J. Math. Kyoto Univ. (JMKYAZ)
48-4 (2008), 793-845

Universal lifts of chain complexes over
non-commutative parameter algebras

To the memory of Professor Masayoshi Nagata.

By

Yuji YOSHINO

Abstract
We define the notion of universal lift of a projective complex based
on non-commutative parameter algebras, and prove its existence and
uniqueness. We investigate the properties of parameter algebras for uni-
versal lifts.

Contents

1. Introduction

2.  Non-commutative complete local algebras
2.1. Definitions and properties
2.2.  Small extensions
2.3. Complete tensor products

3. Universal lifts of chain complexes
3.1. Lifts to artinian local algebras
3.2. Construction of maximal lifts
3.3.  Universal lifts
3.4. Every complete local algebra is a parameter algebra
3.5. Deformation of modules

4. Properties of parameter algebras
4.1. Obstruction maps
4.2. Universal lifts based on commutative algebras
4.3. Yoneda products
4.4. Comparison of cohomology

1. Introduction

In this paper, k always denotes a field and R is an arbitrary associative
k-algebra. When we say an R-module, we always mean a left R-module unless
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otherwise stated.

From the view point of representation theory, the final goal of the theory
of R-modules should be to construct the moduli consisting of the isomorphism
classes of R-modules, by which we mean a geometric realization of the set of
isomorphism classes. Generally speaking, it is however impossible to describe all
the isomorphism classes of R-modules, even if we restrict ourselves to consider
indecomposable ones. One should say that the construction of moduli for R-
modules is hopeless.

But there is a way to observe the moduli from the local view point. Fixing
an R-module M, and assuming there is a modulus containing M as a rational
closed point, we can ask how it looks in the neighbourhood of the point, which
is nothing but to consider the universal deformation of M. In such a context,
the existence of formal local moduli is known ([2], [3], [6]).

To explain this, let Cy be the category of commutative artinian local k-
algebras with residue field k& and k-algebra homomorphisms. We consider the
covariant functor

Fur i Cp, — (Sets),
which maps A € Cj, to the set of infinitesimal deformations of M along A, i.e.
(R, A)-bimodules X that are flat over A} N

Fu(A) =
m(4) { and X ®% k = M as left R-modules

where 2 means (R, A)-bimodule isomorphism. Under these circumstances the
following theorem is known to hold.

Theorem 1.1 (Schlessinger’s Theorem 1968).  Suppose Exty (M, M) is
of finite dimension as a k-vector space. Then the functor Fus is pro-
representable. More precisely, there exist a commutative noetherian complete
local k-alegbra Q with residue field k and an (R, Q)-bimodule U that is flat over
Q@ such that there is an isomorphism

Homy.aiy(Q, ) = Fur

as functors on Ci. The isomorphism is given in such a way that each f €
Homy,_q14(Q, A) is mapped to [U®q yA] € Fr(A) for A € Ci,, where A denotes
the right A-module A regarded as a left Q-module through f.

In such a circumstance, we call U the universal family of deformations of
M, and call @ (resp. Spec Q) the commutative parameter algebra (resp. the
parameter space) of U.

One of the easiest examples is the deformation of Jordan canonical forms.

Example 1.1.  Consider an n X n matrix which is of an irreducible Jor-
dan canonical form:
0 10 0
0 0 1 0
1



Universal lifts of chain complezes 795

Setting R = k[z], we know that this is equivalent to consider the indecompos-
able R-module M = k[z]/(z™). In this case, we can take Q = kl[[to, ..., tn—1]]
as the commutative parameter algebra, and U = Qlx]/(x™ +t, 12" 1 +---+tg)
as the universal family of deformations of M. If we consider this in a matrix
form, we obtain a so-called Sylvester family of matrices.

0 1 0o - 0
0 0 r .- 0
1

—to —ti —t2 -+ —tp

Under the setting of Theorem 1.1, since the bimodule U is flat as a right
@-module, the functor U ®£2 — : D(Q) — D(R) between derived categories is
defined. Remark that U ®£2 k = M. Thus the functor induces a map between
Yoneda algebras.

p: Extg(k, k) — Extg(M, M).
Of most interest is the mapping
p* : Exty(k, k) — Exth(M, M),

which is often called the obstruction map. Our motivation of this paper starts
with the observation that p? does not work well as a comparison map between
cohomology modules. We show this by the above example. In fact, we see in
Example 1.1 that

Exté(k‘, k) = (Koszul relations of degree 2 in the variables t¢;’s)*
Lop?
Ext% (M, M) = (0).

Compared with that Ext%(M, M) = (0), the k-vector space ExtQQ(k,k‘) has
dimension n(n — 1)/2. This is one of the examples that shows that p? does
not work well as a comparison map of cohomology modules. Here we should
notice that the Koszul relations of degree 2 are derived from the commutativity
relations of the variables tg,...,t,_1.

Thinking this phenomenon over, we get the idea that the parameters
to,...,tn—1 should be regarded as non-commutative variables. Now we pro-
pose the following idea.

Idea 1. Parameter algebras should be non-commutative.

If we simply generalize the arguments in the commutative setting, we
will have difficulty in showing the flatness of the universal family of defor-
mations over the non-commutative parameter algebra. The reason for this is
that the local criterion of flatness does not necessarily hold for modules over
non-commutative rings. Therefore, to avoid the argument about flatness, we
also propose the following idea.
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Idea 2.  We should consider the deformation of chain complexes instead
of modules.

The deformation of chain complexes is nothing but the lifting of complexes,
which we mainly discuss in this paper. In such a way, we necessarily come to
think of “the universal lifts of chain complexes over non-commutative parameter
algebras”.

Just to explain about the lifting of chain complexes, let us introduce several
notation concerning chain complexes. When we say F = (F,d) is a chain
complex (or simply a complex) of R-modules, we mean that F' = @,z F; is
a graded R-module and d : F — F[—1] is a graded homomorphism satisfying
d?> = 0. A projective complex F = (F,d) is just a complex where the underlying
graded module F'is a projective R-module. If F = (F, d) is a projective complex,
then we define Ext, (F, ) to be the set of homotopy equivalence classes of chain
homomorphisms on F of degree —i.

We introduce the category Ay, whose objects are artinian local k-algebras
with residue field & with k-algebra homomorphisms as morphisms. (Note that
an object of Aj is not necessarily a commutative ring, but it is a finite dimen-
sional k-algebra.) Now let A € Ay and let F = (F,d) be a projective complex
of R-modules. Then, (F ®; A,A) is said to be a lift of F to A if it is a chain
complex of R ®; A°P-modules, and satisfies the equality A ® 4 k = d.

The aim of this paper is to construct the universal lift of a given projective
complex F = (F,d) which dominates all the lifts of F to all non-commutative
artinian k-algebras in Ay, and to investigate the properties of its parameter
algebra.

We should note that such a universal lift is no longer defined on an ar-
tinian algebra, but defined on a ‘pro-artinian’ local k-algebra. We call such
a pro-artinian algebra a complete local k-algebra by an abuse of the termi-
nology for commutative rings. The non-commutative formal power series ring
E({t1,...,t,)) with non-commutative variables t1,...,t, is an example of com-
plete local k-algebra. This is actually complete and separated in the (1, ..., t,)-
adic topology. And a complete local k-algebra is defined to be a residue ring of
the non-commutative formal power series ring by a closed ideal. (See Definition
2.1 and Proposition 2.1.) In particular all artinian algebras in Ay are complete
local k-algebras. But the difficulty here is that complete local k-algebras are
not necessarily noetherian rings.

We can extend the notion of lifting to the lifting to complete local k-
algebras. In fact, (F®pA,A,) is said to be a lift of F to a complete local
k-algebra A if it is a chain complex of R®j,A°P-modules and the equality
A g ®4 k =dholds. (See Section 2.3 for the complete tensor product @)

To give a precise definition of universal lifts, let F = (F,d) be a projective
complex of R-modules which we fix. Then we define a covariant functor F :
A, — (Sets) by setting as F(A) the set of chain-isomorphism classes of lifts
of F to A for any A € Ai. If we have a complete local k-algebra P and a
lift L = (F®&P,Ap) of F to P, then we can define a natural transformation
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¢r : Homy_a1g(P, —) — F of functors by setting ¢r(f) = (F ®r A, Ap ®p fA)
for A € A and f € Homy_ai5(P, A), where A denotes the right A-module A
regarded as a left P-module through f.

A chain complex L = (F®,P,Ap) is said to be a universal lift of F, if
¢, is an isomorphism of functors. In this case, we say that P is a parameter
algebra.

The first main result of this paper is about the existence and the unique-
ness of universal lifts, which we summarize as follows. (See Theorem 3.1 and
Theorem 3.2.)

Theorem 1.2. Let F = (F,d) be a projective complex of R-modules.
We assume that it satisfies r = dimy, Exti(F,F) < co. Then the following
statements hold true.

(1) There exists a universal lift Lo = (F@kPO, Ag) of F.

(2) A parameter algebra Py is unique up to k-algebra isomorphisms.

(3) Fizing a parameter algebra Py, a universal lift Ly is unique up to chain
isomorphisms of compleves of R®y, PyP-modules.

(4) The parameter algebra has a description Py = T/I, where T =
k({t1,...,t.)) is a non-commutative formal power series ring of r variables
and I is a closed ideal which is contained in the square of the unique mazimal
ideal of T.

We shall give a proof of this theorem in Section 3, where we need sev-
eral new ideas to do so, because complete local k-algebras are not necessarily
noetherian. We should remark that every complete local k-algebra can be a pa-
rameter algebra. In fact, for any complete local k-algebra P with maximal ideal
mp, P itself is the parameter algebra for the universal lift of a free resolution
of the left P-module k = P/mp. (See Theorem 3.3).

This theorem is essentially used in the proofs in Section 4, where we
investigate the properties of parameter algebras by considering the compari-
son of cohomology modules. As one of the main results there, we can give
a certain structure theorem for parameter algebras. In fact, assuming that
r = dimy, Exth(F,F) < oo and ¢ = dim, Ext%(F,F) < oo for a projective
complex F of R-modules, we have a description of the parameter algebra
Py as Py = k((t1,...t-)Y/(f1,..., f¢). (See Theorem 4.3.) In particular, if
dimy ExtQR(]F,F) = 0, then the parameter algebra equals a non-commutative
formal power series ring.

Let Py be the parameter algebra of the universal lifts of F which is described
as Py = T/Iy, where T is a non-commutative formal power series ring and I
is a closed ideal of T' with Iy C m%«. Then we prove in Theorem 4.5 that there
is an isomorphism of k-vector spaces

Extg(F,F)? = Homy (Iy/Io N w3, k),

where the left hand side means the k-subspace of Ext%(F,F) generated by all
the products of two elements in Ext}(F,F). This isomorphism shows that
Iy € md. if and only if Exty(F,F)? = 0. (See Corollary 4.2.)
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We can also regard such all observations as results of comparison of co-
homology modules. For this, we assume that F = (F,d) is a right bounded
projective complex of R-modules, and let Lo = (F® Py, Ag) be the universal
lift of F. For any integer n, we have a projective complex of R @y, (Po/mp, )°P-
modules;

Lg’l) = (F Rk PO/mTFL,D, AQ ®P0 PO/m’%o%

which is a lift of F to P, /m’f;.o. Therefore we have a morphism of Yoneda
algebras as before;

Extpo/m; (k, k) — Extyr(F,F).
0
Taking the direct limit, we finally get the k-algebra homomorphism

oo h_n>1EXt)30/m7};0 (k, k) — Extp(F,F).

Our main problem is to see how the mapping p’ behaves for i > 0. One can
easily observe that p° : lim Homp, /mn, (k, k) = k — Endg(F) is a natural em-
0
bedding and hence it is always an injection. Furthermore, by our construction
of Lo in Theorem 1.2, we see that p! : hi,nEXt}Do/mgo (k, k) = (mp,/m% )" —

Exty(F,F) is a bijection.

One of the main theorems of this paper is Theorem 4.6, in which we prove
that p? h_H}EXt?DO/m;gO (k,k) — Ext%(F,F) is always an injection. This
actually realizes Idea 1. We should notice that this holds because we had
extended the notion of parameter algebras to non-commutative rings.

2. Non-commutative complete local algebras

2.1. Definitions and properties

Throughout this paper, k always denotes a field. Let A be an associative
k-algebra. By an ideal of A we always mean a two-sided ideal. When S is a
subset of A, we denote by () the minimum ideal of A that contains S.

Definition 2.1. Let A be an associative local k-algebra with Jacobson
radical m4. We say that A is a complete local k-algebra if the following three
conditions are satisfied.

(a) The natural inclusion & C A induces an isomorphism k = A/my.

(b) The k-vector space m4/m? is of finite dimension.

(¢) A is complete and separated in the m4-adic topology, i.e. the natural
projections A — A/m’ (n € N) induce an isomorphism A = lim A/m’;.

For a complete local k-algebra A, we always denote by m4 the Jacobson
radical of A, and we regard A as a topological ring with m 4-adic topology.

Note that any artinian local k-algebra A with A/my = k is a complete
local k-algebra in our sense.
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Example 2.1. Let S = k(t1,to,...,t.) be a free k-algebra over vari-
ables ti,ts,...,t., and let J = (t1,t2,...,t,). We denote by T the J-adic
completion of S, i.e.

T =1lim S/J",
P

and we call T the non-commutative formal power series ring, which is
denoted by k((t1,ta,...,t.)). Clearly from the definition, T is a complete local
k-algebra with maximal ideal mp = (¢1,to,...,t,).

Note that each element of T" has a unique expression as a formal infi-
nite sum EA cxmy, where ¢y € k and the m)’s are distinct monomials on
i eyt

Remark 1. Let f: A — B be a k-algebra homomorphism of complete
local k-algebras. Then it is easy to see that f is a local homomorphism, i.e.
f(my) Cmp. In particular, f is a continuous map.

Definition 2.2. Let A be a complete local k-algebra and let I be an
ideal (resp. a left or right ideal). Then we denote the closure of I by I, i.e.
I =", +m7%). It is easy to see that I is also an ideal (resp. a left or
right ideal). We say that I is a closed ideal (resp. a closed left or right ideal)
if I =1.

Remark 2. If A is a commutative complete local k-algebra, then it
is well-known that A is noetherian and every ideal of A is closed (cf. [1]).
But, in general, a non-commutative complete local k-algebra is not necessarily
noetherian, and an ideal may not be closed.

For example, let T = k{{(z,y)) and let I = (z). Since any element of I is
a finite sum of elements of the form axb with a,b € T, one can easily see that
ZZO=1 y™xy™ belongs to I, but not to I.

Remark 3. If I is a closed ideal of a complete local k-algebra. Then,
I is complete and separated in the relative topology on I, i.e.

I=1limI/INwm}.

Lemma 2.1.  Let A be a complete local k-algebra and let I be an ideal
of A. Then, A/I is a complete local k-algebra if and only if I is a closed ideal.

Proof. Note that the residue ring A/I is complete (but may not be sepa-
rated) in m4-adic topology. If I is a closed ideal, then A/ is separated, hence
A/I is a complete local k-algebra. Conversely, if A/I is a complete local k-
algebra, then the natural projection f: A — A/I is continuous and {0} C A/I
is closed. Therefore I = f~1({0}) is closed. O

Lemma 2.2.  Let f: A— B be a k-algebra homomorphism of complete
local k-algebras. Suppose that the induced mapping f : ma/m% — mp/m% is
surjective. Then f is a surjective homomorphism.
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Proof. 1t is easy to see by induction on n that the induced mappings
fomy/mott — m /m%t are surjective for all n > 1. Then, for a given b € B,
we can find a; € mYy (0 <4 < n) such that f(ap +ay + - +a,) —b € mp!
for n > 0. Thus, putting a = Y, ; a,, we have a € A and f(a) = b, since f is
continuous. |

Proposition 2.1.  Let A be a complete local k-algebra. Then, there are
a non-commutative formal power series ring T = k{{t1,ta,...,t.)) and a k-
algebra homomorphism f : T — A such that the induced mapping f - mr/m% —
my/m? is bijective.

In particular, A can be described as A =T /I, where I is a closed ideal of
T and I C m7.

Proof. Take x1,x2,...,2, € mA\mi which give rise to a basis of the
k-vector space my/m?%. Now define a k-algebra homomorphism f : T =
E({t1,t2,...,t.)y — A by f(t;) = x; (1 < i < r). Then it is obvious that
f satisfies the desired conditions. a

Definition 2.3. We denote by .Zk the category of complete local k-
algebras and k-algebra homomorphisms. We also denote by Ay the category
of artinian local k-algebras A with A/m4 = k and k-algebra homomorphisms.
Obviously, Ay, is a full subcategory of Ay.

Remark 4. Let A be a complete local k-algebra. Then A/m’ € Ay for
any n > 1 and by definition A = lim A /m’;. Conversely, let

s Aun A, D 4 oL 4y

be a projective system in Ay such that each f, induces an isomorphism
my, /m% =my, ,/my . Then we have that lim A, € Aj.

In fact, we see from Lemma 2.1 that each A, is isomorphic to T'/I,, for
anyn>1,where Iy DI, D --- 21, D1I,.1 2O --- are closed ideals of the non-
commutative formal power series ring 7" . Then we have lim A, = /N,y In
and (2, I,, is a closed ideal of T'. Thus the claim follows from Lemma 2.1.

We remark here on the closedness of certain ideals in the non-commutative
formal power series ring. First we note the following lemma.

Lemma 2.3.  Let I be aleft ideal of T = k{{t1,ta,...,t.)), and suppose
that I is finitely generated as a left ideal. Then I is a free module as a left
T-module.

Proof.  We note that I/myI is a finite dimensional k-vector space. Hence
we can take a finite number of elements fi,..., f, € I which yield a base of
the k-vector space I/mpI. First we claim that I is generated by fi,..., f, as
a left ideal.

To show this, let « be any element of I. Since I = T{f1,..., fo} + mrl,
there are elements agq,...,a0, € T such that x — Z?:l ao; fi € mpl. Then,
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apply the same argument to this element, we can find a11,...,a1, € mp such
that © — Y7 | agifi — iy a1, fi € m%1. Inductively, one can show that there
are ag,...,ap, € me with z — 22;1(@01‘ +ay+--tap)fi € meTHI for any

£ > 1. Now put o; = ZE’;O ag; which are well-defined elements in T', and we
have = Y | ; f;. Thus the set {f1,..., fn} generates I as a left ideal.

Now we prove that {f1,..., fn} is a free basis of I as a left T-module. To
show this, let " a;fi = 0, where a; € T (1 < i < n). We have to show
a; = 0 for each i.

For this, we only have to prove, by induction on £ > 1, that a; (1 <i <n)
belong to m4. for all a; € T (1 < i < n) which satisfy the equality "1, a; fi = 0.

Since {f1,..., fn} is a k-base of I/mrI , it is trivial that a; € mp (1 <
i <n). Hence the claim holds for £ = 1. Now assume a; € mfp (1<i<mn)for
£ > 1. Then we may write a; = Z§=1 tjb;; for some b;; € mZT_l. Thus we have

>t <Z bjifi) =0,
j=1 i=1

in T'. Since an element of T" has a unique expression as a formal infinite sum of
monomials with coefficients in k, it follows that > b;; f; = 0 for any j. Then,

by the induction hypothesis, we have b;; € meT, and hence a; = Z;=1 t;bj; €
m4 ! as desired. O

The following lemma is known as Nagata’s theorem for commutative formal
power series ring, which is easily generalized to non-commutative ones.

Lemma 2.4. Let T = k{(t1,t2,...,tr)) be a non-commutative formal
power series ring. Suppose a descending sequence a; D as D az D --- of left
ideals of T satisfies the equality (;=, a; = (0). Then the linear topology on T
defined by {a; | i =1,2,...} is stronger than the mr-adic topology.

Proof. The proof given in [5, (30.1)] is valid for non-commutative case.
1

Proposition 2.2.  Let I be a left ideal of a complete local k-algebra A.
If one of the following conditions holds, then I is a closed left ideal in A.

(a) A is a non-commutative formal power series ring T = k((t1,ta, ..., t.))
and I is finitely generated as a left ideal.

(b) I is of finite length as a left A-module, i.e. dimgI < oco.

Proof. (a) By Lemma 2.3 we may write I = T{f1,...,fn}=Tfi® -
T f,. We prove the lemma by induction on n. If n = 0, then it is trivially true.

Suppose n > 0 and set J = T{fa,..., fn}. (We understand J = (0) if
n = 1.) Note that we have a direct decomposition I = T'f; @ J as a left
T-module. Now we set

ag={ceT|cfi+gemf forsome geJ},
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for each £ > 0. Note that a, is a left ideal, a; 2 apy; and meT C ay for all 4.
First of all, we claim that the following equality holds.

(%) (Nac=(0)

In fact, for any element ¢ € (1,2, ag, there is an element g, € J with cfy + g/ €
m&. for each £. Since g, — ge+1 € Mk, we see that {g¢} forms a Cauchy sequence
in the mp- adic topology. Therefore we see that cf; + limy_, g¢ = 0. Since J
is a closed ideal by the induction hypothesis, we have limy_, g¢ € J, and thus
we have cf; € J. Then the direct decomposition I = T'f; @ J forces cf; = 0,
hence ¢ = 0. This proves the equality (x). Note from Lemma 2.4 that the ideals
a; define the topology equivalent to the mp-adic topology.

Now, to prove that I is closed, take an element z € I. We want to
show x € I. Take a sequence {ay; | £ = 1,2,...} in I which converges to x
in the mp-adic topology. We may assume that ay — agy1 € mZT for each /.
Each a, has a unique description ay = Z?:l b f; for some by; € T. Thus
S (bei —bet1,i)fi € m&.. Therefore by 1 —byi11 € ay for any £. Then, by the
fact we have shown above, we see that {bs1 | i = 1,2,...} is a Cauchy sequence
in the mp-adic topology. This is true for the sequences {b;; | ¢ =1,2,...} for
all i (1 < i < n). Since T is complete in the mp-adic topology, the sequence
{be; | £ > 1} converges to an element ¢; € T for each i. Then, x = limy_o ar =
Yo imy oo bei fi = >y cifi € I as desired.

(b) Since My, INmw’ C N, m = (0), and since dimy] < oo, there is
an integer ng such that I Nm’ = (0) for n > ng. Thus [ +m’ = I & wmY for
n > ng. Therefore,

1= ﬁ I+mw} = ﬁ ITem) =1 ﬁ m} = 1.
n=ng

n=ngo n=no

O

Corollary 2.1. Let Ae Ay, and let I be an ideal of A. Suppose one of
the conditions in the previous proposition holds. Then we have A/I € Ay.

The Artin-Rees lemma for non-commutative formal power series ring holds
in the following form.

Corollary 2.2.  Let I be a finitely generated left ideal of the non-
commutative formal power series ring T = k{{t1,t2,...,t.)). Then, the rel-
ative topology on I induced from T is equivalent to the mr-adic topology on I.
That is, for any m > 1, there is an integer £ > 1 such that me NICwpl.

Proof. In the proof of (a) in Proposition 2.2, we have shown that, for a
given m > 1, there is an integer ¢; > 1 such that a,, C m/’. This shows that
cfi+--+enfn € mfpl implies ¢; € m7t. This is true for any ¢ (1 < i < n),
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that is, there is an integer ¢; > 0 such that c¢1f1 + - + cpfn € mﬁﬁ' implies
¢; € m7'. Now take £ so that £ > ¢; for all i (1 < i < mn). Then we have that
cifi + -+ enfn € mb implies ¢; € m for all i. Hence I Nm4 C m™]. ad

Definition 2.4. Let A be a complete local k-algebra and let S be a

subset of A. Then we say that an ideal I is analytically generated by S if
I=(9).

Proposition 2.3.  Let A be a complete local k-algebra and let S be a
subset of a closed ideal I of A. Then, I is analytically generated by S if the
image of S generates I/mal + Imy as a k-vector space.

Furthermore, if S is a finite subset, then the converse is also true.

Proof. Suppose that the image of S generates I/mal + Im4, and let n be
an arbitrary natural number. Since mul + Imy C mal +Imy +(m% NI) C 1,
the set S generates I/mal + Imy + (m’; N I) as a k-vector space, hence

I=(S)+mal+Imy+ (mNI)
=(9)+ma((S)+mal +Ima)+ ((S) +mal +Ima)ma + (m NI)
= (8) + (m4T +malmy + Im%) + (m% N 1)

=(9)+ Z my Im/, + (m N 1),
i+j=s
for 1 < s <n. Finally, putting s = n, we have that I = (5) + (m} N I). Since
this equality holds for all n > 1, we have I = (5).

To prove the converse, we assume that [ is analytically generated by a finite
subset S. Then the equality I = (2, ((S) + m’) holds. Since I C (S) + m’,
we have I = (S) 4+ (m NI) for all n > 1. Thus the image of S generates
I/mal + Imy + (m% N1I) as a k-vector space, for all n > 1. In particular,
dimy I/mal 4+ Imy + (m N 1) < |S|. Since |S| is finite, there is an integer
no > 0 such that I/mal +Ima+ (m%NI) = I/mal +Imy+ (m;T N1) for all
n > ng. Thus, we have the equality I/mal + Ima = I/mal+Imy+ (m’°NI),
which is generated by S as a k-vector space. U

Corollary 2.3.  Let I be a closed ideal in a complete local k-algebra A.
Then, the equality I = myl + Imy implies I = (0).

Corollary 2.4.  Let I be a closed ideal in a complete local k-algebra A.
Then, I is analytically generated by a finite number of elements of I if and only
if dimy, (I/mAIJr ImA) < 00.

Corollary 2.5.  Let I be a closed ideal in a complete local k-algebra A
that is analytically generated by a finite number of elements. Then, the equality

mal +Img =mal +Imy + (W NI)

holds for any large integer n > 1.
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Proof. See the proof of Proposition 2.3. 1
It is well-known that the category Ax admits the fiber products.

Lemma 2.5.  The category ./Zl\k admits the fiber products, that is, any
diagram in Ay

B

/|
A 4, C
can be embedded into a pull-back diagram

Q — B

L

Proof. For any integer n, we have a diagram in Ay

B/mip

gnJ/
)

Ajm” S C/mg,

from which we have a fiber product Q,, := A/m’% XC/mn B/m’, in the category
Apg. It is clear that {@,| n > 1} forms a projective system in Ag. Put Q =
lim @, and we have @ € Ay by Remark 4. It is routine to show that @ is a

fiber product in .%Tk O

Remark 5. In the setting of Lemma 2.5, the fiber product @ and its
Jacobson radical mg can be described in the following way :

Q@ =A{(a,b) € AxB| f(a) = g(b)}, mq ={(a,b) € AxB| f(a) = f(b) € mc}.
We denote the fiber product @ by A x¢ B.

2.2. Small extensions

Let A be a complete local k-algebra. We say that an element € # 0 in A
is a socle element of A if mge = emy = 0. Note that an element € of A is a
socle element if and only if the ideal (¢) is a one-dimensional k-vector space.
Note that if A is an artinian local k-algebra then there exists at least one socle
element.

One should remark from Corollary 2.1 that, if € is a socle element in a
complete local k-algebra A, then A = A/(e) is also a complete local k-algebra.

Definition 2.5. A pair (A’,€) is called a small extension of a complete
local k-algebra A if € is a socle element of a complete local k-algebra A’ and
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A’/(e) 2 A as a k-algebra. To describe the small extension (A’,€) of A, we
often write it as a short exact sequence

0 —— k —— A —" 5 A 0,

where 7 is the natural projection.

Lemma 2.6. Let (A’ €) be a small extension of a complete local k-
algebra A.

(a) If € € m%,, then there is a k-algebra homomorphism ¢ : A — A’
that is a right inverse of m : A’ — A. In this case, A’ is isomorphic to
Alz]/ (22, max,2m4) as a k-algebra, which we call a trivial small extension
of A.

(b) If ¢ € m%,, and if A = T/I where I is a closed ideal of T =
E({t1,ta....,t.)) and I C m%, then there is a closed ideal J C I of T such
that A’ =2 T/J and the length Lr(I/J) = 1. In this case, we say that (A’ €) is
a nontrivial small extension.

Proof. (a) Suppose € € m%,. Then, since (¢) & k, we have (e)Nm?%, = (0).
Thus we can take a k-subspace n of m 4/ such that m%, C nand my = (¢)®n as
a k-vector space. Noting that n? = m?,, we see that the k-subspace k@&n C A’
is actually a k-subalgebra and the restriction to k ®n of w : A’ — A yields an
isomorphism k£ & n = A.

(b) Suppose € € m%,. Then we have my /m%, 2 my/m?%. It follows from
Lemma 2.1 that there is a commutative diagram in le\k

T T

ol

A A,

where f and f’ are surjective and I = Ker(f). It is easy to see that J = Ker(f’)
satisfies the desired conditions. |

Definition 2.6. Let A € ﬁk. For small extensions (A1, €1) and (As, €3)
of A, we say that (Aj,e1) and (Asg,€2) are equivalent, denoted by (Aq,€1) ~
(Ag, €9), if there is a k- algebra isomorphism f : A} — Ay with f(e1) = eo. We
denote by 7 (A) the set of equivalence classes of small extensions of A :

T(A)={(Ae) [ec A € Ay, (e) =k, A'J(e) = A}/ ~.
For a small extension (A’, €) we denote its equivalence class by [A’, €.

Note from Lemma 2.6 that trivial small extensions defines a unique element

of T(A).

Lemma 2.7. Let A € Ay,. Then T(A) is an abelian group in which the
zero element is the class of a trivial small extension.
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Proof. Let [A1,€1] and [Ag, €2] be elements in 7 (A). Then we have the
following commutative diagram by taking the fiber product.

0 0
| |
k k
o] ]

0 LA, Ay As 0
| | |

0 jp— A A 0
| |
0 0

Put B = Ay x4 As/(e1,—€2) and it follows from the exact sequence of the
middle row in the diagram that there is an exact sequence

0 p 9, p A 0.

Note that, since A; x4 As is a complete local k-algebra by Lemma 2.5 and
(e1, —€2) is its socle element, it follows from Corollary 2.1 that B is a complete
local k- algebra. Hence (B, (e1,0)) is a small extension of A. Note that (e1,0) =
(0,€2) in B. Now we define the sum by

[Alael} + [AQ’EQ] = [Ba (61’0)}'

Then it is routine to verify that 7 (A) is an abelian group by this definition of
addition. Actually, the commutativity of sum is given by the isomorphism

A1 x4 Az/(ﬁl,*@) = Ay xa Al/(€2,*€1), (6170) « (€2a0)~
The associativity is induced by
{A1 x4 Ay/(e1,—€2)} x4 A3/((€1,0), —€3)
= Ay x4 {A2 x4 A3/(e2,—€3)}/ (€1, —(€2,0)).

Let (Ao, e0) be a trivial small extension of A. Then we can show A; X4
Ao/(e1,—€9) = Ay, which implies that [Ag,eo] is the zero element in 7 (A).
Note that the inverse element is given in the following.

—[A1, e1] = [A1, €]
In fact, using the following lemma 2.8, one can show the isomorphism

Ay x4 Ar/(e1,e1) = Ay X, D/(€1,0) 2 A,.
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Lemma 2.8. Let A € Ay and let D = kleo]/(e2), which we call the ring
of dual numbers over k. Then we have the following isomorphism of complete
local k-algebras for any (A1,€1) € T(A).

Al XAAlgAl XkD

Proof. Define f: Ay xD — A1 x4 A1 by f((a1,a1+ceo)) = (a1, a1+cer),
where a; € Ay and ¢ € k,and a7 € k = A1 /my, is the natural image of a; € A;.
Then it is easy to see that f is an isomorphism of k-algebras. O

Let [A1,e1] € T(A) for A € Ai. We define the scalar product by an
element c € k as follows :

the class of a trivial small extension (c = 0).

Lemma 2.9. Let A€ Ay,. Then T(A) is a k-vector space by the above
action of k.

Proof. Let c1,c2 € k and [A1, €1],[A2, €2] € T(A). It is obvious from the
definition that (cicq) - [A1,€1] = c1(co - [A1,€1]). When ¢; # 0, the identity
c1- ([A1,€e1] + [Az, €a]) = 1 - [A1, €1] + €1 - [Aa, €3] follows from the isomorphism
A1 xaAs/(e1,—€2) 2 Ay XAAQ/(cl_lel, —(31_162). We have to verify the equality
(c1+c2) [A1,€61] =1+ [A1, e1] +co - [A1, €1]. If one of ¢1,co and ¢1 4 ¢ is equal
to zero, then it is easy to see the equality holds. We assume that ¢; # 0,¢co # 0
and ¢; + ¢ # 0. In this case, we have from Lemma 2.8 the isomorphism

Al XA Al/(Cl_lel, 762_161) &~ A1 Xk D/(Cl_lEl, 7(61_1 =+ 62_1)60) &= Al,

and by this isomorphism (cflel, 0) corresponds to (¢; + 02)_161 € A;. Hence,
[Al XA Al/(cl_1€1, —(32_161), (61_161,0)} = [Al, (Cl + (32)_161]. O

Lemma 2.10. Let Aj, Ay € Ay and let f Ay — Ay be a k-algebra ho-
momorphism. Then [ induces a k-linear map f* : T (As) — T (Ay). Therefore,
T is a contravariant functor from Ay to the category of k-vector spaces.

Proof.  For a given [A)}, €,] € T(Az), take a fiber product

0 k A A 0
H [
0 2o A 0,

and we get a small extension (A}, €}) of A;. Now define f*([A}, €5]) = [A], €1].
It is not difficult to verify that f* is a k-linear mapping. O
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Definition 2.7.  Let I be a closed ideal of T' = k({t1,t2,...,t.)). We
always regard I as a topological T-bimodule by the relative topology induced
from T. Therefore, the set {INm}. | n=1,2,...} gives the fundamental open
neighbourhoods of 0 in I. We also consider the unique simple T-bimodule k
with discrete topology. We set

Homeon (I, k) ={f : I — k| f is a continuous T-bimodule homomorphism}.

Note that f € Homy himod (I, k) belongs to Home,, (I, k) if and only if f(I N
m}) = 0 for a large integer n. It is clear that Homee, (I, k) is naturally a
k-vector space.

Since f(mgpl + Img) = 0 for f € Homeon (I, k), such an f induces the
continuous map f : I/mpI + Imp — k. Hence,

Homeon (I, k) =2 {f : I/mrl + Imp — k| f is a continuous k-linear map}.

Note, however, that the induced topology on I /mrI + Imy may not be discrete.

Let A € Ay, which we describe as A = T/I where T is a non-commutative
formal power series ring and I C m2. Under such a circumstance, we define
the mapping

7 : Homeo, (I, k) — T(A),

as follows: For f € Homee, (I, k), if f = 0, define 7(f) to be the class of a
trivial small extension. If f # 0, then I := Ker(f) = f~(0) is a closed ideal
of T and hence Ay := T/I; is a complete local k-algebra and we can take a
unique element ey € I/I; C Ay with f(ef) = 1. Since I = Iy + (ef), (Ay,€y)
is a small extension of A. We define 7(f) = [Ay, ef].

Proposition 2.4.  The mapping 7 : Homeon (I, k) — T(A) is an iso-
morphism of k-vector spaces.

Proof. First we show that 7 is a k-linear mapping. To show that 7(c¢f) =
c-7(f) for ¢ € k and f € Home,, (I, k), we may assume that ¢ # 0. Then it
is trivial that Iy = I.f, hence Ay = Ay and €.y = c_lef. Thus it follows that
T(ef) =c-7(f).

To show 7(f + g) = 7(f) + 7(g) for f,g € Homeo, (I, k), we assume that
f#0,g#0and f+g #0. (Otherwise, the equality is proved easily.) Suppose
f and g are linearly dependent over k, hence f = cg for some ¢ (# 0,—1) € k.
In this case, we have Iy = I, = Iy, Since (f + g)(¢y) = ¢+ 1, we see
€f+g = (¢ +1)"eg. Therefore, 7(f + g) = [Afig,er4q] = [Ag, (c+1)7leg] =
(c+1)-[Ag,€g] = c- [Ag,eg] + [Ag, ] = c-7(9) + 7(9) = 7(f) + 7(9)-

Now suppose f and g are linearly independent over k. In this case Ir # I,
and hence Iy + I, = I. It then follows from the obvious exact sequence

0 —— T/I;nI, —2— A x A, A 0

that we can take ey, e, € I whose images in T'/I; NI, are mapped respectively
to (ef,0),(0,¢4) by ¢. Note that Iy NI, C Ifi4. And note also that f(ef) =
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1, f(eq) = 0, g(ef) = 0 and g(ey) = 1, hence (f + g)(ey —eg) = 0 and
(f +9)(ef) = 1. Tt is then easy to see that Iy, = (Iy N 1I,) + (ef — eg).
Since Ay x4 Ay = T/I; N 1,, we have from the definition that 7(f) + 7(g) =
[Af,efl + [Ag, €g] = [T/1j1g,e5] = 7(f +9).

Now we have proved that 7 is k-linear. Assume f ## 0. Then, since
€f € I/Iy and I C m?, we have e € mif. This implies 7(f) # 0 by Lemma
2.6. Thus 7 is injective. The surjectivity of 7 is obvious from the definition of
7 and T (A). O

2.3. Complete tensor products
In this section, let R be an associative algebra over a field k.

Definition 2.8.  For a complete local k-algebra A € ﬁk, we define the
complete tensor product R &;, A as follows :

R ®, A= limR®; A/m}.

Note that R ®;, A is an associative k-algebra, since each mapping R ®,
A/m" T — R®j A/m" is a k-algebra homomorphism for n > 1. Also note that,
if Ae Ay, then R ®; A= R®j A is an ordinary tensor product of k-algebras.

Remark 6. In general, R ®; A is a subalgebra of R ®;, A. However,
they are distinct in general.

For example, let R = k[z] and T = k((t)) = K[[t]] (with one variable).
Then, we have R®; T = k[[t]] [z] C R & T = k[z] [[t]], which are actually
distinct.

Definition 2.9. Let M be a left R-module and let X be a right (resp.
left) A-module, where A € .Zk. Then note that, for each n > 1, M ®;, X/Xm’
(resp. M®pX/m%X)is aleft Ry (A/m%)°P-module (resp. aleft R®y (A/m)-
module), i.e. a left module over R and a right (resp. left) module over A/m%.
We define the complete tensor product by

M ®), X =lim M ®, X/Xm} (resp. M & X =lim M @, X/m}X),

which is a left R ®;, A°-module (resp. a left R ®; A-module) by the reason
above.

We always consider M ®; X and M ®; X with mu-adic topology. In
general, there is a natural mapping M ®, A — M &), A, which is the completion
map in m4-adic topology.

Remark 7. (a) If M is of finite dimension as a k-vector space with a
k-basis {e1,...,es}, then we have

4 n n
M &, A=lim (@ cik ®x A/mfg> ~@Pei (1ma/my) = Pea
i=1

=1 i=1
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forany A € .Z;C Thus M ®j, Ais a free module as a right A-module if dimi M <
0.

(b) Suppose M is of infinite dimension as a k-vector space with basis
{ex | A € A}. In this case, we have

M ®; A=lim l@ ex(A/mm)
A

Therefore, an element of M ®;, A is described to be a formal sum doaeary (xy
€ A) as an element of [[, exA. Note that >, exzy € [], exA belongs to
M &), A if and only if

HAEA ]| zy €mli} < o0
for all n > 1.

Lemma 2.11. Let A€ ﬁk
(a) Let X be a right A-module, and let

0 L M N 0

be a short exact sequence of left R-modules. Then the complete tensor product
by X induces the exact sequence of left R ®;, A°P-modules

0 — L& X —— M & X —— N& X —— 0.
(b) Let M be a left R-module, and let
0 X Y Z 0,

be a short exact sequence of left A-modules. Then we have an exact sequence
of left R ® A-modules

0 ——1lim (M @ (X/X Nm3Y)) —— M & ¥ —— M ®), Z ——0.

In particular, if the relative topology on X induced from the m 4-adic topology on
Y is equivalent to the ma-adic topology on X, then we have an eract sequence
of R ® A-modules

0 — > M@, X — > MY —— M®, Z —— 0.

Proof. The proof is similar to the commutative complete case in [1], [4]
or [5]. O

Let M be a left R-module and let X be a left A-module where A € ./Zk.
Then, from the definition of complete tensor products, we see that there is a
natural mapping

Tx ¢ (M & A)@a X — M @ X.
In fact, var,x is induced from the natural mappings

(M @, A) @4 X — (M@, A/m%) @4 X = M @), X/m} X.
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Lemma 2.12. Under the circumstances above, suppose that the left A-
module X is finitely generated. Then, yar,x : (M ®; A) @4 X — M ® X is
surjective for any left R-module M.

Proof. By the assumption, there is a surjective homomorphism of left A-
modules f : F = @f_, Ae; — X, where F is a free left A-module of finite rank
£. Remark that vy r is an isomorphism. Naturally we have a commutative
diagram

(M &, A)®@a F e, (M ®, A)®a X

’YIVI,Fl 'YM,XJV

M&, F 2L M X
Since the horizontal mappings in the diagram are surjective (see Lemma 2.11),
and since vy, F is an isomorphism, we see that vy, x is surjective. O

Proposition 2.5.  Let T = k((t1,ta,...,t.)) be a non-commutative for-
mal power series ring, and let M be an arbitrary left R-module. Then M Qi T
s flat as a right T-module.

Proof. To prove the flatness, it is enough to show the following.
(*) For any finitely generated left ideal a, the mapping 1 ® j : (M & T) @7 a
— (M ® T) @7 T induced from the inclusion j : @ — T is injective.

Note that there is a commutative diagram

(M &, T)ora —22, (M &, T)®r T

'YM,GJV "/M,TJV

M @)k a & M @k T7
where we should note that v,/ 4 is an isomorphism, since a is a free module of
finite rank by Lemma 2.3. Thus, to prove the proposition, it is sufficient to
show that 18j : M ®; a — M ®; T is injective. By virtue of Lemma 2.11,
we only have to show that the relative topology on a from T is equal to the
my-adic topology. But this has been proved in Corollary 2.2. O

Proposition 2.6. Let A€ ./Zk», and let M be an arbitrary left R-module.
Suppose A is of the form A = T/I where T = k((t1,t2,...,tr)) is a non-
commutative formal power series ring and I is an ideal of T that is finitely
generated as a left ideal. Then M @y, A is flat as a right A-module.

Proof. From the short exact sequence of left T-modules
0 1 T A 0,

we have the commutative diagram

(M@, T)@r [ —— (M & T)®r T ——— (M &, T) @ A ———0,

W]W,IJ/ 'Y}W,Tl 'YM,Al

0—— M&&I — MKT ——s MA ——0,



812 Yuji Yoshino

where the both rows are exact sequences by Corollary 2.2 and Lemma 2.11. We
already know that vy ;r and yas,r are isomorphisms, since I is a free module of
finite rank by Lemma 2.3. It follows that vyas 4 : (M orT)@7 A— M, A
is bijective, which is actually an isomorphism of left R ®; A°P-modules. Since
(M Rk T)®r A is flat as a right A-module by Proposition 2.5, we can conclude
that M & A is also flat over A. O

Note, in general, M ®;, A is not flat as a right A-module.

Example 2.2. Let T = k{{(x,y)) be the non-commutative formal power
series ring of two variables and let us consider the closed ideals in T',

I=(zynz |n=0,1,2,...) C J=(x).

Note that an element of I (resp. J) is a formal infinite sum ), cxmy with
¢x € k and with monomials m) involving x at least twice (resp. once).

Consider the mapping ¢ : T/J — T/I defined by right multiplication by
z,1.e. ¢(a mod J) =ax mod I. Note that ¢ is a well-defined homomorphism
of left T-modules, and it is injective.

Now let A be the residue ring T'/I and consider ¢ to be an injective ho-
momorphism of left A-modules. Let M = .2, e;k be a k-vector space of
countably infinite dimension. Then we can show that the mapping

(M@, A)@¢ : (M, A)RAT/J — (M &, A)@4T/I =M &, A

is not injective. In fact, an element z = Y .2, e; ® y'zy' € M ®r A is mapped
to ¢(z) = Y0, e; ® y'zy'x by ¢, which is zero in M &; A. However, 2 never
belongs to (M ®;, A)J, because any element of (M ®; A)J is a finite sum of
the form ), z;j; (z; € M Rr A, j; € J) and z is never of this form.

We can conclude from this observation that M &), A is not flat as a right
A-module.

3. Universal lifts of chain complexes

3.1. Lifts to artinian local algebras

In this section k is a field and R is an associative k-algebra.

By a graded left R-module F', we just mean a direct sum F' = @, F;
where each F; is a left R-module. If F' is a graded left R-module and if j is an
integer, then the shifted graded left R-module F'[j] is defined to be F[j]; = F;;
for any i € Z. A graded homomorphism f : F' — G of graded left R-module is
an R-homomorphism with f(F;) C G; for any i € Z. If f: F — G is a graded
homomorphism, we denote by f; the restriction of f on F; for each i. We refer
to a graded homomorphism F — G[j] as a graded homomorphism of degree j.

By a chain complex of left R-modules or simply a complex over R, we
mean a pair F = (F,d) where F is a graded left R-module and d is a graded
homomorphism of degree —1 such that d?> = 0. A complex F = (F,d) over R is
described as

dig1 d;

Fiq F;
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We say that a complex F = (F,d) is a projective complex over R if the under-
lying graded left R-module F' is projective.

Let F = (F,d) and G = (G,d') be chain complexes over R. A chain
homomorphism f : F — G of degree j is a graded homomorphism f : F — G[j]
satisfying f-d+(—1)7*1d’- f = 0. A chain isomorphism f : F — G of complexes
is a chain homomorphism of degree 0 that is bijective. If there is a chain
isomorphism between F and G, then we say that they are isomorphic as chain
complexes over R and we denote it by F = G.

Now let F and G be projective complexes over R, and let f,g : F — G
be chain homomorphisms of degree j. We say that f and g are homotopically
equivalent, denoted by f ~ g, if there is a graded homomorphism h : F — G[j+
1] such that f = g+ (h-d+ (—1)?d’ - h). We denote the set of all the homotopy
equivalence classes of chain homomorphisms of degree j by Ext’ (F, G), which
is clearly equipped with structure of k-vector space.

For graded homomorphisms f : F — F[j] and g : FF — F[{], we define a
graded homomorphism [f,g] : F — F[j + ] by

[f.gl=f g+ (-1)Tg-f.

Note that f : F — F[j] is a chain homomorphism if and only if [d, f] = 0. Also
note that f ~ 0 if and only if there is a graded homomorphism g : F' — F[j+1]
with f =[d, g].

Let ¢ : R — S be a k-algebra homomorphism and let F = (F,d) be a
projective complex over R. In this case, we denote by S, (resp. ,,5) the left
(resp. right) S-module S with right (resp. left) R-module structure through ¢.
Then the chain complex S, @r F (resp. F®g ,S) of projective left (resp. right)
S-modules is defined to be (S, ®@r F, S, ®r d) (resp. (F ®r S, d®r ,9)).

Recall that we denote by Ay the category of artinian local k-algebras A
with A/my = k and k-algebra homomorphisms. If F is a graded projective
(resp. free) left R-module and if A € Ay, then F' ®j A is a graded projective
(resp. free) left R ®) A°P-module.

Definition 3.1. Let F = (F,d) be a projective complex over R and let
A € Ai. We say that a projective complex (F @k A, A) over R ® A is a
lifting chain complex of F to A (or simply a lift of F to A) if it satisfies
the equality (F ®p A,A)®a k=T.

To be more general, let ¢ : A — B be a morphism in A;. A projective
complex (F® A, Ay) over R®j, A°P is said to be a lift of a projective complex
(F ® B, Ap) over R®y, B if it satisfies the equality (F @i A, Aa) ®4 (,B) =
(F ®k B,Ap). And a projective complex (F ®; B,Ap) over R ®;, B°? is said
to be liftable to A if there is a lift of (F ®; B,Ap) to A.

The aim of this section is to construct a universal one among those lifts
of a given projective complex F = (F,d) over R. For this, in the rest of this
paper, F = (F,d) always denotes a fixed projective complex over R.

Lemma 3.1. Let A € Ai. Then, since A is of finite dimension as a
k-vector space, we may take a k-basis {1} U{x1,..., 2.} U{y;| 1 <j<s} of A
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so that {z1...,x,} yields a k-basis of m/m?% and {y;| 1 < j < s} is a k-basis
of m%.

(a) For any graded homomorphism A : FQrA — FQyA[n] of left Ry A°P-
modules, there uniquely exist graded homomorphisms f,g;, h; : F — Fin] (1 <
1<r, 1<j<s) of left R-modules such that

T S
A=fRl+) g®zi+» hj@y;.

i=1 j=1

(b) Let (F ®k A, A) be a lift of F = (F,d) to A. Then A has a description
as in (a), where f = d and each g; : F — F[-1] (1 < i < r) is a chain
homomorphism.

Proof. (a) For any z € Fy, we can uniquely write A(z) = zo®14+> \_; %®
zi + 35 w; @y for some zg, 2, w; € Frypn (1 <i <7, 1 <j <s). Then,
define f,g;,h; : F — F[n] by f(2) = 20, 9i(2) = 2 and h;(z) = w; and it is
easy to see that they are graded homomorphisms of left R-modules. Note that

Alz@a)=f(z)@a+ Y gi(z) @mia+ Y hj(z) ®y;a,
i=1 j=1

for any z ® a € F ®;, A.

(b) Since d = A®4k =A R4 A/my, we have f = d. Similarly, we have
ARsA/m% =do1+ >oi_1 9i ®; as a graded homomorphism F @y, A/m? —
F ®p A/m%[—1]. Since (A ®4 A/m%)? = 0 and since (d ® 1)? = 0, it follows
that Y, dg; @z +g;d@x; = Y ._,[d, 9;)@2; = 0 as a graded homomorphism
on F ®; A/m?. Hence we have [d, g;] = 0 for all 4. O

Corollary 3.1.  Let A € Ay and suppose m% = 0. Then, for any lift
(FepAA) of F = (F,d) to A, the differentiation A is given by

A=de1+) g,
i=1

where {x1,...,2.} is a k-basis of my and each g; : F — F[-1] is a chain
homomorphism (1 <1i <r).

Lemma 3.2. Let ¢ : A — B be a surjective morphism in Aj and let
(F ®k B,A) be a lifting chain complex of F = (F,d) to B.

(a) Any graded homomorphism o : F @y B — F &y B of graded R ®y, B°P-
modules is liftable to a graded homomorphism F ®, A — F ®p A of graded
R ®j, A°P-modules. That is, there is a graded homomorphism 8 : F ®, A —
F®p A with 3®a o,B=a.

(b) If « is an isomorphism in (a), then B is also an isomorphism.

Proof. (a) Since F ®j, A is a left projective R ®j A°P-module, and since
1®¢p: F®r A— F ®; B is a surjective homomorphism, one can find a left
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R ®j, A°P-homomorphism 3 which makes the following diagram commutative.

F®kAL>F®kA

1®sal 1®50l

F®kBL>F®kB

(b) To prove that § is an isomorphism, we may assume that ¢ : A — B is
a small extension, because any surjective morphism in Ay is a composition of
a finite sequence of small extensions. So we may have a short exact sequence

0 k—— A B 0.
Hence, we have a commutative diagram of left R ®; A°P-modules
0 F < ForLA —— Fpy B —— 0
a®k:J( 5l al
0 F 5 ForA —— FepB —— 0.
Since « is an isomorphism, it is clear that so is 5. a

Corollary 3.2. Lety: A — B be a surjective morphism in Ay as in the
lemma. Suppose we have two chain complezes (F @y B, A1) and (F Qi B, Ag)
which are lifts of F to B and are isomorphic to each other as chain complexes
over R®y, B°?. If (F ®y B, Ay) is liftable to A, then so is (F @y B, Ag).

Proof. By the assumption, there is a graded isomorphism « : F ®f B —
F ®j, B such that Ay = aAja™!. Let (F ®y A, A)) be alift of (F ®y B, A1) to
A. By Lemma 3.2, « is lifted to an isomorphism G : F Qp A — F ®; A. Then
it is easy to see that (F @ A, BA371) is a lift of (F ® B, Ag) to A. O

Lemma 3.3. Let (A';e) be a small extension of A € Ay, and let
(F @i A, A) be a lift of F to A. Suppose that chain complexes (F @ A’ Ay)
and (F @y A’, Ag) are lifts of (F Qi A, A) to A'.
(a) Then there is a chain homomorphism h : F' — F[—1] such that Ay =
Al + h ® €.
(b) The following two conditions are equivalent.
(1) The equivalence class [h] € Exth(F,F) is zero.
(2) There is an isomorphism ¢ : (F @, A", A1) — (F @, A, A9) of
chain complexes over R ® AP such that ¢ @4 A is the identity
mapping on F ® A.

Proof.

(a) We can take a k-basis of mys containing € as a member. Then, both A,
and A, have the descriptions as in Lemma 3.1. Since A1® 4 A=A = AsR®4/ A,
the difference Ay — A; has a description h ® e. We have to show that h is a
chain map. Since A? = A2 =0 and €2 = 0, we have

0=A2=(A1+h@e)? =A1-(h@e)+(h®e)-A.
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Note that Ay - (1®¢€) =d®e = (1®¢€) Ay, since Ay has a description

A =de1+) g@z+ Y hj@y;,

J

as in Lemma 3.1 and ex; = ;¢ = 0 so on. Therefore, we have (dh+hd)®e = 0,
hence [d, h] = 0.

(b) [(1) = (2)]: If [h] = 0, then there is a graded homomorphism g : F' — F
of degree 0 such that h = [d, g]. Define a mapping ¢ : F @, A’ — F ®; A" by
p=1®1+g®e¢, which maps r®a € F®; A’ to z ® a + g(x) ® ea. Then
it is easy to see that ¢ is an automorphism of a graded left R ®; A’°P-module,
and the inverse is given by ! = 1® 1 — g ® e. Then, we have the following
equalities.

e A =(1®01-gReA(1®@1+g®e)
=A1+A1(g@e€) — (g €)Ay
=A1+(dg®e—gdR®c¢)
=A1+[d,gl®e= Ay

Therefore, ¢ satisfies the conditions in (2).

[(2) = (1)]: By Lemma 3.1, we have a description ¢ = 1® 1+ g ® € and
01 =1®1— g® e for some graded homomorphism ¢ : F — F of degree 0.
Hence, by the same computation as above, we have

Ny = Ao = A1 +[dg] ®e.
Therefore, h = [d, g] ~ 0. O

Proposition 3.1.  Let

B — A

Lol
Ay —25 A

be a diagram of a fiber product in Ay with as being a surjective map.

(a) Let p1 : FRR A1 — FRpA1[j] and o : FQp Ay — F Ry As[j] be graded
homomorphisms of degree j such that o @4, A = 2 @4, A(= ¢). Then there is
a graded homomorphism ® : F ® B — F ®y, B[j| of degree j with ®®p A; = ¢;
fori=1,2.

(b) Let (F ®i A1,A1) and (F ® Az, Ag) be lifts of a chain complex
(F ®, A,A). Then there is a chain complex (F ®i B,Ap) which is a lift
Of both Of (F Rk Al, Al) and (F Rk A27 AQ)

(¢) Let (F®p A1, A1) and (F®y Aa, Ag) be chain complezes such that there
18 an tsomorphism

(For A, A1) ®a, A2 (FQf A2, Ag) ®4, A

of chain comlexes over R®y A°P. Then there is a chain complex (F ® B, Ap)
which satisfies (F @ B,Ap) ®p A; 2 (F Q¢ Ay, A;) fori=1,2.
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Proof. (a) Since there is commutative diagram with exact rows

0

F.B —— (F(X)kAl)X(F@kAQ) —>F®kA—>k

lewzl (PJ,

0 —— F ® B[j] —— (F @ A1)[j] X (F @k A2)[j] —— F @ Alj] ——k,

it induces a mapping ¢ : F' ®; B — F ®;, B[j].

(b) Just apply (a) to Ay and As, and we get a graded homomorphism
Ap: F®y B — F ®; B[—1]. It is clear that A% = 0.

(¢) By definition of isomorphisms of chain complexes, there is a graded
isomorphism « : F ®; A — F ®; A of graded R ®j; A°?-modules, such that
AL ®a, A= a-(Ay®a, A) - a~l. Since ay is surjective, there is a graded
isomorphism (§ : F ®; As — F ®; A which lifts «, by Lemma 3.2. Put

' =0B3-Ay- B! and apply (b) to the chain complexes (F ®j, Ay, A1) and
(F ®y Ag, A}), and we obtain a chain complex (F @ B, Ag) which is a lift of
the both of them. O

3.2. Construction of maximal lifts

As in the previous section, let R be an associative algebra over a field k
and let F = (F, d) be a projective complex over R. In the rest of the paper we
always assume that

(3.1) r = dimy, Exth(F,F) < oco.

Under this assumption, we take chain homomorphism ¢} : F — F[—1] (1 <
i < 1) whose equivalence classes {[t]],...,[t:]} is a k-basis of Exth(F,F). We
take variables ti,...,t,. corresponding to this basis, and consider the non-
commutative formal power series ring T' = k({t1,%2,...,t,)). Now define ¢ :
F ® T/m% — F ®y T/m% by

(3.2) §=de1+)> tat.
i=1
It follows from Corollary 3.1 that (F @ T//m%,6) is a lift of F to T/m%.

Definition 3.2. Let I be a closed ideal of T. We define the complete
tensor product of a graded projective left R-module with T'/T as follows:

F &, T/1 =@, (F; ® T/I).

Now let I be a closed ideal of T and let (F &;, T/I, A) be a chain complex.
If I’ 2 I be another closed ideal of T, then there is a natural projection T/I —
T/I', which induces, by Lemma 2.11, a surjective homomorphism

F&,T/I -F&,T/I
Thus we have a surjective homomorphism of left R &;, (T'/I)°P-modules

T (F @, T/I) @7/ T/I' = F &, T/I'.
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Note that 7 may not be an isomorphism.

For each n > 1, A induces a graded homomorphism A, : F ®; (T/I +
my) — F @y (T'/1+my)[—1] and it holds that A =lim A,,. Since I C I, each
A, induces a graded homomorphism A} : F ®;, T/(I' + m}) — F @ (T/I' +
mi)[—1], and we obtain a graded homomorphism A’ =lim Aj : F & T/I' —
F ®y T/I'[—1]. By an abuse of notation, we denote this mapping A’ by A®p,;
T/I'.

Definition 3.3. Let I; C Iy C m% be closed ideals of T. A chain
complex (F ® T/I1,Aq) is called a lift of a chain complex (F ®j, T/I3, Ag) if
Ag = Al ®T/I1 T/Ig

Definition 3.4. Let T/I € Ay where T = E{{t1,ta,...,t-)) is a non-
commutative formal power series ring and I C m2.. And let (F & T/I,A) be
any chain complex which is a lift of F. Now we consider the following set of
lifting chain complexes of (F & T/I, A):

I(I,A) ={(T/I', A") | I' is a closed ideal of T with I’ C I and
(F &, T/I', A') is a lifting chain complex of (F ®; T/I, A)}

We define an order relation on the set Z(I,A) as follows:
(T/Il, Al) > (T/IQ, AQ) < Il - IQ and Al ®T/11 T/IQ = AQ

Lemma 3.4.  The ordered set Z(I,A) is an inductively ordered set. In
particular, there exists a mazimal element in Z(I,A).

Definition 3.5.  If (T'/Iy, Ap) is a maximal element in Z(I, A) as in the
lemma, then we say that the chain complex (F Rk (T/1y),Ap) is a maximal
lift of (F @ T/I, A).

Proof. Let {(T/Ix,A)) | A € A} be a totally ordered subset of Z(I,A).
Note that J = (o5 Ix is a closed ideal of T' and that imT/Iy = T/J.
Hence (F &, T/J,Ay) = lim (F ®r T/Ix,Ay) is a lifting chain complex of
(F ®;, T/I,A). Therefore, (T/J,Ay) € Z(I,A) and (T/J,Ay) > (T/Ix,Ay)
for any A € A. Thus Z(I,A) is an inductively ordered set. The existence of
maximal element of Z(I, A) follows from Zorn’s lemma. O

We should remark the following

Lemma 3.5. If(T/I, Ay) is not a mazimal element in Z(I,A), then
there is a nontrivial small extension T/Iy of T/I such that (T/I3,As) €
I(I,A) is strictly bigger than (T/Iy, Ay), for some As.

Proof. Take a strictly bigger element (T'/I7, A) > (T/I1, A1) inZ(I, A).
Since I{ C I are closed ideals, there is an integer n with I{ 4+ (m2 N 1) # I.
In fact, if not, we will have I; C I] +m? for any n, because the right hand side
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is the closed ideal containing I} + (m% N I). Then we shall have I} C I} = I,
a contradiction.

Now, since A = T/I} + (m}: N 1) is a complete local k-algebra and since
the image J; of I; in A is an ideal of A of finite length, we can find a closed
ideal J; of A contained in J; with length(J;/J2) = 1. See Proposition 2.2.
Taking the inverse image of Jo in T', we have a closed ideal Iy of T contained
in I; and length(1; /1) = 1. Finally set Ay = A} @71y T/ 12, and we easily see
that (T'/I5, Ag) meets the requirements. O

The following is an easy consequence of Lemma 3.2.

Lemma 3.6. Let ¢ : A — B be a surjective morphism in ./Zk where
Ker(yp) is of finite length, and let (F ®;, B,A) be a lifting chain complex of F.

(a) Any graded homomorphism o : F @, B — F @ B is liftable to a
graded homomorphism F @, A — F @y A. That is, there is a graded homo-
morphism 3: F @, A — F Qr B with B4 oB=o.

(b) If « is an isomorphism in (a), then B is also an isomorphism.

Proof. (a) By induction on the length of Ker(yp), we may assume that
A — B is a small extension. In this case, it is easily seen that the following
diagram is a pull-back diagram of right A-modules for any integer n which
satisfies Ker(¢) Nm’; = (0).

nt+1 $Pntl n+1
A/m™ —— B/m}

l I

A/ mZ L) B/ m%a
where ,, is the induced mapping by ¢ and the vertical arrows are natural
projections. Thus the diagram

F ®y A/mffl % F ®y B/m%"’l

.| .|

FopA/ms 229 Fg, B/my,

is a pull-back diagram of R ®j A°-modules. Denote by a, the mapping
a®, B/my : F®, B/wml — F®, B/m%. If we have an R ®) A/m’-
homomorphism 3, : F ®, A/m — F @, A/m’ with (1 ® ¢,) - Bp - pn =
Gn - Ont1 - (1 ® @pi1), then it follows that there uniquely exists 3,11 : F ®
A/mit — F @ A/m" ™ such that (1® @ny1) - Bogt = ns1 - (1@ @nq1) and
Dn * Brnte1 = Bn - pn- Therefore, by induction, we have such 3, for all n > 1.
Then, setting g = @ﬂn, we see that ( is a lift of the mapping «.

(b) In the proof above, if « is an isomorphism, then each [, is also an
isomorphism by Lemma 3.2, hence so is (. 1
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Lemma 3.7. Let (F ® T/, Ag) be a mazimal lift of
(F @, T/I, A). Then, any chain complex (F &, T/Iy, A1) which is isomor-
phic to (F &, T/Iy, Ao) as a complex over R &y, (T/1y)° is also a mazimal
lift of (F &y, T/I, A).

Proof. There is a graded isomorphism o : F ® T/Iy — F &, T/I, with
Ay = alAga~t. If (F ® T/Iy, A;) is not a maximal lift, then by Lemma
3.5 there is a nontrivial small extension T'/Is of T/Iy such that (T'/I, Ag) >
(T/Iy,Ay) in Z(I,A). We can lift the isomorphism a to 8 : F &, T/I, —
F @ T/I, by Lemma 3.6. Then it is easy to see that (T/I, 371 As3) >
(T/Iy,Ag) in Z(I,A), and it contradicts to the assumption. O

Lemma 3.8. Let T = k({t1,t2,...,tr)) be a non-commutative formal
power sertes Ting.

(a) For any given fi € m2. (1 <i <), we define a k-algebra homomor-
phism o : T — T by o(t;) =t; + f; (1L <i<r). Then, ¢ is an automorphism
of T such that it induces the identity mapping on T /m2..

(b) Any k-algebra automorphism of T which induces the identity on T /m?
is given as in (a).

(¢) Let Iy C I, C mZ% be closed ideals of T and let v : T /Iy — T/I5 be any
k-algebra homomorphism that induces the identity on T/m2.. Then there is a
k-algebra automorphism ¢ : T — T with p(I;) C Iz and the induced mapping
©:T/I) = T/Is equals 1.

Proof. (a) It is obvious that ¢ induces the identity on my/m2.. Hence it
follows from Lemma 2.2 that ¢ : T — T is a surjective k-algebra homomor-
phism. In particular, every induced mapping ¢y, : T'/m%} — T/m}. is surjective
as well. Comparing the lengths we conclude that each ¢, is bijective. Hence
= linn ¢n is an automorphism.

(b) Trivial.

(c) By the assumption, we can choose f; € m% (1 < i < r) so that ¥(t;
(mod I)) = ¢; + f; (mod I3) (1 < ¢ < r). Now define an automorphism
p:T —=Thy et;) =t;+ fi (1 <i<r),and it is easy to see that ¢ satisfies
the desired condition. O

Now, as in the beginning of this section, we consider the lifting chain
complex (F ®j, T/m%, §) with § =d® 1+ Y._,t; ®; as in Equation (3.2),
where t : F' — F[—1] (1 < ¢ <) are chain homomorphisms whose equivalence

classes [t}],..., [t*] form a k-basis of Exth(F,TF).

Theorem 3.1. A mazimal lift of (F ®i T/m2., 0) is unique up to k-
algebra automorphisms and chain isomorphisms. ILe., if we have two max-
imal elements (T/Iy,No) and (T/I1,A1) in Z(m%,6), then there exists a k-
algebra automorphism ¢ : T — T such that ¢ induces a k-algebra isomor-
phism @ : T/Iy — T/I, and (F @ (T/Io), Ao) ®1/1, 7(T/11) is isomorphic
to (F ®y, (T/1,), A1) as a complex over R &y (T/1,)°P.
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Proof. (1) First of all we note from Remark 4 that there is an infinite
descending sequence of ideals of T; Ly = mQT >Li DLy DLy D D1
such that length(L,/Ln11) =1 for alln > 1 and T'/I; = limT'//L,,. Note that

each T/L,+1 — T/L, is a small extension in Aj. Note also that F R T/I; =
lim F ®, T/L,.

(2) By induction on n, we shall construct a k-algebra homomorphism
@n:T/Io — T/Ln,
and an automorphism of a graded R ®, (T'/L,)°P-module
an: F @ (T/Ly) — F @ (T/Ln),
which satisfy the following four conditions.

(0) po : T/Ip — T/Lo = T/m2. is a natural projection and ag = 1.
(1) The following diagram is commutative:

T/
Pn l \Tn—l
T/L, —— T/L,_1,

where the horizontal map is a natural projection.
(i)
an @71, (T/Lp-1) = an_1
(4i7)
Ao @71y 7(T/Ln) = o - (A1 @71, (T/Ly)) - ot

(3) Suppose we obtain such @, and «a, for n > 0 satisfying the above
conditions. Then, by (i) and (i), we have a k-algebra homomorphism

F=limpy : T/I - T/L
and an automorphism of graded R &y, (T/I;)°P-modules
a = liinoen . F®,T/I, - F®, T/I.
And it follows from (4ii) that
() Do @71, 2(T/L) =a- A ca” L.
Therefore we have the isomorphism
(F @ (T/Ly), Do) @71, 5(T/1) = (F @y (T/11), Ay),

as a chain complex of left R ®, (T/I;)°P-modules.
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Now we prove that @ is an isomorphism. Since @ induces the iden-
tity mapping on T/m2 by the condition (0), we can apply Lemma 3.8 to
get a k-algebra automorphism ¢ : T — T with ¢(Ip) € I; and ¢ induces
% :T/Ip — T/I,. Here suppose ¢(Io) S I1. Then we would have from (*) that
(F @y (T/1), aAjat) were liftable to (F ® (T/1o), Do) @11, o(T/¢(Lo)).
This is a contradiction, because (F' &, (T/I;), aAja~') is a maximal lift by
Lemma 3.7. Thus we have shown ¢(ly) = I; and hence 3 : T/Iy — T/I; is an
isomorphism.

In such a way, we have verified that the theorem is proved once we have
©n and oy, for n > 0 satisfying the conditions in (2).

(4) Now we shall construct p,, and «, by induction on n. To do this,
assume we already have P, and «, satisfying the conditions in (2) for an
integer n > 0.

We take an element € € L,, which gives a socle element of T'/L, 11 so that
L, = Lp41 + (€), and hence we have a small extension

0 k —~—T/L,,1 — T/L, —— 0.

By Lemma 3.8 there is a k-algebra automorphism ¢, : T — T such that
on(lp) C L, and P, is induced from ¢,

(5) Under the circumstances as in (4), we claim that
@n(IO) C Lyy1.

On the contrary, assume that ¢, (ly) € Ln+1. Then, since ¢, (Iy) C Ly,
we have L, = Lyp4+1 + ©n(lo). Therefore, there is a fiber product diagram

T/Lns1 Opn(lo) ——— T/on(lo)

l l

T/Lpia — T/L,.

Now let 8,41 be any lift of o, to T/L, 41, i.e.

F&uT/Lni1 2% F &, T/Lyi
F@yT/L, —"— F®T/Ly,

where (3,41 is also an isomorphism of graded left R ®y, (T/L;,+1)°P-modules by
Lemma 3.2. Then, the chain complexes

(F &k (T/Ln+1), But1 (A1 @71, (T/Lnt1)) - Brty)

and

() (F ® T/en(lo), Do @11y n(T/on(lo))
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are lifts of (F®y(T/Ly), on- (Al /1, (T/Ln)) ;) t0T/Lyy1 and T/, (1)
respectively. And by Lemma 3.1, they are liftable to T'/L,+1 N ¢, (Iy). Note
that (F ®p (T/Iy), Ag), as well as the chain complex (¥#), is a maximal lift of
(F,d). Hence it never be liftable to a nontrivial extension ring. Thus it follows
that L,1 N @n(lo) = @n(lp), therefore ¢, (ly) C L4 as claimed above.

(6) By the claim (5), the k-algebra automorphism ¢,, induces a map @, :
T/Iy — T/Lp41. Then, the chain complexes

(F ® (T/Lut1). Busr - (8 @1y1, (T/Lng)) - Bl)
and
(F @k (T/Lny1), Do®1/1y 77T/ Lnt1))
are lifts of (F ®x (T'/Ly), an- (A1 @71, (T/Ly)) -y, '). Therefore, by Lemma
3.3, there is a chain homomorphism h : F' — F[—1] with
(%) Buy1 - (A1 @71, (T/Ln1)) - Brpr = Do @171y 5(T/Lnt1) + h @ e

Since the classes of t7,...,t> form a k-basis of Ext}%(IF, F), we may describe h
as

h=>cit; +[d, H],
i=1
for some ¢; € k and a graded homomorphism H : F' — F of degree 0. Now we
define a k-algebra automorphism

Onp1:T =T by  opp1(ti) = @n(ti) + cie

for 1 < i < r. Then ¢, is well-defined, because ¢ € L, C m2. Note
that, for 1 < 4,5 < r, we have @,11(tit;) = pn(tit;) + ci(epn(t;) + @n(ti)e) +
cicj€? = pp(tit;) (mod Ly1). Thus, we see @n11(x) = ¢n(z) (mod Ly4q) for
all z € m%. Therefore by the claim (5) and by the fact that Iy C m2, we
have @, +1(Ip) € Lpt1, hence ¢,41 induces the k-algebra map @,11 : T/1y —
T/L,+1 and the diagram

T/I,
Pn+1 l \?
T/Lpy1 —— T/Lny,

is commutative.
By the definition of ¢,,41, it follows that

Do ®1/1y T (T/ Lng1) = Do @11y 7(T/Ling1) + Z t; ® cie,
i=1
thus we see from (xxx) that

Brs1 - (A1 @1/, (T/Ly)) - Brt1 = Do @71, 7 (T/Lny1) + [d, H].
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Now define, as in the proof of Lemma 3.3, an automorpshim a,,4+1 by
any1=(1-H®e€): Bnir.

Then we have that

ang1 - (A1 ®pyr, (T/Ly)) - an iy = Do @171, g (T/ L),
and also

Qn 41 ®T/Ln+1 T/Ln = ﬁnJrl ®T/L,,,+1 T/Ln = Qp.
Therefore, we have obtained @,11 and «,4+1 satisfing the conditions (i), (1)

and (i7i), and the proof is completed by induction. O

3.3. Universal lifts
As in the previous section, let F = (F,d) be a projective complex over R
that satisfies the fundamental assumption

r = dimy, Exth(F,F) < oco.
We define a functor F : Ay — (Sets) as follows: For any A € Ay, we set

F(A) = {(F®r A, A)|itis a lifting chain complex of F to A}/ =,

~

where 22 denotes the isomorphism as chain complexes over R ®; A°P. If f :
A — B is a morphism in Ay, then we define a mapping F(f) : F(4) — F(B)
by

FN(Fer A A))=(Fer A, A)@a fB.

Note that F is a covariant functor.

Definition 3.6. Let P € A and let L = (F ®p, P,A) be alifting chain
complex of F to P.
(a) We define a morphism between functors on Ay, ;

¢IL : Homk—alg(Pa )_>fa
by

oL(f) = (F & P, A)@p fA

for f € Homp_aig(P, A) with A € Ay,

(b) We say that the chain complex L is a universal lift of F if the mor-
phism ¢, is an isomorphism. Thus, in this case, the functor F on the category
Ay, is pro-representable by P € Ay. If L = (F ®;, P,A) is a universal lift of F,
then P is called a parameter algebra of the universal lift of F.

Lemma 3.9.  If there is a universal lift of F, then any parameter alge-
bras of any universal lifts are isomorphic each other as k-algebras.
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Proof. In fact, if P, and P, are such parameter algebras, then we have
an isomorphism Homy_a1g(P1, ) = Homy_ag(P2, ) as functors on Ay. Then,
it is easy to see that there are isomorphisms P;/mp = P,/m}, as k-algebras
for any n > 1, which are compatible with the projections P;/ m’];j'l — Pp/m}p,
and Py/m} — Py/mf}, . Hence Py = P. 0

Theorem 3.2. The following two conditions are equivalent for a lzftmg
chain complex Lo = (F & Po, Ao) of F where Py =T/Iy € Ay, with I C m2..

(a) Lo is a universal lift of F = (F,d).

(b) Lo is a mazimal lift of (F @y T/m2,4).
In particular, there always exists a universal lift of F, and it is unique up to
k-algebra automorphisms and chain isomorphisms.

Proof.
[(b) = (a)] : Let Lo be a maximal lift of (F ®j T//m2.,6). To simplify the
notation we write ¢r, as ¢. We would like to prove that

¢(A) : Homy aie(Po, A) — F(A)

is a bijection for any A € Aj. We prove this by induction on the length of A.
If length(A) = 1, then A = k and ¢(k) is clealy bijective.

[The surjectivity of ¢(A)]: Take a socle element € € A, and we have a small
extension

0 k—— A —T— A4 0
where A = A/(e). By the induction hypothesis, ¢(A) is bijective.

A
Homk—alg(P(Jv A) ¢( ) (A)

ﬂ'*l f(‘/r)l

— )
Homyaig(Po, A) —220 F(A)

To prove the surjectivity of ¢(A), let (F ®; A,A) be any element of F(A).
Since ¢(A) is surjective, there is g € Homk_alg(PO, A) such that

(F @k A, A) @4 A= (F & Py,A¢) @p, A

Hence, it follows from Lemma 3.2 that there is an isomorphism of graded mod-
ules a: FF®p A — F ®;, A such that

(For A, ada™ ) @4 A= (F & Py, No) ®p, 4A.
Now taking the fiber product

P—>P0

Lo

AL’E
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we see from the above equality that the complex (F Rk Py, Ap) ®p, gZ is
liftable to A, and it follows from Proposition 3.1 that the chain complex
(F ®p Py, Ao) is liftable to P. If the extension P — P, is nontrivial, then
it contradicts to that (F ®p Py, Aq) is a maximal lift. Hence P — Py is a
trivial small extension, and P — Py has a right inverse in ./zl\k. In particular,
the k-algebra map g : Py — A can be lifted to the k-algebra map f : Py — A,
i.e. m- f = g. Then, note that both (F ®j A, Ag®p, fA) and (F @y A, aAa™)
are lifts of (F ®; A, Ag @p, gZ). Hence, by Lemma 3.3, we have

Ao ®p, fA=aAa ' +h®e

for some chain homomorphism h : FF — F[—1] of degree —1. Then we may
write

s

b= clt]]  (cick),

i=1
as an element of Ext}(F,F). Now define a k-algebra map @ : T — A by

It can be easily verified that p(t;t;) = f(t;t;) for any i,j. Since Iy C m2., we
have ¢(Ip) = f(Ip) = 0, thus ¢ induces the k-algebra map ¢ : Py — A and
@lmz, = flmz,_ . Then, by the choice of ¢, we see that

0 0

AQ ®P0 4/7‘4: Ao ®p0 fA—ZClt;k ®e= OéAOé_l + (h_ chtr) ® €.
i=1

i=1
Thus it follows from Lemma 3.3(b) that
(F @1 Py, Ao) @p, A= (F @y A,alAa™) =2 (F @ A, A).

This proves the surjectivity of ¢(A).

[The injectivity of ¢(A)]: Let @1, 2 be k-algebra homomorphisms Py — A
with (F ®g Po,Ao) ®p, oA = (F @ Py, Ao) ®p, p,A. We want to show
1 = 2. Take a socle element € € A and we consider the small extension

0 E— AT 5 A 0.

Then, by the induction hypothesis, we have 7 - 1 = 7 - 3. Now consider the
mapping ¥ = @1 — @2 : Py — A, and we see that the image of v is contained

in ke. Note that ¢ (1) = 0 and that ¥ (zy) = p1(x)¥(y) — ¥(x)e2(y) = 0 if
x,y € mp,, since mpe = emp, = 0. Therefore 1)(m} ) = 0, and we have

©1]mz. = @2lmz . Since 1 = @2 + 1, it follows
Po Po

AO K P, ¢1A = AO K P, ¢2A+Zt;( ®U)(tz)

i=1
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Denoting 9(t;) = c;e with ¢; € k for 1 <14 < r, we have the equality

T
Ao ®py o A =Dy @p, g, A+ > cit] Q€.

=1

Then it follows from Lemma 3.3(b) that Y., ¢;[t;] = 0 as an element of
Exty(F,F). Since {[ti],...,[t:]} is a k-basis of Exty(F,F), we have ¢; = 0 for
all ¢, hence ¥ = 0.

[(a) = (b)] : Suppose that Ly = (F &;, Py, o) is a universal lift of F. Take
any maximal lift (F ® T/I1,Ay) of (F ®;, T/m2,d), and since it is a universal
lift by the implication (b) = (a), Lemma 3.9 forces Py to be isomorphic to
T/I;. Thus we may assume that Py = T/I;. Lemma 3.4 implies that we can
take a maximal element (I3, As) in Z(I1,Ag), which is in fact a maximal lift of
(F ®; T/m2,6). Then, again by the implication (b) = (a), (F ® T/I2,Az)
is also a universal lift of F, and hence T'/I5 is isomorphic to T/I; by Lemma
3.9. Since I, C I3, the following lemma forces I = I;. This implies that
(F ® Py, Ao) = (F @ T/I5, Ay), which is a maximal lift as desired. O

Lemma 3.10. Let T be a non-commutative formal power series ring,
and let Iy C Iy be closed ideals of T'. Suppose T /Iy is isomorphic to T /I3 as a
k-algebra. Then I; = I5.

Proof. The isomorphism T'/I; & T'/I, induces isomorphisms T'/I; +m}. &
T/I, 4+ m7 for any integer n. Since Io +m} C I; +mf., comparing the lengths,
we have the equality I» + m} = I; + m7: for each n. Thus Iy =, Io + m} =
mn Il + m% = Il . O

3.4. Every complete local algebra is a parameter algebra

Lemma 3.11. Let A’ — A be a surjective morphism in Aj. Suppose
the following two conditions hold.

(o) L=(F®k A,A) is a left R®y A°P-free resolution of a left R ®y A°P-
module M, and L is a lift of a free complex F = (F,d) over R.

(b) There is a left R ®i A’-module M’ such that M’ is flat as a right
A’-module and M' @4 A= M as left R ®;, A°P-modules.
Then there is a lifting chain complex I = (F ® A, A") of L that is a left
R ®y, A°P-free resolution of M'.

Proof. 'We may write A = A’/I’ where I’ is an ideal of A’. Take a set of
generators {zx| A € A} of M as a left R ®; A°P-module. Since M = M'/M'I’
as Ry A’°P-modules, we can take a subset {z)| A € A} of M’ that is an inverse
image of {z»}. Then the equality M’ = R{z\}A’ + M'I’ holds. Since I’ is a
nilpotent ideal, we have M’ = R{z\}A’.

By this argument we can show that every surjective homomorphism Fy ®z
A — M of left R ®; A°P- modules can be lifted to a surjective homomorphism
Fy @ A — M’ of left R ®; A°P-modules. Now take the kernels of these
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surjective maps and we have exact sequences

0 M, Foep A M 0,

0 M/ Fy @ A’ M’ 0.

Notice that Mj is flat as a right A’-module, since Fy ®; A’ and M’ are flat.
Thus the isomorphism M’ ® 4+ A = M implies M] ® 4+ A = M;. Then by the
same manner as above, the surjective homomorphism F} ®, A — M, is liftable
to a surjective homomorphism F; ®; A" — Mj. In such a way, by induction,
we can construct a chain complex with the underlying graded module F' ®;, A’,
which is a lift of (F ®j A, A). O

Theorem 3.3.  Let R be a complete local k-algebra, i.e. R € ﬁk, and let
F = (F,d) be a left R-free resolution of the residue field k = R/mpg. Then there
is a universal lift of F that is an acyclic complex of the form (F @ R,A) with
the homology Ho(F Ok R,A) = R. In particular, R is the parameter algebra
of the universal lift of F.

Proof. Note that the obvious exact sequence 0 — mp — R — k — 0
implies
Exth(F,F) = Extk(k, k) = Homy,(mp/m%, k).
Thus if we denote R = T/I where T = k({t1,t2,...,t.)) and I C m%, we can
take the dual bais {t},...,} as a basis of Ext(F,F). Set § = d®1+>._ i ®
ti, and we see that (F ®; T/m2, §) is a lift of F as in the beginning of Section
3.2. By the exact sequence of chain complexes

0—— (F@pmp/m2, d®1) —— (F @ T/m2, ) (F,d) 0,

and by the acyclicity of (F,d), we easily see that (F ®; T/m%, §) is acyclic as
well, and Ho(F @ T/m%, §) 2 T/m2 = R/m% as an R ® (R/m%)°P-module.

Starting from Ay = ¢, and using Lemma 3.11, we can inductively construct
a sequence of chain complexes (F ® R/m’%, A,) for n > 2 satisfying the
equalities (F @5 R/m5t, A,i1) DR my R/m} = (F @, R/m%, A,) and
Ho(F ® R/mp, A,) = R/mf. Now let A = limA,, and we have a lifting
chain complex (F &, R, A) of (F @ T/m2, §).

First, we claim that (F ®; R, A) is acyclic and Ho(F ® R, A) = R as
an R ®; R°P-module. For this, let Q! be the kernel of Ay F; Qp R/mb, —
F;_1 ®, R/m% for any n,i > 0 where we understand that Q2 = R/m%. By the
proof of Lemma 3.11, we have a commutative diagram with exact rows
n+1
R

i—1
- Q?L-‘rl - 0

l | |

0 —— Q) —— F®,R/m}p —— Q-1 —— 0,

0 —— Qiz—i—l - - Fi®kR/m

where the vertical arrows are surjective. This implies the exact sequence

0 —— limQ, —— F,®, R —— limQi~! —— 0,
— —
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and hence the complex (F ®; R, A) is acyclic and Ho(F ® R, A) =
lim R/mf, = R as desired.

Now we prove that (F ®@; R, A) is a maximal lift of (F ®; R/m%, 0).
Suppose that it is not a maximal lift. Then there will be a nontrivial small
extension

0 —s k —~> R —2 R 0,

of R so that the complex (F ® R, A) is liftable to a chain complex
(F ® R, A"). The exact sequence

0 —— (Fd) /2 (F&, R, A) —— (F®, R, A) —— 0

forces (F ®; R', A’) to be acyclic as well, and taking the homologies we have
an exact sequence

0 —— k —— H) ——— R 0,

where H) = Ho(F ®; R', A’) and 7 is a homomorphism of R ®;, R’'°’-modules.
Take an element zo € H} with m(zg) = 1, and obviously we have H) = zqR' +
He. Since €2 = 0, it follows that Hj) = xoR’.

We claim that H|) is a free module as a right R’-module. To prove this,
assume zoa’ = 0 for ' € R’, and we want to show a’ = 0. Suppose a’ # 0.
Since 0 = m(xpa’) = 1g - o’ = p(a’), we see a’ € €k, hence ¢’ = ec for some
¢ # 0 € k. Then we have zge = 0, and the right R'-module H} = zoR’ is in
fact a right R-module. Hence 0 — k — H) — R — 0 is an exact sequence of
right R-modules. Therefore the sequence splits and Hj = k @ R as a right R-
(hence R’-)module. This contradicts that H{ is generated by a single element
as a right R’-module.

Now we have shown H{ is a free right R’-module. Since Hj is a left R-
module as well, for any a € R, we find a unique element o’ € R’ with a - ¢ =
2o-a’. Now define amap f: R — R’ by f(a) =a’. Since (ab)xg = a(zof(b)) =
(azo) f(b) = zo(f(a)f(b)), we can see that f is a k-algebra homomorphism.
Since we have an equality a = w(axg) = m(xof(a)) = 1g - f(a) = p(f(a))
for any a € R, we see p- f = 1. This contradicts that (R/,€) is a nontrivial
extension, and the proof is completed. 1

Remark 8. If R is left noetherian, then we can take as each F; a finitely
generated left R-free module, and F; @, R is a left R ®;, R°P-free module. In
this case the acyclic complex (F ®; R,A) in the theorem is a free resolution
of R as a left R ®;, R°P-module. However, in general, notice that (F &; R, A)
may not be a free complex of left R & R°P- modules.

3.5. Deformation of modules

Let R be a k-algebra as before. In this section, we consider the case where
the complex F = (F,d) is a free resolution of a left R-module M. Of course, in
this setting, we have the equality Extk (M, M) = Exth(F,F) and it is assumed
to be of finite dimension as before.
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For any A € Ay, aleft R®y A°P-module X is said to be a flat deformation
of M along A if X is a flat module as a right A-module, and there is an
isomorphism X ®4 k & M as left R- modules. And two flat deformations
X and Y of M along A are said to be isomorphic if they are isomorphic as
R ®j, A°P-modules. We consider the following two functors Ay — (Sets):

F(A) = the set of isomorphism classes of lifting chain complexes of F,

Far(A) = the set of isomorphism classes of flat deformations of M.

Theorem 3.4. We have an isomorphism F = Fpr as functors on Ay.
In particular, the functor Fy; is pro-representable as is F, i.e. there is an iso-
morphism Far = Homy_q14(Po, ) of functors on Ay, where Py is the parameter
algebra of the universal lift of F.

Proof. Let A € Ay, and let (F®y A, A) be alift of F to A. Notice that, by
induction on the length of A, one can easily prove that (F®y A, A) is acyclic, as
F is acyclic. Therefore it gives a left R®jy, A°P-free resolution of Ho(F @ A, A).
Since (F®i A, A)® 4k = F is acyclic, we have Torfop (Ho(F®rA,A), k) =0 for
¢ > 0. Since A is an artinian local algebra, this implies that Ho(F®iA, A) is flat
as a right A- module. We should note that Hyo(F ®; A, A)®a k = Ho(F) = M.
Hence Hy(F ® A, A) is a flat deformation of M along A. Thus we obtain a
well-defined mapping Hy : F(A) — Far(A) by taking the 0-th homology. It is
trivial that the map is injective, and Lemma 3.11 implies it is surjective. [

4. Properties of parameter algebras

4.1. Obstruction maps

As before F = (F,d) is a projective complex over a k-algebra R. Let
P c Ay, and let L = (F ®;, P, A) be a lift of F to P, which we fix in this
section. We aim at constructing the obstruction map

ap : T(P) — Ext%(F,F),
which will enable us to compare the cohomology modules between P and R.

4.1.  [To define ag]:

Now, suppose we are given a class of small extension [P’ ¢] € T(P).
Lemma 3.6 forces A : F @, P — F @ P[—1] to be lifted to A" : F ®;, P’ —
F ® P'[-1]. Note that A’ is just a lift as a graded homomorphism, and it
may not holds that A’? = 0. Recall from Lemma 2.11 that we then have a
commutative diagram of graded left R ®; P’°P-modules with exact rows

0—— F 2, Fpe. P 2 F&P —0

‘| > 2|

0 —— F[-1] 22 F &, P[-1] =2 F &, P[-1] —— 0.



Universal lifts of chain complezes 831

Since d? = 0 and A% = 0, we have the following commutative diagram.

0o—— F 22, pg, P 2. FZFP —0

o] > o]
0 —— F[-2] & P&, P[-2] 2% F &, P[-2] —— 0
By chasing the diagram, we see that there is a graded left R-module homomor-
phism 0 : F — F[-2] with A”” =6 ®¢, ie. A*(Nax®a) =Y 0(z)® ea for

any formal infinite sum Y2 ® a € F @, P'.
First we claim that

(i) 0 : F — F[—2] is a chain map.
In fact, it holds that

U-d®6:(U®6)A':A'3:A/(U®e)=d~a®e,

hence it follows that [d,0] =d -0 — o -d = 0. Thus the graded homomorphism
o is a chain map of degree —2, therefore it defines an element [o] € Ext%(F,F).
Next we claim that

(ii) the class [o] does not depend on a choice of a lifting map A’.

In fact, if A’ and A” are two lifting maps of A, then we have a commutative
diagram

0—— F 1o, pg.p 2 FEP —0

Ol A'fA”l OJ{
0 —— F[-1] =2 F &, P[-1] =2 F &, P[-1] —— 0,

from which we can see the existence of graded homomorphism 7 : F' — F[—1]
with A’ — A” = 7 ® e. Then, we have an equality

A2 — (A" +1®¢€)? = A% 4 (dr + 7d) ® €,

hence, setting A2 = ¢/ ® € and A”? = 6" @ ¢, we have o’ — ¢’ = dr + 7d, i.e.
[0'] = [0"].

Now we can define a mapping
o, : T(P) — Ext%(F,F)
by sending [P’, €] to the class [o].
By (i) and (ii) above, ag, is a well-defined mapping. Furthermore, we can

show the following.

Lemma 4.1.  The mapping oy, : T(P) — Ext%(F,F) is k-linear.
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Proof. To prove the equality
ap(c1[Pr, e1] + o[ P, €2]) = cran ([P, €1]) + caan ([P, €2])
for ¢; € k and [P, ¢;] € T(P) (i = 1,2), let us consider the pull-back diagram

F®y (P xpP)) —— F & P,

| |

F @y Py — FQy P,

and take lifting graded homomorphisms A; : F ®;, P; — F &y, P;[—1] of A for
i =1,2. We may assume that ¢; # 0 for ¢ = 1,2. Since there is a commutative
diagram with exact rows by Lemma 2.11 ;

0> F@r(PLxpP) — (F&,P)®FP) — F&xP—0

o] N

0—)F(§)k (Pl XpPg)[—l]—>F @kpl[—l]@F @kpg[—l]—nF @kP[—l] — 0,

there is a naturally induced mapping A:F ®r (Py xp Py) — F ®p (P xp
P,)[—1] which is a lifting map of both of A; and A,. Let us take a chain
homomorphism o; of F so that A% = o0;®c¢; for i = 1,2. Then it can be
seen that A2 = o1 ® (e1,0) + 02 ® (0,€2). Recalling the definition of the
sum [Q,€] = c1[P1,e1] + ca[Pa, €3], we have Q = Py xp Pg/(Cl_lﬁl,*C2_1€2)
and € is the class of (c1 €1,0). Thus, setting A" = A ®p,xpp, @, we have
the mapping A’ : F @, Q — F &, Q[—1] which is a lifting map of A to
Q, and we easily see that A% = (c101 + ¢c203) ® €. Consequently, we have
Oé]L([Q, 6]) =cC [0’1] + 62[0'2] = ClaL([Pl, 61]) + CQO{]L([P27 62]). O

Lemma 4.2. Let f : P, — P, be a k-algebra map in A\k, and let

Ly = (F Rk Py, As) be a lift of F to Py. Suppose there exists a lift Ly =
(F ®k P1,A1) of Ly to P1, i.e. L1 ®p, Py = Lo. Then there is a commutative

diagram
\ / A

Ext%(F, F).

Proof.  Set [Py, e1] = f*([ Py, €2]) for [P}, e2] € T (P,). From the definition,
there is a pull-back diagram

0 E—2— P Py 0

S

0 kE —2— P} Py 0.
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Let A} be any lift of A; onto F Rk P{. Then A} := A} ®py P} is a lift of
Ay = Ay ®@p, t Py onto F @), Py. Now write A2 = 5®e; so that ap, ([P, e1]) =
[6]. Then, we have A3 = A/ ®@py 1Py = 0 @ e€g, hence ay, ([Py, €]) = [o]. This
shows that oy, = ar, - f*. O

Theorem 4.2. Let Ly = (F Rk Py, Ao) be the universal lift of F =
(F,d) with parameter algebra Py. Then, the k-linear mapping

ar, : T(Py) — Exth(F,F)
15 an injection.

Proof. Let [P1,e1] € T(P) be a nontrivial small extension. We only
have to show ag,([P1,€1]) # 0. Suppose ar,([P1,€1]) = 0. Then, for any
lifting map Ay : F Qp P, — F &, P[-1] of Ag to P;, we have A? = 0 ®
€1, where 0 = [d, h] for some graded homomorphism h : F' — F[-1]. Now
putting Af = Ay — h ® €1, one can sce that A}> = A2 — [d,h] ® ¢ = 0.
Therefore, (F &), Py, A}) is a lifting chain complex of (F' &, Py, Ag). This is a
contradiction, because (F R Po, Ap) is a maximal lift. See Theorem 3.2. O

Corollary 4.1.  Suppose Ext%h(F,F) = 0. Then the parameter algebra
Py of the universal lift of F is isomorphic to the non-commutative formal power
series ring k((t1,ta, ..., ).

Proof.  Under the assumption, we have 7 (Py) = 0 by Theorem 4.2. There-
fore if we describe Py = T'/I where T is a formal power series ring and I C m%
is a closed ideal, then Proposition 2.4 forces Hom,,, (I, k) = 0. Thus we only
have to show the following lemma. O

Lemma 4.3.  Let I be a closed ideal of a non-commutative formal power
series ring T. If Homeo, (I, k) =0, then I = 0.

Proof. Suppose I # 0. Then, by Corollary 2.3, we have I # mpI 4+ Imy.
Therefore, I # mpl + Imp + (m%.N1I) for a large integer n. Since Hom,y, (I, k)
contains every k-linear map I/mpI+Imp+(mpNI) — k, we have Home,, (I, k)
# 0. O

This corollary can be generalized to the following theorem.

Theorem 4.3.  Let Py = T/ be the parameter algebra of the universal
lift of F = (F,d), where T is a non-commutative formal power series ring and
Iy € m2 is a closed ideal. Suppose £ = dimyExt%(F,F) is finite. Then, the
ideal Iy is analytically generated by at most £ elements.

Proof. Combining Theorems 2.4 and 4.2, we have an injective k-linear
map Homeo, (lo, k) — Ext%(]F,IE‘). In particular, Homc,y, (Io, k) is a k-vector
space of finite dimension. Since we have the equality Homc,, (lo, k) = Uy,

Homy, (Ip/mpIo+ Iomyp + (m}:N 1), k) by definition, there is an integer ng such
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that Homeop, (Io, k) = Homy, (Io/mp Iy + Iomy + (m}N 1), k) for n > ng. Hence
we have the equalities

mply + Iomp + (m? N I) =myply + Iomp + (m’%”'l N I) =...=mply+ Igmy.

Thus it follows that Homeon (lo, k) = Homy (Io/mrlo + lomr, k). Since this
is of dimension at most ¢, we have dimg(Iy/mrly + Ipmy) < £. Therefore, by
virtue of Proposition 2.3, Ij is analytically generated by at most ¢ elements. [

4.2. Universal lifts based on commutative algebras

Remark 9. Let T = k({(t1,t2,...,t,)) be a non-commutative formal
power series ring. We denote by C the commutator ideal which is a two-sided
ideal generated by the commutators ¢;¢t; —t;t; (1 <i<j <r), ie.

C:({tit]’—t]‘ti|1§i<j§’l“}).

Note that C' is not a closed ideal if » > 2. It is however easy to see that T/U
is isomorphic to the commutative formal power series ring k[[t1, ..., t.]].

Remark 10. Let I be an ideal of T that contains C. Then, I is a closed
ideal and there are a finite number of elements fi, ..., f, € I with the equality
I={(f1,-.., fe) +C. o

In fact, it is well known that any ideal of T/C = kl[t1,...,t,]] is closed.
Since the natural projection 7 : T — T/C is continuous, I = 7~ 1(I/C) is
closed as well. Since T//C' is noetherian, we can find finite elements fi,..., f;
which generate the ideal I/C. Then we have the equality I = (fi,..., f¢) +C.

Recall from Section 3.3 that F : A, — (Sets) is a covariant functor such
that F(A) is the set of isomorphism classes of lifting chain complexes of F to A,
for any A € Ai. We consider here the restriction of F to commutative artinian
algebras. For this end, we denote by Cj, the category of commutative artinian
local k-algebras A with A/my = k and k-algebra homomorphisms. Note that
Cx, is a full subcategory of Aj.

Theorem 4.4. Let Ly = (F Rk Po, Ag) be the universal lift of F with
parameter algebra Py = T /Iy where T is a non-commutative formal power series
ring and I C m2. We set Qo = T/Io + C which is a commutative noetherian
complete local k-algebra. Then, the restricted functor Fle, : Cp — (Sets) is
pro-represented by Qo, i.e. there is an isomorphism F|c, = Homp_q9(Qo, )
as functors on Cy.

Proof. Note that if A € Ci, then Homy. aig(Po, A) = Homy aig(Qo, A).
The theorem follows from this observation. O

Definition 4.1. We call () in the theorem a commutative parame-
ter algebra of the universal lift of F. And we call Ly ®p, Qo the universal
lift of IF based on commutative parameter algebra.
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Remark 11. If F is a projective resolution of a left R-module M, then
the universal lift of F based on commutative parameter algebra is nothing but
the universal deformation of M whose existence is mentioned in Theorem 1.1.
(See also Proposition 3.4.)

The commutative parameter algebra Qo is of the form k[[t1,...,¢]]/a
where a = I+ C/C CT/C =kl[t1,...,t]]

Proposition 4.1.  Let Qo = kl[t1,...,t]]/a be a commutative parame-
ter algebra of the universal lift of F. Then, the minimal number of generators
of a is at most dimyExt%(F,F).

Proof. It suffices to argue when £ = EXt%(F, IF) is finite. Then, by Theo-

rem 4.3, there are fi,..., fo € Iy satisfying the equality Iy = (f1,..., f¢). Thus,
by virtue of Remark 10, we have the equalities

L+C=I+C=C+(f1,....f0) =C+ (f1,-.-, fo).

Therefore a = Iy + C/C is generated by the images of fi,...,f, in T/C =
k[[tla"'atr]]' 4

4.3. Yoneda products

Let F = (F,d) be a projective complex over R with r = dim;Ext 5 (F, F)
being finite as before. Then, as in the beginning of Section 3.2, we may consider
the lifting chain complex L = (F ®; T/m%,8) with d =d®@ 1+ 3_ t: @ t,,
where T' = k((t1,t2,...,t,)) is a non-commutative formal power series ring and
t,...,t* are chain homomorphisms which form a k-basis of Extg(F,F). Since
L is a lift of F, we have the k-linear map

ap : T(T/m%) — Exti(F,F).

by 4.1. See also Lemma 4.1.

Note that Extp(F,F) = @;°__ Ext(F,F) is an algebra, called Yoneda
algebra, whose multiplication is given by Yoneda product. In fact, if f: F —
F[—i] and g : F — F[—j] are chain homomorphisms of degree —i and —j
respectively, then the composite f-g : F' — F[—i—j] is a chain homomorphism
of degree —i— j, and the product in Ext(F,F) is given by [f][g] = [f-g]. In the
following lemma, Ext},(F,F)? denotes the k-subspace of Ext%(FF,F) generated
by all the products of two elements in Extk(F,F).

Lemma 4.4. Under the circumstances above, the image of o, is exactly
Exth(F,F)2, i.e., ap(T(T/m2)) = Exth(F,F)2.

Proof. Recall from Proposition 2.4 that there is an isomorphism of k-
vector spaces 7 : Homg(m2 /m3, k) = Homg,,(m%, k) — 7(T/m2). Suppose
7(f) = [T/I,€] for f # 0 € Homy(m%/m3. k). Then, by definition of 7, we
have f(e¢) = 1 and I is the kernel of the composition mapping m% — m2/m3,
with f : m2/m3 — k. Note, in this case, that T/I has {1,71,...,L,,€} as a



836 Yuji Yoshino

k-basis, where 7; denotes the image of ¢; in T'/I. Also note that if we denotes
f(titj;) = cij € k, then f is completely determined by these ¢;;’s.

We can take the following map A as a lifting graded homomorphism of §
on F @ T/I.

-
A=del+) t:eh+0®e
i=1
Then, we have A% = Z:jzl tith ® tit;. Since tit; = f(tit;)e = cqje, it fol-
lows that A% = szzl cijtit; ® e. Therefore, from the definition of ay, we
see a,([T/1,€]) = Z;j:l cij[t7][t;], which is in fact an element of Ext R (F, F)2.
Since we can take any elements of £ as c¢;;, the image of ar is exactly
Ext},(F,F)2. =

Theorem 4.5. Let Lo = (F &, Py,Ag) be the universal lift of F with
the parameter algebra Py = T/Iy, where T = k{(t1,ta,...,t.)) is a non-
commutative formal power series ring and Iy C m2. Then the image of the
injective map oy, : T(Py) — Ext%(F,F) contains Extp(F,F)2. And there is an
isomorphism of k-vector spaces

Extp(F, F)? = Homy,(Ip/Io N m3, k).

Proof. Let L be the lifting chain complex (F ®j T/m2.,d) of F, where
§=d®1+>_,tf ®t; as above. And let Ly = (F Rk T/Iy,Ap) be the
universal lift of F. We denote by ¢ the natural injection Iy — m% and by p the
projection T/Iy — T'/m?Z.

Combining all the results in 2.4, 4.2 and 4.4, we have the following com-
mutative diagram.

Homop (M3, k) ——— T(T/m}) ——— Extp(F,F)*

o

(4.1) q*l p*l Ll

Homop (Io k) ——— T(T/I) ——— Ext}(F,F),

o

where ¢ is a natural injection. Note from Theorem 4.2 and Lemma 4.4 that oy,
is injective, and ay, is surjective. Therefore ag, (7 (Pp)) contains Exth(F,F)?
and we have an isomorphism of k-vector spaces

¢ (Homeop (m%, k)) = Exth(F, F)2.

Note that Homeo,(m%, k) = Homy(m2/md, k). Hence we may describe as
follows:

Ker(q") = {f € Hom(m7,/m7, k) | f(o +m7/mi) = 0}
= Homk(m%/fo + mi}, k)

Thus, from the obvious exact sequence

0 —— Ly/Ipnm} —— mZ/md —— mi /I +m} —— 0,
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we finally have

Extp(F,F)? 2 ¢* (Homeon (M3, k)
>~ Homy (m2 /m3., k) /Homy (m% /Iy + md., k)

>~ Homy (In/Ty N m3-, k).
O

Note in the theorem that 1o/l ﬂmz} is a finite dimensional k-vector space,
since it is a subspace of m%/m3.. As a direct consequence of the theorem we
have the following corollary.

Corollary 4.2.  Let Py = T/I be the parameter algebra of the universal
lift of B, where T = k{{t1,ta,...,t.)) is a non-commutative formal power series
ring and Iy C wm2. Then, Iy C m3. if and only if Exty(F,F)2 = 0.

Proposition 4.2.  Let Ly = (F ®; Py, Ao) be the universal lift of F
with the parameter algebra Py = T/Iy, where T = k({t1,t2,...,t.)) is a non-
commutative formal power series ring and Iy C m%. Then the following two
conditions are equivalent.

(a) The image of the mapping ar, : T(Py) — Extk(F,F) is eractly
Extf(F,F)2.

(b) There exist elements f1,...,fr € Iy which analytically generate the
ideal Iy such that they give rise to linearly independent elements in m2/m3..

Proof. By the commutative diagram (4.1) in the proof of Theorem 4.5,
we see that the condition (a) is equivalent to that the k-linear mapping ¢* :
Hom, o, (Mm%, k) — Homeon (Lo, k) is surjective, where ¢ : [y — m2 is a natural
injection.

To prove the implication (a) = (b), suppose ¢* is surjective. Since
Hom,,, (m%, k) = Homy (my/m2., k) is a finite dimensional k-vector space, so is

Hom,on (I, k) = | J Homy(Io/mrlo + Iomr + (I N m7), k).

n>1
Hence there is an integer ng > 1 such that

mply+ Ipmp + (IO ﬂm%o) =mplo+ Ipmp + (IO ﬂm%‘)‘*‘l) =...=mply+ [pmp.
Therefore ¢* induces a surjective mapping Homy(m3./m3., k) —
Homy, (In/mrly + Iomr, k), hence the natural mapping Iy/mrly + Iomy —
m2./m3. is injective. Now let us take the elements fi,..., f, € Iy whose images
in Iy/my Iy + Iomy form a k-basis. Then, the images of fi, ..., f, in m%/m3. are
linearly independent and it follows from Proposition 2.3 that Iy is analytically
generated by f1,..., fr.

To prove (b) = (a), suppose we have elements f1,..., f; € Iy such that

they give rise to linearly independent elements in m2./m3, and Iy = (f1,..., fr).
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By Proposition 2.3 we may assume that the images of fi,...,f, in
Io/mrly + Iomp form a k-basis. Note that Ip N m3 is a closed ideal of T
containing my Iy + Ipmy, hence we have an inclusion relation mpIy 4+ Igmp C
I Nm3 C m3.. Therefore we obtain the natural map

Io/mTIQ + Iomyp AN IO/IQ ﬂm3T - mQT/m‘ST

Since g maps the k-basis of Iy/mrly + Ipmr to a set of linearly independent
elements in m%/m3., we have the injectivity of g. In particular, the equality
mrly + Iomy = Ip Nm3. holds. Hence it follows that

mrly + Iomr + (Io n m%) =1IyN m3T,

for all n > 3. Thus we have the equality Hom,on (Io, k) = Homy (Io/IoNm3., k).
Therefore the map ¢* : Homc,y, (Mm%, k) — Homeop, (Io, k) is the same as the k-
dual of the natural injection Iy/Ip N m3 C mZ/m3. The surjectivity of ¢* is
now obvious. O

4.4. Comparison of cohomology

As in the previous sections, F = (F,d) denotes a projective complex over
R, where R is an associative k-algebra. We assume that r = dimyExt (T, F) is
finite as before. Adding to this assumption, we assume in the rest of the paper
that the complex F is right bounded, i.e. there is an integer s such that F; = 0
for i < s.

We also denotes by Lo = (F R Po, Ayp) the universal lift of F with the
parameter algebra Py. Note that Ly may not be projective as a right Py-module.
They are even non-flat as seen in Example 2.2.

For any integer n > 1, we set

LY = (F @ Py/mp,, A™) =Lap, Py/mp.

In fact, each ]Lén) is a right bounded complex of projective left Ry, (Po/mp, )7P-
modules, in particular, it is a free right Py /mﬁo—module.

For any associative k-algebra R, we denote by D, (R) the derived cate-
gory consisting of right bounded complexes over R. Then, tensoring the chain

complex L™ yields the functor p, between the derived categories:
Pn : D+(P0/mrléo) — Dy (R),

which is defined by p,(X) = ]L((J") ®py/my, X. This is well-defined, since ]Lén)
is a right bounded complex of projective left R @y (Po/mp,)°P-modules.

Note that the natural projection F /m?o+1
functor Dy (Po/mp, ) — D+(P0/mf,—f,0+1). And it is easy to see the diagram

— Py/m%  induces a natural
Po

Dy (Py/mp) —2"— DL (R)

w Nz

D (Po/mpt)
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is commutative.
Note that ]Lg") ®p0/m}éo k =T, hence we have p, (k) =F for each n > 1. Tt

follows that the functor p, induces the map
ph Extgpo/mgo (k, k) — Ext%(F,F)

for all integers 7. Then the commutative diagram (4.2) forces the commutativity
of the following diagram.

Extf, ymp, (ks ) —Pn, Exth,(F,F)

(43) | /Z

EXtPo/mZ:)rl (k, k')

Definition 4.2. From the commutative diagram (4.3), we can define
the inductive limit pf, = lim p;, for each i ;

Pl ¢ lim Exty, yrp, (ks k) = Exth (I, F).

n

The aim of this section is to show that p’_ is an injective map for i = 0, 1, 2.

Note that lim Extpo/m}lpo(k‘,k:) = D50 lim Ex‘cﬁ;o/mq;s0 (k,k), as well as
Exty(F,TF), has a structure of algebra by Yoneda product, and
poo : hLQEXt‘PO/m;’,' (kv k) - EXtR(Fa IF)
(0]

n
is an algebra map.
First, consider the case ¢ = 0. Since Ext%o/mgo(k,k) =k and p? : k —

Ext%(IF,]F) is a natural injection for any n > 1, we easily see the following
lemma holds.

Lemma 4.5.  The mapping p%, : k — Ext%(IF,]F) is a natural injection.

~

To argue for the case ¢ = 1, we should notice that Ext}po/mg (k, k)
0
Homy,(mp, /m3, , k) for all n > 2 and the natural maps Ext}go/mg (k, k) —
0
1
EXtPO/m;;rl

we have

(k, k) coincide with the identity map on Homy (mp, /m%, , k). Hence

pae : Homy,(mp, /m%, k) — Extp(F,F).

We can prove this is actually an isomorphism.

Lemma 4.6.  The mapping pl, : Homy(mp, /m% , k) — Exty(F,F) is
an isomorphism.
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Proof. By the observation above, we only have to prove that pl
Homy (mp, /m3, , k) — Extg(F,F) is an isomorphism. Let us denote Py = T/ I
where T' = k((t1,ta,...,t,)) and Iy C m?. Recall that Ext (I, F) has a k-basis
{[t2], [£5], ..., [t*]}. And, by definition, we have L = (F @, T/m2, §) with
§=d®1+> ., t:®1;, where {; denotes the image of ¢; in my/m?%. Therefore,

it is easy to see that the mapping p3 is defined by
pa(f) =D _f@),
i=1

for f € Homg(my/m%, k). The lemma follows from this. O

Now we proceed to the case ¢ = 2. The goal here is to prove the following
theorem.

Theorem 4.6.  There is an isomorphism 3 : T (Py) — H_I)HEXt?DO/m;gO (k, k)
which makes the following diagram commutative.

a]Lo

T(Py) — Exth(F,F)

Bl /pio

: 2
h_n)ln EXtPo/m}_L-,O (k;) k)
In particular, p2, is an injective map as is oy, .

To prove this, let A be an arbitrary artinian local k-algebra in A, and let
G* = (G,d") be a free resolution of the left A-module ¥ = A/m4. Then, by
Theorem 3.3, there is a universal lift of G* of the form G§ = (G ®j A, AY)
whose parameter algebra is A. Since G{' is a lift of G*, we have the k-linear
map

aga : T(A) — Ext} (G4, G*) = Ext? (k. k)
which is defined in 4.1.

Lemma 4.7.  Let A € Ay, as above. Then the map aga is an isomor-
phism.

Proof. Since A is a parameter algebra of the universal lift G4 of G, The-
orem 4.2 implies that aga is injective. Thus, to show this is an isomorphism, it

is enough to show that dim;7 (A) = dimExt? (k, k). Let us describe A = T/I
where T is the non-commutative formal power series ring and I C mZ%. Note
that the ideal I is open and closed in T, since A is artinian. Therefore, by
Proposition 2.4, we have 7(A) = Homeo, (I, k) = Homy(I/Imy + mal, k).
On the other hand, by the following lemma, we know that Ext?(k,k) =
Homy (I/Tmy +wmpl, k) = T(A). Hence dimyExt? (k, k) = dim, 7 (A). O
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Lemma 4.8. Let P = T/I € A\k where T = k((t1,t2,...,tr)) is a
non-commutative formal power series ring and I C m3. Then there is an
isomorphism Ext% (k, k) = Homy (I /Imp + mpI, k) = Homyp_yimea(I, k).

Proof. By virtue of Lemma 2.3, there is a minimal free resolution of k as
a left T-module of the form

0 s T k 0.
Therefore, tensoring P over T', we have an exact sequence of left P-modules
0 —— Tor] (P, k) P" P k 0.

Note that, by the exact sequence of right T-modules 0 — [ — T — P —
0, we have Torj (P, k) = I/Imy which is an isomorphism of left P-modules.
Therefore we have Ext% (k, k) & Homp(I/Imyp, k) = Homy(I/Imp + mpl, k).

1

One can show that the isomorphism aga does not depend on the choice of

free resolution G# and its lift GZ'. This follows from the following more general
lemma.

Lemma 4.9. Let FO = (FMW dW) and F? = (F®) d®) be right
bounded projective complexes over R. For A € Ay, let GO = (FO) @, A, AW)
be a lift of F® to A for i = 1,2. Suppose that there is a quasi-isomorphism
q: G — G® of chain complexes over RQy, A°P. Then, there is a commutative
diagram:

T(A) e Bt (FO, FO)

Ai(2) J/ qx l

Ext%(F®,F?) —L ., Ext2(FD,FO)

Proof. Let [A’,¢] € T(A) and let A® be a lifting homomorphism F @ @y,
A" — F® @, A'[-1] of A® for i = 1,2. Then, by the definition of aga), we
have the description (A@M)2 = A @, e with h() : FO — F®[-2] being a
chain homomorphism, and the equality age) ([A’,€]) = [h(?] holds. Now take a
lifting map ¢ : FM) @, A’ — F®? @, A’ of a graded homomorphism ¢ and we
have the commutative diagram:

0 FO 2% p g, A L FW g A — 0
el |
0 F@ & p@ g A s F@ @A 0

Since A® g = gAM | we have the following commutative diagram:

0 —— Fm &, pWg 4 — FOg, A — 0

J,O ll((")q'—qll(m lo

0 —— FO@[-1] 22, F@ g, A[-1] —— F@ @, A[-1] —— 0
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Hence there is a graded homomorphism p : (1) — F(2)[—1] with the equality
K(Z)q’ - qlz(l) =p®e.

Multiplying A® (resp. K(l)) from the left (resp. right), we have equalities

iPpce=AD(poe) = (h? @ e)g — ADYAD = 1 g e— AOFAD),
and

pdV @e=(p2e) AV = AP ZAD — ¢/(hV) g ¢) = AP ¢AD — ghM g e.
Consequently, the equality

hP g — gh = dPp 4+ pd™

holds. Tt follows that the equality g.([h(V)]) = [gh(V] = [MPq] = ¢*([n?)])
holds as an elements of Ext% (F() F(2)). 0

Lemma 4.10. Let A € A;, and let GA = (G,d?) be a free resolution
of the left A-module k = A/ma. We take a universal lift of G* of the form
G{ = (G @i, A, AY) as above. Furthermore, suppose that there is a lifting
chain compler L. = (F ®i A,A) of F = (F,d). Then we have the following
commutative diagram

T(A) —% Ext%(F,F)
o
Ext% (k, k),
where p? is the map induced by the functor L @4 — : Dy (A) — Dy (R).
Proof. Consider the tensor product of chain complexes
X:=L®aGy = (ForA) @4 (Gap A), dx),

where dx = A® 1+ 1® A§'. Notice from Theorem 3.3 that G{' is a complex
of free A ®) A°P-modules and it is quasi-isomorphic to A as a chain complex of
A ® A°P-modules. Therefore the chain complex X is quasi-isomorphic to LL as
a chain complex of R ®j) A°P-modules. By virtue of Lemma 4.9, it is sufficient
to prove the commutativity of the following diagram.

T(A) —2 . Exti(X®ak,X®4k)
QA

“ /ﬂ%
Ext? (k, k)

For this, let [A’,¢] € T(A) and take a lifting map I' : G @ A’ — G @, A'[-]1]
of A#'. By definition of aga, we have I'? = h @ e for some h: G — G[—2] and
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aga([A',€]) = [h]. Therefore pgg(ozGOA([A’,e])) is represented by a chain map
1®hon X®4k=F®4G*. On the other hand, dy =A®1+1®T is a lifting
map of dx, and we have the equality d’X2 = 1®h®e. Hence it follows from the
definition that ax([A’,€]) = [1 ® h] as well. Hence we have pZ - aga = ax. O

Let P € ﬁk be any complete local k-algebra. Then, induced from the
natural projections p,, : P/m’]éJrl — P/m} and 7, : P — P/m’ for each n > 1,
there are natural mappings p}; : 7(P/m%) — 7 (P/mBt) and 7% : 7(P/m}) —
T(P). See Lemma 2.10. By the functorial property of 7, it is clear that the
diagram

*

T(P/m?) —“ T(P)
pnl %zﬂ
T(P/mp™)
is commutative for each n > 1. Thus it induces the map
vp = limm, : im7(P/mp) — T(P).
Lemma 4.11.  The map vp is an isomorphism for any P € .Zk

Proof. First we show that each 7} : T(P/m%) — 7 (P) is injective for
n > 2, hence so is yp. For this, let [A, €] € 7 (P/m’%). Then take a fiber product
and we have the following commutative diagram with exact rows and columns.

0 0
| |
m7, mp
| |
0 k—Ss A P ——0
H | -]
0 k— A P/m% — 0
| |
0 0

By definition 7*([A, €]) = [A’, €/]. Suppose [A’,€'] = 0in 7 (P). Then, since the
small extension (A’,€') is a trivial one, we have ¢ & m?%, by Lemma 2.6. Then
by the diagram above, we see € ¢ m?% as well. Hence [A,¢] = 0 in 7(P/m?%)
again by Lemma 2.6.

Now we prove vp : lim 7 (P/mfp) — 7 (P) is surjective. For this, let [A’, €]
be any element of 7 (P). Since ()., m%, = (0) and since (€’) is of finite length,
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there is an integer ng > 1 such that (¢') N m%, = (0) for n > ng. For such
any n, we set A, = A’/m’}, and ¢, = ¢ mod m’,. And it is easy to see that
[An, €] € T(P/m?}) and 7} ([An, €,]) = [A, €] for n > ng. The surjectivity of
~vp follows from this. a

Proof of Theorem 4.6.
Let Ly be a universal lift of F with the parameter algebra P, as in the

setting of the theorem. We denote IL(()") =L ®p, Po/mp, and G(()") = Go ®p,
Py /m’};07 where Gg is the universal lift of a free left Py-module k. Then, from
Lemma 4.10, we have a commutative diagram

Q, (n)

T(Py/mp) —— Exty(F,F)

o l
G, 2
0
/;[Lé")

Ext, ymg, (1 B).

Note from Lemma 4.7 that Qg (m is an isomorphism. Now taking the inductive
0

limit and setting § = li_n)laG(n), we have a commutative diagram by Lemma
0

4.11;

hrn aL(n)

T(Py) — %, Ext}(F,F)

4l .
h_n,lpigm

h_H;l EXt?DD/m}QD (kv k),

where [ is an isomorphism as well. It is easy to see from the definition that

. _ . 2 _ 2
hﬂ)laLén) = ag, and hLQPLgn) = ps.- |

We should note that there is a natural mapping

v lim Extp ) (k, k) — Extp(k, k).

However, the mapping v is not an isomorphism in general. In fact, we can show
the following proposition.

Proposition 4.3.  Let P =T/I be a complete local k-algebra where T is
a non-commutative formal power series ring and I C m%. Then the natural map
v is always injective. It is an isomorphism if and only if the ideal mpI 4+ Imp
is closed and dimgI/mpl + Imy is finite.

Proof. By Lemma 4.8, we know that Ext%(k, k) = Hom7_pimod (I, k). On
the other hand, it follows from Theorem 4.6 and Proposition 2.4 that

. E/ ~J
(4.4) lim Ext} s (K, k) & T (P) = Homeon (I, k).

n
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Through these isomorphisms, it can be seen that v coincides with the natural
map Hom,p, (I, k) — Homr bimod (I, k), which is of course an injection.

Suppose that mpI + I'mp is closed with dimgl/mpI + Imy < co. Then,
by Corollary 2.5, the inclusion m%} NI C mpl 4+ Imy holds for large n > 1.
Therefore we have Hom o, (1, k) = Homy pimoa (I, k). See Definition 2.7.

On the contrary, assume Home,,(I,k) = Homr pimoa(l,k). If
dimyI/mqpI + Imy = oo, then Homy pimoa (I, k) = Homy (I /mgI + Imr, k) has
uncountable dimension as a k-vector space. On th other hand, by the equality
(4.4), Homoy, (I, k) has countable dimension, as it is an inductive limit of fi-
nite dimensional k-vector spaces. By this contradiction, we can conclude that
dimg I /mpl + Imp < co. Then, since dimgl/mpl + Imp < oo, it follows

Homg,, (I, k) = Homy (I /mqpI + Imp, k).

Since this equals Homr pimod (I, k) = Homy (I /mqI + Imp, k), we see the equal-
ity mpl + Imp =mpl + Imyp. O
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