Mod 2 cohomology of 2-compact groups of low rank

By
Shizuo Kajı*

Abstract

We determine the mod 2 cohomology algebra over the Steenrod algebra \mathcal{A}_{2} of the classifying space of loop groups $L G$ where $G=\operatorname{Spin}(7)$, $\operatorname{Spin}(8), \operatorname{Spin}(9), F_{4}$ and $D I(4)$. Then we show they are isomorphic as algebras over \mathcal{A}_{2} to the mod 2 cohomology of the 2 -compact groups of type G.

1. Introduction

Kuribayashi $[\mathrm{Ku}]$ considered the cohomology algebra of free loop spaces by developing "module derivation." Generalizing his method, Kishimoto and Kono [KK] have developed a method to calculate cohomology of certain free loop spaces and p-compact groups over the Steenrod algebra. Using their method we calculate the mod 2 cohomology over the Steenrod algebra \mathcal{A}_{2} of $B L G$, the classifying space of loop groups and 2-compact groups of type G with $G=\operatorname{Spin}(7), \operatorname{Spin}(8), \operatorname{Spin}(9), F_{4}$ and $D I(4)$, the finite loop space at prime 2 constructed by Dwyer and Wilkerson [DW].

Here we summarize the result [KK] necessary for our purpose. Let ϕ be a based self-map of a based space X. The twisted loop space of $X, \mathbb{L}_{\phi} X$ is defined in the following pull-back diagram:

where $e_{i}(i=0,1)$ is the evaluation at i. The twisted tube of $X, \mathbb{T}_{\phi} X$ is defined by

$$
\mathbb{T}_{\phi} X=\frac{[0,1] \times X}{(0, x) \simeq(1, \phi(x))}
$$

There is a canonical inclusion $\iota: X \hookrightarrow \mathbb{T}_{\phi} X$.

[^0]Remark 1. When ϕ is the identity map, then $\mathbb{L}_{\phi} X$ is merely the free loop space of X and $\mathbb{T}_{\phi} X=S^{1} \times X$.

The relation between the cohomology of $\mathbb{T}_{\phi} X$ and X can be obtained by the Wang exact sequence

$$
\begin{align*}
\cdots H^{n-1}(X ; R) \xrightarrow{1-\phi^{*}} H^{n-1}(X ; R) \xrightarrow{\delta} H^{n}\left(\mathbb{T}_{\phi} X ; R\right) & \xrightarrow{\iota^{*}} H^{n}(X ; R) \tag{1.1}\\
& \xrightarrow{1-\phi^{*}} H^{n}(X ; R) \cdots,
\end{align*}
$$

where R is any commutative ring. Especially this exact sequence splits off to the short exact sequence when $H^{*}(\phi ; R)$ is the identity map.

The twisted cohomology suspension is a map

$$
\hat{\sigma}_{\phi}: H^{*}\left(\mathbb{T}_{\phi} X ; R\right) \rightarrow H^{*-1}\left(\mathbb{L}_{\phi} X ; R\right)
$$

This together with the Wang sequence above relates the cohomology of X to that of $\mathbb{L}_{\phi} X$.

We consider the case when
$\left\{\begin{array}{l}H^{*}(X ; \mathbb{Z} / 2) \text { is a polynomial algebra } \mathbb{Z} / 2\left[x_{1}, x_{2}, \ldots, x_{l}\right], \\ H^{*}(\phi ; \mathbb{Z} / 2) \text { is the identity map, } \\ \text { and } H^{n}(\phi ; \mathbb{Z} / 4) \text { is the identity map for all odd } n \text { and } n=4 m(m \in \mathbb{Z}) .\end{array}\right.$
Under this condition, the result in $[\mathrm{KK}]$ specializes to the following Proposition:
Proposition 1.1. Suppose that there is a section $r: H^{*}(X ; \mathbb{Z} / 2) \rightarrow$ $H^{*}\left(\mathbb{T}_{\phi} X ; \mathbb{Z} / 2\right)$ of ι^{*}, which commutes with the Steenrod operations. Then we have

1. $H^{*}\left(\mathbb{L}_{\phi} X ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[e^{*}\left(x_{1}\right), e^{*}\left(x_{2}\right), \ldots, e^{*}\left(x_{n}\right)\right] \otimes \Delta\left(\hat{\sigma}_{\phi} \circ r\left(x_{1}\right), \hat{\sigma}_{\phi} \circ\right.$ $\left.r\left(x_{2}\right), \ldots, \hat{\sigma}_{\phi} \circ r\left(x_{n}\right)\right)$.
2. $\hat{\sigma}_{\phi} \circ r(x y)=\hat{\sigma}_{\phi}(r(x))(\iota \circ e)^{*}(y)+\hat{\sigma}_{\phi}(r(y))(\iota \circ e)^{*}(x)$ for $x, y \in$ $H^{*}\left(\mathbb{T}_{\phi} X ; \mathbb{Z} / 2\right)$.
3. $\hat{\sigma}_{\phi}$ commutes with the Steenrod operations.

Let G be either $\operatorname{Spin}(7), \operatorname{Spin}(8), \operatorname{Spin}(9), F_{4}$ or $D I(4)$, and X be $B G$.
When ϕ is the identity map, $\mathbb{L}_{\phi} B G$ is merely $L B G$, the free loop space $L B G$, which is homotopy equivalent to $B L G$. Now (1.2) is trivially satisfied. The projection $S^{1} \times X \rightarrow X$ is a section of ι. Hence we can calculate the cohomology of $B L G$ by above Proposition.

For $G=\operatorname{Spin}(7), \operatorname{Spin}(8), \operatorname{Spin}(9), F_{4}$ and a odd prime power q and $\phi=\psi^{q}$ the Adams operation of degree $q[\mathrm{~W}]$, (1.2) is also satisfied. The Bousfield and Kan 2-completion [BK] of $\mathbb{L}_{\phi} X$ is known to be homotopy equivalent to that of the classifying space of Chevalley group of type $G(q)$ [F].

For $G=D I(4)$ and a odd prime power q, there is a self homotopy equivalence ψ^{q} of $B D I(4)$ also called the Adams operation of degree $q[\mathrm{~N}]$. When $\phi=\psi^{q},(1.2)$ is again satisfied. $\mathbb{L}_{\phi} B D I(4)$ is called $\operatorname{BSol}(q)$ defined in [B].

In the following sections, our main observation is to construct the section r when $\phi=\psi^{q}$ and to show the following:

Theorem 1.1. Let $G=\operatorname{Spin}(7), \operatorname{Spin}(8), \operatorname{Spin}(9), F_{4}$ or $D I(4)$. Then $H^{*}(L B G ; \mathbb{Z} / 2) \simeq H^{*}\left(\mathbb{L}_{\psi^{q}} B G ; \mathbb{Z} / 2\right)$ as the algebras over the Steenrod algebra \mathcal{A}_{2}, where q is an odd prime power.
2. The case $G=\operatorname{Spin}(7), \operatorname{Spin}(8), \operatorname{Spin}(9)$ and F_{4}

The mod 2 cohomology over \mathcal{A}_{2} of $B \operatorname{Spin}(7), B \operatorname{Spin}(8)$ and $B \operatorname{Spin}(9)$ are well known $[\mathrm{Q}, \mathrm{K}]$.
$H^{*}(B \operatorname{Spin}(7) ; \mathbb{Z} / 2)=\mathbb{Z}\left[w_{4}, w_{6}, w_{7}, w_{8}\right]$ and the action of \mathcal{A}_{2} is determined by:

	w_{4}	w_{6}	w_{7}	w_{8}
$S q^{1}$	0	w_{7}	0	0
$S q^{2}$	w_{6}	0	0	0
$S q^{4}$	w_{4}^{2}	$w_{4} w_{6}$	$w_{4} w_{7}$	$w_{4} w_{8}$

$H^{*}(B \operatorname{Spin}(8) ; \mathbb{Z} / 2)=\mathbb{Z}\left[w_{4}, w_{6}, w_{7}, w_{8}, e_{8}\right]$ and the action of \mathcal{A}_{2} is determined by:

$$
\begin{array}{cccccc}
& w_{4} & w_{6} & w_{7} & w_{8} & e_{8} \\
S q^{1} & 0 & w_{7} & 0 & 0 & 0 \\
S q^{2} & w_{6} & 0 & 0 & 0 & 0 \\
S q^{4} & w_{4}^{2} & w_{4} w_{6} & w_{4} w_{7} & w_{4} w_{8} & w_{4} e_{8}
\end{array}
$$

$H^{*}(\operatorname{BSpin}(9) ; \mathbb{Z} / 2)=\mathbb{Z}\left[w_{4}, w_{6}, w_{7}, w_{8}, e_{16}\right]$ and the action of \mathcal{A}_{2} is determined by:

	w_{4}	w_{6}	w_{7}	w_{8}	e_{16}
$S q^{1}$	0	w_{7}	0	0	0
$S q^{2}$	w_{6}	0	0	0	0
$S q^{4}$	w_{4}^{2}	$w_{4} w_{6}$	$w_{4} w_{7}$	$w_{4} w_{8}$	0
$S q^{8}$	0	0	0	w_{8}^{2}	$w_{8} e_{16}+w_{4}^{2} e_{16}$

Proposition 2.1. $\quad H^{*}(\operatorname{LBSpin}(7) ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[v_{4}, v_{6}, v_{7}, v_{8}, y_{3}, y_{5}, y_{7}\right] /$ $I\left(\left|v_{i}\right|=i,\left|y_{i}\right|=i\right)$, where I is the ideal generated by $\left\{y_{3}^{4}+v_{6} y_{3}^{2}+y_{5} v_{7}, y_{5}^{2}+\right.$ $\left.y_{3} v_{7}+v_{4} y_{3}^{2}, y_{7}^{2}+y_{6} w_{8}+w_{7} y_{7}\right\}$. The action of \mathcal{A}_{2} is determined by:

$$
\begin{array}{cccccccc}
& v_{4} & v_{6} & v_{7} & v_{8} & y_{3} & y_{5} & y_{7} \\
S q^{1} & 0 & v_{7} & 0 & 0 & 0 & y_{3}^{2} & 0 \\
S q^{2} & v_{6} & 0 & 0 & 0 & y_{5} & 0 & 0 \\
S q^{4} & v_{4}^{2} & v_{4} v_{6} & v_{4} v_{7} & v_{4} v_{8} & 0 & y_{3} v_{6}+v_{4} y_{5} & y_{3} v_{8}+v_{4} y_{7}
\end{array}
$$

Proof. We take $v_{i}=e^{*}\left(w_{i}\right)$ and $y_{i}=\hat{\sigma}_{\phi}\left(w_{i}\right) \quad(i=4,6,7,8, \phi=I d)$. Then by Proposition 1.1 (1), we have $H^{*}(\operatorname{LBSpin}(7) ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[v_{4}, v_{6}, v_{7}, v_{8}\right]$
$\otimes \Delta\left[y_{3}, y_{5}, y_{6}, y_{7}\right]$. By Proposition 1.1 (2) and (3), we have

$$
\begin{aligned}
S q^{1} y_{3} & =S q^{1} \hat{\sigma}_{\phi}\left(w_{4}\right) \\
S q^{2} y_{3} & =\hat{\sigma}_{\phi}\left(S q^{1} w_{4}\right)=0 \\
\left.S q^{2} w_{4}\right) & =\hat{\sigma}_{\phi}\left(w_{6}\right)=y_{5} \\
S q^{2} y_{5}\left(S q^{1} w_{6}\right) & =y_{6} \\
S q^{4} y_{5} & =\hat{\sigma}_{\phi}\left(S q^{2} w_{6}\right)=0 \\
\left.S q^{4} w_{6}\right) & =\hat{\sigma}_{\phi}\left(w_{4} w_{6}\right)=e^{*}\left(w_{4}\right) \hat{\sigma}_{\phi}\left(w_{6}\right)+\hat{\sigma}_{\phi}\left(w_{4}\right) e^{*}\left(w_{6}\right)=v_{4} y_{5}+y_{3} v_{6} \\
S q_{8}^{2} y_{7} & =0 \\
S q^{4} y_{7} & =\hat{\sigma}_{\phi}\left(S q^{2} w_{8}\right)=0 \\
\sigma_{\phi}\left(S q^{4} w_{8}\right) & =\hat{\sigma}_{\phi}\left(w_{4} w_{8}\right)=y_{3} v_{8}+v_{4} y_{7} .
\end{aligned}
$$

By Adem relation, we have

$$
\begin{aligned}
& y_{3}^{2}=S q^{3} y_{3}=S q^{1} S q^{2} y_{3}=S q^{1} y_{5}=y_{6} \\
& y_{5}^{2}=S q^{5} y_{5}=S q^{1} S q^{4} y_{5}=S q^{1}\left(v_{4} y_{5}+y_{3} v_{6}\right)=v_{4} y_{6}+y_{3} v_{7}=v_{4} y_{3}^{2}+y_{3} v_{7} \\
& y_{7}^{2}=S q^{7} y_{7}=S q^{1}\left(S q^{5} S q^{1}+S q^{2} S q^{4}\right) y_{7}=S q^{1}\left(y_{5} v_{8}+v_{6} y_{7}\right)=y_{6} v_{8}+v_{7} y_{7} \\
& y_{3}^{4}=y_{6}^{2}=S q^{6} y_{6}=\left(S q^{2} S q^{4}+S q^{5} S q^{1}\right) y_{6}=S q^{2}\left(v_{4} y_{6}+y_{3} v_{7}\right)=v_{6} y_{3}^{2}+y_{5} v_{7}
\end{aligned}
$$

Proposition 2.2. For $\phi=\psi^{q}$, the Adams operation of degree an odd prime power $q, H^{*}\left(\mathbb{L}_{\phi} B \operatorname{Spin}(7) ; \mathbb{Z} / 2\right)$ is isomorphic to $H^{*}(\operatorname{LBSpin}(7) ; \mathbb{Z} / 2)$ as algebras over \mathcal{A}_{2}.

Proof. By Proposition 1.1, we only have to construct a section r of the $\operatorname{map} \iota^{*}: H^{*}\left(\mathbb{T}_{\phi} B \operatorname{Spin}(7) ; \mathbb{Z} / 2\right) \rightarrow H^{*}(B \operatorname{Spin}(7) ; \mathbb{Z} / 2)$ which commutes with the Steenrod operation.

As mentioned in the first section, the Wang sequence (1.1) splits to the short exact sequence

$$
0 \rightarrow H^{*-1}(B \operatorname{Spin}(7) ; R) \xrightarrow{\delta} H^{*}\left(\mathbb{T}_{\phi} B \operatorname{Spin}(7) ; R\right) \xrightarrow{\iota^{*}} H^{*}(B \operatorname{Spin}(7) ; R) \rightarrow 0
$$

when coefficient R have the property $H^{*}(\phi ; R)=1$. Let $u_{4} \in H^{4}\left(\mathbb{T}_{\phi} B \operatorname{Spin}(7)\right.$; $\mathbb{Z} / 2) \simeq \mathbb{Z} / 2$ be the generator. Then we define $u_{6}=S q^{2} u_{4}, u_{7}=S q^{1} u_{6}$. By the Wang sequence for $R=\mathbb{Z} / 4$ and the Bockstein spectral sequence, we have that $\operatorname{ker}\left(S q^{1}\right) \subset\left(\iota^{*}\right)^{-1}\left(w_{8}\right) \subset H^{8}\left(\mathbb{T}_{\phi} B \operatorname{Spin}(7) ; \mathbb{Z} / 2\right)$ is isomorphic to $\mathbb{Z} / 2 \oplus \mathbb{Z} / 2$. We take u_{8} to be a generator of $\operatorname{ker}\left(S q^{1}\right) \subset\left(\iota^{*}\right)^{-1}\left(w_{8}\right)$ such that $\operatorname{ker}\left(S q^{1}\right)$ is generated by u_{8} and $\delta\left(w_{7}\right)$. Then $S q^{2} u_{8}=0$ since $H^{9}(B \operatorname{Spin}(7))=0$ and $S q^{2} w_{8}=0$. Moreover we have $S q^{4} u_{8}=u_{4} u_{8}+\epsilon \delta\left(w_{4} w_{7}\right)$, where $\epsilon=0$ or 1 . Since $\delta\left(w_{4} w_{7}\right)=S q^{4} \delta\left(w_{7}\right)$, we can assume $\epsilon=0$.

Take r to be the ring homomorphism $r\left(w_{i}\right)=u_{i}(i=4,6,7,8)$, then r is a section of ι^{*} which commutes with the Steenrod operations.

Proposition 2.3. $H^{*}(\operatorname{LBSpin}(8) ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[v_{4}, v_{6}, v_{7}, v_{8}, f_{8}, y_{3}, y_{5}\right.$, $\left.y_{7}, z_{7}\right] / I\left(\left|v_{i}\right|=i,\left|y_{i}\right|=i,\left|v_{8}\right|=8,\left|z_{7}\right|=7\right)$, where I is the ideal generated
by $\left\{y_{3}^{4}+v_{6} y_{3}^{2}+y_{5} v_{7}, y_{5}^{2}+y_{3} v_{7}+v_{4} y_{3}^{2}, y_{7}^{2}+y_{3}^{2} v_{8}+w_{7} y_{7}, z_{7}^{2}+y_{3}^{2} f_{8}+w_{7} z_{7}\right\}$. The action of \mathcal{A}_{2} is determined by:

	v_{4}	v_{6}	v_{7}	v_{8}	f_{8}	y_{3}	y_{5}	y_{7}	z_{7}
$S q^{1}$	0	v_{7}	0	0	0	0	y_{3}^{2}	0	0
$S q^{2}$	v_{6}	0	0	0	0	y_{5}	0	0	0
$S q^{4}$	v_{4}^{2}	$v_{4} v_{6}$	$v_{4} v_{7}$	$v_{4} v_{8}$	$v_{4} f_{8}$	0	$y_{3} v_{6}+v_{4} y_{5}$	$y_{3} v_{8}+v_{4} y_{7}$	$y_{3} f_{8}+v_{4} z_{7}$

Proof. Completely parallel to the case of $\operatorname{Spin}(7)$ since the generator $e_{8} \in H^{8}(\operatorname{SSpin}(8) ; \mathbb{Z} / 2)$ is looks same as w_{8}.

Proposition 2.4. For $\phi=\psi^{q}$, the Adams operation of degree an odd prime power $q, H^{*}\left(\mathbb{L}_{\phi} B \operatorname{Spin}(8) ; \mathbb{Z} / 2\right)$ is isomorphic to $H^{*}(\operatorname{LBSpin}(8) ; \mathbb{Z} / 2)$ as algebras over \mathcal{A}_{2}.

Proof. We can construct a section r completely same as in the case of $B \operatorname{Spin}(7)$.

Proposition 2.5. $\quad H^{*}(\operatorname{LBSpin}(9) ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[v_{4}, v_{6}, v_{7}, v_{8}, f_{16}, y_{3}, y_{5}\right.$, $\left.y_{7}, z_{15}\right] / I\left(\left|v_{i}\right|=i,\left|y_{i}\right|=i,\left|f_{16}\right|=16,\left|z_{16}\right|=16\right)$, where I is the ideal generated by

$$
\begin{aligned}
&\left\{y_{3}^{4}+v_{6} y_{3}^{2}+y_{5} v_{7}, y_{5}^{2}+y_{3} v_{7}+v_{4} y_{3}^{2}, y_{7}^{2}+y_{3}^{2} w_{8}+w_{7} y_{7},\right. \\
&\left.z_{15}^{2}+v_{7} v_{8} z_{15}+w_{7} y_{7} f_{16}+y_{3}^{2} v_{8} f_{16}\right\} .
\end{aligned}
$$

The action of \mathcal{A}_{2} is determined by:

	v_{4}	v_{6}	v_{7}	v_{8}	f_{16}	y_{3}	y_{5}	y_{7}	z_{15}
$S q^{1}$	0	v_{7}	0	0	0	0	y_{3}^{2}	0	0
$S q^{2}$	v_{6}	0	0	0	0	y_{5}	0	0	0
$S q^{4}$	v_{4}^{2}	$v_{4} v_{6}$	$v_{4} v_{7}$	$v_{4} v_{8}$	0	0	$y_{3} v_{6}+v_{4} y_{5}$	$y_{3} v_{8}+v_{4} y_{7}$	0
$S q^{8}$	0	0	0	v_{8}^{2}	$v_{8} f_{16}+v_{4}^{2} f_{16}$	0	0	0	J_{1}

where $J_{1}=y_{7} f_{16}+v_{8} z_{15}+v_{4}^{2} z_{15}$.
Proof. In dimension lower than 9, calculation is completely same as in the case of $\operatorname{BSPin}(7)$. We have only to calculate the following:

$$
\begin{gathered}
S q^{8} z_{15}=\hat{\sigma}_{\phi}\left(S q^{8} f_{16}\right)=\hat{\sigma}_{\phi}\left(v_{8} f_{16}+v_{4}^{2} f_{16}\right)=y_{7} f_{16}+v_{8} z_{15}+v_{4}^{2} z_{15} \\
z_{15}^{2}=S q^{15} z_{15}=\hat{\sigma}_{\phi} S q^{15} f_{16}=\hat{\sigma}_{\phi}\left(v_{7} v_{8} f_{16}\right)=v_{7} v_{8} z_{15}+w_{7} y_{7} f_{16}+y_{3}^{2} v_{8} f_{16}
\end{gathered}
$$

Proposition 2.6. For $\phi=\psi^{q}$, the Adams operation of degree an odd prime power $q, H^{*}\left(\mathbb{L}_{\phi} B \operatorname{Spin}(9) ; \mathbb{Z} / 2\right)$ is isomorphic to $H^{*}(\operatorname{LBSpin}(9) ; \mathbb{Z} / 2)$ as algebras over \mathcal{A}_{2}.

Proof. In dimension lower than 9, we can construct a section r completely same as in the case of $B \operatorname{Spin}(7)$.

Choose an element $f_{16}^{\prime} \in \operatorname{ker}\left(S q^{1}\right) \subset\left(\iota^{*}\right)^{-1}\left(e_{16}\right)$. Then by the Wang
sequence, we have $S q^{2} f_{16}^{\prime}=\epsilon_{1} \delta\left(w_{4} w_{6} w_{7}\right)$ since $H^{17}(B \operatorname{Spin}(9) ; \mathbb{Z} / 2) \simeq \mathbb{Z} / 2$ is generated by $w_{4} w_{6} w_{7}$. Then $S q^{2} S q^{2} f_{16}^{\prime}=\epsilon_{1} \delta\left(S q^{2}\left(w_{4} w_{6} w_{7}\right)\right)=\epsilon_{1} \delta\left(w_{6}^{2} w_{7}\right)$. By Adem relation this must be 0 since $S q^{2} S q^{2}=S q^{3} S q^{1}$ and $S q^{1} f_{16}^{\prime}=0$. Therefore we have $\epsilon_{1}=0$.

Similarly we have $S q^{4} f_{16}^{\prime}=\epsilon_{2} \delta\left(w_{4}^{3} w_{7}\right)+\epsilon_{3} \delta\left(w_{6}^{2} w_{7}\right)+\epsilon_{4} \delta\left(w_{4} w_{7} w_{8}\right)$. Then we have $S q^{4} S q^{4} f_{16}^{\prime}=\epsilon_{2} \delta\left(w_{4} w_{6}^{2} w_{7}\right)+\epsilon_{3} \delta\left(w_{4} w_{6}^{2} w_{7}\right)+\epsilon_{4}\left(w_{4}^{2} w_{7} w_{8}\right)$. By Adem relation we have $S q^{4} S q^{4} f_{16}=\left(S q^{7} S q^{1}+S q^{6} S q^{2}\right) f_{16}=0$. Therefore we have $\epsilon_{2}=\epsilon_{3}, \epsilon_{4}=0$. Put $f_{16}=f_{16}^{\prime}-\epsilon_{2} w_{4}^{2} w_{7}$, then we have $S q^{i} f_{16}=0(i=1,2,4)$ since $S q^{4} w_{4}^{2} w_{7}=w_{4}^{3} w_{7}+w_{6}^{2} w_{7}$.

Similarly we have $S q^{8} f_{16}=w_{8} f_{16}+w_{4}^{2} f_{16}+\epsilon_{5} \delta\left(w_{4}^{4} w_{7}\right)+\epsilon_{6} \delta\left(w_{4}^{2} w_{7} w_{8}\right)+$ $\epsilon_{7} \delta\left(w_{4} w_{6}^{2} w_{7}\right)+\epsilon_{8} \delta\left(w_{7} w_{8}^{2}\right)+\epsilon_{9} \delta\left(w_{7} f_{16}\right)$. By Adem relation $S q^{8} S q^{8} f_{16}=0$ and we have $\epsilon_{5}=\epsilon_{7}=\epsilon_{9}=0, \epsilon_{6}=\epsilon_{8}$. Replacing f_{16} by $f_{16}-\epsilon_{7} \delta\left(w_{7} w_{8}\right)$ we have $S q^{8} f_{16}=w_{8} f_{16}+w_{4}^{2} f_{16}$ and $S q^{i} f_{16}=0(i<8)$.

3. The case $G=F_{4}$

Denote the classifying map of the canonical inclusion $\operatorname{Spin}(9) \hookrightarrow F_{4}$ by i. Then by $[\mathrm{K}], H^{*}\left(F_{4} ; \mathbb{Z} / 2\right)=\mathbb{Z}\left[x_{4}, x_{6}, x_{7}, x_{16}, x_{24}\right]$ where $i^{*}\left(x_{4}\right)=w_{4}, i^{*}\left(x_{6}\right)=$ $w_{6}, i^{*}\left(x_{7}\right)=w_{7}, i^{*}\left(x_{16}\right)=e_{16}+w_{8}^{2}, i^{*}\left(x_{24}\right)=w_{8} e_{16}$. Then the action of \mathcal{A}_{2} is determined by:

	x_{4}	x_{6}	x_{7}	x_{16}	x_{24}
$S q^{1}$	0	x_{7}	0	0	0
$S q^{2}$	x_{6}	0	0	0	0
$S q^{4}$	x_{4}^{2}	$x_{4} x_{6}$	$x_{4} x_{7}$	0	$x_{4} x_{24}$
$S q^{8}$	0	0	0	$x_{24}+x_{4}^{2} x_{16}$	$x_{4}^{2} x_{24}$
$S q^{16}$	0	0	0	x_{16}^{2}	$x_{16} x_{24}+x_{4} x_{6}^{2} x_{24}$.

Proposition 3.1. $\quad H^{*}\left(L B F_{4} ; \mathbb{Z} / 2\right)=\mathbb{Z} / 2\left[v_{4}, v_{6}, v_{7}, v_{16}, v_{24}, y_{3}, y_{5}, y_{15}\right.$, $\left.y_{23}\right] / I\left(\left|v_{i}\right|=i,\left|y_{i}\right|=i\right)$, where I is the ideal generated by

$$
\begin{aligned}
&\left\{y_{3}^{4}+v_{6} y_{3}^{2}+y_{5} v_{7}, y_{5}^{2}+y_{3} v_{7}+v_{4} y_{3}^{2}, y_{15}^{2}+v_{7} y_{23}+v_{24} y_{3}^{2}, y_{23}^{2}+y_{3}^{2} v_{16} v_{24}\right. \\
&\left.+v_{7} v_{24} y_{15}+v_{7} v_{16} y_{23}\right\} .
\end{aligned}
$$

The action of \mathcal{A}_{2} is determined by:

	v_{4}	v_{6}	v_{7}	v_{16}	v_{24}
$S q^{1}$	0	v_{7}	0	0	0
$S q^{2}$	v_{6}	0	0	0	0
$S q^{4}$	v_{4}^{2}	$v_{4} v_{6}$	$v_{4} v_{7}$	0	$v_{4} v_{24}$
$S q^{8}$	0	0	0	$v_{24}+v_{4}^{2} v_{16}$	$v_{4}^{2} v_{24}$
$S q^{16}$	0	0	0	v_{16}^{2}	$v_{16} v_{24}+v_{4} v_{6}^{2} v_{24}$

	y_{3}	y_{5}	y_{15}	y_{23}
$S q^{1}$	0	y_{3}^{2}	0	0
$S q^{2}$	y_{5}	0	0	0
$S q^{4}$	0	$y_{3} v_{6}+v_{4} y_{5}$	0	$y_{3} v_{24}+v_{4} y_{23}$
$S q^{8}$	0	0	$y_{23}+v_{4}^{2} y_{15}$	$v_{4}^{2} y_{23}$
$S q^{16}$	0	0	0	J_{2}

where $J_{2}=v_{24} y_{15}+v_{16} y_{23}+y_{3} v_{6}^{2} v_{24}+v_{4} v_{6}^{2} y_{23}$.
Proof. In dimension lower than 9, calculation is completely same as in the case of $B \operatorname{Spin}(9)$.

$$
\begin{aligned}
S q^{1} y_{15} & =\hat{\sigma}_{\phi}\left(S q^{1} v_{16}\right)=0 \\
S q^{2} y_{15} & =\hat{\sigma}_{\phi}\left(S q^{2} v_{16}\right)=0 \\
S q^{4} y_{15} & =\hat{\sigma}_{\phi}\left(S q^{4} v_{16}\right)=0 \\
S q^{8} y_{15} & =\hat{\sigma}_{\phi}\left(S q^{8} v_{16}\right)=\hat{\sigma}_{\phi}\left(v_{2} 4+v_{4}^{2} v_{16}\right)=y_{23}+v_{4}^{2} y_{15} \\
S q^{1} y_{23} & =\hat{\sigma}_{\phi}\left(S q^{1} v_{24}\right)=0 \\
S q^{2} y_{23} & =\hat{\sigma}_{\phi}\left(S q^{2} v_{24}\right)=0 \\
S q^{4} y_{23} & =\hat{\sigma}_{\phi}\left(S q^{4} v_{24}\right)=\hat{\sigma}_{\phi}\left(v_{4} v_{24}\right)=y_{3} v_{24}+v_{4} y_{23} \\
S q^{8} y_{23} & =\hat{\sigma}_{\phi}\left(S q^{8} v_{24}\right)=\hat{\sigma}_{\phi}\left(v_{4}^{2} v_{24}\right)=v_{4}^{2} y_{23} \\
S q^{16} y_{23} & =\hat{\sigma}_{\phi}\left(S q^{16} v_{24}\right)=\hat{\sigma}_{\phi}\left(v_{16} v_{24}+v_{4} v_{6}^{2} v_{24}\right) \\
& =y_{15} v_{24}+v_{16} y_{23}+y_{3} v_{6}^{2} v_{24}+v_{4} v_{6}^{2} y_{23} \\
y_{15}^{2} & =S q^{15} y_{15}=\hat{\sigma}_{\phi}\left(S q^{15} v_{16}\right)=\hat{\sigma}_{\phi}\left(v_{7} v_{24}\right)=v_{7} y_{23}+y_{3}^{2} v_{24} \\
y_{23}^{2} & =S q^{23} y_{23}=\hat{\sigma}_{\phi}\left(S q^{23} v_{24}\right)=\hat{\sigma}_{\phi}\left(v_{7} v_{16} v_{24}\right) \\
& =y_{3}^{2} v_{16} v_{24}+v_{7} v_{24} y_{15}+v_{7} v_{16} y_{23} .
\end{aligned}
$$

Proposition 3.2. For $\phi=\psi^{q}$, the Adams operation of degree an odd prime power q, $H^{*}\left(\mathbb{L}_{\phi} B F_{4} ; \mathbb{Z} / 2\right)$ is isomorphic to $H^{*}\left(L B F_{4} ; \mathbb{Z} / 2\right)$ as algebras over \mathcal{A}_{2}.

Proof. By [JMO] the following diagram is homotopy commutative.

By the naturality of the construction of the twisted tube, there is a map $\mathbb{T}_{\phi} B \operatorname{Spin}(9) \rightarrow \mathbb{T}_{\phi} B F_{4}$ and we have the Proposition.

4. The case $G=D I(4)$

In [DW] they constructed a space called $B D I(4)$ with the cohomology isomorphic to the mod 2 Dickson invariant of rank 4, that is, $H^{*}(B D I(4) ; \mathbb{Z} / 2)=$ $\mathbb{Z} / 2\left[x_{8}, x_{12}, x_{14}, x_{15}\right]$, where $\left|x_{j}\right|=j$. The action of \mathcal{A}_{2} is determined by:

$$
\begin{array}{ccccc}
& x_{8} & x_{12} & x_{14} & x_{15} \\
S q^{1} & 0 & 0 & x_{15} & 0 \\
S q^{2} & 0 & x_{14} & 0 & 0 \\
S q^{4} & x_{12} & 0 & 0 & 0 \\
S q^{8} & x_{8}^{2} & x_{8} x_{12} & x_{8} x_{14} & x_{8} x_{15}
\end{array}
$$

Notbohm [N] shows there is a self homotopy equivalence ψ^{q} of $B D I(4)$ for odd prime power q called the Adams operation of degree q with the property $H^{2 r}\left(\psi^{q} ; \mathbb{Q}_{p}\right)$ is multiplication by q^{r}. Using this, Benson [B] defined an exotic 2-compact group $B \operatorname{Sol}(q)$ as $L_{\psi^{q}} B D I(4)$ which can be called "the classifying space" of Solomon's non-existent finite group [S].

Recently Grbic [G] calculated the mod 2 cohomology of $\operatorname{BSol}(q)$ over \mathcal{A}_{2} by using Eilenberg-Moore spectral sequence. Here we calculate it by the method of Kishimoto and Kono.

Proposition 4.1. $\quad H^{*}(\operatorname{LBDI}(4) ; \mathbb{Z} / 2)=\mathbb{Z} / 2\left[v_{8}, v_{12}, v_{14}, v_{15}, y_{7}, y_{11}\right.$, $\left.y_{13}\right] / I\left(\left|v_{i}\right|=i,\left|y_{i}\right|=i\right)$, where I is the ideal generated by

$$
\left\{y_{7}^{4}+y_{13} v_{15}+v_{14} y_{7}^{2}, y_{11}^{2}+v_{7} y_{15}+v_{8} y_{7}^{2}, y_{13}^{2}+y_{11} v_{15}+v_{12} y_{7}^{2}\right\} .
$$

The action of \mathcal{A}_{2} is determined by:

	v_{8}	v_{12}	v_{14}	v_{15}	y_{7}	y_{11}	y_{13}
$S q^{1}$	0	0	v_{15}	0	0	0	y_{7}^{2}
$S q^{2}$	0	v_{14}	0	0	0	y_{13}	0
$S q^{4}$	v_{12}	0	0	0	y_{11}	0	0
$S q^{8}$	v_{8}^{2}	$v_{8} v_{12}$	$v_{8} v_{14}$	$v_{8} v_{15}$	0	$y_{11} v_{8}+v_{12} y_{7}$	$y_{13} v_{8}+v_{14} y_{7}$

Remark 2. Kuribayashi has also this result in $[\mathrm{Ku}]$.
Proof.

$$
\begin{aligned}
y_{7}^{2} & =S q^{7} y_{7}=\hat{\sigma}_{\phi}\left(S q^{7} v_{8}\right)=\hat{\sigma}_{\phi}\left(v_{15}\right)=y_{14} \\
S q^{1} y_{i} & =\hat{\sigma}_{\phi}\left(S q^{1} v_{i+1}\right)=0(i=7,11) \\
S q^{1} y_{13} & =\hat{\sigma}_{\phi}\left(S q^{1} v_{14}\right)=\hat{\sigma}_{\phi}\left(v_{15}\right)=y_{14}=y_{7}^{2} \\
S q^{2} y_{i} & =\hat{\sigma}_{\phi}\left(S q^{2} v_{i+1}\right)=0(i=7,13) \\
S q^{2} y_{11} & =\hat{\sigma}_{\phi}\left(S q^{2} v_{12}\right)=\hat{\sigma}_{\phi}\left(v_{14}\right)=y_{13} \\
S q^{4} y_{i} & =\hat{\sigma}_{\phi}\left(S q^{4} v_{i+1}\right)=0(i=11,13) \\
S q^{4} y_{7} & =\hat{\sigma}_{\phi}\left(S q^{4} v_{8}\right)=\hat{\sigma}_{\phi}\left(v_{12}\right)=y_{11} \\
S q^{8} y_{7} & =\hat{\sigma}_{\phi}\left(S q^{8} v_{8}\right)=0 \\
S q^{8} y_{11} & =\hat{\sigma}_{\phi}\left(S q^{8} v_{12}\right)=\hat{\sigma}_{\phi}\left(v_{8} v_{12}\right)=y_{7} v_{12}+v_{8} y_{11} \\
S q^{8} y_{13} & =\hat{\sigma}_{\phi}\left(S q^{8} v_{14}\right)=\hat{\sigma}_{\phi}\left(v_{8} v_{14}\right)=y_{7} v_{14}+v_{8} y_{13} \\
y_{11}^{2} & =S q^{11} y_{11}=\hat{\sigma}_{\phi}\left(S q^{11} v_{12}\right)=\hat{\sigma}_{\phi}\left(S q^{1} S q^{2} S q^{8} v_{12}\right)=\hat{\sigma}_{\phi}\left(v_{8} v_{15}\right) \\
& =v_{8} y_{7}^{2}+y^{7} v_{15} \\
y_{13}^{2} & =S q^{13} y_{13}=\hat{\sigma}_{\phi}\left(S q^{13} v_{14}\right)=\hat{\sigma}_{\phi}\left(\left(S q^{5} S q^{8}+S q^{11} S q^{2}\right) v_{14}\right) \\
& =\hat{\sigma}_{\phi}\left(S q^{5} v_{8} v_{14}\right)=\hat{\sigma}_{\phi}\left(v_{12} v_{15}\right)=y_{11} v_{15}+v_{12} y_{7}^{2} \\
y_{7}^{4} & =y_{14}^{2}=S q^{14} y_{14}=\hat{\sigma}_{\phi}\left(S q^{14} v_{15}\right)=\hat{\sigma}_{\phi}\left(v_{14} v_{15}\right)=y_{13} v_{15}+v_{14} y_{7}^{2} .
\end{aligned}
$$

Now we proceed to show that mod 2 cohomology of $\operatorname{BSol}(q)$ over \mathcal{A}_{2} is isomorphic to that of $L B D I(4)$.

Proposition 4.2. For $\phi=\psi^{q}$, the Adams operation of degree an odd prime power $q, H^{*}\left(\mathbb{L}_{\phi} B D I(4) ; \mathbb{Z} / 2\right)$ is isomorphic to $H^{*}(L B D I(4) ; \mathbb{Z} / 2)$ as algebras over \mathcal{A}_{2}.

Proof. Choose an element $v_{8} \in \operatorname{ker}\left(S q^{1}\right) \cap \operatorname{ker}\left(S q^{1} S q^{4}\right) \subset\left(\iota^{*}\right)^{-1}\left(x_{8}\right)$. Put $v_{12}=S q^{4} v_{8}, v_{14}=S q^{2} v_{12}$ and $v_{15}=S q^{1} v_{14}$. Then we have $S q^{1} v_{i}=0(i=$ $8,12,15)$. By dimensional reason

$$
S q^{2} v_{8}=0, S q^{4} v_{8}=v_{12}
$$

$S q^{4} v_{12}=S q^{4} S q^{4} v_{8}=0 . S q^{8} v_{12}=v_{8} v_{12}$ since $H^{19}(B D I(4) ; \mathbb{Z} / 2)=0$ in the Wang sequence. Other operations are calculated as follows.

$$
\begin{aligned}
S q^{2} v_{14} & =S q^{2} S q^{2} v_{12}=0 \\
S q^{4} v_{14} & =S q^{4} S q^{6} v_{8}=S q^{2} S q^{8} v_{8}=0 \\
S q^{8} v_{14} & =S q^{8} S q^{2} v_{12}=\left(S q^{4} S q^{6}+S q^{2} S q^{8}\right) v_{12}=v_{8} v_{14} \\
S q^{2} v_{15} & =S q^{2} S q^{7} v_{8}=S q^{9} v_{8}=0 \\
S q^{4} v_{15} & =S q^{4} S q^{7} v_{8}=S q^{11} v_{8}=0 \\
S q^{8} v_{15} & =S q^{8} S q^{1} v_{14}=\left(S q^{9}+S q^{2} S q^{7}\right) v_{14}=S q^{1} S q^{8} v_{14}=v_{8} v_{15}
\end{aligned}
$$

Hence we can construct the section r by $x_{i} \rightarrow v_{i}$.

> Department of Mathematics
> Kyoto University
> Kyoto 606-8502, Japan
> e-mail: kaji@math.kyoto-u.ac.jp

References

[B] D. Benson, Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants, Geometry and cohomology in group theory, London Math. Soc. Lecture Notes Ser. 252, Cambridge Univ. Press, 1998, 1023.
[BK] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer-Verlag, Berlin-New York, 1972.
[BM] C. Broto and J. Moller, Homotopy finite Chevalley versions of p-compact groups, in preparation.
[DW] W. Dwyer and C. Wilkerson, A new finite loop space at prime two, J. Amer. Math. Soc. 6 (1993), 37-64.
[F] E. M. Friedlander, Etal Homotopy of Simplicial Schemes, Ann. of Math. Stud. 104, Princeton Univ. Press, Princeton, 1963.
[G] J. Grbic, The cohomology of exotic 2-local finite groups, preprint.
[JMO] S. Jackowski, J. McClure and B. Oliver, Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147-2 (1995), 99-126.
[KK] D. Kishimoto and A. Kono, Cohomology of free and twisted loop spaces, preprint.
[K] A. Kono, On the 2-rank of compact connected Lie groups, J. Math. Kyoto Univ. 17-1 (1977), 1-18.
[KK2] A. Kono and K. Kozima, The adjoint action of the Dwyer-Wilkerson H-space on its loop space, J. Math. Kyoto Univ. 35-1 (1995), 53-62.
[Ku] K. Kuribayashi, Module derivations and the adjoint action of a finite loop space, J. Math. Kyoto Univ. 39-1 (1999), 67-85.
[N] D. Notbohm, On the 2-compact group $D I(4)$, J. Reine Angew. Math. 555 (2003), 163-185.
[Q] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212.
[S] R. Solomon, Finite groups with Sylow 2-subgroups of type .3, J. Algebra 28 (1974), 182-198.
[VV] A.Vavpetivc and A.Viruel, On the homotopy type of the classifying space of the exceptional Lie group F_{4}, Manuscripta Math. 107-4 (2002), 521540.
[W] C. Wilkerson, Self-maps of classifying spaces, Localization in group theory and homotopy theory, and related topics, Lecture Notes in Math. 418, Springer, Berlin, 1974, 150-157.

[^0]: 2000 Mathematics Subject Classification(s). 55R35, 55S10
 Received May 2, 2007
 *The author is supported in part by Grant-in-Aid for JSPS Fellows 182641.

