J. Math. Kyoto Univ. (JMKYAZ) 47-2 (2007), 441–450

Mod 2 cohomology of 2-compact groups of low rank

By

Shizuo Kaji*

Abstract

We determine the mod 2 cohomology algebra over the Steenrod algebra \mathcal{A}_2 of the classifying space of loop groups LG where G = Spin(7), Spin(8), Spin(9), F_4 and DI(4). Then we show they are isomorphic as algebras over \mathcal{A}_2 to the mod 2 cohomology of the 2-compact groups of type G.

1. Introduction

Kuribayashi [Ku] considered the cohomology algebra of free loop spaces by developing "module derivation." Generalizing his method, Kishimoto and Kono [KK] have developed a method to calculate cohomology of certain free loop spaces and *p*-compact groups over the Steenrod algebra. Using their method we calculate the mod 2 cohomology over the Steenrod algebra \mathcal{A}_2 of *BLG*, the classifying space of loop groups and 2-compact groups of type *G* with $G = Spin(7), Spin(8), Spin(9), F_4$ and DI(4), the finite loop space at prime 2 constructed by Dwyer and Wilkerson [DW].

Here we summarize the result [KK] necessary for our purpose. Let ϕ be a based self-map of a based space X. The twisted loop space of X, $\mathbb{L}_{\phi}X$ is defined in the following pull-back diagram:

$$\mathbb{L}_{\phi}X \longrightarrow X^{[0,1]} \\
\downarrow^{e} \qquad \qquad \downarrow^{e_0 \times e_1} \\
X \longrightarrow X \times X$$

where e_i (i = 0, 1) is the evaluation at *i*. The twisted tube of X, $\mathbb{T}_{\phi}X$ is defined by

$$\mathbb{T}_{\phi}X = \frac{[0,1] \times X}{(0,x) \simeq (1,\phi(x))}$$

There is a canonical inclusion $\iota: X \hookrightarrow \mathbb{T}_{\phi} X$.

2000 Mathematics Subject Classification(s). 55R35, 55S10

Received May 2, 2007

^{*}The author is supported in part by Grant-in-Aid for JSPS Fellows 182641.

When ϕ is the identity map, then $\mathbb{L}_{\phi}X$ is merely the free Remark 1. loop space of X and $\mathbb{T}_{\phi}X = S^1 \times X$.

The relation between the cohomology of $\mathbb{T}_{\phi}X$ and X can be obtained by the Wang exact sequence

(1.1)

$$\cdots H^{n-1}(X;R) \xrightarrow{1-\phi^*} H^{n-1}(X;R) \xrightarrow{\delta} H^n(\mathbb{T}_{\phi}X;R) \xrightarrow{\iota^*} H^n(X;R)$$

 $\xrightarrow{1-\phi^*} H^n(X;R) \cdots,$

where R is any commutative ring. Especially this exact sequence splits off to the short exact sequence when $H^*(\phi; R)$ is the identity map.

The twisted cohomology suspension is a map

$$\hat{\sigma}_{\phi}: H^*(\mathbb{T}_{\phi}X; R) \to H^{*-1}(\mathbb{L}_{\phi}X; R).$$

This together with the Wang sequence above relates the cohomology of X to that of $\mathbb{L}_{\phi} X$.

We consider the case when

(1.2)

 $\begin{cases} H^*(X; \mathbb{Z}/2) \text{ is a polynomial algebra } \mathbb{Z}/2[x_1, x_2, \dots, x_l], \\ H^*(\phi; \mathbb{Z}/2) \text{ is the identity map,} \\ \text{and } H^n(\phi; \mathbb{Z}/4) \text{ is the identity map for all odd } n \text{ and } n = 4m \ (m \in \mathbb{Z}). \end{cases}$

Under this condition, the result in [KK] specializes to the following Proposition:

Proposition 1.1. Suppose that there is a section $r: H^*(X; \mathbb{Z}/2) \to$ $H^*(\mathbb{T}_{\phi}X;\mathbb{Z}/2)$ of ι^* , which commutes with the Steenrod operations. Then we have

1. $H^*(\mathbb{L}_{\phi}X;\mathbb{Z}/2) = \mathbb{Z}/2[e^*(x_1), e^*(x_2), \dots, e^*(x_n)] \otimes \Delta(\hat{\sigma}_{\phi} \circ r(x_1), \hat{\sigma}_{\phi} \circ r(x_1))$ $r(x_2),\ldots,\hat{\sigma}_{\phi}\circ r(x_n)).$ $H^*(\mathbb{T}_{\phi}X;\mathbb{Z}/2).$

3. $\hat{\sigma}_{\phi}$ commutes with the Steenrod operations.

Let G be either Spin(7), Spin(8), Spin(9), F_4 or DI(4), and X be BG.

When ϕ is the identity map, $\mathbb{L}_{\phi}BG$ is merely LBG, the free loop space LBG, which is homotopy equivalent to BLG. Now (1.2) is trivially satisfied. The projection $S^1 \times X \to X$ is a section of ι . Hence we can calculate the cohomology of BLG by above Proposition.

For $G = Spin(7), Spin(8), Spin(9), F_4$ and a odd prime power q and $\phi = \psi^q$ the Adams operation of degree q [W], (1.2) is also satisfied. The Bousfield and Kan 2-completion [BK] of $\mathbb{L}_{\phi}X$ is known to be homotopy equivalent to that of the classifying space of Chevalley group of type G(q) [F].

For G = DI(4) and a odd prime power q, there is a self homotopy equivalence ψ^q of BDI(4) also called the Adams operation of degree q [N]. When $\phi = \psi^q$, (1.2) is again satisfied. $\mathbb{L}_{\phi}BDI(4)$ is called BSol(q) defined in [B].

In the following sections, our main observation is to construct the section r when $\phi = \psi^q$ and to show the following:

Theorem 1.1. Let $G = Spin(7), Spin(8), Spin(9), F_4$ or DI(4). Then $H^*(LBG; \mathbb{Z}/2) \simeq H^*(\mathbb{L}_{\psi^q}BG; \mathbb{Z}/2)$ as the algebras over the Steenrod algebra \mathcal{A}_2 , where q is an odd prime power.

2. The case G = Spin(7), Spin(8), Spin(9) and F_4

The mod 2 cohomology over \mathcal{A}_2 of BSpin(7), BSpin(8) and BSpin(9) are well known [Q, K].

 $H^*(BSpin(7); \mathbb{Z}/2) = \mathbb{Z}[w_4, w_6, w_7, w_8]$ and the action of \mathcal{A}_2 is determined by:

	w_4	w_6	w_7	w_8
Sq^1	0	w_7	0	0
Sq^2	w_6	0	0	0
Sq^4	w_{4}^{2}	w_4w_6	$w_4 w_7$	$w_4 w_8$

 $H^*(BSpin(8); \mathbb{Z}/2) = \mathbb{Z}[w_4, w_6, w_7, w_8, e_8]$ and the action of \mathcal{A}_2 is determined by:

	w_4	w_6	w_7	w_8	e_8
Sq^1	0	w_7	0	0	0
Sq^2	w_6	0	0	0	0
Sq^4	w_4^2	w_4w_6	$w_4 w_7$	$w_4 w_8$	w_4e_8

 $H^*(BSpin(9); \mathbb{Z}/2) = \mathbb{Z}[w_4, w_6, w_7, w_8, e_{16}]$ and the action of \mathcal{A}_2 is determined by:

	w_4	w_6	w_7	w_8	e_{16}
Sq^1	0	w_7	0	0	0
Sq^2	w_6	0	0	0	0
Sq^4	w_{4}^{2}	$w_4 w_6$	$w_4 w_7$	$w_4 w_8$	0
Sq^8	0	0	0	w_{8}^{2}	$w_8e_{16} + w_4^2e_{16}$

Proposition 2.1. $H^*(LBSpin(7); \mathbb{Z}/2) = \mathbb{Z}/2[v_4, v_6, v_7, v_8, y_3, y_5, y_7]/$ $I(|v_i| = i, |y_i| = i)$, where I is the ideal generated by $\{y_3^4 + v_6y_3^2 + y_5v_7, y_5^2 + y_3v_7 + v_4y_3^2, y_7^2 + y_6w_8 + w_7y_7\}$. The action of \mathcal{A}_2 is determined by:

	v_4	v_6	v_7	v_8	y_3	y_5	y_7
Sq^1	0	v_7	0	0	0	y_3^2	0
Sq^2	v_6	0	0	0	y_5	Õ	0
Sq^4	v_4^2	$v_4 v_6$	$v_4 v_7$	$v_4 v_8$	0	$y_3v_6 + v_4y_5$	$y_3v_8 + v_4y_7$

Proof. We take $v_i = e^*(w_i)$ and $y_i = \hat{\sigma}_{\phi}(w_i)$ $(i = 4, 6, 7, 8, \phi = Id)$. Then by Proposition 1.1 (1), we have $H^*(LBSpin(7); \mathbb{Z}/2) = \mathbb{Z}/2[v_4, v_6, v_7, v_8]$

 $\otimes \Delta[y_3, y_5, y_6, y_7]$. By Proposition 1.1 (2) and (3), we have

$$\begin{split} Sq^{1}y_{3} &= Sq^{1}\hat{\sigma}_{\phi}(w_{4}) = \hat{\sigma}_{\phi}(Sq^{1}w_{4}) = 0\\ Sq^{2}y_{3} &= \hat{\sigma}_{\phi}(Sq^{2}w_{4}) = \hat{\sigma}_{\phi}(w_{6}) = y_{5}\\ Sq^{1}y_{5} &= \hat{\sigma}_{\phi}(Sq^{1}w_{6}) = y_{6}\\ Sq^{2}y_{5} &= \hat{\sigma}_{\phi}(Sq^{2}w_{6}) = 0\\ Sq^{4}y_{5} &= \hat{\sigma}_{\phi}(Sq^{4}w_{6}) = \hat{\sigma}_{\phi}(w_{4}w_{6}) = e^{*}(w_{4})\hat{\sigma}_{\phi}(w_{6}) + \hat{\sigma}_{\phi}(w_{4})e^{*}(w_{6}) = v_{4}y_{5} + y_{3}v_{6}\\ Sq^{1}y_{7} &= \hat{\sigma}_{\phi}(Sq^{1}w_{8}) = 0\\ Sq^{2}y_{7} &= \hat{\sigma}_{\phi}(Sq^{2}w_{8}) = 0\\ Sq^{4}y_{7} &= \hat{\sigma}_{\phi}(Sq^{4}w_{8}) = \hat{\sigma}_{\phi}(w_{4}w_{8}) = y_{3}v_{8} + v_{4}y_{7}. \end{split}$$

By Adem relation, we have

$$\begin{split} &y_3^2 = Sq^3y_3 = Sq^1Sq^2y_3 = Sq^1y_5 = y_6 \\ &y_5^2 = Sq^5y_5 = Sq^1Sq^4y_5 = Sq^1(v_4y_5 + y_3v_6) = v_4y_6 + y_3v_7 = v_4y_3^2 + y_3v_7 \\ &y_7^2 = Sq^7y_7 = Sq^1(Sq^5Sq^1 + Sq^2Sq^4)y_7 = Sq^1(y_5v_8 + v_6y_7) = y_6v_8 + v_7y_7 \\ &y_3^4 = y_6^2 = Sq^6y_6 = (Sq^2Sq^4 + Sq^5Sq^1)y_6 = Sq^2(v_4y_6 + y_3v_7) = v_6y_3^2 + y_5v_7. \end{split}$$

Proposition 2.2. For $\phi = \psi^q$, the Adams operation of degree an odd prime power q, $H^*(\mathbb{L}_{\phi}BSpin(7);\mathbb{Z}/2)$ is isomorphic to $H^*(LBSpin(7);\mathbb{Z}/2)$ as algebras over \mathcal{A}_2 .

Proof. By Proposition 1.1, we only have to construct a section r of the map $\iota^* : H^*(\mathbb{T}_{\phi}BSpin(7);\mathbb{Z}/2) \to H^*(BSpin(7);\mathbb{Z}/2)$ which commutes with the Steenrod operation.

As mentioned in the first section, the Wang sequence (1.1) splits to the short exact sequence

$$0 \to H^{*-1}(BSpin(7); R) \xrightarrow{\delta} H^*(\mathbb{T}_{\phi}BSpin(7); R) \xrightarrow{\iota^*} H^*(BSpin(7); R) \to 0.$$

when coefficient R have the property $H^*(\phi; R) = 1$. Let $u_4 \in H^4(\mathbb{T}_{\phi}BSpin(7); \mathbb{Z}/2) \simeq \mathbb{Z}/2$ be the generator. Then we define $u_6 = Sq^2u_4, u_7 = Sq^1u_6$. By the Wang sequence for $R = \mathbb{Z}/4$ and the Bockstein spectral sequence, we have that $\ker(Sq^1) \subset (\iota^*)^{-1}(w_8) \subset H^8(\mathbb{T}_{\phi}BSpin(7);\mathbb{Z}/2)$ is isomorphic to $\mathbb{Z}/2 \oplus \mathbb{Z}/2$. We take u_8 to be a generator of $\ker(Sq^1) \subset (\iota^*)^{-1}(w_8)$ such that $\ker(Sq^1)$ is generated by u_8 and $\delta(w_7)$. Then $Sq^2u_8 = 0$ since $H^9(BSpin(7)) = 0$ and $Sq^2w_8 = 0$. Moreover we have $Sq^4u_8 = u_4u_8 + \epsilon\delta(w_4w_7)$, where $\epsilon = 0$ or 1. Since $\delta(w_4w_7) = Sq^4\delta(w_7)$, we can assume $\epsilon = 0$.

Take r to be the ring homomorphism $r(w_i) = u_i$ (i = 4, 6, 7, 8), then r is a section of ι^* which commutes with the Steenrod operations.

Proposition 2.3. $H^*(LBSpin(8); \mathbb{Z}/2) = \mathbb{Z}/2[v_4, v_6, v_7, v_8, f_8, y_3, y_5, y_7, z_7]/I(|v_i| = i, |y_i| = i, |v_8| = 8, |z_7| = 7)$, where I is the ideal generated

by $\{y_3^4 + v_6y_3^2 + y_5v_7, y_5^2 + y_3v_7 + v_4y_3^2, y_7^2 + y_3^2v_8 + w_7y_7, z_7^2 + y_3^2f_8 + w_7z_7\}$. The action of \mathcal{A}_2 is determined by:

	v_4	v_6	v_7	v_8	f_8	y_3	y_5	y_7	z_7
Sq^1	0	v_7	0	0	0	0	y_3^2	0	0
Sq^2	v_6	0	0	0	0	y_5	0	0	0
Sq^4	v_4^2	$v_4 v_6$	$v_4 v_7$	$v_4 v_8$	$v_4 f_8$	0	$y_3v_6 + v_4y_5$	$y_3v_8 + v_4y_7$	$y_3f_8 + v_4z_7$

Proof. Completely parallel to the case of Spin(7) since the generator $e_8 \in H^8(BSpin(8); \mathbb{Z}/2)$ is looks same as w_8 .

Proposition 2.4. For $\phi = \psi^q$, the Adams operation of degree an odd prime power q, $H^*(\mathbb{L}_{\phi}BSpin(8);\mathbb{Z}/2)$ is isomorphic to $H^*(LBSpin(8);\mathbb{Z}/2)$ as algebras over \mathcal{A}_2 .

Proof. We can construct a section r completely same as in the case of BSpin(7).

Proposition 2.5. $H^*(LBSpin(9); \mathbb{Z}/2) = \mathbb{Z}/2[v_4, v_6, v_7, v_8, f_{16}, y_3, y_5, y_7, z_{15}]/I(|v_i| = i, |y_i| = i, |f_{16}| = 16, |z_{16}| = 16), where I is the ideal generated by$

$$\{y_3^4 + v_6y_3^2 + y_5v_7, y_5^2 + y_3v_7 + v_4y_3^2, y_7^2 + y_3^2w_8 + w_7y_7, \\ z^2 + w_5v_5z_9 + w_7v_7 + w_7v_7$$

 $z_{15}^2 + v_7 v_8 z_{15} + w_7 y_7 f_{16} + y_3^2 v_8 f_{16} \}.$

The action of A_2 is determined by:

	v_4	v_6	v_7	v_8	f_{16}	y_3	y_5	y_7	z_{15}
Sq^1	0	v_7	0	0	0	0	y_3^2	0	0
Sq^2	v_6	0	0	0	0	y_5	0	0	0
Sq^4	v_{4}^{2}	$v_4 v_6$	$v_4 v_7$	$v_4 v_8$	0	0	$y_3v_6 + v_4y_5$	$y_3v_8 + v_4y_7$	0
Sq^8	0	0	0	v_{8}^{2}	$v_8 f_{16} + v_4^2 f_{16}$	0	0	0	J_1

where $J_1 = y_7 f_{16} + v_8 z_{15} + v_4^2 z_{15}$.

Proof. In dimension lower than 9, calculation is completely same as in the case of BSpin(7). We have only to calculate the following:

$$Sq^{8}z_{15} = \hat{\sigma}_{\phi}(Sq^{8}f_{16}) = \hat{\sigma}_{\phi}(v_{8}f_{16} + v_{4}^{2}f_{16}) = y_{7}f_{16} + v_{8}z_{15} + v_{4}^{2}z_{15}.$$

$$z_{15}^{2} = Sq^{15}z_{15} = \hat{\sigma}_{\phi}Sq^{15}f_{16} = \hat{\sigma}_{\phi}(v_{7}v_{8}f_{16}) = v_{7}v_{8}z_{15} + w_{7}y_{7}f_{16} + y_{3}^{2}v_{8}f_{16}.$$

Proposition 2.6. For $\phi = \psi^q$, the Adams operation of degree an odd prime power q, $H^*(\mathbb{L}_{\phi}BSpin(9);\mathbb{Z}/2)$ is isomorphic to $H^*(LBSpin(9);\mathbb{Z}/2)$ as algebras over \mathcal{A}_2 .

Proof. In dimension lower than 9, we can construct a section r completely same as in the case of BSpin(7).

Choose an element $f'_{16} \in \ker(Sq^1) \subset (\iota^*)^{-1}(e_{16})$. Then by the Wang

sequence, we have $Sq^2f'_{16} = \epsilon_1\delta(w_4w_6w_7)$ since $H^{17}(BSpin(9); \mathbb{Z}/2) \simeq \mathbb{Z}/2$ is generated by $w_4w_6w_7$. Then $Sq^2Sq^2f'_{16} = \epsilon_1\delta(Sq^2(w_4w_6w_7)) = \epsilon_1\delta(w_6^2w_7)$. By Adem relation this must be 0 since $Sq^2Sq^2 = Sq^3Sq^1$ and $Sq^1f'_{16} = 0$. Therefore we have $\epsilon_1 = 0$.

Similarly we have $Sq^4 f'_{16} = \epsilon_2 \delta(w_4^3 w_7) + \epsilon_3 \delta(w_6^2 w_7) + \epsilon_4 \delta(w_4 w_7 w_8)$. Then we have $Sq^4 Sq^4 f'_{16} = \epsilon_2 \delta(w_4 w_6^2 w_7) + \epsilon_3 \delta(w_4 w_6^2 w_7) + \epsilon_4 (w_4^2 w_7 w_8)$. By Adem relation we have $Sq^4 Sq^4 f_{16} = (Sq^7 Sq^1 + Sq^6 Sq^2) f_{16} = 0$. Therefore we have $\epsilon_2 = \epsilon_3, \epsilon_4 = 0$. Put $f_{16} = f'_{16} - \epsilon_2 w_4^2 w_7$, then we have $Sq^i f_{16} = 0$ (i = 1, 2, 4)since $Sq^4 w_4^2 w_7 = w_4^3 w_7 + w_6^2 w_7$.

Similarly we have $Sq^8f_{16} = w_8f_{16} + w_4^2f_{16} + \epsilon_5\delta(w_4^4w_7) + \epsilon_6\delta(w_4^2w_7w_8) + \epsilon_7\delta(w_4w_6^2w_7) + \epsilon_8\delta(w_7w_8^2) + \epsilon_9\delta(w_7f_{16})$. By Adem relation $Sq^8Sq^8f_{16} = 0$ and we have $\epsilon_5 = \epsilon_7 = \epsilon_9 = 0, \epsilon_6 = \epsilon_8$. Replacing f_{16} by $f_{16} - \epsilon_7\delta(w_7w_8)$ we have $Sq^8f_{16} = w_8f_{16} + w_4^2f_{16}$ and $Sq^if_{16} = 0$ (i < 8).

3. The case $G = F_4$

Denote the classifying map of the canonical inclusion $Spin(9) \hookrightarrow F_4$ by *i*. Then by [K], $H^*(F_4; \mathbb{Z}/2) = \mathbb{Z}[x_4, x_6, x_7, x_{16}, x_{24}]$ where $i^*(x_4) = w_4, i^*(x_6) = w_6, i^*(x_7) = w_7, i^*(x_{16}) = e_{16} + w_8^2, i^*(x_{24}) = w_8e_{16}$. Then the action of \mathcal{A}_2 is determined by:

	x_4	x_6	x_7	x_{16}	x_{24}
Sq^1	0	x_7	0	0	0
Sq^2	x_6	0	0	0	0
Sq^4	x_{4}^{2}	$x_4 x_6$	$x_{4}x_{7}$	0	$x_4 x_{24}$
Sq^8	0	0	0	$x_{24} + x_4^2 x_{16}$	$x_4^2 x_{24}$
Sq^{16}	0	0	0	x_{16}^2	$x_{16}x_{24} + x_4x_6^2x_{24}.$

Proposition 3.1. $H^*(LBF_4; \mathbb{Z}/2) = \mathbb{Z}/2[v_4, v_6, v_7, v_{16}, v_{24}, y_3, y_5, y_{15}, y_{23}]/I(|v_i| = i, |y_i| = i)$, where I is the ideal generated by

 $\{y_3^4 + v_6y_3^2 + y_5v_7, y_5^2 + y_3v_7 + v_4y_3^2, y_{15}^2 + v_7y_{23} + v_{24}y_3^2, y_{23}^2 + y_3^2v_{16}v_{24} + v_7v_{24}y_{15} + v_7v_{16}y_{23}\}.$

The action of \mathcal{A}_2 is determined by:

$Sq^1 \\ Sq^2 \\ Sq^4 \\ Sq^8 \\ G \ 16$	$v_4 \\ 0 \\ v_6 \\ v_4^2 \\ 0 \\ 0$	$egin{array}{c} v_6 \\ v_7 \\ 0 \\ v_4 v_6 \\ 0 \\ \circ \end{array}$	$egin{array}{c} v_7 \\ 0 \\ 0 \\ v_4 v_7 \\ 0 \\ 0 \end{array}$	$v_{16} \\ 0 \\ 0 \\ 0 \\ v_{24} + v_4^2 v_{16}$	$v_{24} \\ 0 \\ 0 \\ v_4 v_{24} \\ v_4^2 v_{24} \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ $
Sq^{16}	0	0	0	v_{16}^2	$v_{16}v_{24} + v_4v_6^2v_{24}$
$Sq^1 \\ Sq^2 \\ Sq^4 \\ Sq^8 \\ Sq^{16}$	$egin{array}{c} y_3 \ 0 \ y_5 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	$egin{array}{c} y_5 \ y_3^2 \ 0 \ y_3 v_6 + v_4 y_5 \ 0 \ 0 \ 0 \ \end{array}$	$\begin{array}{c} y_{15} \\ 0 \\ 0 \\ 0 \\ y_{23} + v_4^2 y_{15} \\ 0 \end{array}$	$\begin{array}{c} y_{23} \\ 0 \\ 0 \\ y_{3}v_{24} + v_{4}y_{23} \\ v_{4}^{2}y_{23} \\ J_{2} \end{array}$	

where $J_2 = v_{24}y_{15} + v_{16}y_{23} + y_3v_6^2v_{24} + v_4v_6^2y_{23}$.

Proof. In dimension lower than 9, calculation is completely same as in the case of BSpin(9).

$$\begin{split} Sq^1y_{15} &= \hat{\sigma}_{\phi}(Sq^1v_{16}) = 0\\ Sq^2y_{15} &= \hat{\sigma}_{\phi}(Sq^2v_{16}) = 0\\ Sq^4y_{15} &= \hat{\sigma}_{\phi}(Sq^4v_{16}) = 0\\ Sq^8y_{15} &= \hat{\sigma}_{\phi}(Sq^8v_{16}) = \hat{\sigma}_{\phi}(v_24 + v_4^2v_{16}) = y_{23} + v_4^2y_{15}\\ Sq^1y_{23} &= \hat{\sigma}_{\phi}(Sq^1v_{24}) = 0\\ Sq^2y_{23} &= \hat{\sigma}_{\phi}(Sq^2v_{24}) = 0\\ Sq^4y_{23} &= \hat{\sigma}_{\phi}(Sq^4v_{24}) = \hat{\sigma}_{\phi}(v_4v_{24}) = y_3v_{24} + v_4y_{23}\\ Sq^8y_{23} &= \hat{\sigma}_{\phi}(Sq^8v_{24}) = \hat{\sigma}_{\phi}(v_4^2v_{24}) = v_4^2y_{23}\\ Sq^{16}y_{23} &= \hat{\sigma}_{\phi}(Sq^{16}v_{24}) = \hat{\sigma}_{\phi}(v_{16}v_{24} + v_4v_6^2v_{24})\\ &= y_{15}v_{24} + v_{16}y_{23} + y_3v_6^2v_{24} + v_4v_6^2y_{23}\\ y_{15}^2 &= Sq^{15}y_{15} = \hat{\sigma}_{\phi}(Sq^{15}v_{16}) = \hat{\sigma}_{\phi}(v_7v_{24}) = v_7y_{23} + y_3^2v_{24}\\ y_{23}^2 &= Sq^{23}y_{23} = \hat{\sigma}_{\phi}(Sq^{23}v_{24}) = \hat{\sigma}_{\phi}(v_7v_{16}v_{24})\\ &= y_3^2v_{16}v_{24} + v_7v_{24}y_{15} + v_7v_{16}y_{23}. \end{split}$$

Proposition 3.2. For $\phi = \psi^q$, the Adams operation of degree an odd prime power q, $H^*(\mathbb{L}_{\phi}BF_4;\mathbb{Z}/2)$ is isomorphic to $H^*(LBF_4;\mathbb{Z}/2)$ as algebras over \mathcal{A}_2 .

Proof. By [JMO] the following diagram is homotopy commutative.

$$BSpin(9)_{2}^{\wedge} \xrightarrow{\psi^{q}} BSpin(9)_{2}^{\wedge} .$$

$$\downarrow^{Bi} \qquad \qquad \downarrow^{Bi} \\ (BF_{4})_{2}^{\wedge} \xrightarrow{\psi^{q}} (BF_{4})_{2}^{\wedge}$$

By the naturality of the construction of the twisted tube, there is a map $\mathbb{T}_{\phi}BSpin(9) \to \mathbb{T}_{\phi}BF_4$ and we have the Proposition.

4. The case G = DI(4)

In [DW] they constructed a space called BDI(4) with the cohomology isomorphic to the mod 2 Dickson invariant of rank 4, that is, $H^*(BDI(4); \mathbb{Z}/2) = \mathbb{Z}/2[x_8, x_{12}, x_{14}, x_{15}]$, where $|x_j| = j$. The action of \mathcal{A}_2 is determined by:

	x_8	x_{12}	x_{14}	x_{15}
Sq^1	0	0	x_{15}	0
Sq^2	0	x_{14}	0	0
Sq^4	x_{12}	0	0	0
Sq^8	x_{8}^{2}	$x_8 x_{12}$	$x_8 x_{14}$	$x_8 x_{15}$

Notbohm [N] shows there is a self homotopy equivalence ψ^q of BDI(4) for odd prime power q called the Adams operation of degree q with the property $H^{2r}(\psi^q; \mathbb{Q}_p)$ is multiplication by q^r . Using this, Benson [B] defined an exotic 2-compact group BSol(q) as $L_{\psi^q}BDI(4)$ which can be called "the classifying space" of Solomon's non-existent finite group [S].

Recently Grbic [G] calculated the mod 2 cohomology of BSol(q) over \mathcal{A}_2 by using Eilenberg-Moore spectral sequence. Here we calculate it by the method of Kishimoto and Kono.

Proposition 4.1. $H^*(LBDI(4); \mathbb{Z}/2) = \mathbb{Z}/2[v_8, v_{12}, v_{14}, v_{15}, y_7, y_{11}, y_{13}]/I(|v_i| = i, |y_i| = i)$, where I is the ideal generated by

$$\{y_7^4 + y_{13}v_{15} + v_{14}y_7^2, y_{11}^2 + v_7y_{15} + v_8y_7^2, y_{13}^2 + y_{11}v_{15} + v_{12}y_7^2\}.$$

The action of A_2 is determined by:

	v_8	v_{12}	v_{14}	v_{15}	y_7	y_{11}	y_{13}
Sq^1	0	0	v_{15}	0	0	0	y_{7}^{2}
Sq^2	0	v_{14}	0	0	0	y_{13}	0
Sq^4	v_{12}	0	0	0	y_{11}	0	0
Sq^8	v_{8}^{2}	$v_8 v_{12}$	$v_8 v_{14}$	$v_8 v_{15}$	0	$y_{11}v_8 + v_{12}y_7$	$y_{13}v_8 + v_{14}y_7$

Remark 2. Kuribayashi has also this result in [Ku].

Proof.

$$\begin{split} y_7^2 &= Sq^7 y_7 = \hat{\sigma}_{\phi}(Sq^7 v_8) = \hat{\sigma}_{\phi}(v_{15}) = y_{14} \\ Sq^1 y_i &= \hat{\sigma}_{\phi}(Sq^1 v_{i+1}) = 0 \ (i = 7, 11) \\ Sq^1 y_{13} &= \hat{\sigma}_{\phi}(Sq^1 v_{14}) = \hat{\sigma}_{\phi}(v_{15}) = y_{14} = y_7^2 \\ Sq^2 y_i &= \hat{\sigma}_{\phi}(Sq^2 v_{i+1}) = 0 \ (i = 7, 13) \\ Sq^2 y_{11} &= \hat{\sigma}_{\phi}(Sq^2 v_{12}) = \hat{\sigma}_{\phi}(v_{14}) = y_{13} \\ Sq^4 y_i &= \hat{\sigma}_{\phi}(Sq^4 v_{i+1}) = 0 \ (i = 11, 13) \\ Sq^4 y_7 &= \hat{\sigma}_{\phi}(Sq^4 v_8) = \hat{\sigma}_{\phi}(v_{12}) = y_{11} \\ Sq^8 y_7 &= \hat{\sigma}_{\phi}(Sq^8 v_{12}) = \hat{\sigma}_{\phi}(v_8 v_{12}) = y_7 v_{12} + v_8 y_{11} \\ Sq^8 y_{13} &= \hat{\sigma}_{\phi}(Sq^8 v_{14}) = \hat{\sigma}_{\phi}(v_8 v_{14}) = y_7 v_{14} + v_8 y_{13} \\ y_{11}^2 &= Sq^{11} y_{11} = \hat{\sigma}_{\phi}(Sq^{11} v_{12}) = \hat{\sigma}_{\phi}(Sq^1 Sq^2 Sq^8 v_{12}) = \hat{\sigma}_{\phi}(v_8 v_{15}) \\ &= v_8 y_7^2 + y^7 v_{15} \\ y_{13}^2 &= Sq^{13} y_{13} = \hat{\sigma}_{\phi}(Sq^{13} v_{14}) = \hat{\sigma}_{\phi}((Sq^5 Sq^8 + Sq^{11} Sq^2) v_{14}) \\ &= \hat{\sigma}_{\phi}(Sq^5 v_8 v_{14}) = \hat{\sigma}_{\phi}(Sq^{14} v_{15}) = y_{11} v_{15} + v_{12} y_7^2 \\ y_7^4 &= y_{14}^2 = Sq^{14} y_{14} = \hat{\sigma}_{\phi}(Sq^{14} v_{15}) = \hat{\sigma}_{\phi}(v_1 v_{15}) = y_{13} v_{15} + v_{14} y_7^2. \end{split}$$

Now we proceed to show that mod 2 cohomology of BSol(q) over \mathcal{A}_2 is isomorphic to that of LBDI(4).

Proposition 4.2. For $\phi = \psi^q$, the Adams operation of degree an odd prime power q, $H^*(\mathbb{L}_{\phi}BDI(4);\mathbb{Z}/2)$ is isomorphic to $H^*(LBDI(4);\mathbb{Z}/2)$ as algebras over \mathcal{A}_2 .

Proof. Choose an element $v_8 \in \ker(Sq^1) \cap \ker(Sq^1Sq^4) \subset (\iota^*)^{-1}(x_8)$. Put $v_{12} = Sq^4v_8, v_{14} = Sq^2v_{12}$ and $v_{15} = Sq^1v_{14}$. Then we have $Sq^1v_i = 0$ (i = 8, 12, 15). By dimensional reason

$$Sq^2v_8 = 0, Sq^4v_8 = v_{12}.$$

 $Sq^4v_{12} = Sq^4Sq^4v_8 = 0$. $Sq^8v_{12} = v_8v_{12}$ since $H^{19}(BDI(4); \mathbb{Z}/2) = 0$ in the Wang sequence. Other operations are calculated as follows.

$$\begin{split} Sq^2 v_{14} &= Sq^2 Sq^2 v_{12} = 0\\ Sq^4 v_{14} &= Sq^4 Sq^6 v_8 = Sq^2 Sq^8 v_8 = 0\\ Sq^8 v_{14} &= Sq^8 Sq^2 v_{12} = (Sq^4 Sq^6 + Sq^2 Sq^8) v_{12} = v_8 v_{14}\\ Sq^2 v_{15} &= Sq^2 Sq^7 v_8 = Sq^9 v_8 = 0\\ Sq^4 v_{15} &= Sq^4 Sq^7 v_8 = Sq^{11} v_8 = 0\\ Sq^8 v_{15} &= Sq^8 Sq^1 v_{14} = (Sq^9 + Sq^2 Sq^7) v_{14} = Sq^1 Sq^8 v_{14} = v_8 v_{15} \end{split}$$

Hence we can construct the section r by $x_i \rightarrow v_i$.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: kaji@math.kyoto-u.ac.jp

References

- [B] D. Benson, Cohomology of sporadic groups, finite loop spaces, and the Dickson invariants, Geometry and cohomology in group theory, London Math. Soc. Lecture Notes Ser. 252, Cambridge Univ. Press, 1998, 10– 23.
- [BK] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math. 304, Springer-Verlag, Berlin-New York, 1972.
- [BM] C. Broto and J. Moller, *Homotopy finite Chevalley versions of p-compact groups*, in preparation.
- [DW] W. Dwyer and C. Wilkerson, A new finite loop space at prime two, J. Amer. Math. Soc. 6 (1993), 37–64.

- [F] E. M. Friedlander, *Etal Homotopy of Simplicial Schemes*, Ann. of Math. Stud. **104**, Princeton Univ. Press, Princeton, 1963.
- [G] J. Grbic, The cohomology of exotic 2-local finite groups, preprint.
- [JMO] S. Jackowski, J. McClure and B. Oliver, Self-homotopy equivalences of classifying spaces of compact connected Lie groups, Fund. Math. 147-2 (1995), 99–126.
- [KK] D. Kishimoto and A. Kono, *Cohomology of free and twisted loop spaces*, preprint.
- [K] A. Kono, On the 2-rank of compact connected Lie groups, J. Math. Kyoto Univ. 17-1 (1977), 1–18.
- [KK2] A. Kono and K. Kozima, The adjoint action of the Dwyer-Wilkerson H-space on its loop space, J. Math. Kyoto Univ. 35-1 (1995), 53-62.
- [Ku] K. Kuribayashi, Module derivations and the adjoint action of a finite loop space, J. Math. Kyoto Univ. 39-1 (1999), 67–85.
- [N] D. Notbohm, On the 2-compact group DI(4), J. Reine Angew. Math. 555 (2003), 163–185.
- [Q] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197–212.
- [S] R. Solomon, Finite groups with Sylow 2-subgroups of type .3, J. Algebra 28 (1974), 182–198.
- [VV] A.Vavpetivc and A.Viruel, On the homotopy type of the classifying space of the exceptional Lie group F_4 , Manuscripta Math. **107**-4 (2002), 521– 540.
- [W] C. Wilkerson, Self-maps of classifying spaces, Localization in group theory and homotopy theory, and related topics, Lecture Notes in Math. 418, Springer, Berlin, 1974, 150–157.