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INTRINSIC ULTRACONTRACTIVITY FOR GENERAL LÉVY
PROCESSES ON BOUNDED OPEN SETS

XIN CHEN AND JIAN WANG

Abstract. We prove that a general (not necessarily symmet-
ric) Lévy process killed on exiting a bounded open set (without

regular condition on the boundary) is intrinsically ultracontrac-
tive, provided that B(0,R0)⊆ supp(ν) for some constant R0 > 0,

where supp(ν) denotes the support of the associated Lévy mea-
sure ν. For a symmetric Lévy process killed on exiting a bounded

Hölder domain of order 0, we also obtain the intrinsic ultracon-
tractivity under much weaker assumption on the associated Lévy
measure.

1. Introduction and main results

1.1. Dirichlet semigroup and its dual semigroup for general Lévy
process. Let X = ((Xt)t≥0,P

x) be a Lévy process on R
d with Lévy triplet

(Q,b, ν), such that its characteristic exponent is given by

q(ξ) =
1

2
〈ξ,Qξ〉+ i〈ξ, b〉(1)

+

∫
Rd\{0}

(
1− ei〈ξ,z〉 + i〈ξ, z〉1{|z|≤1}

)
ν(dz), ξ ∈R

d,

where Q :Rd →R
d is a symmetric non-negative definite d× d matrix, b ∈R

d,
and ν is a Lévy measure on R

d. Let X̂ = (X̂t)t≥0 denote the dual process
of X , which is a Lévy process with the Lévy triplet (Q,−b, ν̂) such that
ν̂(U) = ν(−U) for any U ∈ B(Rd). Throughout this paper, we assume that the
process X has a continuous, bounded and strictly positive transition density
p(t, x, y) = p(t,0, y − x), that is, for every t > 0 and f ∈Bb(R

d) (here and in
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what follows, Bb(R
d) denotes the set of bounded measurable functions on R

d)

E
xf(Xt) =

∫
Rd

p(t, x, y)f(y)dy, x ∈R
d,

p(t, ·, ·) :Rd ×R
d �→ (0,∞) is continuous, and there is a constant c(t)> 0 such

that

0< p(t, x, y)≤ c(t), ∀x, y ∈R
d.

See [3], [18], [22], [23], [29], [31] for sufficient conditions in terms of character-
istic exponent q(ξ).

Let

Ttf(x) = E
xf(Xt), T̂tf(x) = E

xf(X̂t).

Then for any nonnegative Borel measurable function f and g,∫
Ttf(x)g(x)dx=

∫
f(x)T̂tg(x)dx.

Hence, the (dual) Lévy process X̂ also possesses a continuous, bounded and
strictly positive transition density p̂(t, x, y) such that for any t > 0 and x, y ∈
R

d, p̂(t, x, y) = p(t, y, x) and

E
xf(X̂t) =

∫
Rd

p̂(t, x, y)f(y)dy =

∫
Rd

p(t, y, x)f(y)dy, x ∈R
d, f ∈ Bb

(
R

d
)
.

Let D ⊆R
d be an open set. Define the following subprocess of X

(2) XD
t :=

{
Xt, if t < τD,

∂, if t≥ τD,

where τD := inf{t > 0 :Xt /∈D} and ∂ denotes the cemetery point. Then, the
process XD := (XD

t )t≥0 is called the killed process of X on exiting D. By the
strong Markov property and the continuity of p(t, ·, ·) for all t > 0, it is easy
to see that the process XD has a transition density (or Dirichlet heat kernel)
pD(t, x, y), which enjoys the following relation with p(t, x, y):

pD(t, x, y) = p(t, x, y)−E
x
(
p(t− τD,XτD , y)1{t≥τD}

)
, x, y ∈D;(3)

pD(t, x, y) = 0, x /∈D or y /∈D.

According to (3), one can show that pD(t, x, y), t > 0, satisfy the Chapman–
Kolmogorov equation; moreover, for every t > 0 the function pD(t, ·, ·) :D ×
D �→ [0,∞) is continuous, and supx,y∈D pD(t, x, y)≤ supx,y∈Rd p(t, x, y)<∞,
see, for example, the proof of [12, Theorem 2.4]. Define

TD
t f(x) = E

xf
(
XD

t

)
=

∫
D

pD(t, x, y)f(y)dy, t > 0, x ∈D,f ∈ L2(D;dx).

It is a standard result that (TD
t )t≥0 is a strongly continuous contraction semi-

group on L2(D;dx), which is called the Dirichlet semigroup associated with
the process XD. We further assume that pD(t, x, y) > 0 for every t > 0 and
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x, y ∈ D, which is equivalent to saying that (TD
t )t≥0 is irreducible, that is,

TD
t (1U )(x) > 0 for every t > 0, x ∈ D and open set U ⊆ D with |U | > 0,

where |U | denotes the Lebesgue measure of U . We should mention that even
if the transition density p(t, x, y) is smooth and strictly positive, it is nontriv-
ial to show the strict positivity of pD(t, x, y), see Proposition 6 below for some
mild assumption on the Lévy measure.

Let τ̂D := inf{t > 0 : X̂t /∈ D} be the first exit time from D for the dual

process X̂ . Similar to (2), we can define the killed process X̂D := (X̂D
t )t≥0 of

X̂ on exiting D. For any t > 0 and x ∈D, define

T̂D
t f(x) = E

xf
(
X̂D

t

)
.

Due to Hunt’s switching identity (see [1, Chapter II, Theorem 5]),∫
D

f(x)TD
t g(x)dx=

∫
D

g(x)T̂D
t f(x)dx.

Then, the killed process X̂D also has a transition density p̂D(t, x, y) such that
p̂D(t, x, y) = pD(t, y, x) for all t > 0 and x, y ∈D, and so

T̂D
t f(x) =

∫
D

pD(t, y, x)f(y)dy, t > 0, x ∈D,f ∈ L2(D;dx).

When the Lévy process X is symmetric, the associated Lévy measure ν is
symmetric, and the characteristic exponent q(ξ) given by (1) is reduced into

q(ξ) =
1

2
〈ξ,Qξ〉+

∫ (
1− cos〈ξ, z〉

)
ν(dz).

Then, (Tt)t≥0 and (TD
t )t≥0 are symmetric semigroups on L2(Rd;dx) and

L2(D;dx), respectively. In particular, Tt = T̂t and TD
t = T̂D

t for any t > 0,
and pD(t, x, y) = p̂D(t, x, y) for any t > 0 and x, y ∈D.

1.2. Main result. In this part, we always assume that D is a bounded open
subset of R

d. Since supx,y∈D pD(t, x, y) < ∞ and D is bounded, both TD
t

and T̂D
t are Hilbert–Schmidt operators on L2(D;dx) for every t > 0, and so

they are compact. Noticing that pD(t, x, y)> 0 for all x, y ∈D, it follows form
Jentzsch’s theorem (see [28, Chapter V, Theorem 6.6]) that the common value

−λ1 = supRe(σ(LD)) = supRe(σ(L̂D))< 01 is an eigenvalue of multiplicity 1

1 For any f, g ∈C∞
c (D;dx),∫

D
f(x)LDg(x)dx=

∫
D
g(x)L̂Df(x)dx.

Since the associated Lévy measure ν̂ of L̂D satisfies that ν̂(U) = ν(−U) for any U ∈ B(Rd),
we have for f ∈C∞

c (D;dx)

−
∫
D
f(x)LDf(x)dx=−1

2

∫
D
f(x)(LD + L̂D)f(x)dx

=
1

4

∫
Rd

∫
Rd

(
f(x+ z)− f(x)

)2(
ν(dz) + ν̂(dz)

)
dx.
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for the operators LD and L̂D, which are L2(D;dx)-generators of (TD
t )t≥0 and

(T̂D
t )t≥0, respectively. Moreover, according to [21, Proposition 3.8], the corre-

sponding eigenfunctions φ1 and φ̂1 can be chosen to be bounded, continuous

and strictly positive on D. In the literature, this eigenfunction φ1 (resp. φ̂1)
is named ground state (resp. dual ground state). We are interested in the
intrinsic ultracontractivity of (TD

t )t≥0, which is defined that for every t > 0,
there exists a constant C(t)> 0 such that

(4) pD(t, x, y)≤C(t)φ1(x)φ̂1(y), x, y ∈D.

The notion of intrinsic ultracontractivity for symmetric semigroups was
first introduced by Davies and Simon in [14] (see the book [13] for more de-

tails, and note that in symmetric setting, φ1 = φ̂1 in (4)), and then it was
generalized to non-symmetric semigroups by Kim and Song in [19]. It has
wide applications in the area of analysis and probability. Recently, the intrin-
sic ultracontractivity of Markov semigroups (including Dirichlet semigroups
and Feyman–Kac semigroups) has been intensively established for various
Lévy processes or Lévy type processes, see, for example, [4], [5], [9], [10], [15],
[16], [17], [19], [20], [21], [24], [25], [26]. The aim of this paper is to study the
intrinsic ultracontractivity of Dirichlet semigroup (TD

t )t≥0 for a discontinuous
(not necessarily symmetric) Lévy process (which may contain Brownian mo-
tion) on a bounded open set D with very mild conditions on its Lévy measures
ν and the set D.

To state our first contribution, we need the following additional assumption
on the Lévy measure ν.

(A1) There exists a constant R0 > 0 such that

(5) B(0,R0)⊆ supp(ν),

where B(x, r) denotes the ball with center x ∈R
d and radius r > 0, and

supp(ν) denotes the support of the Lévy measure ν.

Note that for Lévy process with finite range jumps, the distance between
connected components of D should not be too far away, otherwise pD(t, x, y)
will be zero there. Therefore, to ensure the strictly positivity of pD(t, x, y),
we need the following roughly connected assumption on the open set D, for
example, see [21, Definition 4.3].

(RC) For any x, y ∈ D, there exist distinct connected components {Di}mi=1

of D, such that x ∈ D1, y ∈ Dm and for every 1 ≤ i ≤ m − 1,
dist(Di,Di+1)<R0, where R0 is the constant in assumption (A1).

Now, let φ1 be the normalized non-zero eigenfunction associated with λ1. Since LDφ1 =

−λ1φ1 and φ1 ≡ 0 on Dc, by the standard approximation,

λ1 =−
∫
D
φ1(x)LDφ1(x)dx=

1

4

∫
Rd

∫
Rd

(
φ1(x+ z)− φ1(x)

)2(
ν(dz) + ν̂(dz)

)
dx > 0;

otherwise φ1 is a constant function on R
d, which is impossible.
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Theorem 1. Let X be the Lévy process as above such that assumption (A1)
holds, and suppose that the open set D satisfies (RC). Then the associated
Dirichlet semigroup (TD

t )t≥0 is intrinsically ultracontractive. More explicitly,
there is a constant c > 0 such that for all t > 0 and x, y ∈D,

(6) pD(t, x, y)≤ ce−λ1t

(t∧ 1)2

(∫
e−(t∧1)Re q(ξ) dξ

)
φ1(x)φ̂1(y),

where q(ξ) is the characteristic exponent of the process X given by (1), and

−λ1 < 0 is the common eigenvalue corresponding to ground state φ1 and φ̂1.

For symmetric Lévy process, [15] has established the intrinsic ultracontrac-
tivity of Dirichlet semigroup on any bounded open set D, when the associ-
ated Lévy measure has full support (i.e., (5) holds with R0 =∞). For general
Lévy process, if the Lebesgue measure is absolutely continuous with respect
to Lévy measure, the intrinsic ultracontractivity of Dirichlet semigroup on
any bounded open set D was verified in [21]. Note that in the latter set-
ting the associated Lévy measure also has full support, and the corresponding
Lévy process has full range jumps. The reader can refer to [15] for other non-
degenerate conditions on Lévy measure in the symmetric setting. On the other
hand, when Lévy measure is compactly supported and the Radon–Nikodym
derivative of absolutely continuous part of Lévy measure is bounded below by
some positive constant near the origin, Kim and Song proved in [21] that the
corresponding Dirichlet semigroup is intrinsically ultracontractive for general
(not necessarily symmetric) Lévy process provided that D is κ-fat, see [21,
Assumption A4(b)]. The reader can also refer to [11] for the intrinsic ultra-
contractivity for the Dirichlet semigroup associated with a Brownian motion
on different non-smooth domains.

The new point of Theorem 1 is due to that, it gets rid of any regularity
condition on bounded open set D to ensure the intrinsic ultracontractivity
of associated Dirichlet semigroups for general Lévy process with finite range
jumps. Besides, we do not require that Lévy measure has an absolutely con-
tinuous part. See Example 12 in the end of Section 3 for an application of
Theorem 1.

1.3. Symmetric Lévy process on bounded Hölder domain of order 0.
Throughout the paper, we always refer to a connected open set as a domain.
It is known that the intrinsic ultracontractivity of Dirichlet semigroups for
Brownian motion on a bounded domain D depends on the geometry of the
boundary of D (see [11]). Theorem 1 indicates that for Lévy process even
with finite range jumps, the associated Dirichlet semigroup can be intrinsically
ultracontractive without any regularity condition on the bounded domain. In
fact, for more general bounded domains including bounded Hölder domain of
order 0, we can prove the intrinsic ultracontractivity of the associated Dirichlet
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semigroups for symmetric Lévy process, whose Lévy measure satisfies weaker
assumption than (A1).

To be more explicit, we introduce the following logarithmic distance inte-
grability assumption on the domain D.

(LDI) For each θ > 0,

(7)

∫
D

∣∣∣∣log( 1

ρ∂D(x)

)∣∣∣∣θ dx <∞,

where ρ∂D(x) = inf{|x − y| : y ∈ ∂D} denotes the distance between x
and the boundary of D.

According to the proof of [30, Theorem 2], any Hölder domain of order 0
satisfies (LDI). Note that, it is shown in [30] that a Hölder domain of order
0 is bounded. John domains, in particular bounded Lipschitz domains, are
Hölder domains of order 0. In fact, recall that a domain D is called Hölder
domain of order 0 if there exist some constants c1, c2 > 0 and x0 ∈D, such
that

kD(x0, x)≤ c1 log

(
1

ρ∂D(x)

)
+ c2, ∀x ∈D.

Here, kD(x, y) is the hyperbolic distance between x, y ∈D defined by

kD(x, y) := inf
γ

∫ 1

0

|γ̇(s)|
ρ∂D(γ(s))

ds,

where the infimum is taken over all the rectifiable curves γ : [0,1] →D such
that γ(0) = x and γ(1) = y. On the one hand,

kD(x0, x)≤ c3m

on

Dm :=
⋃{

Q ∈W :
b−1

2m
≤ diam(Q)≤ b

2m

}
for every m≥ 1 and some constants c3, b > 1, where W = {Q} is a Whitney de-
composition of D into closed dyadic cubes with disjoint interiors, and diam(Q)
denotes the diameter for a cube Q ∈W . Then, following the argument in [30,
page 76] of [30, Theorem 2], one can see that for each θ > 0,∫

D

kθD(x0, x)dx <∞.

On the other hand, according to [30, line 17 in page 76], there is a constant
c4 > 0 such that for every m≥ 1

log

(
1

ρ∂D(x)

)
≤ c4m, x ∈Dm.

From these, we can repeat the proof of [30, Theorem 2] and obtain that (7)
holds any Hölder domain of order 0.
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In the remainder of this subsection, we further assume that the Lévy process
X is symmetric, and adopt the following assumption on the Lévy measure ν:

(A2) For each R> 0, there exist two constants 0< r1 < r2 ≤R such that

S(r1, r2) :=
{
x ∈R

d : r1 ≤ |x| ≤ r2
}
⊆ supp(ν).

It is obvious that (A2) is weaker than (A1).
For any θ, c, r > 0, define

βθ,c(r) = 4Φ0

(
r

2

)
Φ1

(
ec(Φ0(

r
2 ))

1
θ
)
,

where

(8) Φ0(r) = (2π)−d

∫
e−r|q(ξ)| dξ, Φ1(r) = sup

|ξ|≤r

∣∣q(ξ)∣∣.
We have the following statement for intrinsic ultracontractivity of (TD

t )t≥0

under (A2) and (LDI).

Theorem 2. Suppose that X is a symmetric Lévy process such that (A2)
holds true, and that (LDI) also holds for the bounded domain D. If there
exists a constant θ > 0 such that for any c > 0,

Ψθ,c(r) :=

∫ ∞

r

β−1
θ,c (s)

s
ds <∞, r ≥ 1,

then the associated Dirichlet semigroup (TD
t )t≥0 is intrinsically ultracontrac-

tive, and there are constants c1, c2 > 0 such that for all t > 0 and x, y ∈D,

pD(t, x, y)≤ c1Ψ
−1
θ,c2

(t∧ 1)e−λ1tφ1(x)φ1(y).

Here, we use the convention that f−1(r) = inf{s > 0 : f(s)≤ r} and inf ∅=∞.

The intrinsic ultracontractivity for Dirichlet semigroup of symmetric α-
stable process on a bounded Hölder domain of order 0 was established in [10].
Theorem 2 generalizes such result to more general symmetric Lévy process,
whose Lévy measure may be singular or may not satisfy (A1). This can be
seen from the following example.

Example 3. Let X be a symmetric Lévy process with Lévy measure ν as
follows

ν(A) =
∞∑
i=0

∫
A

1

|z|d+α
1{2−2i−1≤|z|≤2−2i} dz, A ∈ B

(
R

d
)

for some α ∈ (0,2). Let D be a bounded Hölder domain of order 0. Then, the
associated Dirichlet semigroup (TD

t )t≥0 is intrinsically ultracontractive, and
for every θ > d/α, there exist constants c1, c2 > 0 such that

pD(t, x, y)≤ c1e
−λ1t exp

(
c2

(
1 + t−

d
αθ−d

))
φ1(x)φ1(y), t > 0, x, y ∈D.
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The rest of this paper is arranged as follows. In Section 2, we present some
preliminary results. Under assumptions (A1) and (RC), we verify that for
general Lévy process the Dirichlet heat kernel pD(t, x, y) is strictly positive
for every t > 0 and x, y ∈D. In particular, Corollary 7 here also yields the
strictly positivity of the transition density p(t, x, y), which is interesting of its
own. In Section 3, we prove Theorem 1 by making use of the methods in [15],
[21], [24] with some significant modifications. The last section is devoted to
the proof of Theorem 2. Comparing with the idea used in Section 3, here we
need establish the super Poincaré inequality for non-local Dirichlet forms and
derive explicit lower bound for ground state in term of characteristic exponent.

2. Preliminary result: The strict positivity of Dirichlet heat kernel

The following lemma, similar to [15, Lemma 2.5], is a direct consequence
of assumption (A1).

Lemma 4. Suppose (A1) holds. Then for any 0< r <R0,

(9) δ(r) := inf
|x|≤R0

ν
(
B(x, r)

)
> 0,

where R0 > 0 is the constant in (A1).

Proof. Suppose that
inf

|x|≤R0

ν
(
B(x, r0)

)
= 0

for some 0< r0 <R0. Then there exists a sequence {xn}∞n=0 ⊆B(0,R0) such
that

(10) lim
n→∞

xn = x0

and

(11) lim
n→∞

ν
(
B(xn, r0)

)
= 0.

According to (10) and (5), for n large enough

ν
(
B(xn, r0)

)
≥ ν

(
B

(
x0,

r0
2

))
> 0,

which contradicts with (11). This proves our desired conclusion (9). �

Next, we turn to the strictly positive property of the Dirichlet heat kernel
pD(t, x, y). We first recall the parabolic property of the Dirichlet heat kernel
pD(t, x, y) and the Lévy system of Lévy process X .

Lemma 5. (1) The Dirichlet heat kernel pD(t, x, y) enjoys the parabolic
property, that is, for any 0 < s < t, x, y ∈ D and stopping time τ with
τ ≤ τD,

(12) pD(t, x, y) = E
x
(
pD(t− τ ∧ s,Xτ∧s, y)

)
.
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(2) Let f be a non-negative measurable function on R+ ×R
d ×R

d vanishing
on the diagonal. Then for every x ∈R

d and stopping time T ,

(13) E
x

(∑
s≤T

f(s,Xs−,Xs)

)
= E

x

(∫ T

0

∫
Rd

f(s,Xs,Xs + z)ν(dz)ds

)
.

Proof. (1) We mainly follow the proof of [7, Theorem 4.5] to prove the
parabolic property for pD(t, x, y). For fixed t0 > 0 and y ∈ D, let q(s,x) =
pD(t0 − s,x, y) on [0, t0)×D. For every (t, x) ∈ [0, t0)×D, define a R+ ×D-

valued process Y by Ys := (t+ s,XD
s ) for 0≤ s < t0 − t, and denote {F̃s,0≤

s < t0 − t} by the associated natural filtration. The law of the space–time
process s �→ Ys starting from (t, x) will be denoted by P

(t,x). Since for each
t > 0, supx,y∈D pD(t, x, y) < ∞, q(Ys) is integrable for every 0 ≤ s < t − t0.
Then, for every 0< r < s < t0 − t,

E
(t,x)

(
q(Ys)

∣∣F̃r

)
= E

x
(
pD

(
t0 − t− s,XD

s , y
)∣∣Fr

)
= E

XD
r

(
pD

(
t0 − t− s,XD

s−r, y
))

=

∫
D

pD
(
s− r,XD

r , z
)
pD(t0 − t− s, z, y)dz

= pD
(
t0 − t− r,XD

r , y
)
= q(Yr),

where in the second equality {Fs,0≤ s < t0− t} denotes the natural filtration
generated by XD and we have used the Markov property of XD, and the
fourth equality follows from the semigroup property of the Dirichlet heat

kernel. Hence, {q(Ys), F̃s,0≤ s < t0 − t} is a martingale.
For every t > 0, choosing t0 = t in the definition of q above and using the

optional sampling theorem, we find for every 0 < s < t and stopping time
τ ≤ τD

pD(t, x, y) = q(0, x) = E
(0,x)q(Ys∧τ ) = E

x
(
pD

(
t− s∧ τ,XD

s∧τ , y
))
.

This finishes the proof of (12).
(2) We can follow the argument of [8, Section 5] (in particular [8, (5.3)]) to

get (13), and the details are omitted here. �

The main result of this section is the following.

Proposition 6. Let X be a (not necessarily symmetric) Lévy process sat-
isfying (A1), and let D be an open (not necessarily bounded) set such that
(RC) holds true. Then,

(14) pD(t, x, y)> 0, ∀t > 0, x, y ∈D.

As a direct consequence of Proposition 6, we have the following statement,
which is interesting of its own.
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Corollary 7. Let X be a (not necessarily symmetric) Lévy process sat-
isfying (A1). For any connected (not necessarily bounded) open set D,

pD(t, x, y)> 0, ∀t > 0, x, y ∈D.

In particular,

p(t, x, y)> 0, ∀t > 0, x, y ∈R
d,

where p(t, x, y) is the transition density for the process X .

Proof of Proposition 6. The proof is split into three steps, and the first two
steps are devoted to the proof of Corollary 7.

(1) We show that for any connected open set D, TD
t (1U )(x)> 0 for every

x ∈D, connected open set U ⊆D and t > 0. According to [3, Theorem 5.1],
there is a constant c0 > 0 such that for every r, t > 0 and x ∈R

d

P
x(τB(x,r) > t)≥ 1− c0t sup

|ξ|≤ 1
r

∣∣q(ξ)∣∣.
In particular, for any r > 0, we can find a constant t(r)> 0 such that

P
x
(
τB(x,r) > t(r)

)
≥ 1

2
, ∀x ∈R

d.

Let R0 be the constant in assumption (A1). Since D is connected, for every
x ∈D, connected open set U and t > 0, there exist constants t̃1 := t̃1(x,U, t)>

0, 0 < r̃1 := r̃1(x,U, t) <
R0

8 and a sequence {xi}N+1
i=1 ⊆D with N ≥ [ t

t̃1
]≥ 3,

such that the following properties hold:

(i) for every 1≤ i≤N , Bi ⊆D, BN+1 ⊆ U , and Bi∩Bi+1 =∅, where Bi :=
B(xi,2r̃1) and x1 = x. (Note that we do not require that Bi ∩Bj = ∅

for any i �= j, and so it may happen that Bi =Bj for some j �= i+ 1.)

(ii) For every 1≤ i≤N and yi ∈Bi, |yi − yi+1| ≤ R0

2 .

(iii) For every z ∈R
d,

(15) P
z(τB(z,r̃1) > 2t̃1)≥

1

2
.

Below, define a sequence of stopping times {τ̃Bi}Ni=1 as follows

τ̃B0 = 0, τ̃B1 := τB1 ,

τ̃Bi+1 := inf{t > τ̃Bi :Xt /∈Bi+1}, 1≤ i≤N − 1,

and let B̃i :=B(xi, r̃1) for 1≤ i≤N + 1. Then, we have

TD
t (1U )(x)(16)

≥ TD
t (1BN+1

)(x)

= E
x
(
1BN+1

(
XD

t

))
≥ P

x

((
1− 1

N

)
t̃1 < τ̃Bi − τ̃Bi−1 < t̃1 for each 1≤ i≤N,
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and ∀s∈[τ̃BN
,t]X

D
s ∈BN+1

)
≥ P

x

((
1− 1

N

)
t̃1 < τ̃Bi − τ̃Bi−1 < t̃1 and Xτ̃Bi

∈ B̃i+1

for each 1≤ i≤N, and ∀s∈[τ̃BN
,t]X

D
s ∈BN+1

)
= P

x

((
1− 1

N

)
t̃1 < τB1 < t̃1,XτB1

∈ B̃2;

· PXτ̃B1

((
1− 1

N

)
t̃1 < τB2 < t̃1,XτB2

∈ B̃3;

· PXτ̃B2

(
· · ·PXτ̃BN−1

((
1− 1

N

)
t̃1 < τBN

< t̃1,XτBN
∈ B̃N+1;

· PXτ̃BN (∀s∈[0,t−τ̃BN
]Xs ∈BN+1)

)
· · ·

)))
,

where in the last equality we used the strong Markov property.
Note that, if for any 1≤ i≤N ,(

1− 1

N

)
t̃1 < τ̃Bi − τ̃Bi−1 < t̃1,

then

t− τ̃BN
≤ t−N

(
1− 1

N

)
t̃1 = t−Nt̃1 + t̃1 ≤ 2t̃1,

where the last inequality follows from the fact t − Nt̃1 ≤ t̃1. Thus, when
Xτ̃BN

∈ B̃N+1 and (1− 1
N )t̃1 < τ̃Bi − τ̃Bi−1 < t̃1 for all 1≤ i≤N , we have

P
Xτ̃BN (∀s∈[0,t−τ̃BN

]Xs ∈BN+1)

≥ inf
y∈B̃N+1

P
y
(
Xt ∈B(y, r̃1) for all 0< t≤ 2t̃1

)
≥ inf

y∈B̃N+1

P
y(τB(y,r̃1) > 2t̃1)

≥ 1

2
,

where the last inequality we used (15).

On the other hand, for any 1 ≤ i ≤N , if Xτ̃Bi−1
∈ B̃i, then, according to

the Lévy system of the process X (see Lemma 5),

P
Xτ̃Bi−1

((
1− 1

N

)
t̃1 < τBi < t̃1,XτBi

∈ B̃i+1

)
≥ inf

y∈B̃i

∫ t̃1

(1− 1
N )t̃1

∫
Bi

pBi(s, y, z)

(∫
B̃i+1−z

ν(dw)

)
dz ds
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≥ t̃1
N

(
inf
y∈B̃i

P
y(τBi > t̃1)

)(
inf
z∈Bi

ν
(
B(xi+1 − z, r̃1)

))
≥ t̃1

N

(
inf
y∈B̃i

P
y(τB(y,r̃1) > t̃1)

)(
inf
z∈Bi

ν
(
B(xi+1 − z, r̃1)

))
.

By (15),

inf
y∈B̃i

P
y(τB(y,r̃1) > t̃1)>

1

2
.

For every z ∈Bi, since |xi+1−z| ≤ R0

2 and r̃1 <
R0

2 , B(xi+1−z, r̃1)⊆B(0,R0).
Then, assumption (A1) and Lemma 4 yield that

inf
z∈Bi

ν
(
B(xi+1 − z, r̃1)

)
> 0.

Therefore, for any 1≤ i≤N and Xτ̃Bi−1
∈ B̃i,

P
Xτ̃Bi−1

((
1− 1

N

)
t̃1 < τBi < t̃1,XτBi

∈ B̃i+1

)
> 0.

Combining all the estimates above with(16), we obtain that TD
t (1U )(x)> 0.

(2) For any connected open set D, we have proved that TD
t (1U )(x)> 0 for

any x ∈D, t > 0 and open connected subset U ⊆D. So, pD(t, x, z) > 0 for
almost surely z ∈D with respect to the Lebesgue measure (the exceptional
set may depend on x ∈ D and t > 0). Furthermore, it is obvious that if
assumption (A1) holds for ν, then it also holds for the Lévy measure ν̂ of the

dual process X̂ . Then, following the arguments in step (1), we can obtain
that for every x ∈D and t > 0, p̂D(t, x, z)> 0 for almost surely z ∈D.

Assume that pD(t, x, y) = 0 for some x, y ∈D and t > 0. Then,

0 = pD(t, x, y) =

∫
D

pD
(
t

2
, x, z

)
pD

(
t

2
, z, y

)
dz(17)

=

∫
D

pD
(
t

2
, x, z

)
p̂D

(
t

2
, y, z

)
dz.

On the other hand, by the conclusions above, pD( t2 , x, z)p̂
D( t2 , y, z) > 0 for

almost surely z ∈D, which is a contradiction with (17). Therefore, the as-
sumption above is not true; that is, pD(t, x, y) > 0 for every x, y ∈ D and
t > 0.

(3) Now we consider an open set satisfying (RC). It is easy to see that
in this case for every x, y ∈D, there exist an integer m≥ 1, some constants
0< ε< 1 and 0< r0 <

εR0

4 (here R0 is the constant in (A1)) and points xj ∈D
for 1≤ j ≤m, such that

(i) x ∈B(x1, r0), y ∈B(xm, r0).
(ii) For every 1≤ j ≤m− 1, |xj − xj+1| ≤ (1− ε)R0.
(iii) For every 1≤ i, j ≤m with i �= j, Ki ∩Kj =∅, where Ki :=B(xi, r0).
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For every t > 0, 1 ≤ j ≤m− 1 and zj ∈Kj , by the parabolic property of
Dirichlet heat kernel pD(t, x, y) and the Lévy system of the process X , see
Lemma 5,

pD(t, zj , zj+1)(18)

= E
zj

(
pD

(
t− t

2
∧ τKj ,X t

2∧τKj
, zj+1

))
≥ E

zj
(
pD(t− τKj ,XτKj

, zj+1)1{τKj
≤ t

2}1{XτKj
∈Kj+1}

)
=

∫ t
2

0

∫
Kj

pKj (s, zj , z)

∫
Kj+1−z

pD(t− s, z + z̃, zj+1)ν(dz̃)dz ds

≥
∫ t

2

t
4

∫
K̃j

pKj (s, zj , z)

×
∫
B(xj+1−xj ,r0/2)

pD(t− s, z + z̃, zj+1)ν(dz̃)dz ds,

where the last inequality follows from the fact that B(xj+1 − xj , r0/2) ⊆
Kj+1 − z for any z ∈ K̃j :=Kj/2 =B(xj , r0/2).

By the conclusion in step (2), for every connected set U ⊆D,

(19) pD(t, x, y)≥ pU (t, x, y)> 0, ∀t > 0, x, y ∈ U.

According to (19) and the fact that for every t > 0, pD(t, ·, ·) :D×D→ [0,∞)
is continuous, we know that

inf
z∈K̃j ,z̃∈B(xj+1−xj ,r0/2)

pD(t− s, z + z̃, zj+1)(20)

≥ inf
z∈K̃j ,z̃∈Kj+1−z

pD(t− s, z + z̃, zj+1)

≥ inf
z∈Kj+1

pD(t− s, z, zj+1)

=:C(t− s, r0, xj+1, zj+1)> 0.

Next, we suppose that pD(t, zj , zj+1) = 0 for some t > 0, zj ∈Kj and 1≤
j ≤m− 1. Then, by (18) and (20),∫ t

2

t
4

C(t− s, r0, xj+1, zj+1)

∫
K̃j

pKj (s, zj , z)

∫
B(xj+1−xj ,r0/2)

ν(dz̃)dz ds= 0,

which, along with (20), (A1) and the fact that B(xj+1 − xj , r0/2)⊆B(0,R0)

due to |xj+1 − xj | ≤ (1− ε)R0 and r0 <
εR0

4 , in turn implies that

(21) pKj (s, zj , z) = 0
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holds for (s, z) ∈ [ t4 ,
t
2 ]× K̃j almost surely under the measure dsdz. However,

according to (19), for every s > 0 and x̃, ỹ ∈Kj

(22) pKj (s, x̃, ỹ)> 0.

This is a contradiction with (21), whence

(23) pD(t, zj , zj+1)> 0, ∀t > 0, zj ∈Kj ,1≤ j ≤m− 1.

Finally, for every t > 0 and x, y ∈D,

pD(t, x, y)

=

∫
D

· · ·
∫
D

pD
(

t

m
,x, z1

)
pD

(
t

m
, z1, z2

)
· · ·pD

(
t

m
, zm, y

)
dz1 · · ·dzm

≥
∫
K1

· · ·
∫
Km

pD
(

t

m
,x, z1

)
pD

(
t

m
, z1, z2

)
· · ·pD

(
t

m
, zm, y

)
dz1 · · ·dzm

≥
∫
K1

· · ·
∫
Km

pK1

(
t

m
,x, z1

)
pD

(
t

m
, z1, z2

)
· · ·

× pD
(

t

m
, zm−1, zm

)
pKm

(
t

m
, zm, y

)
dz1 · · ·dzm.

This along with (22) and (23) gives us that pD(t, x, y)> 0 for every x, y ∈D
and t > 0, which proves our desired assertion. �

We conclude with two remarks on Proposition 6 and Corollary 7.

Remark 8. (1) When Lévy process X is symmetric and D is a bounded
connected open set, the strict positivity of Dirichlet heat kernel pD(t, x, y)
was proved in [15, Proposition 2.2(i)] without any additional condition on
the Lévy measure. However, the proof heavily depends on the symmetric
property, and it does not work for Corollary 7. An interesting point for
Corollary 7 is due to that it is concerned about non-symmetric Lévy processes.
Based on Proposition 6, some arguments for examples in [21, Section 4] can
be shortened. Furthermore, according to the proofs of Proposition 6 and
Lemma 16 below (in particular, see the construction of a sequence of subsets
{Di}ni=1 here), we can verify that, under the weaker assumption (A2) on the
Lévy measure ν, for any connected (not necessarily bounded) open set D,
pD(t, x, y)> 0 for any t > 0 and x, y ∈D. The details are left to readers.

(2) The proof of Proposition 6 is only based on the probability estimate of
the first exit time and the Lévy system of Lévy process X , both of which are
available for general Lévy type processes, see, for example, [3], [8]. Therefore,
Proposition 6 and so Corollary 7 still hold true for a large class of Lévy type
jump processes.
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3. Proof of Theorem 1

Throughout this section, we always assume that assumption (A1) holds

true, and the ground state φ1 and its dual ground state φ̂1 are bounded,
continuous and strictly positive. To prove Theorem 1, we mainly use the
methods in [15], [21], [24] but with non-trivial modifications. Since D is a

bounded set, there exist finite open subsets {D̃i}ni=1 such that

(i) D =
⋃n

i=1 D̃i.

(ii) For any 1≤ i≤ n and x̃i, ỹi ∈ D̃i, we have |x̃i − ỹi| ≤ R0

2 .

(iii) There are 0 < r0 < R0

8 and finite points {xi}ni=1 such that B(xi,2r0)

⊆B(xi,2r0)⊆ D̃i for every 1≤ i≤ n.

Below, we define

A :=
n⋃

i=1

B

(
xi,

r0
2

)
, B :=

n⋃
i=1

B(xi, r0), C :=

n⋃
i=1

B(xi,2r0).

For every open set U ⊆R
d, let

GU (x, y) =

∫ ∞

0

pU (t, x, y)dt, ĜU (x, y) =

∫ ∞

0

p̂U (t, x, y)dt, ∀x, y ∈ U

be the Green functions for the Dirichlet semigroup (TU
t )t≥0 and (T̂U

t )t≥0 re-
spectively, see, for example, [21]. Define

ηU = inf{t≥ 0,Xt /∈ U}, η̂U = inf{t≥ 0, X̂t /∈ U}.

We first provide the following estimate, which is crucial for the proof of The-
orem 1.

Lemma 9. There exists a constant c1 > 0 such that for every x ∈R
d,

(24) P
x(XηD\B ∈B)≥ c1E

x(ηD\B), P
x(X̂ηD\B ∈B)≥ c1E

x(η̂D\B).

Proof. For every x /∈D or x ∈B, we have P
x(ηD\B = 0) = 1, which imme-

diately implies that the estimate for X in (24) holds true. Now we assume
x ∈D \B, and so ηD\B = τD\B , P

x-a.s. By the Ikeda–Watanabe formula, see
[15, (2.1)],

P
x(XηD\B ∈B)≥ P

x(XτD\B ∈A) =

∫
D\B

GD\B(x, y)

∫
A−y

ν(dz)dy.(25)

For every y ∈D \B, there exists an integer 1≤ i≤ n such that y ∈ D̃i. Then,
by the definition of A, we obtain

(26) B

(
xi − y,

r0
4

)
⊆A− y.
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Moreover, since y,xi ∈ D̃i, by the property of D̃i we know that |xi − y| ≤ R0

2 .
Combining (26) with (9) yields that for every y ∈D \B

(27) ν(A− y)≥ ν

(
B

(
xi − y,

r0
4

))
≥ δ

(
r0
4

)
> 0.

According to (27) and (25),

P
x(XηD\B ∈B)≥ δ

(
r0
4

)∫
D\B

GD\B(x, y)dy

= δ

(
r0
4

)
E
x(τD\B) = δ

(
r0
4

)
E
x(ηD\B),

which arrived at the first desired assertion in (24) with c1 = δ( r04 ).
Following the arguments above, we can also obtain the estimate in (24) for

the dual process X̂ . �

Lemma 10. There exists a constant c2 > 0 such that for every x ∈D∫
C

GD(x, y)dy ≥ c2

∫
D\C

GD(x, y)dy,(28) ∫
C

ĜD(x, y)dy ≥ c2

∫
D\C

ĜD(x, y)dy.

Proof. The proof is mainly based on Lemma 9 and the argument of [21,
Lemma 3.5] (see also [15], [24]). We present the sketch here for the sake of
completeness. It suffices to show the first estimate in (28), since the second

one for the dual process X̂ can be proved similarly.
Let θt denote the t-time shift operator for the process X . Define a sequence

of stopping times as follows

S1 := 0, Tk := Sk + ηD\B ◦ θSk
, Sk+1 := Tk + ηC ◦ θTk

, k ≥ 1.

According to (24) and the strong Markov property, we immediately have that
for every x ∈R

d and k ≥ 1,

(29) P
x(XTk

∈B)≥ c1E
x(Tk − Sk).

By [21, Lemma 3.4],

lim
k→∞

Tk = lim
k→∞

Sk = τD, P
xa.s.(30)

Therefore, we have∫
C

GD(x, y)dy = E
x

(∫ τD

0

1C(Xt)dt

)
(31)

= E
x

( ∞∑
k=1

(∫ Tk

Sk

1C(Xt)dt+

∫ Sk+1

Tk

1C(Xt)dt

))
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≥ E
x

( ∞∑
k=1

∫ Sk+1

Tk

1C(Xt)dt

)

=
∞∑
k=1

E
x(Sk+1 − Tk),

where the first step follows from the relation Xt =XD
t for every t < τD, and

in the last step we have used the fact that Xt ∈C for every Tk < t < Sk+1.
It is well known that Lévy process enjoys the Feller property, that is, its

semigroup Tt maps C∞(Rd) into C∞(Rd) for every t > 0. By the separation
property of Feller process,

inf
y∈B

E
yτC ≥ t0

2

for some constant t0 > 0, see [21, (3.2)]. Hence, due to the strong Markov
property again, for every x ∈R

d and k ≥ 1,

E
x(Sk+1 − Tk) = E

x
(
E
XTk (τC);Tk < τD

)
≥ P

x(XTk
∈B) inf

y∈B
E
yτC

≥ c1t0
2

E
x(Tk − Sk)

=: cEx(Tk − Sk),

where the last inequality follows from (29). Combining this estimate with
(31) yields that∫

C

GD(x, y)dy ≥ c

∞∑
k=1

E
x(Tk − Sk)

≥ cEx

( ∞∑
k=1

∫ Tk

Sk

1D\C(Xt)dt

)

= cEx

( ∞∑
k=1

(∫ Tk

Sk

1D\C(Xt)dt+

∫ Sk+1

Tk

1D\C(Xt)dt

))

= cEx

(∫ τD

0

1D\C(Xt)dt

)
= c

∫
D\C

GD(x, y)dy,

where in the forth step we have used again the fact that Xt ∈ C for every
Tk < t < Sk+1. This proves the desired conclusion. �

According to Lemma 10, we can give lower bound estimates for ground

state φ1 and dual ground state φ̂1.
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Lemma 11. There exists a constant c3 > 0, such that for every x ∈D,

(32) E
x(τD)≤ c3φ1(x), E

x(τ̂D)≤ c3φ̂1(x).

Proof. We only verify the first estimate in (32) here. By (28), we have for
every x ∈D

E
x(τD) =

∫
C

GD(x, y)dy+

∫
D\C

GD(x, y)dy(33)

≤
(
1 +

1

c2

)∫
C

GD(x, y)dy.

Since C is a precompact subset of D and φ1 is strictly positive and continuous
on D, there is a constant C1 > 0 such that infz∈C φ1(z)≥C1. Hence, for every
x ∈D ∫

C

GD(x, y)dy ≤ 1

C1

∫
C

GD(x, y)φ1(y)dy

≤ 1

C1

∫
D

GD(x, y)φ1(y)dy =
1

C1λ1
φ1(x),

where in the equality we have used the fact that φ1(x)
λ1

=
∫
D
GD(x, y)φ1(y)dy,

see, for example, [9]. Combining this with (33), we arrive at the conclusion
(32). �

Now, we are in a position to present the following proof.

Proof of Theorem 1. According to (32), for any t > 0, x, y ∈D,

pD(t, x, y) =

∫
D

pD
(
t

3
, x, z

)∫
D

pD
(
t

3
, z,w

)
pD

(
t

3
,w, y

)
dwdz(34)

≤ c

(
t

3

)(∫
D

pD
(
t

3
, x, z

)
dz

)(∫
D

p̂D
(
t

3
, y,w

)
dw

)
= c

(
t

3

)
P
x

(
τD >

t

3

)
P
y

(
τ̂D >

t

3

)
≤

9c( t3 )

t2
E
x(τD)Ey(τ̂D)

≤
9c23c(

t
3 )

t2
φ1(x)φ̂1(y),

where in the first inequality we used the facts that pD(t,w, y) = p̂D(t, y,w)
and supz,w∈D pD( t3 , z,w) ≤ c( t3 ), and the second inequality follows from the

Chebyshev inequality. Hence, from (34) we know that the semigroup (TD
t )t≥0

is intrinsically ultracontractive.
Furthermore, according to [23], we know that for every t > 0,

c(t)≤ (2π)−d

∫
e−tRe q(ξ) dξ,
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which together with (34) yields the desired assertion (6) for t > 0 small enough.
The estimate in (6) for large t follows from [19, Theorem 2.7]. By now we
have finished the proof. �

To show the power of Theorem 1, we take the following example about
the truncated strictly α-stable process. In particular, comparing with [21,
Example 4.5], we do not require that D is κ-fat.

Example 12. Let X be a Lévy process on R
d with Lévy measure as follows

(35) ν(A)≥ c0

∫
S

∫ r0

0

1A(θr)
1

rd+α
drμ(dθ), A ∈ B

(
R

d
)
,

where α ∈ (0,2), r0, c0 > 0 and μ is a finite non-degenerate (not necessarily
symmetric) measure on the unit sphere S in the sense that its support is not
contained in any proper linear subspace of Rd. Let D be a bounded open
set satisfying assumption (RC) in Section 2 with R0 to be the constant r0
in (35). Then, the associated Dirichlet semigroup (TD

t )t≥0 is intrinsically
ultracontractive, and for all t > 0 and x, y ∈D,

pD(t, x, y)≤ c1e
−λ1t

(
1 + t−2−d/α

)
φ1(x)φ̂1(y)

holds for some constant c1 > 0.

Proof. Let ν be the Lévy measure given by (35), and let D be the open set
satisfying (RC). According to Proposition 6, Corollary 7 and (the proof of)
[29, Example 1.5], both the transition density p(t, x, y) and the Dirichlet heat
kernel pD(t, x, y) exist and fulfill all the conditions in Section 1.1. It is obvious
that (A1) holds. Then, the desired assertion follows from Theorem 1. �

Remark 13. (1) As mentioned in the beginning of Section 1.3, the intrinsic
ultracontractivity of Dirichlet semigroups for Brownian motion on a bounded
domain D depends on the geometry of the boundary of D. Furthermore,
by [27, Theorem 1.1] and the conclusion of Example 12, quantitative esti-
mates about C(t) in (4) are also different for intrinsically contractive Dirich-
let semigroups between Brownian motion and Lévy jump process on bounded
Lipschitz domains.

(2) The conclusion (6) can apply to get explicit upper estimates for Dirichlet
heat kernel pD(t, x, y). For instance, consider symmetric α-stable process on
bounded κ-fat domain D. Then, there is a constant c > 0 such that for any
x, y ∈D and t ∈ (0,1],

pD(t, x, y)≤ c

(
t−d/α ∧ t

|x− y|d+α

)(
φ1(x)

t
∧ 1

)(
φ1(y)

t
∧ 1

)
.

Indeed, it was shown in [2, Theorem 1] that for any x, y ∈D and t ∈ (0,1],

(36) pD(t, x, y)� p(t, x, y)Px(τD > t)Py(τD > t),
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where p(t, x, y) is the transition density of α-symmetric stable process, that
is,

p(t, x, y)�
(
t−d/α ∧ t

|x− y|d+α

)
.

On the other hand, according to (6), there is a constant c1 > 0 such that

(37) pD(t, x, y)≤ c1t
−d/α−2φ1(x)φ1(y), x, y ∈D, t ∈ (0,1].

By (36) and (37), we find that for some c2 > 0,

P
x(τD > t)≤ c2

(
φ1(x)

t
∧ 1

)
, x ∈D,

which along with (36) in turn yields the desired assertion.

4. Proof of Theorem 2

The main tool to prove Theorem 2 is different from that of Theorem 1, and
it is based on the (intrinsic) super Poincaré inequality for non-local Dirichlet
forms (this is the reason why we need require X to be symmetric in the
section). The super Poincaré inequality can be viewed as an alternative of
Rosen’s lemma, which is in the context of the super log-Sobolev inequality,
see, for example, [14, Theorem 5.1].

First, we recall some facts about Dirichlet form in our setting. Let X be a
symmetric Lévy process, and D be a bounded domain. Then, the symmetric
Dirichlet form (ED,D(ED)) for the Dirichlet semigroup (TD

t )t≥0 on L2(D;dx)
is given by

ED(f, f) =

∫
Rd

∫
Rd

(
f(x+ z)− f(x)

)2
ν(dz)dx,

D
(
ED

)
=C∞

c (D)
ED
1
,

where C∞
c (D) is the set of C∞ functions on D with compact support, and

C∞
c (D)

ED
1

denotes the extension of C∞
c (D) under the norm

‖f‖ED
1
:=

√
ED(f, f) + ‖f‖2L2(D;dx).

Since D is connected, the Dirichlet heat kernel pD(t, x, y) is strictly positive
for every t > 0 and x, y ∈D, see, for example, [15, Proposition 2.2(i)], and the
associated ground state φ1 (corresponding to the first eigenvalue λ1) can be
chosen to be bounded, continuous and strictly positive. The following result
is essentially taken from [27, Theorem 2.1 and Proposition 2.3], which give
us sufficient conditions for intrinsic ultracontractivity of (TD

t )t≥0 in terms
of (intrinsic) super Poincaré inequality for (ED,D(ED)) and lower bound of
ground state for φ1.
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Lemma 14. Assume that there is a decreasing function β0 : (0,∞)→ (0,∞)
such that ∫

D

f2(x)dx≤ sED(f, f) + β0(s)

(∫
D

∣∣f(x)∣∣dx)2

(38)

holds for all f ∈ C∞
c (D) and s > 0. Then the following intrinsic super

Poincaré inequality holds∫
D

f2(x)dx≤ sED(f, f) + β(s)

(∫
D

φ1(x)
∣∣f(x)∣∣dx)2

for all f ∈C∞
c (D) and s > 0, where

β(r) =
4β0(

r
2 )

Θ(1/(4β0(
r
2 )))

2
,(39)

Θ(r) = sup
{
s > 0 :

∣∣{x ∈D : φ1(x)≤ s
}∣∣≤ r

}
.

If moreover

Ψ(r) =

∫ ∞

r

β−1(s)

s
ds <∞, r ≥ 1,

then the associated Dirichlet semigroup (TD
t )t≥0 is intrinsically ultracontrac-

tive, and for some constant c1 > 0,

pD(t, x, y)≤ c1Ψ
−1(t∧ 1)e−λ1tφ1(x)φ1(y),

where −λ1 < 0 is the eigenvalue associated with the ground state φ1.

According to Lemma 14, in order to prove Theorem 2 one only need to
derive upper bound of β0(s) in the super Poincaré inequality (38), and lower
bound of Θ(r) defined by (39). First, we have the following lemma.

Lemma 15. Let X be a symmetric Lévy process given in Section 1.1. Then,
the super Poincaré inequality (38) holds with

β0(r) = Φ0(r), r > 0,

where Φ0 is given in (8).

Proof. By our assumption, the transition density p(t, x, y) satisfies that

sup
x,y∈Rd

p(t, x, y)≤ c(t), t > 0.

As mentioned in the proof of Theorem 1,

c(t)≤ (2π)−d

∫
e−t|q(ξ)| dξ =Φ0(t), t > 0,

see, for example, [23]. Then, the desired assertion follows from the estimate
above and [32, Theorem 3.3(2)] (or [33, Theorem 3.3.15]). �

Next, we turn to lower bound estimate for the ground state, which seems
to be interesting of itself.
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Lemma 16. Let X be a (not necessarily symmetric) Lévy process such that
(A2) is satisfied, and let D be a bounded domain. Then there is a constant
c1 > 0 such that

(40) φ1(x)≥
c1

Φ1(
1

ρ∂D(x) )
, x ∈D,

where Φ1 is given in (8).
If moreover (LDI) holds for D, then for any θ > 0, there exists constants

c2, c3 > 0 such that

Θ(r)≥ c2

Φ1(ec3r
− 1

θ )
, r > 0.

Proof. (1) Since φ1 is continuous and strictly positive on D, it suffices to
show (40) holds outside some compact subset of D. According to [3, The-
orem 5.1], there is a constant C1 > 0 such that for every r > 0, t > 0 and
x ∈R

d

(41) P
x(τB(x,r) > t)≥ 1−C1t sup

|ξ|≤ 1
r

∣∣q(ξ)∣∣ = 1−C1tΦ1

(
1

r

)
.

Take B(x0,2r0) ⊆ D with some x0 ∈ D and r0 > 0. According to (A2),
there exist constants 0 < r1 < r2 ≤ r0

16 such that for every ball B(z, r) ⊆
S(r1, r2), ν(B(z, r))> 0. Then, according to the proof of Lemma 4,

(42) ζ(r, r1, r2) := 1∧ inf
z∈Rd:B(z,r)⊆S(r1,r2)

ν
(
B(z, r)

)
> 0.

Below, we write ζ(r) for ζ(r, r1, r2), and let r̃ := r1+r2
2 .

Since D is bounded and connected, for every y ∈D with ρ∂D(y)≤ r̃
16 , we

can find finite points {yi}ni=1 := {yi(y)}ni=1 ⊆ D with some positive integer
n := n(y), such that the following properties hold true:

(i) y1 = y.
(ii) |yi+1 − yi|= r̃ for every 1≤ i≤ n− 1.
(iii) There exists a constant 0< ε< 1

16 ∧
r2−r1

3(r1+r2)
independent of y such that

B(yi,2εr̃)⊆D for every 2≤ i≤ n− 1, and B(yn,2εr̃)⊆B(x0, r0).
(iv) There exists a positive integer N such that

sup

{
n(y) : y ∈D,ρ∂D(y)≤ r̃

16

}
≤N.

In the following, for any y ∈ D with ρ∂D(y) ≤ r̃
16 . Let D1 := B(y, ρ∂D(y)),

D̃i :=B(yi, εr̃) and Di :=B(yi,2εr̃) for every 2≤ i≤ n. Define a sequence of
stopping times as follows

τ̃D1 := τD1 , τ̃Di+1 := inf{t > τ̃Di :Xt /∈Di+1}, i≥ 1.

Set t0 :=
1

4C1Φ1(
1
εr̃ )

and t1(y) :=
1

4C1Φ1(
1

ρ∂D(y) )
.
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For any y ∈D with ρ∂D(y)≤min{ε, 1
16}r̃, we have t1(y)≤ t0, and

TD
2t0(1B(x0,r0))(y)

≥ TD
2t0(1Dn)(y)

= E
y
(
1Dn

(
XD

2t0

))
≥ P

y

(
0< τ̃D1 < t1(y),0< τ̃Di − τ̃Di−1 <

t0
n
,

XD
τ̃Di−1

∈ D̃i for each 2≤ i≤ n, and ∀s∈[τ̃Dn ,2t0]X
D
s ∈Dn

)
= P

y

(
0< τ̃D1 < t1(y),0< τ̃Di − τ̃Di−1 <

t0
n
,

Xτ̃Di−1
∈ D̃i for each 2≤ i≤ n, and ∀s∈[τ̃Dn ,2t0]Xs ∈Dn

)
= P

y

(
1{0<τD1

<t1(y),XτD1
∈D̃2} · P

Xτ̃D1

(
0< τD2 <

t0
n
,XτD2

∈ D̃3;

· PXτ̃D2

(
· · ·PXτ̃Dn−2

(
0< τDn−1 <

t0
n
,XτDn−1

∈ D̃n;

· PXτ̃Dn−1 (∀s∈[0,2t0−τ̃Dn ]Xs ∈Dn)

)
· · ·

)))
,

where the last equality follows from the strong Markov property.
By (41), for every x ∈D,

P
x
(
Xt ∈B(x, εr̃) for all 0< t≤ 2t0

)
≥ P

x(τB(x,εr̃) > 2t0)≥
1

2
,(43)

which gives us that

P
Xτ̃Dn−1 (∀s∈[0,2t0−τ̃Dn ]Xs ∈Dn)

≥ inf
x∈D̃n

P
x
(
Xt ∈B(x, εr̃) for all 0< t≤ 2t0

)
≥ 1

2
.

On the other hand, for any 2≤ i≤ n− 1, if Xτ̃Di−1
∈ D̃i, then, by the Lévy

system of the process X , see Lemma 5,

P
Xτ̃Di−1

(
0< τDi <

t0
n
,XτDi

∈ D̃i+1

)
(44)

≥ inf
y∈D̃i

∫ t0
n

0

∫
Di

pDi(s, y, z)

(∫
D̃i+1−z

ν(dw)

)
dz ds

≥ t0
n

(
inf

y∈D̃i

P
y

(
τDi >

t0
n

))(
inf

z∈Di

ν
(
B(yi+1 − z, εr̃)

))
.
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For every w ∈B(yi+1 − z, εr̃) and z ∈Di, it holds that∣∣w− (yi+1 − yi)
∣∣ ≤ ∣∣w− (yi+1 − z)

∣∣+ |z − yi| ≤ 3εr̃,

and so

r1 ≤ |yi+1 − yi| − 3εr̃ ≤ |w| ≤ |yi+1 − yi|+ 3εr̃ ≤ r2.

This implies that

B(yi+1 − z, εr̃)⊆ S(r1, r2).

Using (42) and (43), we find that the right hand side of (44) is bigger than

t0ζ(εr̃)

N

(
inf

y∈D̃i

P
y(τB(y,εr̃) > t0)

)
≥ 3t0ζ(εr̃)

4N
.

Similarly, we can obtain that for every y ∈D with ρ∂D(y)≤min{ε, 1
16}r̃,

P
y
(
0< τD1 < t1(y),XτD1

∈ D̃2

)
≥ t1(y)ζ(εr̃)P

y
(
τB(y,ρ∂D(y)) > t1(y)

)
≥ 3t1(y)ζ(εr̃)

4

=
3ζ(εr̃)

16C1Φ1(
1

ρ∂D(y) )
.

Combining all the estimates above yields that for every y ∈D with ρ∂D(y)≤
min{ε, 1

16}r̃,

TD
2t0(1B(x0,r0))(y)≥

C2(
ζ(εr̃)
2N )Nζ(εr̃)

Φ1(
1

ρ∂D(y) )
≥ C3

Φ1(
1

ρ∂D(y) )
.

Therefore, for every y ∈D with ρ∂D(y)≤min{ε, 1
16}r̃

φ1(y) = e2λ1t0TD
2t0(φ1)(y)

≥ e2λ1t0
(

inf
z∈B(x0,r0)

φ1(z)
)
TD
2t0(1B(x0,r0))(y)≥

C4

Φ1(
1

ρ∂D(y) )
,

which proves (40).
(2) Suppose that D satisfies (LDI). Then, (7) and the Chebyshev inequality

yield that for each θ, s > 0,∣∣{x ∈D : ρ∂D(x)≤ s
}∣∣ = ∣∣∣∣{x ∈D : log

(
1

ρ∂D(x)

)
≥ c1 log

1

s

}∣∣∣∣
≤

∫
D
| log( 1

ρ∂D(x) )|θ dx
| log s|θ ≤ C6

| log s|θ .
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Therefore, by (40) and the increasing of Φ1(r), we get that for any r, θ > 0,

Θ(r) = sup
{
s > 0 :

∣∣{x ∈D : φ1(x)< s
}∣∣ ≤ r

}
≥ sup

{
s > 0 :

∣∣∣∣{x ∈D : Φ1

(
1

ρ∂D(x)

)
≥ c1

s

}∣∣∣∣ ≤ r

}
≥ sup

{
s > 0 :

∣∣∣∣{x ∈D : ρ∂D(x)≤
[
Φ−1

1

(
c1
s

)]−1}∣∣∣∣ ≤ r

}
≥ sup

{
s > 0 :

C6

logθΦ−1
1 ( c1s )

≤ r

}
≥ C7

Φ1(eC8r
− 1

θ )
,

where C7,C8 are positive constants depending on θ. The proof is complete.
�

Remark 17. According to [6, Theorem 1.1], (40) is not optimal for sym-
metric α-stable process on bounded C1,1-domain. However, as stated in
Lemma 16, (40) holds for general (not necessarily symmetric) Lévy process
and bounded domain with any regularity condition.

Proof of Theorem 2. Having Lemmas 14, 16 and 15 at hand, one can im-
mediately obtain Theorem 2. �

At the end of this section, we present the following example.

Proof of Example 3. By the definition of Lévy measure ν, it is clear that
assumption (A2) holds.

By some element calculations, one can get that there is a constant c2 ≥ 1
such that for r > 0 small enough

c−1
2 r−α ≤ r−2

∫
{|z|≤r}

|z|2ν(dz)≤
∫ (

1∧ |z|
r

)2

ν(dz)≤ c2r
−α.

According to [18, Proposition 1 and Lemma 5] and the inequality above, there
exists a constant c3 ≥ 1 such that for r > 0 large enough,

c−1
3 rα ≤Φ1(r)≤ c3r

α,

for r > 0 small enough

c−1
3 r−d/α ≤Φ0(r)≤ c3r

−d/α.

Furthermore, on the one hand, by [23, Theorem 1], we know that the pro-
cess X has transition density p(t, x, y) = p(t,0, y−x) such that for each t > 0,
(x, y) �→ p(t, x, y) : Rd × R

d → [0,∞) is continuous. On the other hand, [18,
Lemmas 5 and 7] and the Chapman–Kolmogorov equation for transition den-
sity p(t, x, y) yield that for any t > 0 and x, y ∈ R

d, p(t, x, y)> 0. Combining
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with all the conclusions above, we find that p(t, x, y) satisfies all the assump-
tions in Section 1.1. Besides, it is easy to see that all the assumptions for
pD(t, x, y) also hold true, thanks to [15, Proposition 2.2(i)].

The above estimates for Φ0 and Φ1 imply that for any θ > 0, there are
constants c4, c5 > 0 such that for r > 0 small enough,

β(r)≤ c4 exp
(
c5

(
1 + r−

d
αθ

))
.

Whence, the desired assertions follow from Theorem 2. �

Acknowledgments. The authors are indebted to the referee for his/her care-
ful corrections. The authors also would like to thank Professors Panki Kim,
Renming Song and Feng-Yu Wang for their helpful comments on previous
versions of the paper.

Financial support through “Yang Fan Project”of Science and Technology
Commission of Shanghai Municipality (No. 15YF1405900) (for Xin Chen),
National Natural Science Foundation of China (No. 11201073), the JSPS
postdoctoral fellowship (26·04021), National Science Foundation of Fujian
Province (No. 2015J01003), and the Program for Nonlinear Analysis and
Its Applications (No. IRTL1206) (for Jian Wang, the corresponding author)
is gratefully acknowledged.

References
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