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An infinitesimal deformation of the local system
and the Beta function

By

Ko-Ki ITo

1. Introduction

Improper integrals are realized as some kinds of period integrals, that
is, pairings between cohomology and homology (in fortunate cases). In fact,
Euler’s Beta function

(1.1) B(p,q) = /01 P (1 — ) dt

can be seen as a pairing between the twisted homology H1 (X, £) and the twisted
de Rham cohomology, where X is P\ {0,1, 00}, £ is the local system defined
by the multi-valuedness of t?~1(1 — ¢)4=! and the twisted de Rham complex
is defined by replacing a coboundary operator with d + dlog(t?=1(1 — ¢)471)
instead of the exterior derivative d. This is the Aomoto theory.

One of the most impressive aspects of the Aomoto theory allows one to
regard the integration (1.1) as the pairing between the regularization of the
open interval (0,1) and the cohomology class represented by dt. Here, the
regularization of the open interval (0, 1) is defined by

1 1
00—170 61_1717

(1.2) reg(0,1) :=

where ¢g = eQWﬁ(p_l), c1 = e2m™V/=1a=1) and v; is a loop around t = 1.
However, as the formula (1.2) shows, the regularization is only possible unless
cg,c1 = 0, that is the case where p and ¢ are integers. In principle, this
difficulty should be avoided by considering a family of twisted homologies and
cohomologies parametrized by p, ¢ because the Beta function B(p, q) depends
holomorphically on parameters p, q. To realize the value of B(p,q) at integer
points as a pairng, we consider 1-st order derivatives at integer points with
respect to parameters p, q.

To carry out this more concretely, we introduce and calculate homology
and cohomology with coefficients in Re := Cleg]/(e3) ® Cle1]/(¢%)-valued local
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system. Instead of the cycle reg(0, 1), we define an infinitesimal deformation
of (¢o — 1)(c1 — 1)reg(0,1), that is, we introduce

Reg(0,1) := (¢1 — 1)y — (@0 — 1)1,

where ¢g 1= e2™V=1(P=1+e0) 77 = 27V=1a=1+e1) Also in case p, ¢ € Z,
Reg(0,1) survives!

We shall describe the contents of this paper. In Section 2, we give the
definition of R-valued local system Lg_. In Section 3, we calculate the homol-
ogy with coeflicients in Lr_. In Section 4, we give the definition of the twisted
de Rham cohomology and calculate it. In Section 5, we calculate the pairing
between the twisted homology and de Rham cohomology. Consequently, we
get Euler’s Beta function. Note that our method in this paper is valid for
hypergeometric functions associated to the configuration space of points on P*.

2. The local system

Let R. be Clgg]/(e3) ® Cle1]/(e3). We fix a 3-tuple of complex numbers
(g, a1, o) € C3 with ag + a1 + as = 0. Put @; = a; + ¢, where e, =
—eo — €1. (Note that €2 ¢ (e2,¢2) C Clep,e1].) We introduce the following
sheaf:

Lp, = ker (d— we : Ox ®cy Re — Qk- QcCx Rs),

where
__dt n __d(1-1t)
We =Qpg— + a1 ———=.
s U0y T T
Lemma 2.1.  The sheaf Lr, is an Rc-valued local system of rank 1,

whose local sections are generated by t%0 (1 —t)*1, where 2% := exp(a;logz) :=
2% (1 + ¢g;log 2).

Proof. 'We can pick an open covering {U;}; of X such that ¢ (1 — ¢)°1
is single-valued on U;. Thus we choose a branch ¢; of t*0 (1 — ¢)® on U;. Note
that dqi = we. We shall prove that T'(U;, Lg.) = Res;. If ¢ € T'(U;, LRg, ), then
0= (d — we)s = sid(s; *s). So d(s;'s) = 0 and hence s; 's € Re. This implies
that F(Umﬁ[ﬂ) = Re§i~ O

3. The twisted homology

We calculate the twisted homology He(X, Lp,_). Take a point o € X. Let
~i be aloop around ¢ =i (i = 0, 1) both of whose ends are o. The inclusion map
oUy U7y — X is a deformation retract. Then X is homotopic to o U~y U~;.
Let

Co(X, ERE) = REO,
C1 (X7 CRE) = Revo ® Rema -
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The boundary operator 0 : C1(X,Lgr,) — Co(X,Lp,) is defined by the fol-
lowing:
8(’71) = (C_’L - 1>Oa (Z = 07 1)

where ¢; := exp(2mv/—1;) = ¢;(1 + 2mv/—1¢;), ¢; = exp(2my/—1a;). Homolo-
gies of this chain complex {Ce(X, Lg_),0} coincide with He(X, Lg,_).

Theorem 3.1.  Put Reg(0,1) := (1 — 1)y0 — (¢ — 1)m1-
1. If both oy and oy are integers, Hy(X,Lg.) = Re/(€0,£1) = C. Other-
wise Hy(X,Lr,) =0.
2. If both oy and oy are integers, H1 (X, Lg_) is generated by Reg(0,1),
€00 and e1y1. Otherwise Hi(X, Lg_) is generated by Reg(0,1) only.

Proof.

1. Hy(X,Lgr.) = Re/(¢g— 1,1 — 1). If both o and o are integers, then
(co—1,e1—1) = (eg,€1). Otherwise (¢og— 1,61 —1) = R.. We have thus proved
the statement.

2. If koyo + k171 is a cycle, then

(% — 1)]€o + (a — l)kl =0.

If both ag and «; are integers, then ¢g — 1 = g, ¢ — 1 = €1. By using lemma
A.3, we get the following:

{’;”eRe{€;O]+RE{?]+RE{£]
If a is not an integer, then ¢y — 1 is invertible. Hence
ko = —(c —1)7' (@ — Dk
If a; is not an integer, then €7 — 1 is invertible. Hence
ki = —(e1 = 1) (@ — Dko.

We have thus proved the theorem.

4. The twisted de Rham cohomology

We calculate the twisted algebraic de Rham cohomology Hg, (X9, R,).
Let

C%(X R.):= R, [t,

1

t

1 1
CHX R.):= R, [t, - —} dt.
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The coboundary operator is defined by d + we. The k-th cohomology of
this cochain complex {C*(X®9, R.),d+ wc} is denoted by H§+w€ (X9 R,)
and is said to be the k-th twisted algebraic de Rham cohomology. Note that
C'(X9,R.) are generated by tF4t (1 — t)k@ (k = 0,£1,£2,...). We

agree that nf and nf denote the cohomology classes represented by tk% and
(1- t)k@, respectively.
Proposition 4.1.  Let ¢ be 0 or 1.
L (k=1+@@m)nf " = (k- a)nt.
2. Let k be a positive integer. Then the equalities
k—1 -
== (1) o
J
and
kE—1 P
==y ( i ) (=)™
J
hold.
Proof.
1. We have (d + we) (t*1) = (k — 1 + a)t" 14 + afltk_l%. This

implies that @y [tkil%] = —(k—1+ag)ng ", where [tkil%] denotes

the cohomology class whose representative is tkild(lli:tt). We shall indicate

by [ ] a cohomology class in latter discussion. Since —agnf = artF~1(1 —
DU = ay [ D]y [ AR ] = (k1 @)+ kT,
we have (k — 1 +ag)nt ™" = (k — @x)nf. In a similar fashion, the equality

(k—1+an)ni™' = (k — ax)n¥ is proved.

2. We use the binomial expansion: (1 —#)F~! = Z ( F ; 1 ) (—t)7.
J

o

Theorem 4.1.  Let J := {j | a; € Z} C {0,1,00}.
1. If J = ¢, then Héere (X9 R.) is generated by ng,
that is, generated by [dt].
2. If J = {jo}, then H}, , (X9, R.) is generated by nj_oajo,
where ¥ =1y
3. If J ={0,1,00}, then one of the following statements holds:
(a) If g > 0 and ay > 0, then Hy, , (X9, R.) is generated by 1y *°
and ny “*, between which the relation egny *° + e1n] ** = 0 holds.
(b) If ap > 0 and oy <0, then Hj,, (X9, Re) is generated by ny *°
and ny>, between which the relation eong ™ — (—1)"*exny™ =0
holds.
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(c) If ap < 0 and oy > 0, then H}, (X9 R.) is generated by n; **
and n7>, between which the relation e1n; “* — (—=1)" e on>= =0
holds.

(d) If g < 0 and oy <0, then Hj, , (X9, Rc) is generated by ng “°
and ng=, between which the relation eony *° — (—1)" M eqeny™ =0
holds.

!is generated by 7 unless k —

Proof. Proposition 4.1 implies that nf_
1 + @; is not invertible. Similarly, n¥ is generated by nf_l unless k — @ is
not invertible. If n(’f is generated for every positive integer k, then n¥ is also
generated for every positive integer k. The converse also holds.

x(k =14 a)(k—ax)™"

o N\

o o >

\wj Ay > 1)
k—1 k
i i

x(k—1+4@) (k- ax)

Ui

1. If J = ¢, then both £ — 1 + @; and k — & are invertible for every
integer k. Consequently 7§ generates Hj, , (X9, R,).

2.If jo = 0, then —ap + @ = &g is not invertible. So 7, *° cannot be

generated by 7, @0F1 However k + ag is invertible except for k = —ag. For
every integer k, both k — @ and k+aq are also invertible. Consequently 7, *°

generates Hy, , (X9, R,.).

xeo(ar + 1 —e50)7t

© © >0

— — 1
770 aow 9 ao+

In the same way, we see that 7, “' generates Hng_we (X9 R.) in case of jo = 1.
If jo = 00, then aoo —Too = —€ is not invertible. So ni™= cannot be generated
by 770%0_1. However k — @ is invertible except for k = a.. For every integer
k, both k + @ and k + @y are also invertible. Consequently nf is generated by
o> for each integer k. We shall prove that n} is generated by nj> for each
integer k. It is sufficient to prove that nj= is generated by {n(’)“}k:()’il,igw.
In case ay < 1,

M = (1= €s0)(2—€c0)
xar f(1+a) ™t (—ae +a1) My

=(1=€00)(2—c0) - (
ar (L an) T (s +31) T (- p)-

In case a > 1,
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Qoo —1
« 2 : Qoo — 1 i J
me == ( J ) (=17

Jj=0

Consequently 75> generates Hj, , (X9, R.).
3.For j =0, 1, —a; +a; = ¢; is not invertible. So n]-_aj cannot be
generated by n»_aﬁl. Similarly, ng= (resp. n7™) cannot be generated by
773‘”_1 (resp. 77?“’_1).
(a) In case ag > 0, o > 0:
In this case, s < —ag, Ao < —a1. SO n;“x’ is generated by n;aj.
In fact, if oo < —aj,

15 = (Qoo + 14 00) (oo + 2+ 00) -+ (—0j + T0)
X (oo + ) " Haoe +1+a5) 7 e (—ay — Lag) Ty

If aew = —ay, then nj>

relation: ggny *° +e1m; “* = 0.

coincides with nj_aj . We shall prove the

(4.1)
m =ei(ej+1) (g5 +ay)

X (—aj+1— @) oy +2—a5) " ;e

(1- @)_1773‘
Then

eoleo+1)-+- (g0 + o)
X (=€ + g+ 1)(—cc +ag+2) - (=00 + ag + a1 + 1)1y ™
+e(er+1)--- (61 + )
X (=t + 01+ 1)(—ec+a1+2) - (=60 + g+ s + 1)y
-0,

that is,
g0 (o + o1 + 1) +bo) g ™ +e1 (a0 + a1 + 1)1+ b1)ny ** =0,

where by, b1 € (g0,¢1). By applying lemma A.2 we can complete
the proof.

(b) In case ap > 0, a7 < 0:
For each integer k, nf is generated by 15 ®° and n5>~. Then n¥
is generated for each positive integer k. So n; “! is generated. If

Ao

Qoo > 0, then nf*> is also generated. If oo, < 0, then

Ny = —ny> X (—oq +¢eo)(—a1+1+¢eg) - (ap + o)
X (—ayg —i—al)_l(—ao +1 —l—al)_l e —l—al)_l.
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Hence 7y is generated. We shall prove the relation: egn, *° +
€M™ = 0.

—ap

(—ao +@0)(—ao + 1 +a0) -+ (o — 2+ @)
X (—ap+1—ax) H(—ap+2—a) " (aoo — 1 — ) '1pg
—1, s

= (Ao — 0o (o — L+ @) 1

Then

60(60 + 1) e (80 — 1 — 1)7}0_a0
= (—€oo) (€00 = 1)+ (€00 + a1 + )15,

that is,
g0 (a1 = 1) +bo)) 1y ** —=(=1)"" oo (o1 = ! +boo) g™ =0,

where by, boo € (£0,€1). By applying lemma A.2 we can complete
the proof.

(¢) In case ap < 0, a > 0:
In exactly the same way as case (b), we can obtain the desired
result.

(d) In case ap < 0, a3 < 0:
For each integer k, nf is generated by n; *° and n§>~. Then n¥
is generated for each positive integer k. So both n;** and 7'
are generated. In exactly the same way as case (b), we obtain the

relation between 7, “° and ng*.

0

|
5. The euler type integral
We shall consider the euler type integral.

Definition 5.1.  Let v be a singular 1-simplex, ¢ € I'(y,Lg_) and n €
(X, Q%). We pick C-valued functions a, ag, a1, ag; over v such that ¢n =
adt + egagdt + e1a1dt + eoe1ao1dt. We define

/ t%(l—t)an ::/adt—!—eo/aodt+51/a1dt+5051/a01dt.
Y®s vy vy bl vy

For = >"7; ®g;, we define

/ t(1 — )%y = Z/ (1 — 1)y,
= Vi ®Si
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Example 5.1.

/ %0 (1 =) ng
Reg(0,1)

= {(cl - 1)/ otk =L (1 — )™ dt — (co — 1)/ otk =L(1 — )t

71

+ €0 |:(cl — 1)/ ta°+k_1(1 —t)* log tdt
Yo
—(co — 1)/ o tR=L(] — ) Jog tdt
7

— 277\/—100/ eoth=1(] — t)aldt}
vy

+e1 [(cl - 1)/ teo k=11 _ ) Jog(1 — t)dt
(5.1) o
+2mv—1¢y / teotk=l(] _ ) gy

8!

(o]

—(co — 1)/ teotR=1(1 — )™ Jog(1 — t)dt]
7
+ €o€1 [(cl - 1)/ teoth=1(1 — )™ log tlog(1 — t)dt
Yo

+2m/—1c1/ oo TR=L(1 — )1 log tdt

Yo

— (o — 1)/ teo k=11 — ) Jogtlog(l — t)dt
71

—27n/—1c0/ goHE=L(1 _ 1)1 Tog(1 — £)dt| .

71

We shall consider the case g, a1 € Z in latter discussions.

Lemma 5.1.  Let a, b be integers.

1. If res;—ot®(1 — t)?dt = 0, then there exists a meromorphic function
F(a,b;t) over P'\ [1,00] such that dF = t*(1 — t)®dt, F(a,b;0) = 0, and the
following formula holds:

F(a,b;t)

(5.2) / (1 — t)®log tdt = —2m\/—1Ires;—g fdt.
Yo

2. If res;—1t%(1 — t)°dt = 0, then there ewists a meromorphic function
F(a,b;t) over P!\ [~00,0] such that dF = t*(1 —t)°dt, F(a,b;0) =0, and the
following formula holds:

F(a,b;t)

(5.3) / (1~ 1) log(1 — 1)dt = 2y Tres,—y ot D
Y1 -
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3. If resi—t®(1 — t)°dt = 0 and res;—1t*(1 — t)°dt = 0, then there exists
a meromorphic function F(a,b;t) over P* (and holomorphic on X) such that
dF = t*(1 —t)bdt, F(a,b;0) = 0, and two formulae (5.2), (5.3) hold.

Proof.

1. Let I; be a path in P\ [0, co] whose initial point is 0 and whose terminal
point is t. Put

F(a,b;t) ::/t“(l—t)bdt.
It

F(a,b;t) is well-defined, that is, defined independently of the choice of I; be-
cause res;—gt*(1 — t)bdt = 0.

/ t%(1 — ) log tdt = /
Yo

~

logtdF' = / <d(F(a7 b;t)logt) — F(a,b; t)ait>
0 Yo

— F(a,b;
- [F(G,’ b’ t> log t}ayo —2m —lrestzo ydt

F(a,b;t
=21y —1F(a,b;0) — 27r\/—1rest:0w’7’)dt

t
F(a,b;t
= 27V flrest:oydt.
2. In exactly the same way as 1., we can obtain the proof.
3. In exactly the same way as 1., we can obtain the proof.

By using this lemma, we get the Beta function:

Theorem 5.1.  Let ag, oy be integers. We assume that res;—ot®° (1 —
HMdt = 0 and res—1t*°(1 — t)*dt = 0. Then there exists a meromorphic
function F(ag,aq;t) over P* (and holomorphic over X = P!\ {0,1,00}) such
that dF =t (1 — t)*dt, F(ao,a1;0) =0, and the following formula holds:

[ ey
Reg(0,1)

(5.4)
F ; F ;
Y (rest_OMdt _ reSHMdt> .

t t—1
Especially in case ag > 0, ag > 0,

(5.5) / t%(1 — )b = goer - 27V —1)?B(ap + 1,01 + 1),
Reg(0,1)

where B(ag + 1,01 + 1) is a classical Beta function of Euler.

Proof. Because ag, a1 € Z, we have ¢y = ¢; = 1. By the assumption,

/tag(l—t)o‘ldt:/ £90(1 — )2 dt = 0.
Yo 71
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Then we get the following by formula (5.1):

[ ey
Reg(0,1)

=gpe1 - 2mV/—1 U teotk=1(] _ ) log tdt
Yo

—/ teoTR=1(1 — )™ Jog(1 — t)dt} .
71

By using lemmab.1, we can get (5.4). In case ag > 0, a3 > 0,

F it
restzowdt — F(a07a1; 0) _ / tozo(l _ ﬂ(udt7
lo
F it
_ I
Then
F it F it
e FlOmit) Pl

:/ t“o(l—t)‘“dt—/ (1 — t)™ dt

lo ll
1
= —/ to(1 — )™ dt
0
=—B(ap+ 1,00 +1).

|

Example 5.2. We assume that both oy and a; are non-negative inte-
gers. We can calculate B(ap+1, a1 +1) by using generators of Hé_i_we (X9 R,)

which are given by theorem 4.1. By the formula (4.1), we get

(56) (—Eoo + 1+ 1)(—€00 + a1 +2) -+ (=00 + 1 + g + 1)1

=ceoleo+1) - (e0+ ao)ngao-

We shall consider the pairing between Reg(0,1) and each side of (5.6). By the

formula (5.5), we get

(o +a1+ 1) (€ + 1 4+2) - (—ec + a1 + g+ 1) / (1 — )™}

Reg(0,1)

= €p€1 - (271'\/ —1)2(Oél + 1)(041 + 2) s (041 “+ agp + l)B(ao +1, a1 + 1).

On the other hand, we can get the following by using formula (5.1):

goleg+1)--- (g0 + ao)/ t2(1 — t)%pg *°
Reg(0,1)

dt
= €0€1 * 27‘(\/—10[0!/ (1- t)al?

Yo

= Ep€1 - (27T\/ —1)2040!.
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Hence
(a1 +1)(ag +2)-+- (a1 +ap+ 1)B(ag + 1,01 + 1) = a!,
that is,
Oé()!Ozl!
Blag+ 1,00 +1) = ——m—,
(2 ! ) (oo + a1 + 1)!

which is a familiar formula.

Appendix A. Appendix
Let Re be Cleo]/(e3) @ Cle1]/(g2), and M be a Re-module.

Lemma A.1. Lets,t € M and a,b € Rc.
1. There exists a unit u € Re such that g9s + e1t + eoe1(as + bt) =
u(eos + e1t).
2. There exists a unit u € Re such that €08 + €0t + E0€00(as + bt)
u(08 + €xot)-
3. Ifegs+ert+eger(as+bt) =0, then egs+e1t =0 and egeq (as+bt) = 0.
4. Ifeps+esctteoenc(as+bt) =0, then eos+esct = 0 and ege (as+bt) =

Proof.
1. Put u = 1+ beg + aey. This is a unit.
2. Put u =1+ (a+ b)eg — aey. This is a unit.
3. This fact immediately follows from 1.

4. This fact immediately follows from 2.
O

Lemma A.2. Lets,t € M, aj,ar € RZ, bj,b, € Re \ R = (g0,€1)
and j, k € {0,1,00}.
1. There exists a unit uw € Re such that €;(a; + bj)s + ex(ar + bg)t =
u(ejajs + Ekakt).
2. If ej(a; +bj)s + ex(ar + b))t = 0, then ejajs + erart =0 and €;bjs +
Ekbkt =0.

Proof.
1. There exists an element b, € R, such that bje ), = eibiai_l fori = j
or k because b;a; ! € (g9,¢1). Then

gj(aj +bj)s +ep(ar +bp)t = €5 - ajs + ep, - apt + 5ep (b - ajs + by, - axt).

By applying lemma A.1 we can complete the proof.
2. By applying statement 1., €;a;5 + epait = 0. Hence €;b;5 + ebit =
gjla; +b;)s +ex(ar + br)t — (5058 + epart) = 0.
O
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Lemma A.3. Letag,a1 € Re. If egag + e1a1 =0, then

AN ARI AR

Proof. eperag = 61(60@0 + 61@1) = 0. This implies that ag € (50,61).
Then we can pick s, ¢y € Re such that ag = se1+tpeo and hence €1 (seg+a1) = 0.
This implies that seg + a1 € (£1). Consequently we can pick ¢; € Re such that
a1 = —seg + t1e1. We have completed the proof of the lemma. O
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