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BI-PARAMETER LITTLEWOOD-PALEY OPERATORS
WITH UPPER DOUBLING MEASURES

MINGMING CAO AND QINGYING XUE

ABSTRACT. Let pt = ftn; X piny, where pin, and py, are upper dou-
bling measures on R™ and R"?, respectively. Let the pseudo-
accretive function b = b1 ® b2 satisfy a bi-parameter Carleson
condition. In this paper, we established the L?(x) bounded-
ness of non-homogeneous Littlewood—Paley gx-function with non-
convolution type kernels on product spaces. This was mainly
done by means of dyadic analysis and non-homogenous methods.
The result is new even in the setting of Lebesgue measures.

1. Introduction

It is well known that the doubling condition of the measures are essential
and necessary in the classical theory of Calderéon-Zygmund operators. Cer-
tain operators, governed by non-doubling measures, have more recently been
investigated. Among such achievements are the celebrated works of Tolsa [27]
and Nazarov et al. [21]. In [27], the endpoint estimate and L?(u)-boundedness
of Cauchey’s integral with non-doubling measures were given. In [21], by us-
ing a completely different method, a characterization of L?(u)-boundedness
of Cauchey’s integral was presented. What is worth mentioning is that the
proofs in [21] remained valid for a quite wide class of Calderén—Zygmund type
operators. Additionally, the techniques that they used, including martingale
difference decomposition, non-homogeneous analysis and dyadic-probabilistic
methods, have been proved to be quite influential and powerful.

Still more recently, Tolsa [28] introduced and investigated systematically
the spaces of BMO and Hardy space H! with non-doubling measures. More-

Received February 10, 2017; received in final form August 16, 2017.

Q. Xue is the corresponding author.

The authors were supported partly by NSFC (No. 11471041 and 11671039), NSFC-DFG
(No. 11761131002).

2010 Mathematics Subject Classification. Primary 42B25. Secondary 42B20.

(©2018 University of Illinois

53


http://www.ams.org/msc/

54 M. CAO AND Q. XUE

over, a John—Nirenberg inequality and Calderén—Zygmund decomposition
suitable for non-doubling measures were presented. Later on, Tolsa [29] gave
a T(1) theorem for Calderén—Zygmund operators without doubling assump-
tions. Subsequently, the famous T'(b) theorem given by Christ [8] was ex-
tended to non-homogeneous spaces by Nazarov, Treil and Volberg [22]. This
was done by showing that the boundedness of a Calderén—Zygmund opera-
tor on L2(u) is equivalent to the existence of an accrective system. Since
then, there were several important applications for the probabilistic meth-
ods and the dyadic analysis in harmonic analysis. Among these applica-
tions is the celebrated works of Nazarov et al. [23], in the study of the non-
homogeneous theory of Calderén—Zygmund operators. Achievements have
also been made in the bi-parameter version of Tb theorem, such as the works
of Ou [24], Han et al. [11], Hytonen and Martikainen [14] and the references
therein.

This paper is devoted to investigate the Littlewood-Paley g}-function with
non-doubling measures on product spaces. The probabilistic and dyadic anal-
ysis techniques will provide a foundation for our analysis. As far as we know,
this is the first time to study g}-function in the simultaneous presence of two
attributes: non-homogeneous and bi-parameter.

Before formulating our main result, we first recall some background. The
classical higher dimensional Littlewood-Paley g3-function was first introduced
by Stein [26] as follows:

nA 1/2
* t zdydt
— - >
B(@) (M1+1(t+|x_y|> VR OPES ) ALz,

where V = (g0-,..., 50, &), Pof(y,t) = pe * f(y) and pi(y) = ¢"p(y/t) de-
notes the Poisson kernel. The weak (1,1) estimate and strong (p, p) bounded-
ness were obtained by Stein for A > 2. In the same paper, Stein also pointed
out that the weak (1,1) estimate doesn’t hold for 1 < X <2. As a replace-
ment of the weak (1,1) estimate for A <2, the endpoint weak (p,p) estimate
was established by Fefferman [10] for 1 <A <2, p>1 and A =2/p. After
that, the above results were extended to the operators with convolution type
kernels. Sharp weighted norm inequalities and even two-weight norm esti-
mates were given by Lerner [15], [16], [17]. The core of Lerner’s proofs lie
in that the author established the point-wise estimates of Littlewood—Paley
operators in terms of the sharp functions and also by certain dyadic sparse
operators. It is worth pointing out that Lerner’s local mean oscillation decom-
position is also valid for the multilinear Littlewood—-Paley g3 function defined
in [25]. This work was done by Bui and Hormozi in [2]. In the multilinear set-
ting, Shi, Xue and Yabuta [25] showed that the operator g is bounded from
LY(R™) x -+ x L*(R™) — L#>°(R™) for A > 2m. The strong weighted bound
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and the weak weighted estimates were also be given. Recently, Xue and Yan
[31] introduced and studied a more general type of multilinear Littlewood—
Paley operators, where the non-convolution type kernel satisfies a class of
integral smooth conditions which is much weaker than the standard Calderén—
Zygmund kernel conditions. There is a very large literature devoted to the
study of Littlewood—Paley operators, in both linear and multilinear cases; see
[7], [9] and [30] for more details.

Our object of investigation is the following generalized bi-parameter
Littlewood-Paley g}-function with non-doubling measures.

DEFINITION 1.1. Let e = (e1,€2) and 5 = (51, B2) with g;, 3; > 0 for i = 1,2.
For any x = (x1,72) € R"1"2 we define the bi-parameter Littlewood—Paley
gx-function by

gaﬁ <//"2+1 //ﬂ1+ (2,9t |9t1,t2f Y1,Y2 |

dyin, (Y1) dty dpin, (y2) @) V2
Ang (T1,t1) t1 Any(2,t2) to ’

where 9(z,y,t) =91 (x1,y1,t1)02(x2, y2,t2), and
tei)\ (.ﬁi,ti)ﬁi
tal/\m (51777 1)& + |-Tz Yi €i>\ni ('riv |1'7 - yi|)ﬁi ’

The linear term 6, +, takes the form

bt @ = [[ Koo
Rn1+n2
X f(y1,92) dpin, (Y1) ditn, (y2),  t1,t2 > 0.

Vi(wi, yi,ts) = i=1,2.

Definition 1.1 means, of course, that g7 5 is a generalization of g3-function.

In fact

(1) Inthe bi-parameter case, if diin, (z;) = dz;, An, (4, t;) =", &; = n; (A —2)
and f; = 2, then g 5 coincides with the operator defined and studied in [4].

(2) In the one-parameter case, if A\, (z1,t1) =", &1 = m1(A\ — 2) and
p1 =2, then the operator g7 ; with non-convolution type kernel is just
the one introduced in [5] and [6].

(3) In the one-parameter case, if we take simply dpy,, (x1) = dx1, A, (21,t1) =
t", g1 =n1(A —2), f1 =2 and Ki(y,z) = pi(y — z), where p is the clas-
sical Poisson kernel, then the above operator coincides with the classical
gi-function introduced by Stein [26] in 1961 and later studied by Feffer-
man [10] in 1970, Muckenhoupt and Wheeden [20] in 1974, etc.

A technical condition which helps to underly the analysis, and which may
be of some independent interest, is the following bi-parameter Carleson con-
dition.
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DEFINITION 1.2. Let pt = fin, X tiny, D = Dy X Dp,, where 7, is a dyadic
grid on R™ and %, is a dyadic grid on R"?. Denote

= [ [, ]

ditn, (Y1) dpin, (y2) dty dty
: 2 Apin, (1) — din, (T2)—.
Ang (T1,1) Any (22, 12) i (71) tq pn (72)

to
Then, b is said to satisfy the bi-parameter Carleson condition if: for every &
there holds that

(1.1) > ChySmQ)
IXJED
IXJCQ

for all sets Q@ C R™*"2 guch that u(2) < oo and such that for every z € Q
there exists I x J € Z sothat x €I x J C Q.

The main result of this paper is the following theorem.

THEOREM 1.3. Let ¢; >0, 5; >3 and 0 < o; < &;/2 for i =1,2. Let
W= finy X fny, Where [n, and py, are upper doubling measures on R™ and
R™ | respectively. Let b be a pseudo-accretive function defined on R™ x R™2.
Suppose that {Ky, 1, } satisfy the Assumptions 2.3-2.4 in Section 2 and b sat-
isfies the bi-parameter Carleson condition. Then there holds that

(1.2) |

REMARK 1.4. We should point out that the bi-parameter Carleson condi-
tion is necessary in the following sense : Ky, 1, = K¢, ® Ky, , the one-parameter
kernels satisfy the size condition and corresponding square operators are
bounded on L?(p). Thus, in this sense, Theorem 1.3 is a characterization of
L? boundedness of gz 5- We only give the outline of the proof of the necessity
in Section 7. We adopt the similar strategy as the proof of the necessity [18]
with slight modifications. One needs to employ Journés covering lemma with
general product measures, which was already known. Some non-homogeneous
calculations needed are essentially contained in Section 3.

g;,ﬁ(f)HLz(#) 5 ||f||L2(p.)

NoTATION 1.5. We write A < B, if there is a constant C' > 0 so that A <
CB. We may also write A~ B if BSASB.
We then set some dyadic notation. For cubes I and J we denote
£(I) is the side-length of I;
d(I,J) denotes the distance between the cubes I and J;
D(I,J):=L(I)+£(J)+d(I,J) is the long distance;
Wrp:=1x (¢(I)/2,£(I)] is the Whitney region associated with I;
T=1x(0,4(I)] is the Carleson box over I;
I®) denotes the unique dyadic cube for which £(I*)) = 2k¢(I) and T  I1(%).
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The organizations of this paper are as follows: In Section 2, we first in-
troduce some notations and definitions which will be used later. Then, after
defining the b-adapted Haar functions, we will make the initial reductions for
the proof of Theorem 1.3. Some useful estimates and key lemmas will be
presented in Section 3. Sections 4-6 will be devoted to dealing with the L?
estimate that is needed to complete the corresponding simplified proof of our
main theorem. In Section 7, we discuss the necessity of bi-parameter Carleson
condition.

2. Preliminaries

In this section, our goal is to introduce some fundamental tools which will
be used later in the proof of Theorem 1.3. With these main tools in hand, we
will try to give the reduction of the initial estimate. We begin by considering
the following class of measures.

DEFINITION 2.1. Let A:R™ x (0,00) — (0,00) be a function so that r +—
A(z,r) is non-decreasing and A(x,2r) < CyA(z,r) for all x € R™ and r > 0.
We say that a Borel measure p in R™ is upper doubling with the dominating
function A, if p(B(z,r)) < A(a,r) for all z € R™ and r > 0. We set dy =
log, Cy.

The property A(z, |z —y|) ~ Ay, |z — y|) can be assumed without loss of
generality. Moreover, we may always assume that dominating functions A
satisfy the additional symmetry property A(z,r) < CA(y,r) if |z —y| <r.

The concept of upper doubling measures was first introduced by Hytonen
[12]. In addition, the theory of Calderén—Zygmund singular integrals in this
setting was investigated by Bui and Duong [1]. In terms of square functions
with upper doubling measures, the authors in [19] gave a characterization of
L?-boundedness.

From now on, let p = pp, X tin,, where p,, and p,, are upper doubling
measures on R™ and R"2 respectively. The corresponding dominating func-
tions are denoted by A,, and \,,. We use, for minor convenience, £ metrics
on R™ and R™2.

DEFINITION 2.2. A function b € L>°(u) is called pseudo-accretive if there
is a positive constant C' such that for any rectangle R C R™* x R™ with sides

parallel to axes,
il
— b(x)du(z
Tl RS

In this paper, we will only discuss the case b = b; ® ba, where b; and b,
are in L™ (uy, ) and L™ (uy, ), respectively. Then, the pseudo-accretivity and
boundedness of b imply that there exists a constant C such that for any cubes

>C.
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I CR™ JCR™, the following inequalities are valued.
>C and

— ‘ / by ditn, — / by djin,| >

That is, by and by are both pseudo-accretive in the classical sense.

Next, we introduce some appropriate assumptions on the kernels that we
need throughout the argument. We always assume that the fixed numbers «;
and a are positive.

AssuMPTION 2.3. The kernel Kj, 4, : R 72 x R™+72 — C is assumed to
satisfy the following estimates:

(1) Size condition:
o

9 Ay (21, t1) + |21 — yi| 9 A, (1, |21 — 1)

a
ty

| Kty 0 (2,9)| S

X — :
t5° Ay (T2, t2) + |22 = Y2| *2 An, (2, |22 — 12])
(2) Holder condition:

| Kbyt (2,0) = Koy o (2, (y1,95)) — Koy o (2, (1, 92)) + Kyt (2,9)|

< |1 —yi |
N Ay (1, t0) + 21— Y[ A, (21, |21 — 1)
ly2 — y5|*?

t(;?)‘nz (x2at2) + |£L’2 - y2|a2>‘ﬂ2 (1‘2, ‘582 - y2|)’

whenever |y; — y1| <t1/2 and |y2 — yb| < t2/2.
(3) Mixed Holder and size conditions:

‘Ktlth (x,y) - Ktl,tz (JZ, (ylvy/Q)) ‘
t
< 1
YA Any (@1, ) + 2 — ya | A, (1, [z — 1))
" ly2 — y5|*2
152 Ay (T2, t2) + |22 — 42| An, (2, |22 — 12])
whenever |y2 — y5| < t2/2. And

‘Ktl,tz (xay) - Ktl,tg (.13, (yiva))‘

< |y1 _y/1|Oél
AT Ay (@1, t) + 2 — ya [ A, (1, [z — 1))
ta2

tzz)\m (w2,t2) + |22 — y2|*2 An, (22, |22 — 42()
whenever |y; —yi| <t1/2.

AsSUMPTION 2.4. For every cube I C R™ and J C R™2, there holds that
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(1) Mixed Carleson and size conditions:

2
(//f A V1(z1,y1,t1) /Ibl(zl)Ktl,tg(yvzlaZZ)dUnl(zl)
n1
o dfin, (Y1) Ay ( 1)%>1/2
Ay (m1,t1) 0 ty
< tgznunl (1)1/2
Nty Ay (T2, 12) 4 [y2 — 22|92 A, (22, [y2 — 22])
and
2

(//A V2 (x2, Y2, t2) /52(Z2)Kt1,t2 (y, 21, 22) dfin, (22)
J Jrna J

y dfin, (y2) dhon 2)@) 1/2
Any (T2, t2) b
< £ oy (J)l/Q
YA Ay (21, t) F Y — 2] A, (21, |yn — 2])
(2) Mixed Carleson and Hélder conditions:

2
(/[ Y1(x1,y1,1) /51(2’1) (Kt 0, (y, 21, 22) = Kty 1 (4,21, 25) | dpim, (21)
7Jrm I
1/2
dpin, (Y1) %
N (@1, t) At (1) t1
- |20 — 25| pany (1)'/?
N 192 Ang (T2, 12) + Y2 — 22|92 Ay (T2, [Y2 — 22])
whenever |zo — 25| <t2/2. And
2

(] Lzt

1/2
y diu"27(y2))dlln2 (M)@)

/ ba(22) [Kity .15 (Y, 21, 22) — Kty 1, (2, 21, 22) | dpins (22)
J

< |Zl _Z“alunz(‘])l/Q
AT Ay (21, 01) + Y1 — 21]9 Ay (21, Y1 — 21])

whenever |21 — 21| < t1/2.

2.5. RANDOM DYADIC GRIDS. We are now in the position to introduce
the fundamental technique, random dyadic grids. Let w, = {w},},cz, where
wl €{0,1}". Let 22 be the standard dyadic grids on R™. That is,

92 = U @S,k, @S,k = {Zk([O,l)” +m);m IS Z”}.
kEZ
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In R™, we define the new dyadic grid

D= Do ={T +wn; 1€ D)} = {I+ Y. 2uiile @2}-

j:2—i<e(I)

There is a natural product probability structure on ({0,1}")%. So we have
independent random dyadic grids 2,, and Z,, in R™ and R"?, respectively.
Even for n; = ngy, we still need two independent grids.

2.6. GOOD CUBES. A cube I € 9, is said to be bad if there exists a
J € 9, with £(J) > 274(I) such that dist(1,0.J) < (1) £(J)}~ 7. Otherwise,
I is called good Here r € Z4 and v, € (0, %) are given parameters.

Denote w4 = Po,, (I +wn, is good) =Ky, (1good(I +wn,)). Then mpt
is 1ndependent of I € @O , and the parameter r is a fixed constant so that
ngod, gaod > 0 Throughout this article, we take y,, = W, where
oy > 0 appears in the kernel estimates. It is important to observe that the

position and goodness of a cube I € @2 are independent.

2.7. b-ADAPTED HAAR FUNCTIONS. The abbreviation by (E) := [, by dpin,
will be used. For each I € ,,,, we denote its dyadic children by Iy, o Doy
We index {I;} in such a way that

}bl(I;)| Z [17(‘1{:71)27”1]#77.1([)’ I]*: U Ikajzla"'72nl'

The existence of such way was shown in Lemma 4.2 [13]. The b;-adapted
Haar function is defined by

o <b1( )bl(J+1)>1/2< b, g > j=1,...,2M 1
L bi(I}) bi(I)  bi(Tr,))’ T

Similarly, we can define the function ?/Jf}zk with respect to b and J € Z,,,,.
The adapted Haar functions enjoy the following properties:

1 fR"l bl(p?j d:un1 =0.

1
I, .

2 W{ﬂ—ﬂm(l )1/2(1,1(17)"'1;1(1]* ‘))-

(1)

(2)

(3) 1171 Lo () = b (I)VP712, p € [1, 0]
(4) The similar above properties hold for 4% s as well.
(5) For any f € L?(u), there holds that

on1_19m2 _1

F=20 2 > X (ndeuihelye

J=1 k=1 I€Zn, JEDn,
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The properties (1)—(4) can be found in Proposition 4.3 [13]. Property (5) can
be verified by iteration of the one-parameter argument.

2.8. INITIAL REDUCTIONS. Let f € L?(u), I1,Is € D, and Jy,Jo € Dp,.
Note that the position and goodness of I + w,,, are independent. Therefore,
one can write

— ni —1
where Cnying = (ﬂ-good 7Tgood
9,

Wny sWno = // // // x y7 ’6t17t2 ‘
WJ WI Rn™1tn2

I3,J3: good
d:u"m (yl) dﬂn2 (yQ) d dt?
Any (21, 11) Ay (22, 12) ty
Indeed, to get this equality, we only need to apply the similar argument to
the one-parameter case twice. For more details in the one-parameter setting,
see [3]. Then, applying b-adapted Haar decomposition of f (suppressing the
finite j,k summation) we may further write

S e
Wi, Wi, R™1 +”2

Is,J2: good

2
* p—
B (f) HLz = Cny,ny Ewnl Ean g‘-’-"nl Wno

dtq
Hny (xl) dlu‘nz (xQ)

2

Zfll']latlat2(b 30 ®¢ )()
Iy, J1

dpiny (Y1) dpin, (y2)
Any (21,11) Ay (22, 12)

where f1, 5, = (f, <le w >). When w,,, and w,, are fixed, we denote Gy simy
by ¢. Consequently, it is enough to show ¢ < || f[|2. (1) where the implied
constant is independent of w,, and wy, .

We can perform the decomposition
9 < g<,< +§§<72 + g2,< + gze,
where

tecm B Mo S, S e

Is,J2: good

dtg

dty
d/’[/'ﬂl( ) dunz (.132) t2

2
X

Z fIlJ19t17t2(b 90 ®¢ )()

I1,J1
E(11)<£(I2)
£(J1)<€(J2)

dﬂnl(yl) dﬂnQ(yz) dty dts
dpin, dpin, (@
N (01,01 M (1, £g) P (1) 3 diina (2) 2=

and the others are completely similar.
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Sequentially, it suffices to focus on controlling the four pieces: Y« «, Y« >,
%> <, %> > in the following sections.

3. Some standard estimates

This section will be devoted to establishing some general and useful calcu-
lations, which will be employed at certain steps of the proof of Theorem 1.3.
Some estimates with new measures p are essentially different from those of
Lesbegue measures. For example, the measure of two balls B(z,t) and B(y,t)
may have no relationship and thus usually are not equal.

LEMMA 3.1. Let p, be an upper doubling measure with the dominating
function \,. Then for any €1 >0 and 81 > 1, there holds that

CO =30l () S A )
ly—yo|=r (Y05 [Y — yo[)P
dpin, (y1)
3.2 / O (1, y1, b)) —Hm W) <
(3.2) . (1,91 1))\n1(a?1,t1)
Proof. Since (3.2) follows from (3.1) and (3.1) can be obtained by a stan-
dard argument, we omit the proof. O

LEMMA 3.2. Let 0<ay <e1/2 and 1 > 3. Assume that I,I5 € Dy, and
E CR™ . There holds that

ynl,al (E7x17t1> S‘F’I’Ll,lxl (E7x1)x17t1)7

where

Ayt (51) 1/2
Fny,on (B,21,11) = O1 (21, y1,01) Frssar (B, 1,41, 1) oI ,
R™1 )\nl (xlvtl)

dpin, (21)
F E x1,y1,t1) := ! .
e (221, 1,01) /Et?lAn,1<x1,t1>+|y1—zlwa%(m,wl—zu)

Proof. For given y; € R™, denote
Ey:={z € Ej|21 — 21| > 2|1 — w1},
Ey = {2z € E;|21 — x1] < 2|z1 — 1|}
Then it holds that
Frron (B, 11,81) < Py o (B, 21, 81) + Foy oy (B2, 1, ).
If |21 — 21| > 2|21 — y1], then

1
ly1 — 21| > |21 — 21| = |21 — 1] > 5|21 — w4,
2

which implies that

d n 1/2
F i son (B1,21,81) S Fny o (B, 21,21, 1) (/ 191(x17y1,t1)u14(y1)>
R Any (T1,1)

,anl,al(val,xlatl)'
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If |21 — 21| < 2]x1 — y1| and |y; — x| < t1, then |21 — 21| Sty and
9 Ny (1, 81) + |21 — 21" Ay (21, |21 — 21]) 240 A, (21, 81).
Accordingly, it yields that
For,ar(Eo,x1,y1,61) S Fryaq (B, 21,21, 11).
This inequality together with (3.2), yields that
Fogor (B, x1,t1) S Fy o (B, 21,21, t1).

If |21 — 21| < 2|z1 — y1] and |y; — z1| > t1, then by (3.1), one may deduce that
Foi,on (B x1,21,t1)

7 Ay (21, 1)
X(/ 191(331,y17t1)|yl—$1\2al)\n1($1,|y1—$1|>2

ly1—z1|>t1

X _dlunl(yl) )1/2

Any (21, t1)
< Fonon (By oy, 0 2PN, (@, 1)1 =3)/2

| —(e1—201) 1/2
- (/ |y1 x1| 2 d””l(?ﬂ))
ly1—z1|>t1 >‘n1(5517 |y1 - 1’1‘)&*

5‘7-711,(11 (E)x17x17t1)7

gz’nhal (E27$13t1) S/

where in the last step we have used the condition that e; > 2, and 1 > 3.
This completes the proof. O

LEMMA 3.3. Let k> 1, I € 9y, be a good cube and (x1,t1) € Wy. Set
Fho(@1) = D)™ Fy o (TF) 21, 1).
Then we have the geometric decay (1) <27 1k/2,

Proof. Tt k <r, by Lemma 3.2 and the inequality (3.1), one may obtain
that

dﬂn (Zl) / |2’17:131‘*041
Sl Sglal/aliJ’»gIal dnlz
k( 1) ( ) o7 tll)\nl(fﬂlatl) ( ) (2I)e )\NI(:'L.:l?‘zl _$1|) : ( 1)

<1 gmonk/2,

If k > r, Lemma 3.2 implies that

Filar) SUD™ /

(I(k—l))c )\nl (1'1, |Zl — (ElD

By the goodness of I, it yields that
(1, (TH=D)) > g1y p(15=D) 77 = 9= D0=m1) (1) > 24/24(T).

|21 — 21|~

dpin, (21) := A(z1).
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Thus together with (3.1), we get

Filer) S Alay) < (1) /B

SUD™ (I, (1E70)7) 7 gammb/e, O

|21 — g |7

dpin, (21)
(w1, d(1,(106=D)ep)e Ay (21,20 =2 [)

LEMMA 3.4. Let J1 € D, be a fived dyadic cube. Denote

ay = //WI //Rnﬁ"2 (a,y, )[04, 1, (01 ® (b21/)321))(y)}2

diin, (Y1) dpny (y2) dty
! dpin, (z
Any (@1, 81) A, (22, 12) pon (1) t

Then {al}le@nl 18 a Carleson sequence. Rather, there holds for any good cube
1€y,
o 2
(33) Z ar N:u‘n1 (Jl) 1/2€(J1) 2yn27a2(<]17x2at2)) .
I:1'cl
Proof. The first step is to split
Z ar S Si(xe,t2) + Sa(xa, ta2),

1:1r'crl

where

Si(xa,t2) = //?TI //]RnlJrn2 (@, y,t)|62,1, ((b1131) © (byﬁ?ﬁ))(y)ﬁ

diin, (Y1) dpiny (y2) dty
d m( 1)_
Ang (T1,t1) Any (22, t2) i1

So(xa,ts) = ////RMM2 (@9, 1)[04, 1 (011 (31)e) ® (b207)) (y )|2

dum(yl) dpns (2) (1>%
Ang (1,81) Ay (w2, t2) 131

dt
/ H(x,t)dpn, xl) L

Using the Minkowski’s inequality and Carleson and Holder conditions, it

follows that
/ b1 (2’1)
3IxJy

31(5027152)5%2((71)71/ //A/
R"2 31 JR™1
2

X [Kt1,t2 (yv (21’ ZQ)) - Ktl,tz (ya (217 z2 + CJ1))] d/.L(Z)

and

dpin, (Y1) A ( )dt1 dfin, (Y2)

X Hx,y,t
@y ))\nl(zl,tl) t1 A, (22,t2)
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<o [ UL L L

2
X [Kiy 1o (4, (21, 22)) — Kty 0 (95 (21,22 + €1,)) | dpiny (21)
dpin, (Y1) dty \ '/ ’
X ﬂl(fl,yhh)m dum(xl)f dpin, (22)
dyn, (92)
9 to) ——2 727
X 2(372,2127 2))\n2($2,t2)
_ 2
5 Moy (I) (an (Jl) I/QE(Jl)azynz,az (J1’x2’t2)) .
The mixed Holder and size estimate give that
104,05 (011317¢) @ (b2007)) ()]
< / t?l d:unl (21)
~ Jane 1 Ay (21, t1) + |yn — 21 A, (21, Y1 — 21])
- 0(J1)*2 dpin, (22)
X J 1/2/ - e .
a0 R aa2) & T2 — 21 Mo (2, 2 — )
Thus, by Lemma 3.3, one can deduce that
H(w,8) S Fil@)? (s (1) 201 Py, (1, 22,12))°
@ —2a — o 2
St? 1£(I) 2 (M’ﬂz("]l) 1/2£(J1) 29ﬂ27a2(‘]17$27t2)) .
Therefore, one obtains that
dt
Sa (w9, ts) :/[H(x,t) dum(xl)t—ll
T
£(I)
S (DUD [ 8
0
_ 2
(s (J1) T2 0(I1) %2 Py s (J1, T2, 1) )
_ o 2
S iy (1) (s, (J1) 20T Ty 0 (T 02, 12))
This finishes the proof of Lemma 3.4. (|

LEMMA 3.5. Let k> 1 and I € Dy, be a good cube and and (x1,t1) € Wr.
We have the following Carleson estimate:

(3.4) Z aj 52_alkﬂn1 (I(k))_lﬂnz(*])7
JJ'cJ
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where 51 is given in (5.4) below and

ay = //WJ //Rn1+n2 2,9,1) 01,0, (0167) @ b2) (y )’

dpny (Y1) _dpny (y2) dto
na (T2) ——
Any (T1,11) Any (22, t2) ty

The proof of Lemma 3.5 is similar to Lemma 3.4. The size condition and
mixed Carleson and size estimate need to be used. In addition, Lemma 3.3 is
needed.

We will also need the following lemma, which can be found in [22].

LEMMA 3.6. We set
/(T a/2£ I, a/2
o () ld) fin (1) i (1) /2,
D(IDIQ) bupzlellulg/\n(zlvD(IhIQ))

where a >0 and D(I1,15) = (1) + ¢(I3) + d(I1,12), I1,Is € D,,. Then for
any x1,,yY1, > 0, we have the following estimate

2
(z Ay) <Y <Y
11 12

I,I>

Ann =

In particular, there holds that
2
S (S Annen ) 344,
Iy I, I

Finally, we present a dyadic Carleson embedding theorem, which was
proved in [21].

LEMMA 3.7. Let v be a measure on R™. If the numbers ag >0, Q € ¥ CR"
satisfy the following Carleson measure condition

Z ag <v(Q), foreach Q€ P,
QCQ
then for any f € L*(v)

3" a4l 2,

Qe2
4. The case: ((I1) < {(I2) and £(J1) < £(J2)

The kernel Ky, 4,(y,#) can be changed into
Ktl,t2 (ya Z) - Kt17t2 (yv (Zla CJ1)) - Ktl,tz (ya (Ch ) 22)) + Ktl,t2 (yv (611 ’ CJl))’

which is provided by the cancellation properties of the adapted Haar functions

/ b1} dptn, = / bath’? i, = 0.
R™1 R"™2
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From the full Holder condition of the kernel K, +,, it follows that
[0e1.02 (0 27 @97 ) W)] S b (1) 2UL) ™ Foay g (I, 01,91, 1)
X iy (J1) 72T Fg s (1, 22, Y2, t2).
If (1) < €(I3) and £(J1) < £(J2), we get

(//mw (2.9.0)[ 00, 02 (b- 072 @ 05) )|

A, (Y1) dpin, (y2) )1/ ’
Ang (21,t1) Ay (22, 82)
S oy (1) 72010 Ty 0y (11,1, 11)
n (1) 72T Py 0y (T2, T2, )
S AL L tn, (1) Y2 Ay, gy ping (J2) 712,

where Lemma 3.2 has been used. Therefore, by Lemma 3.6 we deduce that
£(I1)<t(I2)

//\/V //W {
Jo
£(J1)<€(J2)

to
< ZZ[Z Anr, 2A11J2|f11 flq

Jo Iz -1

SHINY A1112|fm|}

Jo Iy J1

2 2
S D U P S22

I Ji

N

2 dt
|leJl|g<x,t>} ditn, (@) 22 i (2) 22

12 Ja: good

5. The case: ((I1) > {(I3) and 4(J1) < £(J2)

Noting that the mixed Carleson and Hoélder estimates, and the mixed
Holder and size conditions are symmetric, we omit the control of of ¥<, >,
since it is handled almost symmetrically as the term ¥> ..

After the splitting

5(11)2(12) @(Ilg(h)
d(I,12)>(I2) "M L(11) T

+ >
£(I1)>27¢(I2)
d(I1,I2)<O(I2) ™1 4(I;) 7

+ ) :
0(I2)<e(I)<270(I3)
d(I1,12)<0(Ix)"m1e(I) ~7m
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what remains to be done is to bound the following three terms:

e 5 Mo
W]2 W] R"1+"2

I5,J2: good
2
X Z Z f[lJletl,tz(b SD ®1/J )( )
I :4(I1)>4(12) J1:l(J1)<l(J2)
d(I1,I2)>0(I3) "1 (1)~
dpin, (1) dum(yz) di dt?
dpiy, —d n
>\n1 Z1,t1) An, (22,12) (1) o (T2) = ty
wm > J[ [ J] e
Is,J2: good Wi, Wi, R71+m2
2
X Z Z Sr0,04, 4, (b @ ®¢ )()
11:Z(11)>2TZ(12) Jlif(J1)<Z(J2)
d(I1,12)<L(Ix)"m1e(I) 7
diin, (Y1) dpin, (Y2) dity dty
1 2 d ) —d ) e
Any (T1,11) Ay (2, 12) s (71) t Hna (72) to
and
gnear,< = // // // (E yu
Iz J good Wi, Wiy Rm1tn2
2
x Z Z fI1J10t1,t2<b 90 ®1/) )()

Inl(12) (1) <27(I2)  J1:b(J1)<t(J2)
d(I1,I2) <O(I2) "™ (1) 7™

dpiny (Y1) _dpins (Y2) dty dts
X Ny (21, £1) Ay (22, £2) dpin, (1) o dpin, (T2)

to
The above three terms will be analyzed, respectively.

5.1. Part ¥,,;,<. We begin by showing the following inequality:
((I2)" < U1)*P0(I) "

d(I1,12) N, (x1,d(I1,12)) ~ D(I1, 1)\, (21, D(I1, 12))
If £(I,) <d(Iy, 1), then D(Iy, Iz) ~d(I1,I3). So, the inequality (5.1) holds. If
(1) > d(I,I3), then D(Iy,I5) ~ ¢(I;). The doubling condition of A, (z1,t)
gives that

Aoy (21, (1)) = Any (w1, (6(10) /€(12)) " (1) ™ (T ) )

< Clogz (L)/€(I2) 7™ Ay (21, €(I2) 7 0(I;) )

"1

= (61 6(13)) "™ Dy (1, (T (1) 770,

(5.1)
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Note that vy, (dx,, + 1) =ai/2 and d(I1, 1) > ((I)"1 (1) 771 . Hence,
one may conclude that

((Iy)™ < ((I5)™/?
(I, 1)t A, (1, d(T, 1)) ™ (1) 2 A, (21, €(T1))
0(1,)1/20(15) /2

~ D(I1, )1 A, (21, D(I1, I3))

This demonstrates the inequality (5.1).
Now we turn to ¥%,us,<. By the cancellation property, we replace the kernel

Ky, 1, (y,2) by
Ktl,tz (y7 Z) - Ktl,tz (y7 (’217 ch))'

Then, the mixed Holder and size condition gives that
|9t17t2 (b : (plﬁ ® 1/)3%1) (y)| S Hny (Il)_l/Qt?I}-nl,al (Ilvxla ylvtl)
X (J1)71/2€(J1)a2fn27a2 (le z2,Y2, t2)'

The above inequality, together with Lemma 3.2 and (5.1) yields that

(5'2) g($,t) S Hnq (Il)_l/Qt?lynhal (Ilvxlatl)
'/j‘n2(Jl)il/ze(‘]l)azynmaz(Jlax27t2)

0(12)% pi, (1)"/?
U(12)1 Apy (w1, £(12)) + d(I1, I2)*1 Any (21, d(11, I2))
(

: AJ1J2M7L2 JQ)_l/Q

<

a1

() 1 )
< n1 I /2,A AT J 1/2
~ d(Il’IQ)al/\m(xlvd(ll,lz))ﬂ ( 1) Ty Jo b ( 2)

5 A1112:un1 (12)71/2 ' AJ1J2IMTL2 (J2)71/2'

This allows us to estimate %, « with similar steps to what we have used
with ¥« . Accordingly, there holds that

Eqout,< g ||f||%2(,u)

5.2. Part %ear <. In this case, there holds that ¢(I1) ~ ¢(I) ~ D(I, I2).
For convenience, we write I; ~ I in this case. It immediately yields that

Hony (11)1/2 ~ Hny (Il)l/2
)‘nz('rlag(12)) B >‘7l1 (Cflvg(ll))

It follows from (5.2) that

Moy (11)1/2
G025 o D)

(5.3)

—1/2 _
5 (e, 012) % <, ()72,

’ AJ1J2/1‘712 (‘]2)71/2 S Hny (12)71/2 : AJ1J2.U“7L2 (']2)71/2'
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It is worth pointing out that for a given I, there are finite cubes I; such that
I; ~ I5. That also holds for a given I;. Consequently, we deduce that

2
gnear7<szz Z (ZAJ1J2|f11J1|>

12 J2 Iltllﬁlz .]1

S ZZ(ZAJlJQIchll)Q Z 1

11 Jz J1 12:12211

S ZZ ‘fIIJl |2 = ||f||%2(,u)
I J1

5.3. Part ¥, .. In this case, the goodness of Iy indicates Io C I;. We use
I®) € 9, to denote the unique cube for which £(I*)) =2%¢(I) and I c I,

This enables us to write
<= 2 o

1,J5: good Jo
2
Z Z fro0 7,014, (b gp L@yl ) (y)
k=1 Jy:6(J1)<(J2)
d/inl (yl) d,unz(yQ) dt, dtg
ditn, La .
Aor (@1, 11) Ay (T2, 82) 1(x1) L, (T2) — e

Set
b b
(5:4) €F = (10 ) je—n L-n)e + Z Priw e
I'ech(I®)
I’;ﬁ[(k_l)

It is easy to check that suppé'f C (I(k_l))ca ||f]1€HL°°(un1) Ny ([(k))_l/Qa and
(5.5) @?tk) = fllc + <901;1<k)>1(k71)'
Denote fj, = (f, 2) so that fj,(y1) fan (Y1, v2 ?/{]1 (Y2) dpin, (y2), y1 €

R™.
We are reduced to dominating

gmod,< = // // // .13 yv
WJ2 Wr R7™1tn2

1,J5: good
2
5T feutunts- ot
k=1J1:£(J1)<£(J2)
dpiny (1) b, (y2) dt, dts
d ni d no \ L
)‘n1<xlat1) )\nz($2,t2) ( ) H 2( 2) to
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and

gCar <= // // // l‘ y,
' WJ2 Wr R7™1+n2

I1,J2: good
2

Z fro0 7,086, (01 ® ( bz¢ Zf](k)Jl<<PI<k>>I(k 1

J1:b(J1)<(J2)

d,u"nl (yl) dlLLn2 (yz) dt t
)\’I’Ll x17t1 >\n2 552,752) d/J/’ru (.131) d‘Lan( )

2 e o w0

Z (F10108 1 (b1 ® (b2 )) ()

J1:f(J1)<Z(J2)

o i (Y1) - dpin, (y2)
Any (T1,1) Ang (@2, 12)

We will consider two cases.
o (Case 1. We first control the following integral

(// 0,,0)[60,0, (b €1 ©95) )]

dpin, (Y1) dum(yz))
Any (@1, 1) A, (22, 12)

Using the cancellation property again, we can change the kernel to
Ky o1,y 2) — Ky 1, (Y, (21,¢4,)). Tt follows from the mixed Holder and size
condition that

00122 (b €F ©02) )] S pamy (1) 240 Frpa (1579) 20, 90,10)
X Hpy (Jl)—l/Qg(Jl)ozz]:nz)az (Jl, x2,Y2, tg).

Combining Lemma 3.2 with Lemma 3.3, we see that

X

dtz
to

I1,Jz2: good

X

dty
to

dt
d/.tnl (xl)t—ll d/-”u (.132)

H(2,1) S i, (I9) T2 50(@1) -y (J1) 20T Ty (J1, 0, 2)
_ —1/2 _
52 alk:/2'un1 (I(k)) / 'AJ1J2Mn2(J2) 1/2-

Thereby, Minkowski’s integral inequality implies that

Grnod,< S //W / /W{

I1,J5: good

2
|f1(k)J1|H($at)}

k=170 J1)<Z J2)
dto

X dlu’nl (xl) dlu’nz (xQ) to
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1/2Y 2
ZZ{Z2alk/2 (Iul:n(l[((jk))) Z AJ1J2|fI(k)J1|> }
I Js k=1 1

J1:l(J1)<L(J2)

A

o
ZQ alk/4 alk/4
k=1

(XI: — (Ik)))Z( > AJ1J2|f1<k)J1|)2)1/2}2

,unl Ja NI l(Jr)<e(J2)

2
NS % Z( > AJ1J2|fI<k>J1|)
k=1 I ! J2

leé(J1)<é(J2)

IN
—

X

oo

5 22 e1k/2 Z |fQJ1| /”'nl - Z Hny (I) S ||f||2L2(u)

Q,J1 I:1(F)=Q

e Case 2. Applying Lemma 3.4, we obtain that for £(J;) < £(J2),

ar S Hnq (I) (AJl,eru’nz (JZ)_1/2)27

where {a;} was defined in Lemma 3.4. Consequently, from the Carleson

Embeddlng The()rem 3. i, ll f()ll()WS lhal
W R™ 1+"L2

EqCar < < Z// {
Wiy 1 N Jye(an)<e(J.

X | fJ1 10t1,f2(b1®(b21/) ))( )|

d,unl(y1) Apn, (2) i\ V22 it
A,y (21,11) )‘nz(x2at2) dyin (21) t1 piny (72)—— ts

IS (e
Wiy C o) <e(J2) Wi R"”"Q

X 1811 (b1 @ (b2632)) ()
d,un (yl) dun (yz) dt1)1/2}2 dt2

1 2 d o aty d .
)\’ﬂl (xlvtl) )\nz(xQ,tQ) ( 1) t1 H (xQ) ty

2
(X Analiliegn) S0,
J1

J2 J1:€(J1)<6(J2)
SIFIZ2

2

This finishes the estimates of ¥~ .
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6. The case: ((I1) > {(13) and ¢(Jy) > €(J2)

As we see in the preceding section, for the relative position of I; and Is,
there are three different cases. Similarly, there are also three different cases
for the second variable. This leads to

gZaZ S gout,out + gout,in + gout,near + gin,out + gin,in
+ ggin,noar + ggncar,out + gncar,in + gnear,ncar

6.1. Yut.out- We first treat the term oyt out, Where the new bi-parameter
phenomena will appear. Using the similar decomposition to (5.5), we can
split the function 1/132 with 7%. Hence, it is enough to dominate the following
terms:

gmod,mod: //W //W //R”1+n2 ZZf[(k)J( )th,tg (b £I ®7]J)( )

I1,J: good

2

dts
ty’

dpny, (Y1) dpins (y2)
9 . ;
X (x7y7 ))\n1 (1-17151 )\nQ (1'27t2)

tscn= S [ f[ [

I,J: good

dlhn (yl) dﬂn2 (yQ) @ dﬁ
x(z,y,t )Am(ml,h ) Ang (z2,12) dpina (71) t1 dyinz (2) ta’

YCar,mod = Z // //WI //Rn1+n2

I,J: good

dtq
dpin, (ml)? dpin, (z2)
2

(Fr00) 70t 2 (016F) @ b2) (1)

Mg

k

Il
-

2

Z F7@) 104, 1, (b1 ® (5277J))( )

=1

dto
ty’

dpny (1) _dpins (y2) dt
9 t d —d,
X (ﬂf,y, ))\TH (xhtl) )\nz (.T27t2) Hnq (‘rl) tl :u‘n2(:r2)

and

gCar,Car = Z ‘<f>f><J‘2 /W //W //]Rn1+n2 19($7y7t)|0t1,t2b(y)|2

I1,J: good
dto

o

dpn, (Y1) dins (y2)
Ang (@1,11) Any (T2, t2)

dty
dpin, (z1) ? dpin, (22)

First, to consider %nod,mod, by size condition and (3.3), we have

<//1R<n1+n2 2,1y, 1)|61,.0, (b €T @1%) (y )|2 dpin, (1) dung(yQ)))lﬂ

Ay (1, 11) Ay (22,12
2 alkr/2 1([(1@)) 1/2 .9~ azz (J(z)*1/2
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Applying the techniques in the estimates of ¥,04,< to analyze X0d,mod, We

conclude that
ggmod mod ~> < Z 2—ak:/22 pi Z |fQR‘2 (Q) Z Hny (I)
ki Hna I =Q

1

J:JW=R

2
S ANz 00
Secondly, to control ¥car,car, we employ the bi-parameter Carleson condi-

tion

Yoar,Car = Z |<f>1xJ|2C'?J = 2/ Z Cpstdt
1,0 0 1,0

(Y ixs|>t

g/ > C}’Jtdtgf p({MPf>t})tdt
0 I, 0
IxJC{MP >t}
2
5 ||M‘;Df”L2(y,) 5 Hf”%ﬁ(u)a
where we have used the L” (1) (1 < p < c0) boundedness of the strong maximal

function associated with rectangles.
Next, we treat Ycarmoda- There holds that

Ginod Car < D // ki:l(zj: |<f1(k>>J]2aJ) 1/2] Qdum (xl)iil

I: good

ay = //W,//Rnﬁ"z 2,,1) |01, 1, (0167) @ b2) (y )|

d/’LTn (yl) d:unz (y2) d ( 2) _2
/\nl(zlatl) Anz(x%tZ) " lo
Combining Lemma 3.5 with Lemma 3.7, it yields that

00 2
_ —1/2
gmodﬁar S E < E 2 alk/2ﬂn1 (I(k)) / ||fl(k) ”%2(an)> My (I)
1 k=1

—(Xl 1
S el gy 2 DS Ml

k=1 LIM=Q

where

Ycar,mod 1S symmetric t0 %od,car-
Finally, as for the estimates of the remaining terms, the decompositions and
calculations needed are contained in the above sections essentially. Simply,
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the combinations of the techniques that we have used will lead to the desired
results. O

7. Necessity of bi-parameter Carleson condition

In this section, we will show that the bi-parameter Carleson condition is
necessary for g7 s-function bound on L?(u). The argument below follows
along the lines of the proofs in [14] and [18].

Suppose that 0y, 1, = 0;"* ®0;* is bounded on L?(u), where 6} has a kernel
Kti (xi,9i), Tiyy; €R™ and t; >0, i =1,2. We assume that these satisfy the
size condition and the corresponding L2 bounds in R™, ¢ =1,2. We shall
show that the bi-parameter Carleson condition (1.1) holds.

Let Mg be the strong maximal function related to the grid 2 and M denote
the strong maximal function. Let Q C R™**"2 be such a set that () < oo and
that for every x € () there exists I x J € & so that x € I x J C Q). Define Q=
{Mglg>1/2} and Q= {M1g > c} for a small enough dimensional constant
¢=c(ny1,n2). Then we have

Q) <4 Mplallfa(y S 1ellZa(,) = n(€).

Similarly, there holds that ,u(ﬁ) S u(ﬁ) < (). Consequently, it suffices to

show
S L L el i)

IXxJeD
IXJCQ

dts

dumq(yl) dUnQ(QQ) d ( )dtl
ni
(23

)\nl (l’l,tl) >\n2 (x2>t2)
S p(€2).

For every J € 9,, we let F; consist of the maximal F' € 2, for which
F x J C Q. Then we define F := Urer, 2F. Moreover, for fixed I € Zy,, let
Gr be the family of the maximal G € Z,,, for which I x G C Q, and Ig € Py,
be the maximal cube for which I D I and I x G C Q. Thus, it is enough to
show the following.

Z // //WI //R"an (@, )[60, (blﬁc]‘FJ)(ylayQ)’2

d#mﬂf2)

IXJeD
IxJCQ
ditn, (Y1) dpin, (y2) dty dts
diy, —d n —
Ay (21, 11) Ay (22, 12) po (1) pin (72) to

dto
—Z/ ) (wa.t2) djing (22) 2 S u(Q),
W lo
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T e

and

IxJeD
IxJCQ
dpn, (Y1) dpin, (y2) dty dta
dpn, L dpy,
Anl(xl,tl) )\nz(xQ,tQ) /’L l(xl) /’L 2(372) t2

dt
::Z/ %I(xlatl)dum(%)t—l S ().
7w, 1

To attain the goal, we need to first bound ¥;(x2,t2) and ¥;(x1,t1). Actually,
Minkowski’s integral inequality and size estimate yield that

gJ(J;?v’J’Q) Sx// // 19(37,2./,15)
R11+1 Rn1+n2

x / K7 (g 22)0 (b ) (- 22) L, ) (1) iy (22)
Rm"2

dpin dpr, dt
1% 1(2/1) 13 2(y2> d nl(xl) 1
Any (T1, 1) Ay (T2, t2) t

Ul [

X K722 (g2, 22) |07 (0150) (- 22)1p, ) ()|

dpin, (1) dpin, (y2) dt1>1/ ? ]2
Appn, (1) — A, (7
)\nl(xl?tl) >\TL2(I27t2) a ( 1) tl . ( 2)

< [/ (/ t5209(x2,y2,t2)
~ ree \Jrre (857 Any (22, 12) + Y2 — 22|22 A, (@2, Y2 — 22]))?

dﬂnz (y2) Yz
) ))

)\TLQ (an t2

2

2
X H (blﬁC)('v 22)1FJ HLz(anl) dﬂnz (32):|

152
<
~ |:/]Rn2 th)\n2 (xg,tg) + |J,‘2 — 22|a2/\n2 ($2, |$2 — 2’2‘)

2
x H(blﬁchZ?)lFJ HL?(#M) dpin, (32):|
as
<o t
R™ t22)‘n2 (‘rQatQ) + |172 - Z2|a2>‘n2 (1’2, |£U2 - 22‘)
2
X H(b]‘ﬁC)('722)1FJHL2 dunz(ZQ)

(Hny)
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</ ()2
~ Jrna |22 = c|*2 A, (2,22 — c5])
2
X H(blﬁc)('sz)lFJHLQ(Hnl)dﬂnz(ZQ)

0(J)*
< 17, (2 /
N/R #y(21) Bns |22 — €12 An, (22, |22 — Cy])

X 1g. (21, 22) dpin, (22) dpin, (21)-
Similarly, we may estimate
2
Eql(xlatl) - Z Z // // ﬁ(x,yat)|0t1,t2(b1§c1F§)(y17y2)‘
Gegy Jicg? Wy J IR

diin, (Y1) dpin, (Y2)
Any (T1,11) Ay (22, 12)

dt, dts
dlu’nl (1'1) t dlu’nz (xQ) t
1 2

< { / o~
™ L res LI A, (21, £(D)) + 21 — 21| Ay (21, |21 — 21])

(2 1<zzc>c<zl>unz<c>)1/2 i )]

Gegr

S Xl [, G G

g 111 = 21|* A, (21, |21 — 21])

Gegr 4
QOB
gGEE;I Mn2(G)(€(IG)> ‘

The remaining calculation is a routine application of the idea of [18]. We here
omit the details. Finally, we obtain

G Su(Q) and % < u(Q).
Thus, we have proved the the necessity. O
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