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Functional limit theorems for occupation times
of Lamperti’s stochastic processes

in discrete time

By

Etsuko Fujihara, Yumi Kawamura and Yuko Yano

Abstract

Two functional limit theorems for occupation times of Lamperti’s
stochastic processes are established. One is a generalization of Lam-
perti’s result in 1957 in the null recurrent case, and the other is a limit
theorem for the fluctuation in the positively recurrent case. The proofs
are based on a limit theorem for i.i.d. random variables with common
distribution function belonging to the domain of attraction of a stable
law.

1. Introduction

The law of the occupation time on the positive side of a one-dimensional
Brownian motion is well-known as P. Lévy’s arc-sine law. He also showed that
the law of the fraction of the occupation time of a one-dimensional simple
random walk converges to the arc-sine law. This result was extended by J.
Lamperti ([7], 1957). He studied the limit theorem of the law of the occupa-
tion time for a certain class of discrete time processes (we call them Lamperti
processes here) which have the Markov property only at a special state. The
possible limit laws, called Lamperti laws, and their variants appear in various
literatures even recently, e.g., Barlow–Pitman–Yor ([1], 1989), S. Watanabe
([9], 1995) and Bertoin–Fujita–Roynette–Yor ([2], to appear).

S. Watanabe ([9], 1995) studied the similar problem for one-dimensional
diffusion processes and proved that the class of possible limit laws coincides
with that of Lamperti laws. Recently Kasahara–Watanabe ([6], 2006) studied
the limit theorem for the fluctuation of the occupation time in the positively
recurrent case, where the average of the occupation time has a degenerate limit
in long time.

In the present paper we study limit theorems of the occupation time for
a Lamperti process and generalize these results. In the null recurrent case
we establish a functional limit theorem of Lamperti’s result. In the positively
recurrent case we establish a limit theorem for the fluctuation.
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One of the major contributions of the present paper is to extend Lam-
perti’s limit theorem to a functional limit theorem (Theorem 2.2). While the
proof of Lamperti’s theorem was carried out analytically, we need a proba-
bilistic method, a limit theorem of the partial sum process of i.i.d. random
variables (see, e.g., [4] and [5]). In fact, the excursion intervals of a Lamperti
process away from 0 are i.i.d. random variables. The key to the problem is
the Williams formula (Proposition 2.4). The other is to prove a limit theorem
for the fluctuation (Theorem 3.1) which is analogous to Kasahara–Watanabe’s
result (Theorem 4.1 in [6]). While Kasahara–Watanabe used several particular
properties of one-dimensional diffusion processes, our proof is based on a limit
theorem for i.i.d. random variables with common distribution function belong-
ing to the domain of attraction of a stable law with index 1 < α < 2. The key
tool is a function Φ which we shall introduce in (3.7).

The present paper is organized as follows. In Section 2, we shall review
Lamperti’s result and state our functional limit theorem in the null recurrent
case with its proof. In Section 3, we will establish a limit theorem for the
fluctuation in the positively recurrent case. We will introduce a function Φ and
some lemmas and prove our theorem.

2. Lamperti’s result and a functional limit theorem

We shall define a Lamperti process X = {Xn}n∈Z+ on S as follows.

Definition 2.1. A Lamperti process is a discrete time process X =
{Xn}n∈Z+ defined on a probability space (Ω,F , P ) whose state space S is di-
vided into two sets, S+ and S−, and one special state 0, and satisfies the
following properties.

(i) It starts at 0, i.e., P (X0 = 0) = 1.
(ii) If Xn−1 ∈ S+ and Xn+1 ∈ S− or if Xn−1 ∈ S− and Xn+1 ∈ S+, then

Xn = 0.
(iii) P (τ < ∞) = 1 where τ is the first hitting time at 0 of X.
(iv) It starts afresh when it recurs the state 0, i.e.,

P ((Xτ+k : k > 0) ∈ ·|Fτ ) = P ((Xk : k > 0) ∈ ·) for k > 0

where Fn = σ({Xk : 0 ≤ k ≤ n}).
Let A+(n) denote the occupation time up to time n of the set S+ of X.

Occupation of the state 0 is counted or not according to whether the last other
state occupied was in S+.

Lamperti [7] determined the class of possible limit random variables in law
of A+(n)/n as n → ∞. Let p(n) stand for the probability that the recurrence
time of state 0 is just n (

∑∞
n=1 p(n) = 1), i.e.,

p(n) = P (Xn = 0, Xi �= 0, 0 < i < n).

Set g(x) =
∑∞

n=1 p(n)xn be its generating function. Then Lamperti’s result [7]
is stated as follows (with a slight change of notation).
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Theorem A ([7]).

(2.1) lim
n→∞ P (A+(n)/n ≤ x) = F (x)

exists if and only if

(2.2) lim
n→∞E[A+(n)/n] = p, 0 ≤ p ≤ 1

exists and also

(2.3) lim
x→1−

(1 − x)g′(x)/(1 − g(x)) = α, 0 ≤ α ≤ 1

exists.

Let us consider the case where the latter statements hold with 0 < p < 1
and 0 < α < 1. It is known (see, for example, [1] and [9]) that the limit
distribution F (x) = F (α,p)(x) equals the distribution of the fraction of the
occupation time A

(α,p)
+ (t) on the positive side up to time t of a skew Bessel

diffusion process of dimension 2 − 2α with skew parameter p. It is also known
by the Willams formula (see, for example, [9]) asserts that

(2.4) (A(α,p)
+ )−1(t) d= t + η−(η−1

+ (t))

with η+(t) = S
(α)
+ (pt) and η−(t) = S

(α)
− ((1 − p)t) where S

(α)
+ is an α-stable

process with Lévy measure αx−α−1dx and S
(α)
− is an independent copy of S

(α)
+ .

Thus we rewrite (2.1) as

1
n

A+(n) d−→ A
(α,p)
+ (1) d=

1
t
A

(α,p)
+ (t) as n → ∞

for every t > 0 where d−→ denotes the convergence in distribution.
We extend the occupation time process A+(n), n = 0, 1, . . . of a Lamperti

process X to a process [0,∞) � t �→ A+(t) by the linear interpolation, that is,
for n ≤ t < n + 1, n ∈ Z+,

A+(t) = A+(n) + (t − n){A+(n + 1) − A+(n)}.
Our purpose of this section is to prove the following functional limit theorem.

Theorem 2.1. If Lamperti’s limit distribution exists for 0 < α < 1,
that is,

(2.5)
1
n

A+(n) d−→ A
(α,p)
+ (1) as n → ∞,

then we have

(2.6)
1
λ

A+(λt) L−→ A
(α,p)
+ (t) in C([0,∞) : [0,∞)) as λ → ∞

where L−→ denotes the convergence in law over the function space.
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Before proving Theorem 2.1, we first rewrite the conditions (2.2) and (2.3)
following Lamperti [7]. Let q± = P (X1 ∈ S±) = P (Xn+1 ∈ S±|Xn = 0).
Following Lamperti [7], we may suppose that the state 0 does not repeat itself,
i.e., q+ + q− = 1. Put

p±(n) = P (Xn = 0, Xi �= 0, 0 < i < n|X1 ∈ S±),

g±(x) =
∞∑

n=1

p±(n)xn.

Throughout this paper, f(x) ∼ g(x) as x → a means that limx→a f(x)/g(x) =
1.

Theorem B ([7]).
(i) The condition (2.3) for 0 < α < 1 is equivalent to

(2.7) 1 − g(x) ∼ (1 − x)αL

(
1

1 − x

)
as x → 1 − .

(ii) The conditions (2.2) and (2.3) for 0 < p < 1 and 0 < α < 1 are
equivalent to the conditions

(2.8) 1 − g±(x) ∼ (1 − x)αL±

(
1

1 − x

)
as x → 1−

where L±(x) are slowly varying functions at ∞ such that

(2.9) lim
x→∞

L+(x)
L−(x)

=
q−
q+

· p

1 − p
.

(iii) The conditions (2.8) are equivalent to the conditions

(2.10)
∞∑

k=n+1

p±(k) ∼ 1
Γ(1 − α)

n−αL±(n) as n → ∞.

Second, we rewrite the conditions (2.10) in terms of excursion intervals.
Let τm be the m-th hitting time at 0 of X, i.e., τm = inf{n > τm−1 : Xn = 0}
(τ0 = 0), and let ξ(m) = τm − τm−1(> 0). Then {ξ(m)}m∈N is a sequence of
nonnegative i.i.d. random variables by the property (ii) of a Lamperti process.
For m = 1, 2, . . ., put

em(n) =
{

Xn+τm−1 for 0 ≤ n ≤ ξ(m),
0 otherwise.

Let

ξ+(m) =
{

ξ(m) if em(1) ∈ S+,
0 otherwise

and

ξ−(m) =
{

ξ(m) if em(1) ∈ S−,
0 otherwise.

Then {(ξ+(m), ξ−(m))}m∈N is a sequence of i.i.d. random variables.
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Lemma 2.1. The conditions (2.10) are equivalent to the conditions

(2.11) P (ξ+(1) > n) ∼ p

ϕ(n)
and P (ξ−(1) > n) ∼ 1 − p

ϕ(n)

as n → ∞ where ϕ(x) is a regularly varying function with index α, 0 < α < 1.

Proof. Set ϕ(n) = pΓ(1 − α)nα/{q+L+(n)}. Then ϕ(n) ∼ (1 − p)Γ(1 −
α)nα/{q−L−(n)} as n → ∞. Hence, by the equalities

P (ξ±(1) > n) = q± ·
∞∑

k=n+1

p±(k),

we obtain the desired equivalence.

Third, we prepare a functional limit theorem for the partial sum process
of excursion intervals. For t ≥ 0, put

T±(t) =
[t]∑

k=1

ξ±(k) and T (t) = T+(t) + T−(t).

Lemma 2.2. Under the condition (2.11), it holds that
(

1
λ

T+(ϕ(λ)t),
1
λ

T−(ϕ(λ)t)
)

L−→ (S(α)
+ (pt), S(α)

− ((1 − p)t))

in D([0,∞) : [0,∞)2) as λ → ∞
(2.12)

where D([0,∞) : [0,∞)2) is the space of càdlàg functions with Skorokhod’s
J1-topology.

For Skorokhod’s J1-topology, see, e.g., [3] and [8].

Proof. We first note that (T+(t), T−(t))t≥0 is the partial sum process of an
i.i.d. random vectors {(ξ+(k), ξ−(k))}k∈N and that (S(α)

+ (pt), S(α)
− ((1−p)t))t≥0

is an R
2-valued Lévy process with Lévy measure

ν(dx, dy) = α{px−α−1dxδ0(dy) + (1 − p)y−α−1dyδ0(dx)}.
Therefore it suffices to show that

(2.13) ϕ(λ)P ((ξ+(1), ξ−(1)) ∈ (λdx, λdy)) −→ ν(dx, dy)

vaguely on [−∞,∞] × [−∞,∞] \ {(0, 0)}. Since all measures in (2.13) are
concerned on the set {(x, y)|xy = 0}, (2.13) can be rewritten as

ϕ(λ)P (ξ+(1) > λx) −→ px−α

and

ϕ(λ)P (ξ−(1) > λy) −→ (1 − p)y−α
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as λ → ∞ for every x, y > 0. However, this is an immediate consequence of
Lemma 2.1.

Fourth, we need a discrete version of the Williams formula (2.4). Let
A−1

+ (t) be the right-continuous inverse of A+(t), that is,

A−1
+ (t) = inf{s : A+(s) > t}, 0 ≤ t < ∞

with the obvious convention that inf φ = ∞.

Proposition 2.1. For a general Lamperti process X, it holds that

(2.14) A−1
+ (t) = t + T−(T−1

+ (t)), 0 ≤ t < ∞
where T−1

+ is the right-continuous inverse of t �→ T+(t).

Proof. Put k = T−1
+ (t). Then T+(k − 1) ≤ t < T+(k). Now we suppose

that ξ(k) = ξ+(k) and put k0 = sup{m < k : ξ(m) = ξ+(m)}. Then ξ(k0+1) =
ξ−(k0 + 1), ξ(k0 + 2) = ξ−(k0 + 2), . . . , ξ(k − 1) = ξ−(k − 1) and we have
T+(k0) ≤ t < T+(k). Hence we obtain A−1

+ (t) = T (k − 1) + (t − T+(k0)) =
{T+(k − 1) + T−(k − 1)} + (t − T+(k0)) = T−(k − 1) + t = T−(k) + t. In the
case that ξ(k) = ξ−(k), the proof is similar, so we omit the detail.

Let D0 be the space of càdlàg functions f that are non-decreasing and
satisfy f(0) = 0 and limt→∞ f(t) = ∞. Let Λ denote the class of strictly
increasing, continuous functions λ on [0,∞) with λ(0) = 0 and limx→∞ λ(x) =
∞.

Lemma 2.3. Let xn, x ∈ D0([0,∞) : [0,∞)) and let yn, y ∈ D([0,∞) :
[0,∞)) be non-decreasing functions. If x(t) is strictly increasing in t and if

(2.15) (xn, yn) −→ (x, y) in D([0,∞) : [0,∞)2),

then it holds that

(2.16) yn(x−1
n (t)) −→ y(x−1(t))

at every t for which x−1(t) is a continuity point of y(·).
Proof. By the assumption (2.15), there exist functions λn ∈ Λ such that

xn ◦ λn −→ x and yn ◦ λn −→ y

uniformly on every compact set. Since (xn ◦λn)−1 are non-decreasing and x−1

is continuous, we have

(xn ◦ λn)−1 −→ x−1

uniformly on every compact set. Let t be a point for which x−1(t) is a continuity
point of y(·) and fixed. Then we have

yn(x−1
n (t)) = yn ◦ λn((xn ◦ λn)−1(t))

= yn ◦ λn((xn ◦ λn)−1(t)) − y((xn ◦ λn)−1(t)) + y((xn ◦ λn)−1(t))

−→ y(x−1(t)),
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which completes the proof.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Under our assumption, we can apply Theorem B,
Lemmas 2.1 and 2.2 to obtain the functional limit (2.12). By Skorokhod’s
theorem, we can realize the convergence (2.12) by an almost-sure convergence;
There exist processes T̂± and Ŝ

(α)
± on a probability space (Ω̂, F̂ , P̂ ) such that

T±
d= T̂±, S

(α)
±

d= Ŝ
(α)
± and

1
λ

(
T̂+(ϕ(λ)t), T̂−(ϕ(λ)t)

)
−→ (Ŝ(α)

+ (pt), Ŝ(α)
− ((1 − p)t)) =: (η̂+(t), η̂−(t))

in D([0,∞) : [0,∞)2) almost surely.
Define two continuous nondecreasing functions Â+(t) and Ã+(t) by

(Â+)−1(t) = t + T̂−(T̂−1
+ (t)) and (Ã+)−1(t) = t + η̂−(η̂−1

+ (t)).

Then, by Lemma 2.3, we see that, for almost all paths, (Â+)−1(λt)/λ →
(Ã+)−1(t) at every fixed t for which the value η̂−1

+ (t) is a continuity point of η̂−.
Hence we obtain Â+(λt)/λ → Ã+(t) in the function space C([0,∞) : [0,∞))
for almost all paths; In fact, the left-hand side is non-decreasing in t and the
right-hand side is continuous in t, so that the convergence is uniform on every
compact set.

By (2.4) and Proposition 2.1, we see that Â+
d= A+ and Ã+

d= A
(α,p)
+ .

Therefore we obtain (2.6), and hence we conclude the assertion.

3. Limit theorem for the fluctuation

In this section, we study the extreme case of Lamperti’s result, α = 1, that
is, the limit distribution F degenerates. In this case, it holds that

(3.1) A+(n)/n
p−→ p as n → ∞

for some constant p ∈ (0, 1) where
p−→ denotes the convergence in probability.

Our aim of this section is to evaluate the fluctuation

1
λ

A+(λt) − pt as λ → ∞.

Theorem 3.1. Suppose that

(3.2) P (ξ+(1) > n) ∼ c+

ϕ(n)
and P (ξ−(1) > n) ∼ c−

ϕ(n)
as n → ∞

where ϕ(n) is a regularly varying function at ∞ with index 1 < α < 2. Then it
holds that

(3.3)
1

ϕ−1(λ)
(A+(λt) − pλt)

f.d.−→ (1 − p)C+S
(α)
+ (t) − pC−S

(α)
− (t)
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where S
(α)
+ and S

(α)
− are independent α-stable processes whose Lévy measures

are both given by αx−α−1dx and where the constants p and C± are such that

γ± = E[ξ±(1)] < ∞,(3.4)

p =
γ+

γ+ + γ−
(3.5)

and

(3.6) C± =
(

c±
γ+ + γ−

)1/α

.

Here and throughout
f.d.−→ denotes the convergence of all finite-dimensional

marginal distributions.

In order to prove Theorem 3.1, we introduce a function Φ as follows. Let
x ∈ D0([0,∞) : [0,∞)) and let y ∈ D([0,∞) : R). Let x−1 be the right-
continuous inverse of x, that is,

x−1(t) = inf{s : x(s) > t}.

Put

t∗ = x(x−1(t)),

t∗ = x(x−1(t) − 0).

Define

(3.7) Φ[x, y](t) =




t − t∗
t∗ − t∗

y(x−1(t)) +
t∗ − t

t∗ − t∗
y(x−1(t) − 0) if t∗ �= t∗,

y(x−1(t)) if t∗ = t∗.

Then the function Φ[x, y](·) ∈ D([0,∞) : R). We note that the function
Φ[x, y](·) is obtained from the graph {(x(t), y(t))|t ≥ 0} with points where
x(t) and y(t) jump simultaneously complemented by a line segment.

Proposition 3.1. Let x ∈ D0([0,∞) : [0,∞)) and y, z ∈ D([0,∞) : R).
The function Φ has the following properties.

(i) Φ[x, x](t) = t for any t ≥ 0.
(ii) For a > 0, Φ[x, y](at) = Φ

[x

a
, y

]
(t) for any t ≥ 0.

(iii) For a and b ∈ R,

Φ[x, ay + bz] = aΦ[x, y] + bΦ[x, z].

(iv) Let λ ∈ Λ. Then

Φ[x ◦ λ, y ◦ λ] = Φ[x, y].
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(v) Let x+, x− ∈ D0([0,∞) : [0,∞)) and suppose that x+ and x− do not
jump simultaneously. Then

Φ[x+ + x−, x+]−1(t) = t + x−(x−1
+ (t)) for t ≥ 0.

Proof. We only prove (v); The rest can be checked easily. Set x = x++x−.
Let t ≥ 0 and set s = t + x−(x−1

+ (t)). It suffices to show that Φ[x, x+](s) = t.
First, we consider the case where the value x−1

+ (t) is a continuity point
of x+. Then t = x+(x−1

+ (t)) and hence s = x+(x−1
+ (t)) + x−(x−1

+ (t)) =
x(x−1

+ (t)). Now we have x−1(s) = x−1
+ (t) and therefore we obtain Φ[x, x+](s) =

x+(x−1(s)) = x+(x−1
+ (t)) = t.

Second, we consider the case where the value x−1
+ (t) is a jump point of x+.

Then x+(x−1
+ (t) − 0) ≤ t < x+(x−1

+ (t)). Since x−(x−1
+ (t) − 0) ≤ x−(x−1

+ (t)),
we have x(x−1

+ (t) − 0) ≤ s < x(x−1
+ (t)). Hence we obtain x−1(s) = x−1

+ (t).
Set t∗ = x+(x−1

+ (t) − 0) and t∗ = x+(x−1
+ (t)). Noting that the value x−1(s) =

x−1
+ (t) is a continuity point of x−, we have

s∗ :=x(x−1(s)) = x(x−1
+ (t)) = t∗ + x−(x−1

+ (t)) = t∗ + s − t,

s∗ :=x(x−1(s) − 0) = x(x−1
+ (t) − 0) = t∗ + x−(x−1

+ (t)) = t∗ + s − t.

Therefore we obtain

Φ[x, x+](s) =
s − s∗
s∗ − s∗

x+(x−1(s)) +
s∗ − s

s∗ − s∗
x+(x−1(s) − 0)

=
t − t∗
t∗ − t∗

x+(x−1
+ (t)) +

t∗ − t

t∗ − t∗
x+(x−1

+ (t) − 0)

= t.

The proof is completed.

The following continuity lemma will play an important role in the proof of
Theorem 3.1.

Lemma 3.1. Let xn, x ∈ D0([0,∞) : [0,∞)) and let yn, y ∈ D([0,∞) :
R). Assume that

(3.8) (xn, yn) −→ (x, y) in D([0,∞) : [0,∞) × R).

If x(t) is strictly increasing in t, then it holds that

(3.9) Φ[xn, yn](t) −→ y(x−1(t))

at every t ∈ [0,∞) for which x−1(t) is a continuity point of y(·).
The proof of Lemma 3.1 is similar to that of Lemma 2.3, so we omit it.
Let X be a Lamperti process. We keep the notations such as ξ±(m),

T±(t), T (t), A+(t) etc. in the previous section. The function Φ provides us
with a direct representation of the occupation time in terms of the partial sum
processes T and T+ of excursion intervals as follows.
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Proposition 3.2. For a general Lamperti process X, it holds that

(3.10) A+(t) = Φ[T, T+](t).

Proof. This is obvious from Propositions 2.1 and (v) of Proposition 3.1.

We prepare the following lemma of limit theorems of the partial sum pro-
cesses T±.

Lemma 3.2. Under the conditions (3.2), the following statements hold.
(i) For every t,

(3.11)
1
λ

T+(λt) −→ γ+t,
1
λ

T−(λt) −→ γ−t and
1
λ

T (λt) −→ γt

as λ → ∞ almost surely where γ = γ+ + γ−.
(ii) Let T̃±(t) = T±(t) − γ± · [t]. Then

(
1

ϕ−1(λ)
T̃+(λt),

1
ϕ−1(λ)

T̃−(λt)
)

L−→ (S(α)
+ (c+t), S(α)

− (c−t))

in D([0,∞) : R
2) as λ → ∞.

(3.12)

The proof of Lemma 3.2 is similar to that of Lemma 2.2, so that we omit
it.

For every t ∈ [0,∞), we have

1
λ

A+(λt) =
1
λ

Φ[T, T+](λt) = Φ
[

1
λ

T,
1
λ

T+

]
(t)

= Φ
[

1
λ

T (λ·), 1
λ

T+(λ·)
]

(t)

p−→ γ+

γ
t = pt

by (i) of Lemma 3.2, by Lemma 3.1 and by (3.5).
Now we proceed to prove Theorem 3.1.

Proof of Theorem 3.1. Using Propositions 3.2 and 3.1, we have

A+(t) − pt = Φ[T, T+](λt) − pt

= Φ[T, T+](t) − pΦ[T, T ](t)
= Φ[T, T+ − pT ](t).

By the relationship between T± and T̃±, we have

T+(t) − pT (t) = (1 − p)T+(t) − pT−(t)

= (1 − p)T̃+(t) − pT̃−(t) + {(1 − p)γ+ − pγ−} · [t].
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By (3.5), it holds that (1 − p)γ+ − pγ− = 0 and we have

T+(t) − pT (t) = (1 − p)T̃+(t) − pT̃−(t).

Hence we have

A+(t) − pt = Φ[T, (1 − p)T̃+ − pT̃−](t)

= (1 − p)Φ[T, T̃+](t) − pΦ[T, T̃−](t),

and thus we obtain

1
ϕ−1(λ)

(A+(λt) − pλt) = (1 − p)Φ
[

1
λ

T (λ·), 1
ϕ−1(λ)

T̃+(λ·)
]

(t)

− pΦ
[

1
λ

T (λ·), 1
ϕ−1(λ)

T̃−(λ·)
]

(t).

By (3.11) and (3.12), we have
(

1
λ

T (λt),
1

ϕ−1(λ)
T̃+(λt),

1
ϕ−1(λ)

T̃−(λt)
)

L−→ (γt, S
(α)
+ (c+t), S(α)

− (c−t))

in D([0,∞) : [0,∞) × R × R). Now Lemma 3.1 implies that
(

Φ
[

1
λ

T (λ·), 1
ϕ−1(λ)

T̃+(λ·)
]

(t), Φ
[

1
λ

T (λ·), 1
ϕ−1(λ)

T̃−(λ·)
]

(t)
)

f.d.−→
(

S
(α)
+

(
c+t

γ

)
, S

(α)
−

(
c−t

γ

))
d=

(
C+S

(α)
+ (t), C−S

(α)
− (t)

)
.

Therefore we obtain

1
ϕ−1(λ)

(A+(λt) − pλt) = (1 − p)Φ
[

1
λ

T (λ·), 1
ϕ−1(λ)

T̃+(λ·)
]

(t)

− pΦ
[

1
λ

T (λ·), 1
ϕ−1(λ)

T̃−(λ·)
]

(t)

f.d.−→ (1 − p)C+S
(α)
+ (t) − pC−S

(α)
− (t),

which competes the proof.

Remark 1. Thanks to the function Φ[x, y](t), we can give a direct proof
of the functional limit theorem in the null recurrent case stated as Theorem
2.1, but we shall not go into details here.
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