
Illinois Journal of Mathematics
Volume 61, Numbers 1–2, Spring and Summer 2017, Pages 53–79
S 0019-2082

BI-PARAMETER LITTLEWOOD–PALEY OPERATORS
WITH UPPER DOUBLING MEASURES

MINGMING CAO AND QINGYING XUE

Abstract. Let μ= μn1 ×μn2 , where μn1 and μn2 are upper dou-
bling measures on Rn1 and Rn2 , respectively. Let the pseudo-
accretive function b = b1 ⊗ b2 satisfy a bi-parameter Carleson

condition. In this paper, we established the L2(μ) bounded-
ness of non-homogeneous Littlewood–Paley g∗λ-function with non-
convolution type kernels on product spaces. This was mainly

done by means of dyadic analysis and non-homogenous methods.
The result is new even in the setting of Lebesgue measures.

1. Introduction

It is well known that the doubling condition of the measures are essential
and necessary in the classical theory of Calderón–Zygmund operators. Cer-
tain operators, governed by non-doubling measures, have more recently been
investigated. Among such achievements are the celebrated works of Tolsa [27]
and Nazarov et al. [21]. In [27], the endpoint estimate and L2(μ)-boundedness
of Cauchey’s integral with non-doubling measures were given. In [21], by us-
ing a completely different method, a characterization of L2(μ)-boundedness
of Cauchey’s integral was presented. What is worth mentioning is that the
proofs in [21] remained valid for a quite wide class of Calderón–Zygmund type
operators. Additionally, the techniques that they used, including martingale
difference decomposition, non-homogeneous analysis and dyadic-probabilistic
methods, have been proved to be quite influential and powerful.

Still more recently, Tolsa [28] introduced and investigated systematically
the spaces of BMO and Hardy space H1 with non-doubling measures. More-

Received February 10, 2017; received in final form August 16, 2017.
Q. Xue is the corresponding author.

The authors were supported partly by NSFC (No. 11471041 and 11671039), NSFC-DFG

(No. 11761131002).

2010 Mathematics Subject Classification. Primary 42B25. Secondary 42B20.

53

c©2018 University of Illinois

http://www.ams.org/msc/


54 M. CAO AND Q. XUE

over, a John–Nirenberg inequality and Calderón–Zygmund decomposition
suitable for non-doubling measures were presented. Later on, Tolsa [29] gave
a T (1) theorem for Calderón–Zygmund operators without doubling assump-
tions. Subsequently, the famous T (b) theorem given by Christ [8] was ex-
tended to non-homogeneous spaces by Nazarov, Treil and Volberg [22]. This
was done by showing that the boundedness of a Calderón–Zygmund opera-
tor on L2(μ) is equivalent to the existence of an accrective system. Since
then, there were several important applications for the probabilistic meth-
ods and the dyadic analysis in harmonic analysis. Among these applica-
tions is the celebrated works of Nazarov et al. [23], in the study of the non-
homogeneous theory of Calderón–Zygmund operators. Achievements have
also been made in the bi-parameter version of Tb theorem, such as the works
of Ou [24], Han et al. [11], Hytönen and Martikainen [14] and the references
therein.

This paper is devoted to investigate the Littlewood–Paley g∗λ-function with
non-doubling measures on product spaces. The probabilistic and dyadic anal-
ysis techniques will provide a foundation for our analysis. As far as we know,
this is the first time to study g∗λ-function in the simultaneous presence of two
attributes: non-homogeneous and bi-parameter.

Before formulating our main result, we first recall some background. The
classical higher dimensional Littlewood–Paley g∗λ-function was first introduced
by Stein [26] as follows:

g∗λ(f)(x) =

(∫∫
R

n+1
+

(
t

t+ |x− y|

)nλ∣∣∇Ptf(y, t)
∣∣2 dy dt
tn−1

)1/2

, λ > 1, n≥ 2,

where ∇ = ( ∂
∂y1

, . . . , ∂
∂yn

, ∂
∂t ), Ptf(y, t) = pt ∗ f(y) and pt(y) = t−np(y/t) de-

notes the Poisson kernel. The weak (1,1) estimate and strong (p, p) bounded-
ness were obtained by Stein for λ > 2. In the same paper, Stein also pointed
out that the weak (1,1) estimate doesn’t hold for 1 < λ ≤ 2. As a replace-
ment of the weak (1,1) estimate for λ≤ 2, the endpoint weak (p, p) estimate
was established by Fefferman [10] for 1 < λ < 2, p > 1 and λ = 2/p. After
that, the above results were extended to the operators with convolution type
kernels. Sharp weighted norm inequalities and even two-weight norm esti-
mates were given by Lerner [15], [16], [17]. The core of Lerner’s proofs lie
in that the author established the point-wise estimates of Littlewood–Paley
operators in terms of the sharp functions and also by certain dyadic sparse
operators. It is worth pointing out that Lerner’s local mean oscillation decom-
position is also valid for the multilinear Littlewood–Paley g∗λ function defined
in [25]. This work was done by Bui and Hormozi in [2]. In the multilinear set-
ting, Shi, Xue and Yabuta [25] showed that the operator g∗λ is bounded from

L1(Rn)× · · · ×L1(Rn)→ L
1
m ,∞(Rn) for λ > 2m. The strong weighted bound
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and the weak weighted estimates were also be given. Recently, Xue and Yan
[31] introduced and studied a more general type of multilinear Littlewood–
Paley operators, where the non-convolution type kernel satisfies a class of
integral smooth conditions which is much weaker than the standard Calderón–
Zygmund kernel conditions. There is a very large literature devoted to the
study of Littlewood–Paley operators, in both linear and multilinear cases; see
[7], [9] and [30] for more details.

Our object of investigation is the following generalized bi-parameter
Littlewood–Paley g∗λ-function with non-doubling measures.

Definition 1.1. Let ε= (ε1, ε2) and β = (β1, β2) with εi, βi > 0 for i= 1,2.
For any x= (x1, x2) ∈ Rn1+n2 , we define the bi-parameter Littlewood–Paley
g∗λ-function by

g∗ε,β(f)(x) :=

(∫∫
R

n2+1
+

∫∫
R

n1+1
+

ϑ(x, y, t)
∣∣θt1,t2f(y1, y2)∣∣2

× dμn1(y1)

λn1(x1, t1)

dt1
t1

dμn2(y2)

λn2(x2, t2)

dt2
t2

)1/2

,

where ϑ(x, y, t) = ϑ1(x1, y1, t1)ϑ2(x2, y2, t2), and

ϑi(xi, yi, ti) :=
tεii λni(xi, ti)

βi

tεii λni(xi, ti)βi + |xi − yi|εiλni(xi, |xi − yi|)βi
, i= 1,2.

The linear term θt1,t2 takes the form

θt1,t2f(x) =

∫∫
Rn1+n2

Kt1,t2(x1, x2, y1, y2)

× f(y1, y2)dμn1(y1)dμn2(y2), t1, t2 > 0.

Definition 1.1 means, of course, that g∗ε,β is a generalization of g∗λ-function.
In fact

(1) In the bi-parameter case, if dμni(xi) = dxi, λni(xi, ti) = tni , εi = ni(λi−2)
and βi = 2, then g∗ε,β coincides with the operator defined and studied in [4].

(2) In the one-parameter case, if λn1(x1, t1) = tm1
1 , ε1 = m1(λ1 − 2) and

β1 = 2, then the operator g∗ε,β with non-convolution type kernel is just

the one introduced in [5] and [6].
(3) In the one-parameter case, if we take simply dμn1(x1) = dx1, λn1(x1, t1) =

tn1 , ε1 = n1(λ1 − 2), β1 = 2 and Kt(y, z) = pt(y − z), where p is the clas-
sical Poisson kernel, then the above operator coincides with the classical
g∗λ-function introduced by Stein [26] in 1961 and later studied by Feffer-
man [10] in 1970, Muckenhoupt and Wheeden [20] in 1974, etc.

A technical condition which helps to underly the analysis, and which may
be of some independent interest, is the following bi-parameter Carleson con-
dition.
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Definition 1.2. Let μ= μn1 ×μn2 , D = Dn1 ×Dn2 , where Dn1 is a dyadic
grid on Rn1 and Dn2 is a dyadic grid on Rn2 . Denote

Cb
IJ =

∫∫
WJ

∫∫
WI

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2b(y)∣∣2

× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

.

Then, b is said to satisfy the bi -parameter Carleson condition if: for every D
there holds that

(1.1)
∑

I×J∈D
I×J⊂Ω

Cb
IJ � μ(Ω)

for all sets Ω ⊂ Rn1+n2 such that μ(Ω) < ∞ and such that for every x ∈ Ω
there exists I × J ∈ D so that x ∈ I × J ⊂Ω.

The main result of this paper is the following theorem.

Theorem 1.3. Let εi > 0, βi ≥ 3 and 0 < αi < εi/2 for i = 1,2. Let
μ= μn1 × μn2 , where μn1 and μn2 are upper doubling measures on Rn1 and
Rn2 , respectively. Let b be a pseudo-accretive function defined on Rn1 ×Rn2 .
Suppose that {Kt1,t2} satisfy the Assumptions 2.3–2.4 in Section 2 and b sat-
isfies the bi-parameter Carleson condition. Then there holds that

(1.2)
∥∥g∗ε,β(f)∥∥L2(μ)

� ‖f‖L2(μ).

Remark 1.4. We should point out that the bi-parameter Carleson condi-
tion is necessary in the following sense : Kt1,t2 =Kt1 ⊗Kt2 , the one-parameter
kernels satisfy the size condition and corresponding square operators are
bounded on L2(μ). Thus, in this sense, Theorem 1.3 is a characterization of
L2 boundedness of g∗ε,β . We only give the outline of the proof of the necessity

in Section 7. We adopt the similar strategy as the proof of the necessity [18]
with slight modifications. One needs to employ Journés covering lemma with
general product measures, which was already known. Some non-homogeneous
calculations needed are essentially contained in Section 3.

Notation 1.5. We write A � B, if there is a constant C > 0 so that A≤
CB. We may also write A�B if B � A� B.

We then set some dyadic notation. For cubes I and J we denote

• �(I) is the side-length of I ;
• d(I, J) denotes the distance between the cubes I and J ;
• D(I, J) := �(I) + �(J) + d(I, J) is the long distance;
• WI := I × (�(I)/2, �(I)] is the Whitney region associated with I ;

• Î = I × (0, �(I)] is the Carleson box over I ;
• I(k) denotes the unique dyadic cube for which �(I(k)) = 2k�(I) and I ⊂ I(k).
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The organizations of this paper are as follows: In Section 2, we first in-
troduce some notations and definitions which will be used later. Then, after
defining the b-adapted Haar functions, we will make the initial reductions for
the proof of Theorem 1.3. Some useful estimates and key lemmas will be
presented in Section 3. Sections 4–6 will be devoted to dealing with the L2

estimate that is needed to complete the corresponding simplified proof of our
main theorem. In Section 7, we discuss the necessity of bi-parameter Carleson
condition.

2. Preliminaries

In this section, our goal is to introduce some fundamental tools which will
be used later in the proof of Theorem 1.3. With these main tools in hand, we
will try to give the reduction of the initial estimate. We begin by considering
the following class of measures.

Definition 2.1. Let λ : Rn × (0,∞)→ (0,∞) be a function so that r 
→
λ(x, r) is non-decreasing and λ(x,2r) ≤ Cλλ(x, r) for all x ∈ Rn and r > 0.
We say that a Borel measure μ in Rn is upper doubling with the dominating
function λ, if μ(B(x, r)) ≤ λ(x, r) for all x ∈ Rn and r > 0. We set dλ =
log2Cλ.

The property λ(x, |x− y|) � λ(y, |x− y|) can be assumed without loss of
generality. Moreover, we may always assume that dominating functions λ
satisfy the additional symmetry property λ(x, r)≤Cλ(y, r) if |x− y| ≤ r.

The concept of upper doubling measures was first introduced by Hytönen
[12]. In addition, the theory of Calderón–Zygmund singular integrals in this
setting was investigated by Bui and Duong [1]. In terms of square functions
with upper doubling measures, the authors in [19] gave a characterization of
L2-boundedness.

From now on, let μ = μn1 × μn2 , where μn1 and μn2 are upper doubling
measures on Rn1 and Rn2 respectively. The corresponding dominating func-
tions are denoted by λn1 and λn2 . We use, for minor convenience, �∞ metrics
on Rn1 and Rn2 .

Definition 2.2. A function b ∈ L∞(μ) is called pseudo-accretive if there
is a positive constant C such that for any rectangle R⊂Rn1 ×Rn2 with sides
parallel to axes,

1

μ(R)

∣∣∣∣ ∫
R

b(x)dμ(x)

∣∣∣∣ >C.

In this paper, we will only discuss the case b = b1 ⊗ b2, where b1 and b2
are in L∞(μn1) and L∞(μn2), respectively. Then, the pseudo-accretivity and
boundedness of b imply that there exists a constant C such that for any cubes
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I ⊂Rn1 , J ⊂Rn2 , the following inequalities are valued.

1

μn1(I)

∣∣∣∣ ∫
I

b1 dμn1

∣∣∣∣ >C and
1

μn2(J)

∣∣∣∣ ∫
J

b2 dμn2

∣∣∣∣ >C.

That is, b1 and b2 are both pseudo-accretive in the classical sense.
Next, we introduce some appropriate assumptions on the kernels that we

need throughout the argument. We always assume that the fixed numbers α1

and α2 are positive.

Assumption 2.3. The kernel Kt1,t2 :R
n1+n2 ×Rn1+n2 →C is assumed to

satisfy the following estimates:

(1) Size condition:∣∣Kt1,t2(x, y)
∣∣ � tα1

1

tα1
1 λn1(x1, t1) + |x1 − y1|α1λn1(x1, |x1 − y1|)

× tα2
2

tα2
2 λn2(x2, t2) + |x2 − y2|α2λn2(x2, |x2 − y2|)

.

(2) Hölder condition:∣∣Kt1,t2(x, y)−Kt1,t2

(
x,

(
y1, y

′
2

))
−Kt1,t2

(
x,

(
y′1, y2

))
+Kt1,t2

(
x, y′

)∣∣
� |y1 − y′1|α1

tα1
1 λn1(x1, t1) + |x1 − y1|α1λn1(x1, |x1 − y1|)

× |y2 − y′2|α2

tα2
2 λn2(x2, t2) + |x2 − y2|α2λn2(x2, |x2 − y2|)

,

whenever |y1 − y′1|< t1/2 and |y2 − y′2|< t2/2.
(3) Mixed Hölder and size conditions:∣∣Kt1,t2(x, y)−Kt1,t2

(
x,

(
y1, y

′
2

))∣∣
� tα1

1

tα1
1 λn1(x1, t1) + |x1 − y1|α1λn1(x1, |x1 − y1|)

× |y2 − y′2|α2

tα2
2 λn2(x2, t2) + |x2 − y2|α2λn2(x2, |x2 − y2|)

,

whenever |y2 − y′2|< t2/2. And∣∣Kt1,t2(x, y)−Kt1,t2

(
x,

(
y′1, y2

))∣∣
� |y1 − y′1|α1

tα1
1 λn1(x1, t1) + |x1 − y1|α1λn1(x1, |x1 − y1|)

× tα2
2

tα2
2 λn2(x2, t2) + |x2 − y2|α2λn2(x2, |x2 − y2|)

,

whenever |y1 − y′1|< t1/2.

Assumption 2.4. For every cube I ⊂Rn1 and J ⊂Rn2 , there holds that
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(1) Mixed Carleson and size conditions:(∫∫
Î

∫
Rn1

ϑ1(x1, y1, t1)

∣∣∣∣ ∫
I

b1(z1)Kt1,t2(y, z1, z2)dμn1(z1)

∣∣∣∣2
× dμn1(y1)

λn1(x1, t1)
dμn1(x1)

dt1
t1

)1/2

� tα2
2 μn1(I)

1/2

tα2
2 λn2(x2, t2) + |y2 − z2|α2λn2(x2, |y2 − z2|)

and (∫∫
Ĵ

∫
Rn2

ϑ2(x2, y2, t2)

∣∣∣∣ ∫
J

b2(z2)Kt1,t2(y, z1, z2)dμn2(z2)

∣∣∣∣2
× dμn2(y2)

λn2(x2, t2)
dμn2(x2)

dt2
t2

)1/2

� tα1
1 μn2(J)

1/2

tα1
1 λn1(x1, t1) + |y1 − z1|α1λn1(x1, |y1 − z1|)

.

(2) Mixed Carleson and Hölder conditions:(∫∫
Î

∫
Rn1

ϑ1(x1, y1, t1)

∣∣∣∣∫
I

b1(z1)
[
Kt1,t2(y, z1, z2)−Kt1,t2

(
y, z1, z

′
2

)]
dμn1(z1)

∣∣∣∣2
× dμn1(y1)

λn1(x1, t1)
dμn1(x1)

dt1
t1

)1/2

� |z2 − z′2|α2μn1(I)
1/2

tα2
2 λn2(x2, t2) + |y2 − z2|α2λn2(x2, |y2 − z2|)

,

whenever |z2 − z′2|< t2/2. And(∫∫
Ĵ

∫
Rn2

ϑ2(x2, y2, t2)

∣∣∣∣∫
J

b2(z2)
[
Kt1,t2(y, z1, z2)−Kt1,t2

(
x,z′1, z2

)]
dμn2(z2)

∣∣∣∣2
× dμn2(y2)

λn2(x2, t2)
dμn2(x2)

dt2
t2

)1/2

� |z1 − z′1|α1μn2(J)
1/2

tα1
1 λn1(x1, t1) + |y1 − z1|α1λn1(x1, |y1 − z1|)

,

whenever |z1 − z′1|< t1/2.

2.5. Random dyadic grids. We are now in the position to introduce
the fundamental technique, random dyadic grids. Let ωn = {ωj

n}j∈Z, where
ωj
n ∈ {0,1}n. Let D0

n be the standard dyadic grids on Rn. That is,

D0
n :=

⋃
k∈Z

D0
n,k, D0

n,k :=
{
2k

(
[0,1)n +m

)
;m ∈ Zn

}
.
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In Rn, we define the new dyadic grid

Dn :=Dωn =
{
I + ωn; I ∈ D0

n

}
:=

{
I +

∑
j:2−j<�(I)

2−jωj
n; I ∈ D0

n

}
.

There is a natural product probability structure on ({0,1}n)Z. So we have
independent random dyadic grids Dn1 and Dn2 in Rn1 and Rn2 , respectively.
Even for n1 = n2, we still need two independent grids.

2.6. Good cubes. A cube I ∈ Dn is said to be bad if there exists a
J ∈ Dn with �(J)≥ 2r�(I) such that dist(I, ∂J)≤ �(I)γn�(J)1−γn . Otherwise,
I is called good . Here r ∈ Z+ and γn ∈ (0, 12 ) are given parameters.

Denote πni

good = Pωni
(I + ωni is good) = Eωni

(1good(I + ωni)). Then πni

good

is independent of I ∈ D0
ni
, and the parameter r is a fixed constant so that

πn1

good, π
n2

good > 0. Throughout this article, we take γni =
αi

2(dλni
+αi)

, where

αi > 0 appears in the kernel estimates. It is important to observe that the
position and goodness of a cube I ∈ D0

n1
are independent.

2.7. b-adapted Haar functions. The abbreviation b1(E) :=
∫
E
b1 dμn1

will be used. For each I ∈ Dn1 , we denote its dyadic children by I1, . . . , I2n1 .
We index {Ij} in such a way that

∣∣b1(I∗j )∣∣≥ [
1− (k− 1)2−n1

]
μn1(I), I∗j =

2n1⋃
k=j

Ik, j = 1, . . . ,2n1 .

The existence of such way was shown in Lemma 4.2 [13]. The b1-adapted
Haar function is defined by

ϕb1
I,j :=

(
b1(Ij)b1(I

∗
j+1)

b1(I∗j )

)1/2( 1Ij

b1(Ij)
−

1I∗
j+1

b1(I∗j+1)

)
, j = 1, . . . ,2n1 − 1.

Similarly, we can define the function ψb2
J,k with respect to b2 and J ∈ Dn2 .

The adapted Haar functions enjoy the following properties:

(1)
∫
Rn1

b1ϕ
b1
I,j dμn1 = 0.

(2) |ϕb1
I,j | � μn1(Ij)

1/2(
1Ij

b1(Ij)
+

1I∗j+1

b1(I∗
j+1)

).

(3) ‖ϕb1
I,j‖Lp(μn1 )

� μn1(Ij)
1/p−1/2, p ∈ [1,∞].

(4) The similar above properties hold for ψb2
J,k as well.

(5) For any f ∈ L2(μ), there holds that

f =

2n1−1∑
j=1

2n2−1∑
k=1

∑
I∈Dn1

∑
J∈Dn2

〈
f,ϕb1

I,j ⊗ψb2
J,k

〉
b ·ϕb1

I,j ⊗ψb2
J,k.
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The properties (1)–(4) can be found in Proposition 4.3 [13]. Property (5) can
be verified by iteration of the one-parameter argument.

2.8. Initial reductions. Let f ∈ L2(μ), I1, I2 ∈ Dn1 and J1, J2 ∈ Dn2 .
Note that the position and goodness of I + ωn1 are independent. Therefore,
one can write ∥∥g∗ε,β(f)∥∥2

L2(μ)
= cn1,n2Eωn1

Eωn2
Gωn1 ,ωn2

,

where cn1,n2 = (πn1

good · π
n2

good)
−1 and

Gωn1 ,ωn2
:=

∑
I2,J2: good

∫∫
WJ2

∫∫
WI2

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2f(y)∣∣2

× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

.

Indeed, to get this equality, we only need to apply the similar argument to
the one-parameter case twice. For more details in the one-parameter setting,
see [3]. Then, applying b-adapted Haar decomposition of f (suppressing the
finite j, k summation), we may further write

Gωn1 ,ωn2
:=

∑
I2,J2: good

∫∫
WJ2

∫∫
WI2

∫∫
Rn1+n2

ϑ(x, y, t)

×
∣∣∣∣ ∑
I1,J1

fI1J1θt1,t2
(
b ·ϕb1

I1
⊗ψb2

J1

)
(y)

∣∣∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

,

where fI1J1 = 〈f,ϕb1
I1
⊗ψb2

J1
〉. When ωn1 and ωn2 are fixed, we denote Gωn1 ,ωn2

by G . Consequently, it is enough to show G � ‖f‖2L2(μ), where the implied

constant is independent of ωn1 and ωn2 .
We can perform the decomposition

G � G<,< + G<,≥ + G≥,< + G≥,≥,

where

G<,< :=
∑

I2,J2: good

∫∫
WJ2

∫∫
WI2

∫∫
Rn1+n2

ϑ1(x, y, t)

×
∣∣∣∣ ∑

I1,J1

�(I1)<�(I2)
�(J1)<�(J2)

fI1J1θt1,t2
(
b ·ϕb1

I1
⊗ψb2

J1

)
(y)

∣∣∣∣2

× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

and the others are completely similar.
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Sequentially, it suffices to focus on controlling the four pieces: G<,<, G<,≥,
G≥,<, G≥,≥ in the following sections.

3. Some standard estimates

This section will be devoted to establishing some general and useful calcu-
lations, which will be employed at certain steps of the proof of Theorem 1.3.
Some estimates with new measures μ are essentially different from those of
Lesbegue measures. For example, the measure of two balls B(x, t) and B(y, t)
may have no relationship and thus usually are not equal.

Lemma 3.1. Let μn be an upper doubling measure with the dominating
function λn. Then for any ε1 > 0 and β1 ≥ 1, there holds that∫

|y−y0|≥r

|y− y0|−ε1

λn(y0, |y− y0|)β1
dμn(y) � r−ε1λn(y0, r)

1−β1 ,(3.1) ∫
Rn1

ϑ1(x1, y1, t1)
dμn1(y1)

λn1(x1, t1)
� 1.(3.2)

Proof. Since (3.2) follows from (3.1) and (3.1) can be obtained by a stan-
dard argument, we omit the proof. �

Lemma 3.2. Let 0< α1 < ε1/2 and β1 ≥ 3. Assume that I1, I2 ∈ Dn1 and
E ⊂Rn1 . There holds that

Fn1,α1(E,x1, t1)� Fn1,α1(E,x1, x1, t1),

where

Fn1,α1(E,x1, t1) :=

(∫
Rn1

ϑ1(x1, y1, t1)Fn1,α1(E,x1, y1, t1)
2 dμn1(y1)
λn1(x1, t1)

)1/2

,

Fn1,α1(E,x1, y1, t1) :=

∫
E

dμn1(z1)
tα1
1 λn1(x1, t1) + |y1 − z1|α1λn1(x1, |y1 − z1|)

.

Proof. For given y1 ∈Rn, denote

E1 :=
{
z1 ∈E; |z1 − x1| ≥ 2|x1 − y1|

}
,

E2 :=
{
z1 ∈E; |z1 − x1|< 2|x1 − y1|

}
.

Then it holds that

Fn1,α1(E,x1, t1)≤ Fn1,α1(E1, x1, t1) +Fn1,α1(E2, x1, t1).

If |z1 − x1| ≥ 2|x1 − y1|, then

|y1 − z1| ≥ |z1 − x1| − |x1 − y1| ≥
1

2
|z1 − x1|,

which implies that

Fn1,α1(E1, x1, t1) � Fn1,α1(E,x1, x1, t1)

(∫
Rn1

ϑ1(x1, y1, t1)
dμn1(y1)

λn1(x1, t1)

)1/2

� Fn1,α1(E,x1, x1, t1).
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If |z1 − x1|< 2|x1 − y1| and |y1 − x1| ≤ t1, then |z1 − x1| � t1 and

tα1
1 λn1(x1, t1) + |x1 − z1|α1λn1

(
x1, |x1 − z1|

)
� tα1

1 λn1(x1, t1).

Accordingly, it yields that

Fn1,α1(E2, x1, y1, t1) �Fn1,α1(E,x1, x1, t1).

This inequality together with (3.2), yields that

Fn1,α1(E2, x1, t1)� Fn1,α1(E,x1, x1, t1).

If |z1−x1|< 2|x1− y1| and |y1−x1|> t1, then by (3.1), one may deduce that

Fn1,α1(E2, x1, t1)� Fn1,α1(E,x1, x1, t1)

tα1
1 λn1(x1, t1)

×
(∫

|y1−x1|>t1

ϑ1(x1, y1, t1)|y1 − x1|2α1λn1

(
x1, |y1 − x1|

)2
× dμn1(y1)

λn1(x1, t1)

)1/2

� Fn1,α1(E,x1, x1, t1)t
(ε1−2α1)/2
1 λn1(x1, t1)

(β1−3)/2

×
(∫

|y1−x1|>t1

|y1 − x1|−(ε1−2α1)

λn1(x1, |y1 − x1|)β1−2
dμn1(y1)

)1/2

� Fn1,α1(E,x1, x1, t1),

where in the last step we have used the condition that ε1 > 2α1 and β1 ≥ 3.
This completes the proof. �

Lemma 3.3. Let k ≥ 1, I ∈ Dn1 be a good cube and (x1, t1) ∈WI . Set

Sk(x1) := �(I)α1Fn1,α1

((
I(k−1)

)c
, x1, t1

)
.

Then we have the geometric decay Sk(x1)� 2−α1k/2.

Proof. If k ≤ r, by Lemma 3.2 and the inequality (3.1), one may obtain
that

Sk(x1)≤ �(I)α1

∫
2I

dμn1(z1)

tα1
1 λn1(x1, t1)

+ �(I)α1

∫
(2I)c

|z1 − x1|−α1

λn1(x1, |z1 − x1|)
dμn1(z1)

� 1� 2−α1k/2.

If k > r, Lemma 3.2 implies that

Sk(x1)� �(I)α1

∫
(I(k−1))c

|z1 − x1|−α1

λn1(x1, |z1 − x1|)
dμn1(z1) :=A(x1).

By the goodness of I , it yields that

d
(
I,

(
I(k−1)

)c)
> �(I)γn1 �

(
I(k−1)

)1−γn1 = 2(k−1)(1−γn1 )�(I) � 2k/2�(I).
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Thus together with (3.1), we get

Sk(x1)� A(x1)≤ �(I)α1

∫
B(x1,d(I,(I(k−1))c))c

|z1 − x1|−α1

λn1(x1, |z1 − x1|)
dμn1(z1)

� �(I)α1d
(
I,

(
I(k−1)

)c)−α1 � 2−α1k/2. �

Lemma 3.4. Let J1 ∈ Dn2 be a fixed dyadic cube. Denote

aI :=

∫∫
WI

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2(b1 ⊗ (

b2ψ
b2
J1

))
(y)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

.

Then {aI}I∈Dn1
is a Carleson sequence. Rather, there holds for any good cube

I ∈ Dn1

(3.3)
∑

I′:I′⊂I

aI′ � μn1(I)
(
μn2(J1)

−1/2�(J1)
α2Fn2,α2(J1, x2, t2)

)2
.

Proof. The first step is to split∑
I′:I′⊂I

aI′ � S1(x2, t2) + S2(x2, t2),

where

S1(x2, t2) =

∫∫
3̂I

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2((b113I)⊗

(
b2ψ

b2
J1

))
(y)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

and

S2(x2, t2) =

∫∫
Î

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2((b11(3I)c)⊗

(
b2ψ

b2
J1

))
(y)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

:=

∫∫
Î

H(x, t)dμn1(x1)
dt1
t1

.

Using the Minkowski’s inequality and Carleson and Hölder conditions, it
follows that

S1(x2, t2) � μn2(J1)
−1

∫
Rn2

∫∫
3̂I

∫
Rn1

∣∣∣∣ ∫
3I×J1

b1(z1)

×
[
Kt1,t2

(
y, (z1, z2)

)
−Kt1,t2

(
y, (z1, z2 + cJ1)

)]
dμ(z)

∣∣∣∣2
× ϑ(x, y, t)

dμn1(y1)

λn1(x1, t1)
dμn1(x1)

dt1
t1

dμn2(y2)

λn2(x2, t2)
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≤ μn2(J1)
−1

∫
Rn2

{∫
J1

(∫∫
3̂I

∫
Rn1

∣∣∣∣ ∫
3I

b1(z1)

×
[
Kt1,t2

(
y, (z1, z2)

)
−Kt1,t2

(
y, (z1, z2 + cJ1)

)]
dμn1(z1)

∣∣∣∣2
× ϑ1(x1, y1, t1)

dμn1(y1)

λn1(x1, t1)
dμn1(x1)

dt1
t1

)1/2

dμn2(z2)

}2

× ϑ2(x2, y2, t2)
dμn2(y2)

λn2(x2, t2)

� μn1(I)
(
μn2(J1)

−1/2�(J1)
α2Fn2,α2(J1, x2, t2)

)2
.

The mixed Hölder and size estimate give that∣∣θt1,t2((b11(3I)c)⊗
(
b2ψ

b2
J1

))
(y)

∣∣
�

∫
(3I)c

tα1
1 dμn1(z1)

tα1
1 λn1(x1, t1) + |y1 − z1|α1λn1(x1, |y1 − z1|)

× μn2(J1)
−1/2

∫
J1

�(J1)
α2 dμn2(z2)

tα2
2 λn2(x2, t2) + |y2 − z2|α2λn2(x2, |y2 − z2|)

.

Thus, by Lemma 3.3, one can deduce that

H(x, t) � Sk(x1)
2
(
μn2(J1)

−1/2�(J1)
α2Fn2,α2(J1, x2, t2)

)2
� t2α1

1 �(I)−2α1
(
μn2(J1)

−1/2�(J1)
α2Fn2,α2(J1, x2, t2)

)2
.

Therefore, one obtains that

S2(x2, t2) =

∫∫
Î

H(x, t)dμn1(x1)
dt1
t1

� μn1(I)�(I)
−2α1

∫ �(I)

0

t2α1−1
1 dt1

·
(
μn2(J1)

−1/2�(J1)
α2Fn2,α2(J1, x2, t2)

)2
� μn1(I)

(
μn2(J1)

−1/2�(J1)
α2Fn2,α2(J1, x2, t2)

)2
.

This finishes the proof of Lemma 3.4. �

Lemma 3.5. Let k ≥ 1 and I ∈ Dn1 be a good cube and and (x1, t1) ∈WI .
We have the following Carleson estimate:

(3.4)
∑

J ′:J ′⊂J

aJ ′ � 2−α1kμn1

(
I(k)

)−1
μn2(J),
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where ξkI is given in (5.4) below and

aJ :=

∫∫
WJ

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2((b1ξkI )

⊗ b2
)
(y)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn2(x2)

dt2
t2

.

The proof of Lemma 3.5 is similar to Lemma 3.4. The size condition and
mixed Carleson and size estimate need to be used. In addition, Lemma 3.3 is
needed.

We will also need the following lemma, which can be found in [22].

Lemma 3.6. We set

AI1I2 =
�(I1)

α/2�(I2)
α/2

D(I1, I2)α supz1∈I1∪I2 λn(z1,D(I1, I2))
μn(I1)

1/2μn(I2)
1/2,

where α > 0 and D(I1, I2) = �(I1) + �(I2) + d(I1, I2), I1, I2 ∈ Dn. Then for
any xI1 , yI2 ≥ 0, we have the following estimate(∑

I1,I2

AI1I2xI1yI2

)2

�
∑
I1

x2
I1 ×

∑
I2

y2I2 .

In particular, there holds that∑
I2

(∑
I1

AI1I2xI1

)2

�
∑
I1

x2
I1 .

Finally, we present a dyadic Carleson embedding theorem, which was
proved in [21].

Lemma 3.7. Let ν be a measure on Rn. If the numbers aQ ≥ 0, Q ∈ D ⊂Rn

satisfy the following Carleson measure condition∑
Q′⊂Q

aQ′ ≤ ν(Q), for each Q ∈ D ,

then for any f ∈ L2(ν) ∑
Q∈D

aQ
∣∣〈f〉νQ∣∣2 ≤ 4‖f‖2L2(ν).

4. The case: �(I1)< �(I2) and �(J1)< �(J2)

The kernel Kt1,t2(y, z) can be changed into

Kt1,t2(y, z)−Kt1,t2

(
y, (z1, cJ1)

)
−Kt1,t2

(
y, (cI1 , z2)

)
+Kt1,t2

(
y, (cI1 , cJ1)

)
,

which is provided by the cancellation properties of the adapted Haar functions∫
Rn1

b1ϕ
b1
I1
dμn1 =

∫
Rn2

b2ψ
b2
J1

dμn2 = 0.
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From the full Hölder condition of the kernel Kt1,t2 , it follows that∣∣θt1,t2(b ·ϕb1
I1
⊗ψb2

J1

)
(y)

∣∣ � μn1(I1)
−1/2�(I1)

α1Fn1,α1(I1, x1, y1, t1)

× μn2(J1)
−1/2�(J1)

α2Fn2,α2(J1, x2, y2, t2).

If �(I1)< �(I2) and �(J1)< �(J2), we get

G(x, t) :=
(∫∫

Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2(b ·ϕb1

I1
⊗ψb2

J1

)
(y)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)

)1/2

� μn1(I1)
−1/2�(I1)

α1Fn1,α1(I1, x1, t1)

· μn2(J1)
−1/2�(J1)

α2Fn2,α2(I2, x2, t2)

�AI1I2μn1(I2)
−1/2 ·AJ1J2μn2(J2)

−1/2,

where Lemma 3.2 has been used. Therefore, by Lemma 3.6 we deduce that

G<,< �
∑

I2,J2: good

∫∫
WJ2

∫∫
WI2

{ ∑
�(I1)<�(I2)
�(J1)<�(J2)

|fI1J1 |G(x, t)
}2

dμn1(x1)
dt1
t1

dμn2(x2)
dt2
t2

�
∑
J2

∑
I2

[∑
I1

AI1I2

∑
J1

AJ1J2 |fI1J1 |
]2

�
∑
J2

∑
I1

[∑
J1

AJ1J2 |fI1J1 |
]2

�
∑
I1

∑
J1

|fI1J1 |2 � ‖f‖2L2(μ).

5. The case: �(I1)≥ �(I2) and �(J1)< �(J2)

Noting that the mixed Carleson and Hölder estimates, and the mixed
Hölder and size conditions are symmetric, we omit the control of of G<,≥,
since it is handled almost symmetrically as the term G≥,<.

After the splitting ∑
�(I1)≥�(I2)

=
∑

�(I1)≥�(I2)

d(I1,I2)>�(I2)
γn1 �(I1)

1−γn1

+
∑

�(I1)>2r�(I2)

d(I1,I2)≤�(I2)
γn1 �(I1)

1−γn1

+
∑

�(I2)≤�(I1)≤2r�(I2)

d(I1,I2)≤�(I2)
γn1 �(I1)

1−γn1

,
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what remains to be done is to bound the following three terms:

Gout,< :=
∑

I2,J2: good

∫∫
WJ2

∫∫
WI2

∫∫
Rn1+n2

ϑ(x, y, t)

×
∣∣∣∣ ∑

I1:�(I1)≥�(I2)

d(I1,I2)>�(I2)
γn1 �(I1)

1−γn1

∑
J1:�(J1)<�(J2)

fI1J1θt1,t2
(
b ·ϕb1

I1
⊗ψb2

J1

)
(y)

∣∣∣∣2

× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

,

Gin,< :=
∑

I2,J2: good

∫∫
WJ2

∫∫
WI2

∫∫
Rn1+n2

ϑ(x, y, t)

×
∣∣∣∣ ∑

I1:�(I1)>2r�(I2)

d(I1,I2)≤�(I2)
γn1 �(I1)

1−γn1

∑
J1:�(J1)<�(J2)

fI1J1θt1,t2
(
b ·ϕb1

I1
⊗ψb2

J1

)
(y)

∣∣∣∣2

× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

,

and

Gnear,< :=
∑

I2,J2: good

∫∫
WJ2

∫∫
WI2

∫∫
Rn1+n2

ϑ(x,y, t)

×
∣∣∣∣ ∑

I1:�(I2)≤�(I1)≤2r�(I2)

d(I1,I2)≤�(I2)
γn1 �(I1)

1−γn1

∑
J1:�(J1)<�(J2)

fI1J1
θt1,t2

(
b ·ϕb1

I1
⊗ψb2

J1

)
(y)

∣∣∣∣2

× dμn1(y1)
λn1(x1, t1)

dμn2(y2)
λn2(x2, t2)

dμn1(x1)
dt1
t1

dμn2(x2)
dt2
t2

.

The above three terms will be analyzed, respectively.

5.1. Part Gout,<. We begin by showing the following inequality:

(5.1)
�(I2)

α

d(I1, I2)αλn1(x1, d(I1, I2))
� �(I1)

α/2�(I2)
α/2

D(I1, I2)αλn1(x1,D(I1, I2))
.

If �(I1)≤ d(I1, I2), then D(I1, I2)� d(I1, I2). So, the inequality (5.1) holds. If
�(I1)> d(I1, I2), then D(I1, I2)� �(I1). The doubling condition of λn1(x1, t)
gives that

λn1

(
x1, �(I1)

)
= λn1

(
x1,

(
�(I1)/�(I2)

)γn1 �(I2)
γn1 �(I1)

1−γn1

)
� C

log2(�(I1)/�(I2))
γn1

λn1
λn1

(
x1, �(I2)

γn1 �(I1)
1−γn1

)
=

(
�(I1)/�(I2)

)γn1dn1λn1

(
x1, �(I2)

γn1 �(I1)
1−γn1

)
.
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Note that γn1(dλn1
+ α1) = α1/2 and d(I1, I2) > �(I2)

γn1 �(I1)
1−γn1 . Hence,

one may conclude that

�(I2)
α1

d(I1, I2)α1λn1(x1, d(I1, I2))
� �(I2)

α1/2

�(I1)α1/2λn1(x1, �(I1))

� �(I1)
α1/2�(I2)

α1/2

D(I1, I2)α1λn1(x1,D(I1, I2))
.

This demonstrates the inequality (5.1).
Now we turn to Gout,<. By the cancellation property, we replace the kernel

Kt1,t2(y, z) by

Kt1,t2(y, z)−Kt1,t2

(
y, (z1, cJ1)

)
.

Then, the mixed Hölder and size condition gives that∣∣θt1,t2(b ·ϕb1
I1
⊗ψb2

J1

)
(y)

∣∣ � μn1(I1)
−1/2tα1

1 Fn1,α1(I1, x1, y1, t1)

× μn2(J1)
−1/2�(J1)

α2Fn2,α2(J1, x2, y2, t2).

The above inequality, together with Lemma 3.2 and (5.1) yields that

G(x, t) � μn1(I1)
−1/2tα1

1 Fn1,α1(I1, x1, t1)(5.2)

· μn2(J1)
−1/2�(J1)

α2Fn2,α2(J1, x2, t2)

� �(I2)
α1μn1(I1)

1/2

�(I2)α1λn1(x1, �(I2)) + d(I1, I2)α1λn1(x1, d(I1, I2))

·AJ1J2μn2(J2)
−1/2

� �(I2)
α1

d(I1, I2)α1λn1(x1, d(I1, I2))
μn1(I1)

1/2 ·AJ1J2μn2(J2)
−1/2

� AI1I2μn1(I2)
−1/2 ·AJ1J2μn2(J2)

−1/2.

This allows us to estimate Gout,< with similar steps to what we have used
with G<,<. Accordingly, there holds that

Gout,< � ‖f‖2L2(μ).

5.2. Part Gnear,<. In this case, there holds that �(I1) � �(I2) � D(I1, I2).
For convenience, we write I1 � I2 in this case. It immediately yields that

(5.3)
μn1(I1)

1/2

λn2(x1, �(I2))
� μn1(I1)

1/2

λn1(cI1 , �(I1))
1/2

λn1

(
cI2 , �(I2)

)−1/2 ≤ μn1(I2)
−1/2.

It follows from (5.2) that

G(x, t) � μn1(I1)
1/2

λn1(x1, �(I2))
·AJ1J2μn2(J2)

−1/2 � μn1(I2)
−1/2 ·AJ1J2μn2(J2)

−1/2.
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It is worth pointing out that for a given I2, there are finite cubes I1 such that
I1 � I2. That also holds for a given I1. Consequently, we deduce that

Gnear,< �
∑
I2

∑
J2

∑
I1:I1
I2

(∑
J1

AJ1J2 |fI1J1 |
)2

�
∑
I1

∑
J2

(∑
J1

AJ1J2 |fI1J1 |
)2 ∑

I2:I2
I1

1

�
∑
I1

∑
J1

|fI1J1 |2 � ‖f‖2L2(μ).

5.3. Part Gin,<. In this case, the goodness of I2 indicates I2 � I1. We use

I(k) ∈ Dn1 to denote the unique cube for which �(I(k)) = 2k�(I) and I ⊂ I(k).
This enables us to write

Gin,< =
∑

I,J2: good

∫∫
WJ2

∫∫
WI

∫∫
Rn1+n2

ϑ(x, y, t)

×
∣∣∣∣ ∞∑
k=1

∑
J1:�(J1)<�(J2)

fI(k)J1
θt1,t2

(
b · ϕb1

I1
⊗ψb2

J1

)
(y)

∣∣∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

.

Set

(5.4) ξkI :=−
〈
ϕb1
I(k)

〉
I(k−1)1(I(k−1))c +

∑
I′∈ch(I(k))

I′ �=I(k−1)

ϕb1
I(k)1I′ .

It is easy to check that supp ξkI ⊂ (I(k−1))c, ‖ξkI ‖L∞(μn1 )
� μn1(I

(k))−1/2, and

(5.5) ϕb1
I(k) = ξkI +

〈
ϕb1
I(k)

〉
I(k−1) .

Denote fJ1 = 〈f,ψb2
J1
〉 so that fJ1(y1) =

∫
Rn2

f(y1, y2)ψ
b2
J1
(y2)dμn2(y2), y1 ∈

Rn1 .
We are reduced to dominating

Gmod,< =
∑

I,J2: good

∫∫
WJ2

∫∫
WI

∫∫
Rn1+n2

ϑ(x, y, t)

×
∣∣∣∣ ∞∑
k=1

∑
J1:�(J1)<�(J2)

fI(k)J1
θt1,t2

(
b · ξkI ⊗ ψb2

J1

)
(y)

∣∣∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2
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and

GCar,< =
∑

I,J2: good

∫∫
WJ2

∫∫
WI

∫∫
Rn1+n2

ϑ(x,y, t)

×
∣∣∣∣ ∑
J1:�(J1)<�(J2)

fI(k)J1
θt1,t2

(
b1 ⊗

(
b2ψ

b2
J1

))
(y)

∞∑
k=1

fI(k)J1

〈
ϕb1
I(k)

〉
I(k−1)

∣∣∣∣2
× dμn1(y1)

λn1(x1, t1)
dμn2(y2)
λn2(x2, t2)

dμn1(x1)
dt1
t1

dμn2(x2)
dt2
t2

=
∑

I,J2: good

∫∫
WJ2

∫∫
WI

∫∫
Rn1+n2

ϑ(x,y, t)

×
∣∣∣∣ ∑
J1:�(J1)<�(J2)

〈fJ1
〉Iθt1,t2

(
b1 ⊗

(
b2ψ

b2
J1

))
(y)

∣∣∣∣2
× dμn1(y1)

λn1(x1, t1)
dμn2(y2)
λn2(x2, t2)

dμn1(x1)
dt1
t1

dμn2(x2)
dt2
t2

.

We will consider two cases.
• Case 1. We first control the following integral

H(x, t) :=

(∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2(b · ξkI ⊗ψb2

J1

)
(y)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)

)1/2

.

Using the cancellation property again, we can change the kernel to
Kt1,t2(y, z) −Kt1,t2(y, (z1, cJ1)). It follows from the mixed Hölder and size
condition that∣∣θt1,t2(b · ξkI ⊗ψb2

J1

)
(y)

∣∣ � μn1

(
I(k)

)−1/2
tα1
1 Fn1,α1

((
I(k−1)

)c
, x1, y1, t1

)
× μn2(J1)

−1/2�(J1)
α2Fn2,α2(J1, x2, y2, t2).

Combining Lemma 3.2 with Lemma 3.3, we see that

H(x, t) � μn1

(
I(k)

)−1/2
Sk(x1) · μn2(J1)

−1/2�(J1)
α2Fn2,α2(J1, x2, t2)

� 2−α1k/2μn1

(
I(k)

)−1/2 ·AJ1J2μn2(J2)
−1/2.

Thereby, Minkowski’s integral inequality implies that

Gmod,< �
∑

I,J2: good

∫∫
WJ2

∫∫
WI

{ ∞∑
k=1

∑
J1:�(J1)<�(J2)

|fI(k)J1
|H(x, t)

}2

× dμn1(x1)
dt1
t1

dμn2(x2)
dt2
t2
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�
∑
I

∑
J2

{ ∞∑
k=1

2−α1k/2

(
μn1(I)

μn1(I
(k))

∑
J1:�(J1)<�(J2)

AJ1J2 |fI(k)J1
|
)1/2

}2

≤
{ ∞∑

k=1

2−α1k/4 · 2−α1k/4

×
(∑

I

μn1(I)

μn1(I
(k))

∑
J2

( ∑
J1:�(J1)<�(J2)

AJ1J2 |fI(k)J1
|
)2)1/2

}2

�
∞∑
k=1

2−α1k/2
∑
I

μn1(I)

μn1(I
(k))

∑
J2

( ∑
J1:�(J1)<�(J2)

AJ1J2 |fI(k)J1
|
)2

�
∞∑
k=1

2−α1k/2
∑
Q,J1

|fQJ1 |2μn1(Q)−1
∑

I:I(k)=Q

μn1(I) � ‖f‖2L2(μ).

• Case 2. Applying Lemma 3.4, we obtain that for �(J1)< �(J2),

aI � μn1(I)
(
AJ1,J2μn2(J2)

−1/2
)2
,

where {aI} was defined in Lemma 3.4. Consequently, from the Carleson
Embedding Theorem 3.7, it follows that

GCar,< ≤
∑
J2

∫∫
WJ2

∑
I

{ ∑
J1:�(J1)<�(J2)

(∫∫
WI

∫∫
Rn1+n2

ϑ(x, y, t)

×
∣∣〈fJ1〉Iθt1,t2

(
b1 ⊗

(
b2ψ

b2
J1

))
(y)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

)1/2}2

dμn2(x2)
dt2
t2

≤
∑
J2

∫∫
WJ2

{ ∑
J1:�(J1)<�(J2)

(∑
I

∣∣〈fJ1〉I
∣∣2 ∫∫

WI

∫∫
Rn1+n2

ϑ(x, y, t)

×
∣∣θt1,t2(b1 ⊗ (

b2ψ
b2
J1

))
(y)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

)1/2}2

dμn2(x2)
dt2
t2

�
∑
J2

( ∑
J1:�(J1)<�(J2)

AJ1J2‖fJ1‖L2(μn1 )

)2

�
∑
J1

‖fJ1‖2L2(μn1 )

� ‖f‖2L2(μ).

This finishes the estimates of G≥,<.
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6. The case: �(I1)≥ �(I2) and �(J1)≥ �(J2)

As we see in the preceding section, for the relative position of I1 and I2,
there are three different cases. Similarly, there are also three different cases
for the second variable. This leads to

G≥,≥ � Gout,out + Gout,in + Gout,near + Gin,out + Gin,in

+ Gin,near + Gnear,out + Gnear,in + Gnear,near.

6.1. Gout,out. We first treat the term Σout,out, where the new bi-parameter
phenomena will appear. Using the similar decomposition to (5.5), we can

split the function ψb2
J with ηiJ . Hence, it is enough to dominate the following

terms:

Gmod,mod =
∑

I,J: good

∫∫
WJ

∫∫
WI

∫∫
Rn1+n2

∣∣∣∣∣
∞∑
k=1

∞∑
i=1

fI(k)J(i)θt1,t2
(
b · ξkI ⊗ ηiJ

)
(y)

∣∣∣∣∣
2

× ϑ(x, y, t)
dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

,

Gmod,Car =
∑

I,J: good

∫∫
WJ

∫∫
WI

∫∫
Rn1+n2

∣∣∣∣∣
∞∑
k=1

〈fI(k)〉Jθt1,t2
((
b1ξ

k
I

)
⊗ b2

)
(y)

∣∣∣∣∣
2

× ϑ(x, y, t)
dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

,

GCar,mod =
∑

I,J: good

∫∫
WJ

∫∫
WI

∫∫
Rn1+n2

∣∣∣∣∣
∞∑
i=1

〈fJ(i)〉Iθt1,t2
(
b1 ⊗

(
b2η

i
J

))
(y)

∣∣∣∣∣
2

× ϑ(x, y, t)
dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

,

and

GCar,Car =
∑

I,J: good

∣∣〈f〉I×J

∣∣2 ∫∫
WJ

∫∫
WI

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2b(y)∣∣2

× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

.

First, to consider Gmod,mod, by size condition and (3.3), we have(∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2(b · ξkI ⊗ ηiJ

)
(y)

∣∣2 dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)

)1/2

� 2−α1k/2μn1

(
I(k)

)−1/2 · 2−α2iμn2

(
J (i)

)−1/2
.
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Applying the techniques in the estimates of Gmod,< to analyze Σmod,mod, we
conclude that

Gmod,mod �
∑
k,i

2−αk/22−βi
∑
Q,R

|fQR|2
1

μn1(Q)

∑
I:I(k)=Q

μn1(I)

· 1

μn2(R)

∑
J:J(i)=R

μn2(J)

� ‖f‖2L2(μ).

Secondly, to control GCar,Car, we employ the bi-parameter Carleson condi-
tion

GCar,Car =
∑
I,J

∣∣〈f〉I×J

∣∣2Cb
IJ = 2

∫ ∞

0

∑
I,J

|〈f〉I×J |>t

Cb
IJ t dt

�
∫ ∞

0

∑
I,J

I×J⊂{MD
s f>t}

Cb
IJ t dt�

∫ ∞

0

μ
({

MD
s f > t

})
t dt

�
∥∥MD

s f
∥∥2

L2(μ)
� ‖f‖2L2(μ),

where we have used the Lp(μ) (1< p<∞) boundedness of the strong maximal
function associated with rectangles.

Next, we treat GCar,mod. There holds that

Gmod,Car ≤
∑

I: good

∫∫
WI

[ ∞∑
k=1

(∑
J

∣∣〈fI(k)〉J
∣∣2aJ)1/2

]2

dμn1(x1)
dt1
t1

,

where

aJ =

∫∫
WJ

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2((b1ξkI )

⊗ b2
)
(y)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn2(x2)

dt2
t2

.

Combining Lemma 3.5 with Lemma 3.7, it yields that

Gmod,Car �
∑
I

( ∞∑
k=1

2−α1k/2μn1

(
I(k)

)−1/2‖fI(k)‖2L2(μn2 )

)2

μn1(I)

�
∞∑
k=1

2−α1k/2
∑
Q

‖fQ‖2L2(μn2 )

1

μn1(Q)

∑
I:I(k)=Q

μn1(I) � ‖f‖2L2(μ).

GCar,mod is symmetric to Gmod,Car.
Finally, as for the estimates of the remaining terms, the decompositions and

calculations needed are contained in the above sections essentially. Simply,
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the combinations of the techniques that we have used will lead to the desired
results. �

7. Necessity of bi-parameter Carleson condition

In this section, we will show that the bi-parameter Carleson condition is
necessary for g∗ε,β-function bound on L2(μ). The argument below follows

along the lines of the proofs in [14] and [18].
Suppose that θt1,t2 = θn1

t1 ⊗θn2
t2 is bounded on L2(μ), where θni

ti has a kernel
Kni

ti (xi, yi), xi, yi ∈Rni and ti > 0, i= 1,2. We assume that these satisfy the

size condition and the corresponding L2 bounds in Rni , i = 1,2. We shall
show that the bi-parameter Carleson condition (1.1) holds.

LetMD be the strong maximal function related to the grid D andM denote
the strong maximal function. Let Ω⊂Rn1+n2 be such a set that μ(Ω)<∞ and

that for every x ∈Ω there exists I × J ∈ D so that x ∈ I × J ⊂Ω. Define Ω̃ =

{MD1Ω > 1/2} and Ω̂ = {M1Ω̃ > c} for a small enough dimensional constant
c= c(n1, n2). Then we have

μ(Ω̃)≤ 4‖MD1Ω‖2L2(μ) � ‖1Ω‖2L2(μ) = μ(Ω).

Similarly, there holds that μ(Ω̂) � μ(Ω̃) � μ(Ω). Consequently, it suffices to
show ∑

I×J∈D
I×J⊂Ω

∫∫
WJ

∫∫
WI

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2(b1Ω̂c)(y1, y2)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

� μ(Ω).

For every J ∈ Dn2 we let FJ consist of the maximal F ∈ Dn1 for which

F × J ⊂ Ω̃. Then we define FJ :=
⋃

F∈FJ
2F . Moreover, for fixed I ∈ Dn1 , let

GI be the family of the maximal G ∈ Dn2 for which I ×G⊂Ω, and IG ∈ Dn1

be the maximal cube for which IG ⊃ I and IG ×G⊂ Ω̃. Thus, it is enough to
show the following.

G1 :=
∑

I×J∈D
I×J⊂Ω

∫∫
WJ

∫∫
WI

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2(b1Ω̂c1FJ

)(y1, y2)
∣∣2

× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

:=
∑
J

∫∫
WJ

GJ(x2, t2)dμn2(x2)
dt2
t2

� μ(Ω),
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and

G2 :=
∑

I×J∈D
I×J⊂Ω

∫∫
WJ

∫∫
WI

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2(b1Ω̂c1F c

J
)(y1, y2)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

:=
∑
I

∫∫
WI

GI(x1, t1)dμn1(x1)
dt1
t1

� μ(Ω).

To attain the goal, we need to first bound GJ(x2, t2) and GI(x1, t1). Actually,
Minkowski’s integral inequality and size estimate yield that

GJ (x2, t2) �
∫∫

R
n1+1
+

∫∫
Rn1+n2

ϑ(x, y, t)

×
∣∣∣∣ ∫

Rn2

Kn2
t2 (y2, z2)θ

n1
t1

(
(b1Ω̂c)(·, z2)1FJ

)
(y1)dμn2(z2)

∣∣∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

�
[∫

Rn2

(∫∫
R

n1+1
+

∫∫
Rn1+n2

ϑ(x, y, t)

×
∣∣Kn2

t2 (y2, z2)
∣∣2∣∣θn1

t1

(
(b1Ω̂c)(·, z2)1FJ

)
(y1)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

)1/2

dμn2(z2)

]2

�
[∫

Rn2

(∫
Rn2

tα2
2 ϑ2(x2, y2, t2)

(tα2
2 λn2(x2, t2) + |y2 − z2|α2λn2(x2, |y2 − z2|))2

× dμn2(y2)

λn2(x2, t2)

)1/2

×
∥∥(b1Ω̂c)(·, z2)1FJ

∥∥
L2(μn1 )

dμn2(z2)

]2

�
[∫

Rn2

tα2
2

tα2
2 λn2(x2, t2) + |x2 − z2|α2λn2(x2, |x2 − z2|)

×
∥∥(b1Ω̂c)(·, z2)1FJ

∥∥
L2(μn1 )

dμn2(z2)

]2

�
∫
Rm

tα2
2

tα2
2 λn2(x2, t2) + |x2 − z2|α2λn2(x2, |x2 − z2|)

×
∥∥(b1Ω̂c)(·, z2)1FJ

∥∥2

L2(μn1 )
dμn2(z2)



BI-PARAMETER LITTLEWOOD–PALEY OPERATORS 77

�
∫
Rn2

�(J)α2

|z2 − cJ |α2λn2(x2, |z2 − cJ |)
×

∥∥(b1Ω̂c)(·, z2)1FJ

∥∥2

L2(μn1 )
dμn2(z2)

�
∫
Rn1

1FJ
(z1)

∫
Rn2

�(J)α2

|z2 − cJ |α2λn2(x2, |z2 − cJ |)
× 1Ω̂c(z1, z2)dμn2(z2)dμn1(z1).

Similarly, we may estimate

GI(x1, t1) =
∑
G∈GI

∑
J:J⊂G

∫∫
WJ

∫∫
Rn1+n2

ϑ(x, y, t)
∣∣θt1,t2(b1Ω̂c1F c

J
)(y1, y2)

∣∣2
× dμn1(y1)

λn1(x1, t1)

dμn2(y2)

λn2(x2, t2)
dμn1(x1)

dt1
t1

dμn2(x2)
dt2
t2

�
[∫

Rn1

�(I)α1

�(I)α1λn1(x1, �(I)) + |x1 − z1|α1λn1(x1, |x1 − z1|)

×
( ∑

G∈GI

1(2IG)c(z1)μn2(G)

)1/2

dμn1(z1)

]2

�
∑
G∈GI

μn2(G)

∫
Ic
G

�(I)α1 dμn1(z1)

|x1 − z1|α1λn1(x1, |x1 − z1|)

�
∑
G∈GI

μn2(G)

(
�(I)

�(IG)

)α1

.

The remaining calculation is a routine application of the idea of [18]. We here
omit the details. Finally, we obtain

G1 � μ(Ω) and G2 � μ(Ω).

Thus, we have proved the the necessity. �

Acknowledgments. The authors want to express their sincere thanks to the
referee for his or her valuable remarks and suggestions, which made this paper
more readable.
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