and

Gin+1...i1 = G̃in+1...i1 ◦G : G−1(Vin...i1) ∩ Vin+1 \ l̂in+1...i1
0 → ∆r1 × ∆∗

R′

is a biholomorphic mapping. It is now an easy matter to see that Gin+1...i1

naturally extends to a biholomorphic mapping

Gin+1...i1 : G−1(Vin...i1) ∩ Vin+1 → ∆r1 × ∆R′ ,

by setting Gin+1...i1(x, y) = (x, 0) for (x, y) ∈ l̂
in+1...i1
0 , and the proof of Lemma

4.6 is completed.

Now, replacing G by F in the argument above, we define inductively the
sets Win...i1 and the holomorphic mappings F in...i1 : Win...i1 → ∆r1 × ∆∗

R′ by

Wi2i1 = (Wi2 \ {I1}) ∩ F−1(Wi1 \ {I1}),
Win+1...i1 =

(
Win+1 \ {I1}

) ∩ F−1(Win...i1) for n ≥ 2 and

F in...i1(x, y) = (fn
1 (x, y), y) for every in, . . . , i1 with n ≥ 1.

We also say that Fn satisfies the horseshoe condition if F in...i1 are biholomor-
phic mappings for every in, . . . , i1 with n ≥ 1.

Lemma 4.7. Fn satisfies the horseshoe condition for every n.

Proof. The proof is almost identical to that of Lemma 4.6. Consider first
the case n = 1. To prove that F satisfies the horseshoe condition, we need
to show that F i1 is injective. If not, there are distinct points (ξ, η), (ξ′, η) ∈
l̂η ∩ Wi1 \ {I1} with f1(ξ, η) = f1(ξ′, η). Since l̂i1η = F (l̂η ∩ Wi1) is given
by the graph of the function y = ψi1

η (x), it follows that f2(ξ, η) = f2(ξ′, η);
contradicting the fact that F is injective on l̂η ∩Wi1 for η �= 0. Therefore, F i1

is injective.
Assume that Fn satisfies the horseshoe condition for some n ≥ 1. Then,

since F in...i1 is a biholomorphic mapping, there exists a holomorphic function
φin...i1

ξ on ∆∗
R′ for every ξ ∈ ∆r1 such that

{
(x, y) ∈Win...i1

∣∣∣ fn
1 (x, y) = ξ

}
=
{

(x, y) ∈Win...i1

∣∣∣ x = φin...i1
ξ (y), y ∈ ∆∗

R′

}
.
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Hence, denoting this set by lin...i1
ξ , we can see that Win...i1 is foliated by the

vertical leaves {lin...i1
ξ }ξ∈∆r1

. Next, define the holomorphic mapping

F̃ in...i1 : Win...i1∩F (Win+1 \{I1}) → ∆r1×∆∗
R′ by (x, y) �→ (fn

1 (x, y), g1
2(x, y)).

Then, noting that φin...i1
ξ can be extended to a holomorphic function on ∆R′ as

φin...i1
ξ (0) = 0 and repeating the same argument as in the proof of Lemma 4.6,

we can check that F̃ in...i1 is biholomorphic. Moreover, it follows from Lemma
4.4 that

(i) F is biholomorphic on Win+1 \ {I1};
(ii) F−1

(
Win...i1 ∩ F (Win+1 \ {I1})

)
= F−1(Win...i1) ∩

{
Win+1 \ {I1}

}
= Win+1...i1 ; and

(iii) F in+1...i1 = F̃ in...i1 ◦ F : Win+1...i1 → ∆r1 × ∆∗
R′ is biholomorphic.

Therefore, the proof is completed.

Step 4. In this final step we define an invariant set X on which F and
G are conjugate to the shift mapping on Σ̂. First, we classify the points p ∈⋂∞

n=0G
−n(V0 ∪V1) by using the fact that the j-th orbit of p is contained in V0

or V1. To this end, let us introduce some notation from symbol dynamics. A
sequence (s0, . . . , sn−1) with terms sj = 0, 1 is said to be a symbol sequence of
length n and the set of all symbol sequences of length n is denoted by {0, 1}n.
For each (s0, . . . , sn−1) ∈ {0, 1}n, define the set Vs0...sn−1 by

Vs0...sn−1 =
{

(x, y) ∈ ∆r1 × ∆R′

∣∣∣ Gj(x, y) ∈ Vsj
, 0 ≤ j ≤ n− 1

}
.

Then, from Lemma 4.6, we have the following:

Lemma 4.8. Vs0...sn−1 =
⋃

η∈∆R′ l̂
s0...sn−1
η and G(Vs0...sn−1) ⊂ Vs1...sn−1

for every (s0, . . . , sn−1) ∈ {0, 1}n.

As in [5, §7.4], define the space Σ of all infinite symbol sequences by

Σ =
{
s+ = (s0, s1, . . .)

∣∣ si = 0, 1
}

and set

Γ(s+) =
∞⋂

n=0

Vs0...sn
for every s+ ∈ Σ.

Then, we have the following:

Lemma 4.9. For every s+ ∈ Σ, there exists a holomorphic function
ψs+ : ∆r1 → ∆R′ such that

Γ(s+) =
{

(x, y) ∈ ∆r1 × ∆R′

∣∣∣ y = ψs+(x), x ∈ ∆r1

}
.
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To prove Lemma 4.9, we start with the following general fact:

Lemma 4.10 ([5, Lemma 6.3.7]). Let K1 ⊃ K2 ⊃ · · · ⊃ Kn ⊃ · · · be a
decreasing sequence of compact sets in CN. Suppose that there exist a domain
V ⊂ CM, a compact set L ⊂ V and a sequence of holomorphic mappings
Φn : V → CN such that

Kn ⊃ Φn(V ) ⊃ Φn(L) ⊃ Kn+1 for every n ∈ N.

Then the intersection
⋂∞

n=1Kn consists of a single point.

Proof of Lemma 4.9. Now putting s+ = (s0, s1, . . .), we assert that lξ ∩
Γ(s+) consists of a single point for every ξ ∈ ∆r1 . Indeed, taking into account
the fact lξ ∩ Γ(s+) =

⋂∞
n=0 (Vs0...sn

∩ lξ), we define the holomorphic function

(gn+1
2 )ξ : π2(lξ ∩ Vs0...sn

) → ∆R′ by y �→ (gn+1
2 )ξ(y) = gn+1

2 (ξ, y).

Then by the horseshoe condition, (gn+1
2 )ξ is a univalent function with inverse

(gn+1
2 )−1

ξ : ∆R′ → π2(lξ ∩ Vs0...sn+1). Moreover, since G(Vs0...sn+1) ⊂ Vs1...sn+1 ,
it follows that Gn+1(Vs0...sn+1) ⊂ Vsn+1 and

(gn+1
2 )ξ ◦ π2(lξ ∩ Vs0...sn+1) ⊂ π2(Vsn+1) ⊂ ∆r2 ∪ ∆r2(y0) ⊂ ∆R′′

for some constant R
′′

with 0 < R
′′
< R′. Thus, applying Lemma 4.10 to the

case where V = ∆R′ , L = ∆R′′ , Kn = π2(lξ ∩ Vs0...sn
) and Φn = (gn+1

2 )−1
ξ , one

can see that
⋂∞

n=0 π2(lξ ∩ Vs0...sn
) consists of a unique point. So, denoting it

by ψs+(ξ), we have that

Γ(s+) =
{

(x, y) ∈ ∆r1 × ∆R

∣∣∣ y = ψs+(x), x ∈ ∆r1

}
.

Remark here that, for each fixed point ξ ∈ ∆r1 , the sequence {ψs0...sn
0 (ξ)}

converges to ψs+(ξ) as n → ∞. Moreover, {ψs0...sn
0 }n≥0 is a normal family,

since it is uniformly bounded on ∆r1 . Therefore, {ψs0...sn
0 }n≥0 converges to the

holomorphic function ψs+ on ∆r1 ; completing the proof of Lemma 4.9.

Put V =
⋃

s+∈Σ Γ(s+) and define the mappings

ψ+ : V → Σ by (x, y) �→ s+ if (x, y) ∈ Γ(s+),
Ψ+ : V → ∆r1 × Σ by (x, y) �→ (x, ψ+(x, y)), and
σ : Σ → Σ by s+ = (s0, s1, . . .) �→ (s1, s2, . . .).

Then, Lemmas 4.8 and 4.9 yield the following lemma (cf. [5, Theorem 7.4.12]):

Lemma 4.11. Ψ+ is a homeomorphism and σ ◦ ψ+ = ψ+ ◦G on V .

Next, replacing G and Vs0,...sn−1 by F and Ws−1...s−n
, respectively, in the

argument above, we can repeat the same process. Notice that

Ws−1...s−n
=
{
(x, y) ∈W0 ∪W1 \ {I1}

∣∣∣ F j(x, y) ∈Ws−j
, 1 ≤ j ≤ n

}
for every symbol sequence in the form (s−1, . . . , s−n). Then, from the defini-
tions of Ws−1...s−n

and F , the following lemma is obvious:
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Lemma 4.12. Ws−1...s−(n+1) ⊂ Ws−1...s−n
, F (Ws−1...s−n

) ⊂ Ws−2...s−n

for every symbol sequences (s−1, . . . , s−(n+1)) ∈ Σ.

Let us now put

Λ(s−) =
∞⋂

n=1

Ws−1...s−n
for every s− = (s−1, . . . , s−n, . . .) ∈ Σ.

Then, in exactly the same way as in the proof of Lemma 4.9, one can show the
following:

Lemma 4.13. For every s− ∈ Σ, there exists a holomorphic function
φs− : ∆∗

R′ → C such that

Λ(s−) =
{

(x, y) ∈W0 ∪W1 \ {I1}
∣∣∣ x = φs−(y), y ∈ ∆∗

R′

}
.

Set W =
⋃

s−∈Σ Λ(s−) and define the mappings ψ− : W → Σ and Ψ− :
W → Σ × ∆∗

R′ by

ψ−(x, y) = s− if (x, y) ∈ Λ(s−), and Ψ−(x, y) = (ψ−(x, y), y),

respectively. Then, by Lemmas 4.12 and 4.13, we have the following:

Lemma 4.14. Ψ− is a homeomorphism and σ ◦ ψ− = ψ− ◦ F on W .

Finally, we set

X = V ∩W \
∞⋃

n=0

G−n(I1).

Then, Proposition 2.1 together with the definitions of V and W gives the fol-
lowing:

Lemma 4.15. X is an invariant set of F and G. Moreover, F and G
are bijective self-mappings of X.

Let us now consider the space of bi-infinite symbol sequences

Σ̂ =
{
s = (s−, s+) ∈ Σ × Σ

∣∣∣ s = (. . . , s−1, s0, s1, . . .)
}

and its subset

E =
{
s ∈ Σ̂

∣∣∣ there is an integer n0 such that sn = 0 for n ≥ n0

}
.

And, define a function ρ : Σ̂ × Σ̂ → R by

ρ(s, t) =
∞∑

n=−∞

|sn − tn|
2|n|

for s, t ∈ Σ̂.
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Then, it is easy to verify that ρ is a metric on Σ̂ and

(4.7) ρ(s, t) < 2−k+1 if and only if si = ti for all |i| ≤ k.

In the following, we will always consider Σ̂ equipped with the topology induced
by this metric ρ.

From the construction of X, one can define the mappings Ψ̂ : X → Σ̂ \ E
and σ : Σ̂ → Σ̂ by

Ψ̂(x, y) = (ψ−(x, y), ψ+(x, y)) and σ(. . . , s1, ŝ0, s1, . . .) = (. . . , s0, ŝ1, s2, . . .).

Lemma 4.16. Ψ̂ : X → Σ̂ \ E is a homeomorphism such that σ ◦ Ψ̂ =
Ψ̂ ◦G and σ−1 ◦ Ψ̂ = Ψ̂ ◦ F on X.

Proof. To show that Ψ̂ is bijective, we claim that:

(4.8) For every (s−, s+) ∈ Σ̂ \ E, Γ(s+) ∩ Γ(s−) consists of one point.

Indeed, if s+ �= (0, 0, · · · ), then ψs+(x) �= 0 for all x ∈ ∆r1 . So, the mapping
φs− ◦ ψs+ : ∆r1 → ∆r1 is well-defined and φs− ◦ ψs+(∆r1) ⊂ ∆r1/2. Hence,
there exists a unique fixed point x0 ∈ ∆r1 of φs− ◦ψs+(x) and Γ(s+)∩Γ(s−) =
(x0, ψs+(x0)), required in (4.8).

By Lemma 4.16, there exists a one-to-one correspondence between the sets
of periodic points of F and σ. On the other hand, it is well-known that the set
of periodic points of σ is dense in Σ̂. Hence, the periodic points of F accumulate
at I1. Therefore, the proof of Main Theorem is completed.

Remark. The set Σ̂\E is neither closed nor open in Σ̂, and both Σ̂\E
and E are dense in Σ̂. More precisely, Σ̂ \E is a residual set, that is, it can be
represented as the intersection of at most countably many open dense subsets
in Σ̂. Indeed, putting

Un =
{
s ∈ Σ̂

∣∣ there exists an integer m0 > n such that sm0 �= 0
}

for every n, we see that Un are open dense subsets of Σ̂ by (4.7) and Σ̂ \ E =⋂∞
n=−∞ Un.

5. Examples

We have already known from Section 3 that there exists a homoclinic point
q0 of I1 such that q0 ∈ C3 \ {IG}. In this section, we give an example such
that G has a homoclinic point q0 ∈ C3 \ {[a/b : 0 : 1], IG}. To construct such a
mapping, it is enough to find a condition on the parameter (a, b) which implies
that [a/b : 0 : 1] is not a homoclinic point.

On the chart
{

[x : y : t] ∈ P2
∣∣∣ x �= 0

}
, F can be written in the form

F (y, t) =
(

bt

1 + at2 − yt2
,

bt2

1 + at2 − yt2

)
and [a/b : 0 : 1] = (0, b/a).
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Put (y1, t1) = F (y, t). A direct calculation shows that [1 : 0 : 0] = (0, 0) is an
attracting fixed point of F . Moreover, we can prove the following:

Lemma 5.1. Assume that the parameter (a, b) satisfies the inequality
64|b| < 63 − 4|a|. Then, we have:
(1) For each fixed (a, b), there exists a constant 0 < ε0 < 1 such that

|y1| < (1 − ε0)|t|, |t1| < (1 − ε0)|t|/4 for every (y, t) ∈ ∆2
1/4;

(2) For every (y, t) ∈ ∆2
1/4, Fn(y, t) → (0, 0) as n→ ∞.

Proof. Let (y, t) ∈ ∆2
1/4. Then, it is easily seen that

|y1| <
∣∣∣∣ bt

1 + at2 − yt2

∣∣∣∣ < |bt|
1 − |at2| − |yt2| <

64|b|
63 − 4|a| |t| and |t1| < |y1||t|,

from which we have (1). Applying (1) to (y, t) ∈ ∆2
1/4 inductively, we have the

assertion (2).

Put

A =
{
(a, b) ∈ C2

∣∣ 0 < 64|b| < 63 − 4|a|, |b/a| < 1/4, |a| > 1
}
.

Then, it follows from Lemma 5.1 that Fn(0, b/a) → (0, 0) as n → ∞ for every
(a, b) ∈ A. Hence, if we choose a parameter (a, b) ∈ A, then [a/b : 0 : 1]
cannot be a homoclinic point of G; and there must be a homoclinic point q0 in
C3 \ {[a/b : 0 : 1], IG}, as required.
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