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CRITICALITY AND SUBCRITICALITY OF GENERALIZED
SCHRÖDINGER FORMS

MASAYOSHI TAKEDA

Abstract. Let E be a Dirichlet form and μ a positive Kato mea-
sure. We define criticality and subcriticality for the Schrödinger

form, E(·, ·) + (·, ·)μ, through h-transform. For a certain poten-
tial μ, an analytic characterization of these properties is given in
terms of the bottom of spectrum.

1. Introduction

Let L=−∇ · (A∇) + V be a Schrödinger operator on a domain D of the
d-dimensional Euclidean space Rd and EV the associated Schrödinger form

EV (u,u) =

∫
D

(A∇u,∇u)dx+

∫
D

u2V dx, u ∈C∞
0 (D).

Suppose that EV is non-negative. Then Pinchover and Tintarev [11] prove
the following dichotomy: EV has a weighted spectral gap, that is, there exists
a positive function g > 0 such that

∫
D
u2g dx ≤ EV (u,u), or there exist a

sequence {ϕn} ⊂ C∞
0 (D) and a positive function ϕ satisfying Lϕ = 0 such

that ϕn converges to ϕ locally uniformly on D and EV (ϕn, ϕn) converges
to zero. The former (resp. the latter) corresponds to that L is subcritical
(resp. critical). Moreover, they establish an inequality of Poincaré-type in the
latter case: there exist a positive function g > 0 such that for any function
ψ ∈C∞

0 (D) with
∫
D
ψϕdx �= 0 there exists a constant C > 0 such that

(1.1)
1

C

∫
D

u2g dm≤ EV (u,u) +C

(∫
D

uψ dx

)2

.
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One of our objectives is to extend these results to more general Dirichlet
forms with non-local part. More precisely, let X be a locally compact separa-
ble metric space and m a positive Radon measure on X with full topological
support. Let M = (Px,Xt) be an m-symmetric Hunt process. We assume
that M is irreducible and strong Feller. We assume, in addition, that M
generates a regular Dirichlet form (E ,D(E)) on L2(X;m). Let μ= μ+ − μ−

be a suitable signed Radon measure such that the positive (resp. negative)
part μ+ (resp. μ−) belongs to the local Kato class (resp. the Kato class). We
consider a Schrödinger form (Eμ,D(Eμ)):

Eμ(u,u) = E(u,u) +
∫
X

u2 dμ, u ∈D
(
Eμ

)(
=D(E)∩L2

(
X;μ+

))
.

In this paper, we define the criticality or subcriticality for Eμ through h-
transform; we denote by Aμ

t the positive continuous additive functional with
Revez measure μ, and define the Feynman–Kac semigroup {pμt }t≥0 by

pμt f(x) =Ex

(
e−Aμ

t f(Xt)
)
.

We denote by Dloc(E) the set of functions locally in D(E) and introduce a
function space by

H+ =
{
h ∈Dloc(E)∩C(X) : h > 0, pμt h≤ h

}
.

Namely, H+ is the space of pμt -excessive functions. Suppose that H+ is not
empty and take h ∈H+. We then define the bilinear form (Eμ,h,D(Eμ,h)) on
L2(X;h2m) through h-transform of (Eμ,D(Eμ)):{

Eμ,h(u,u) = Eμ(hu,hu),
D(Eμ,h) = {u ∈ L2(X;h2m) : hu ∈D(Eμ)}.(1.2)

We see that (Eμ,h,D(Eμ,h)) turns out to be a regular Dirichlet form on
L2(X;h2m). Consequently, if H+ is not empty, then (Eμ,D(Eμ)) is non-

negative, Eμ(u,u)≥ 0 for all u ∈ D(Eμ). The semigroup {pμ,ht }t≥0 generated
by (Eμ,h,D(Eμ,h)) is expressed as

pμ,ht f(x) =
1

h(x)
pμt (hf)(x).

The subcriticality, criticality and superciriticality for the Schrödinger form
(Eμ,D(Eμ)) are defined as follows: (Eμ,D(Eμ)) is said to be subcritical (resp.
critical) if H+ is not empty and (Eμ,h,D(Eμ,h)) is transient (resp. recur-
rent) for some h ∈ H+. Besides, (Eμ,D(Eμ)) is said to be supercritical if
H+ is empty. We show that these definitions are well-defined (Lemma 4.2,
Lemma 4.3). To this end, we prove the following Poincaré-type inequality: if
(Eμ,D(Eμ)) is critical, then for any h ∈ H+ there exist a nearly Borel finely
closed set B with 0 <m(B) <∞ and a suitable strictly positive function g
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such that for any u ∈D(Eμ),

(1.3)

∫
X

(
u−Dh(u)h

)2
g dm≤ Eμ(u,u), Dh(u) = ‖h1B‖−2

2

∫
B

uhdm

(Theorem 3.2). As a result, the space H+ is one-dimensional, for h, h̃ ∈ H+

there exists a positive constant c such that h̃= ch. The inequality (1.3) follows
from [6, Theorem 4.8.2], which is an L2-version of Oshima’s inequality. If
the Hunt process M admits a positive, jointly continuous transition density,
we can derive from (1.3) an inequality similar to (1.1): for any bounded
Borel function ϕ with compact support and

∫
X
ϕdm �= 0 there exist a strictly

positive continuous function g in L1(X;m) and a positive constant C such
that

(1.4)
1

C

∫
X

u2g dm≤ Eμ(u,u) +C

(∫
X

uϕdm

)2

, u ∈D
(
Eμ

)
.

We further prove that if (Eμ,D(Eμ)) is subcritical, then there exists a
positive function g > 0 such that

(1.5)

∫
X

u2g dm≤ Eμ(u,u), u ∈D
(
Eμ

)
(Theorem 3.7).

The concept of extended Dirichlet spaces plays a crucial role in character-
izing the recurrence and transience of Dirichlet forms. The criticality and
subcriticality are generalized properties of the recurrence and transience re-
spectively. Thus, we can easily imagine that for characterizing the criticality
and subcriticality of Schrödinger forms, we need to introduce the concept of
“extended Schrödinger spaces” of (Eμ,D(Eμ)). In fact, we define, through
h-transform, the extended Schödinger form by (2.6) and study its properties
(Lemma 2.8, Lemma 2.9). Furthermore, we can show that the inequalities
(1.4) and (1.5) hold for all functions in the extended Schrödinger space. Ow-
ing to this extension, we can show that a Schrödinger form is critical if and
only if there exists a positive function h in the extended Schrödinger space
and Eμ(h,h) = 0. This fact is analogous to the fact that a Dirichlet form is
recurrent if and only if the constant function 1 is in the extended Dirichlet
space and E(1,1) = 0.

We denote by Mμ+

= (Pμ+

x ,Xt) the subprocess of M by the multiplicative

functional exp(−Aμ+

t ). We assume that if (E ,D(E)) is recurrent, then the

positive part μ+ is non-trivial, μ+ �≡ 0. In other words, the subprocess Mμ+

is
always assumed to be transient. In addition, the negative part μ− is supposed

to be Green-tight with respect to Mμ+

(Definition 2.2(2)). Define λ(μ) by

(1.6) λ(μ) := inf

{
E(u,u) +

∫
X

u2 dμ+ : u ∈D(E),
∫
X

u2 dμ− = 1

}
.
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Then we can show that (Eμ,D(Eμ)) is subcritical, critical and supercritical, if
and only if λ(μ)> 1, λ(μ) = 1 and λ(μ)< 1 respectively (Theorem 5.19). In

fact, if λ(μ)> 1, then the gauge function gμ(x) =Eμ+

x (exp(Aμ−

ζ )) is bounded

([2, Theorem 5.1]). Besides, we can show that gμ is an element of H+ and
that (Eμ,gμ

,D(Eμ,gμ

)) is transient (Lemma 5.5).
If λ(μ) = 1, the minimizer h of (1.6) is a harmonic function, Eμ(h,h) = 0.

The existence of the minimizer follows from [14, Theorem 2.1]. We can show
that the function h belongs to H+ and (Eμ,h,D(Eμ,h)) is recurrent; the func-
tion h belongs to the extended Schrödinger space and Eμ(h,h) = 0 if and
only if the constant function 1 belongs to the extended Dirichlet space of
(Eμ,h,D(Eμ,h)) and Eμ,h(1,1) = 0.

For the proof that h ∈H+ we prove an inequality,

(1.7) sup
x∈X

Gμν(x)≤ sup
x∈K

Gμν(x) · sup
x∈X

gμ(x),

where Gμ(x, y) =
∫ ∞
0

pμ(t, x, y)dt, ν is a smooth measure with topological
support K. This inequality, which is of independent interest, is regarded as a
version of the maximum principle; if μ− = 0, that is, if Gμ is the Green kernel

of the Markov process Pμ+

x , then supx∈X g(x) = 1 and (1.7) leads us to the
equality,

sup
x∈X

Gμν(x) = sup
x∈K

Gμν(x).

If the measure μ is negative, μ=−μ−, then λ(μ) = 1 implies

(1.8)

∫
X

u2 dμ≤ E(u,u)

and the equality in (1.8) holds for h. As a by-product of (1.3), we have a
refinement of (1.8):

(1.9)

∫
X

u2 dμ+

∫
X

(
u−Dh(u)h

)2
g dm≤ E(u,u).

We see from [15, Lemma 2.1] that (Eμ,D(Eμ)) is not non-negative definite
if and only if λ(μ)< 1. Hence if λ(μ)< 1, then H+ is empty and (Eμ,D(Eμ))
is supercritical.

We would like to comment on the space H+ of superharmonic functions.
We define the space of superharmonic functions in another way:

H̃+ =
{
h ∈Dloc(E)∩C(X) : h > 0,Eμ(h,ϕ)≥ 0,∀ϕ ∈D(E)∩C+

0 (X)
}
.

This definition is more preferable than that of H+ because it is directly related
to (Eμ,D(Eμ)). If the Dirichlet form (E ,D(E)) is local, then the two spaces are

identical, H+ = H̃+ (Lemma 4.7). However, if (E ,D(E)) contains a jumping
part, E(h,ϕ) is not well-defined for h ∈Dloc(E) and ϕ ∈C0(X).
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2. Schrödinger forms

Let X be a locally compact separable metric space and m a positive Radon
measure on X with full topological support. Let (E ,D(E)) be a regular ir-
reducible Dirichlet form on L2(X;m). We denote by u ∈ Dloc(E) if for any
relatively compact open set D there exists a function v ∈ D(E) such that
u = v m-a.e. on D. We denote by De(E) the family of m-measurable func-
tions u on X such that |u|<∞ m-a.e. and there exists an E -Cauchy sequence
{un} of functions in D(E) such that limn→∞ un = u m-a.e. We call De(E) the
extended Dirichlet space of (E ,D(E)).

Let M= (Ω,F ,{Ft}t≥0,{Px}x∈X ,{Xt}t≥0, ζ) be the symmetric Hunt pro-
cess generated by (E ,D(E)), where {Ft}t≥0 is the augmented filtration and
ζ is the lifetime of M. Denote by {pt}t≥0 and {Gα}α≥0 the semigroup and
resolvent of M:

ptf(x) =Ex

(
f(Xt)

)
, Gαf(x) =

∫ ∞

0

e−αtptf(x)dt.

We assume that M satisfies next two conditions:

Irreducibility (I). If a Borel set A is pt-invariant, that is, pt(1Af)(x) =
1Aptf(x) m-a.e. for any f ∈ L2(X;m) ∩ Bb(X) and t > 0, then A satisfies
either m(A) = 0 or m(X \A) = 0. Here Bb(X) is the space of bounded Borel
functions on X .

Strong Feller Property (SF). For each t, pt(Bb(X))⊂Cb(X), where
Cb(X) is the space of bounded continuous functions on X .

We remark that (SF) implies the following condition.

Absolute Continuity Condition (AC). The transition probability of
M is absolutely continuous with respect to m, p(t, x, dy) = p(t, x, y)m(dy) for
each t > 0 and x ∈X .

Under (AC), there exists a non-negative, jointly measurable α-resolvent
kernel Gα(x, y):

Gαf(x) =

∫
X

Gα(x, y)f(y)m(dy), x ∈X,f ∈Bb(X).

Moreover, Gα(x, y) is α-excessive in x and in y [6, Lemma 4.2.4]. We simply
write G(x, y) for G0(x, y). For a measure μ, we define the α-potential of μ by

Gαμ(x) =

∫
X

Gα(x, y)μ(dy).

Definition 2.1.

(1) A Dirichlet space (E ,D(E)) on L2(X;m) is said to be transient if there
exists a strictly positive, bounded function g ∈ L1(X;m) such that for
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u ∈D(E) ∫
X

|u|g dm≤
√
E(u,u).

(2) A Dirichlet space (E ,D(E)) on L2(X;m) is said to be recurrent if the
constant function 1 belongs to De(E) and E(1,1) = 0. Namely, there exists
a sequence {un} ⊂D(E) such that limn,m→∞ E(un−um, un−um) = 0 and
limn→∞ un = 1 m-a.e.

For other characterizations of transience and recurrence, see [6, Theo-
rem 1.6.2, Theorem 1.6.3].

We define the (1-)capacity Cap associated with the Dirichlet form (E ,D(E))
as follows: for an open set O ⊂X ,

Cap(O) = inf
{
E1(u,u) : u ∈D(E), u≥ 1,m-a.e. on O

}
and for a Borel set A⊂X ,

Cap(A) = inf
{
Cap(O) : O is open, O ⊃A

}
,

where Eα(u,u) = E(u,u) + α(u,u)m. A statement depending on x ∈ X is
said to hold q.e. on X if there exists a set N ⊂ X of zero capacity such
that the statement is true for every x ∈ X \ N . “q.e.” is an abbreviation
of “quasi-everywhere”. A real valued function u defined q.e. on X is said
to be quasi-continuous if for any ε > 0 there exists an open set G⊂X such
that Cap(G)< ε and u|X\G is finite and continuous. Here, u|X\G denotes the
restriction of u to X \G. Each function u in De(E) admits a quasi-continuous
version ũ, that is, u = ũ m-a.e. In the sequel, we always assume that every
function u ∈De(E) is represented by its quasi-continuous version.

Let S00 be the set of positive Borel measures μ such that μ(X)<∞ and
G1μ is bounded. We call a Borel measure μ on X smooth if there exists a
sequence {En} of Borel sets increasing to X such that 1En · μ ∈ S00 for each
n and

Px

(
lim

n→∞
σX\En

≥ ζ
)
= 1, ∀x ∈X,

where σX\En
is the first hitting time of X \En. We denote by S the set of

smooth, positive Borel measures. In [6], a measure in S is called a smooth
measure in the strict sense. Here we omit the adjective phrase “in the strict
sense”.

A stochastic process {At}t≥0 is said to be an additive functional (AF in
abbreviation) if the following conditions hold:

(i) At(·) is Ft-measurable for all t≥ 0.
(ii) There exists a set Λ ∈ F∞ = σ(

⋃
t≥0 Ft) such that Px(Λ) = 1, for all

x ∈ X , θtΛ ⊂ Λ for all t > 0, and for each ω ∈ Λ, A·(ω) is a function
satisfying: A0 = 0, At(ω)<∞ for t < ζ(ω), At(ω) =Aζ(ω) for t≥ ζ, and
At+s(ω) =At(ω) +As(θtω) for s, t≥ 0.
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If an AF {At}t≥0 is positive and continuous with respect to t for each ω ∈ Λ,
the AF is called a positive continuous additive functional (PCAF in abbre-
viation). The set of all PCAF’s is denoted by A+

c . The family S and A+
c

are in one-to-one correspondence (Revuz correspondence) as follows: for each
smooth measure μ, there exists a unique PCAF {At}t≥0 such that for any
f ∈ B+(X) and γ-excessive function h (γ ≥ 0), that is, e−γtpth≤ h,

(2.1) lim
t→0

1

t
Eh·m

(∫ t

0

f(Xs)dAs

)
=

∫
X

f(x)h(x)μ(dx)

[6, Theorem 5.1.7]. Here, Eh·m(·) =
∫
X
Ex(·)h(x)m(dx). We denote by Aμ

t the

PCAF corresponding to μ ∈ S. For a signed smooth measure μ = μ+ − μ−,

we define Aμ
t =Aμ+

t −Aμ−

t .
We define some classes of smooth measures.

Definition 2.2. Suppose that μ ∈ S is a positive Radon measure.

(1) μ is said to be in the Kato class of M (K in abbreviation) if

lim
α→∞

‖Gαμ‖∞ = 0.

μ is said to be in the local Kato class (Kloc in abbreviation) if for any
compact set K, 1K · μ belongs to K.

(2) Suppose that M is transient. A measure μ is said to be in the class K∞
if for any ε > 0, there exists a compact set K =K(ε)

sup
x∈X

∫
Kc

G(x, y)μ(dy)< ε.

μ in K∞ is called Green-tight.

We note that every measure treated in this paper is supposed to be Radon.
Thus we see from [1, Theorem 3.9] that μ ∈K if and only if

(2.2) lim
t↓0

sup
x∈X

Ex

(
Aμ

t

)
= lim

t↓0
sup
x∈X

∫ t

0

∫
X

p(s,x, y)μ(dy)ds= 0.

We denote the Green-tight class by K∞(G) if we would like to emphasize the
dependence of the Green kernel. Chen [2] defines the Green-tight class in
slightly different way; however the two definitions are equivalent under (SF)
[8, Lemma 4.1]. We see from [13] that for α≥ 0 and μ ∈K

(2.3)

∫
X

u2 dμ≤ ‖Gαμ‖∞ · Eα(u,u) for any u ∈D(E).

Let μ= μ+ − μ− ∈Kloc −K. We define the Schrödinger form by{
Eμ(u,u) = E(u,u) +

∫
X
u2 dμ,

D(Eμ) =D(E)∩L2(X;μ+).
(2.4)

We denote by Lμ = L−μ the self-adjoint operator associated with the closed
symmetric form (Eμ,D(Eμ)), (−Lμu, v)m = Eμ(u, v).
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Lemma 2.3. D(Eμ)∩C0(X) =D(E)∩C0(X).

Proof. Noting that μ+ is a Radon measure, we have

D
(
Eμ

)
∩C0(X) =D(E)∩L2

(
X;μ+

)
∩C0(X) =D(E)∩C0(X). �

We will establish the criticality theory for Schrödinger forms through h-
transform. Let us introduce a function space:

H+ =
{
h ∈Dloc(E)∩C(X) : h > 0, pμt h≤ h

}
.

Assume that H+ is not empty. Then for h ∈ H+ define the bilinear form
(Eμ,h,D(Eμ,h)) on L2(X;h2m) by{

Eμ,h(u,u) = Eμ(hu,hu),
D(Eμ,h) = {u ∈ L2(X;h2m) : hu ∈D(Eμ)}.(2.5)

The next lemma is proved in the manner of [6, Theorem 6.3.2].

Lemma 2.4. For ϕ ∈ D(E) ∩ C0(X), the function ϕ/h belongs to D(E) ∩
C0(X).

Proof. Let K be the support of ϕ and D an open set containing K. Put
c= 1/(infx∈K h(x)). Then, for (x, y) ∈D×D∣∣∣∣ϕh (x)

∣∣∣∣ ≤ c
∣∣ϕ(x)∣∣,∣∣∣∣ϕh (x)− ϕ

h
(y)

∣∣∣∣ ≤ 2c
∣∣ϕ(x)−ϕ(y)

∣∣+ c2
∣∣h(x)ϕ(x)− h(y)ϕ(y)

∣∣.
Since ϕ and hϕ belong to D(E), the function ϕ/h also belongs to D(E) by [6,
Theorem 1.5.2(ii)]. �

Lemma 2.5. D(Eμ,h)∩C0(X) =D(E)∩C0(X).

Proof. By the definition of D(Eμ,h) and Lemma 2.3, u ∈ D(Eμ,h) ∩C0(X)
if and only if uh ∈ D(E) ∩C0(X). Moreover, it follows from Lemma 2.4 that
uh ∈D(E)∩C0(X) if and only if u ∈D(E)∩C0(X). �

Lemma 2.6. (Eμ,h,D(Eμ,h)) is a regular Dirichlet form on L2(X;h2m).

Proof. We see from Lemma 2.5 that D(Eμ,h) ∩ C0(X) is dense in C0(X)
with respect to the uniform norm.

Suppose v ∈ D(Eμ,h). Then by the definition of D(Eμ,h), hv ∈ D(Eμ) and
by the regularity of (E ,D(E)) there exists a sequence {ϕn} ⊂ D(E) ∩ C0(X)
such that Eμ(hv − ϕn, hv − ϕn) converges to 0 as n → ∞. Hence, ϕn/h ∈
D(Eμ,h)∩C0(X) and

Eμ,h

(
v− ϕn

h
, v− ϕn

h

)
= Eμ(hv−ϕn, hv−ϕn)→ 0 as n→∞,

which implies the regularity of (Eμ,h,D(Eμ,h)). �
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Let us denote by Mμ,h the Hunt process generated by the regular Dirichlet
form (Eμ,h,D(Eμ,h)). By the definition of (Eμ,h,D(Eμ,h)), the semigroup {pht }
of Mμ,h is h2m-symmetric and

pht f(x) =
1

h(x)
Ex

(
exp

(
−Aμ

t

)
h(Xt)f(Xt)

)
, f ∈ Bb(X).

The irreducibility of Mμ,h follows from that of M because exp(−Aμ
t )h(Xt)>

0. Moreover, Mμ,h satisfies

(LSC) For γ > 0, every γ-excessive function is lower-semi-continuous.

Indeed, let Gμ,h
γ be the γ-resolvent of Mμ,h. Then for g ∈ Bb(X),

1

h(x)
Gμ

γ

(
g(h∧ n)

)
(x) ↑Gμ,h

γ g(x), as n→∞.

The function Gμ
γ (g(h ∧ n)) is continuous on X by the strong Feller property

of pμt (see [3, Theorem 1.1]), and thus Gμ,h
γ g is lower-semi-continuous.

Lemma 2.7. For h ∈ H+ suppose that (Eμ,h,D(Eμ,h)) is transient. Then
Mμ,h satisfies (LSC). In particular, Gμ,hg is lower-semi-continuous for each
positive Borel function g.

Let De(Eμ,h) be the extended Dirichlet space of the regular Dirichlet form
(Eμ,h,D(Eμ,h)). We define the extended Schrödinger space De(Eμ) by{

Eμ(u, v) = Eμ,h(uh ,
v
h ),

De(Eμ) = {u : u
h ∈De(Eμ,h)}.(2.6)

We give another definition of the extended Schrödinger space similar to that
of the extended Dirichlet form, that is, the family of m-measurable functions
u such that |u|<∞ m-a.e. and there exists an Eμ-Cauchy sequence {un} of

functions in D(Eμ) such that limn→∞ un = u m-a.e. Denote by D̃e(Eμ) this

family, and for u ∈ D̃e(Eμ) and the sequence {un} define

(2.7) Ẽμ(u,u) = lim
n→∞

Eμ(un, un).

Then we see that (Ẽμ, D̃e(Eμ)) is well defined.

Lemma 2.8. D̃e(Eμ) =De(Eμ) and Ẽμ = Eμ.

Proof. For any u ∈ De(Eμ), the function u/h is in De(Eμ,h) by definition,
and thus there exists an approximating sequence {ϕn} ⊂ D(Eμ,h) of u/h.
Then {hϕn} is an Eμ-Cauchy sequence in D(Eμ) such that limn→∞ hϕn =

h · (u/h) = u m-a.e. Hence, u belongs to D̃e(Eμ).

For any u ∈ D̃e(Eμ), there exists a Eμ-Cauchy sequence {ϕn} in D(Eμ)
such that limn→∞ϕn = u m-a.e. Then {ϕn/h} is an Eμ,h-Cauchy sequence
in D(Eμ,h) such that limn→∞ϕn/h= u/h m-a.e. Hence, u/h is in De(Eμ,h),
and thus u in De(Eμ). �
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We see from Lemma 2.8 that the space De(Eμ) is independent of h ∈H+.
We call the space De(Eμ) an extended Schrödinger space and the sequence

{un} in the definition of D̃e(Eμ) an approximating sequence of u ∈ D̃e(Eμ). In

the definition of D̃e(Eμ), the condition for {un} being an Eμ-Cauchy sequence
can be replaced by supn Eμ(un, un)<∞:

Lemma 2.9. Let {un} be a sequence of functions in D(Eμ) such that

sup
n

Eμ(un, un)<∞, lim
n→∞

un = u m-a.e.

Then u belongs to De(Eμ).

Proof. The sequence {un/h} ⊂D(Eμ,h) satisfies

sup
n

Eμ,h

(
un

h
,
un

h

)
<∞, lim

n→∞
un

h
=

u

h
m-a.e.

Hence, u/h is in De(Eμ,h) by [12, Definition 1.6], and so u in De(Eμ). �

3. Poincaré-type inequalities for Schrödinger forms

First, we would like to remind the reader an inequality for recurrent Dirich-
let forms [6, Theorem 4.8.2(ii)]. A Hunt process M = (Px,Xt) is said to be
Harris recurrent if for any Borel set B with m(B)> 0∫ ∞

0

1B(Xs)ds=∞, Px-a.s. for any x ∈X.

Theorem 3.1. Suppose M is Harris recurrent. Then there exist a nearly
Borel finely closed set B with 0<m(B)<∞ and a strictly positive function
g in L1(X;m) such that for all u ∈De(E)

(3.1)

∫
X

(
u(x)− 1

m(B)

∫
B

udm

)2

g(x)m(dx)≤ E(u,u).

We apply this Poincaré-type inequality to Schrödinger forms.

Theorem 3.2. Assume that (Eμ,h,D(Eμ,h)) is recurrent for h ∈H+. Then
there exist a nearly Borel finely closed set B with 0<m(B)<∞ and a strictly
positive function g in L1(X;h2m) such that for any u ∈De(Eμ),

(3.2)

∫
X

(
u−Dh(u)h

)2
g(x)m(dx)≤ Eμ(u,u),

where Dh(u) = ‖h1B‖−2
2

∫
B
u(x)h(x)m(dx).

Proof. First, remark that an irreducible, recurrent, symmetric Hunt pro-
cess satisfying (AC) is Harris recurrent [6, Lemma 4.8.1]. Since Mμ,h is an
h2m-symmetric Hunt process with transition density:

pμ,h(t, x, y) =
pμ(t, x, y)

h(x)h(y)
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with respect to h2m, it is Harris recurrent. Hence, we can apply Theorem 3.1
to Mμ,h; there exist a Borel set B with

∫
B
h2(x)m(dx) < ∞ and a strictly

positive bounded g ∈ L1(h2m) such that for all u ∈De(Eμ,h),∫
X

∣∣∣∣u(x)−(∫
B

h2(x)m(dx)

)−1 ∫
B

u(x)h2(x)m(dx)

∣∣∣∣2g(x)h2(x)m(dx)

≤ Eμ,h(u,u).

Let L(u) = (
∫
B
h2(x)m(dx))−1

∫
B
u(x)h2(x)m(dx). We then know

(3.3)

∫
X

∣∣u(x)−L(u)
∣∣2g(x)h2(x)m(dx)≤ Eμ(hu,hu).

Put v = hu. Then v is an element of De(Eμ) and (3.3) leads us to

(3.4)

∫
X

∣∣v(x)−Dh(v)h(x)
∣∣2g(x)m(dx)≤ Eμ(v, v),

where

Dh(v) = L(v/h) = ‖h1B‖−2
2

∫
B

vhdm. �

We, in addition, make the next assumption:

(PC) The transition probability density p(t, x, y) is strictly positive and
jointly continuous on X ×X .

Denote by B+
b,0(X) the set of non-negative functions on X with compact

support.

Lemma 3.3. Assume (PC). Then the 1-resolvent density of the time

changed process by
∫ t

0
ϕ(Xs)ds, ϕ ∈ B+

b,0(X), is bounded from below by a
positive constant on the fine support of ϕ ·m,

inf
(x,y)∈F×F

Ǧ1(x, y)> 0,

where Ǧ1 is the 1-resolvent density of the time changed process and F is the
fine support of ϕ ·m.

Proof. Put μ= ϕ·m and define τt = inf{s > 0 : Aμ
s > t} (Aμ

t =
∫ t

0
ϕ(Xs)ds).

Then

Ǧ1f(x) =Ex

(∫ ∞

0

e−tf(Xτt)dt

)
=Ex

(∫ ∞

0

e−Aμ
t f(Xt)dA

μ
t

)
=Gμ(f · μ), x ∈ F,

and so Ǧ1(x, y) = Gμ(x, y) for (x, y) ∈ F × F . Noting that pμt f(x) ≥
Ex(exp(−βt)f(Xt)), ‖ϕ‖∞ = β, we have Gμ(x, y)≥Gβ(x, y). It follows from
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(PC) that Gβ(x, y) is strictly positive and lower-semi-continuous. Therefore,
we have

inf
(x,y)∈F×F

Ǧ1(x, y)≥ inf
(x,y)∈F×F

Gβ(x, y)> 0. �

Through Lemma 3.3, we can follow the argument in [6, Section 4.8] and
extend the inequality (3.2) as follows: for any ϕ ∈ B+

b,0(X) with
∫
X
ϕdm �= 0

there exist a strictly positive continuous function g in L1(X;m) such that for
any u ∈D(E),

(3.5)

∫
X

(
u−L(u)

)2
g dm≤ E(u,u), L(u) =

∫
X

uϕdm
/∫

X

ϕdm.

For ϕ= ϕ+ −ϕ− ∈ B+
b,0(X)−B+

b,0(X), put

L+(u) =

∫
X
uϕ+ dm∫

X
ϕ+ dm

, L−(u) =

∫
X
uϕ− dm∫

X
ϕ− dm

and

c+ =

∫
X
ϕ+ dm∫

X
ϕdm

, c− =

∫
X
ϕ− dm∫

X
ϕdm

.

Note that

L(u) = c+L+(u)− c−L−(u), c+ − c− = 1

and

u−L(u) =
(
c+ − c−

)
u−

(
c+L+(u)− c−L−(u)

)
= c+

(
u−L+(u)

)
− c−

(
u−L−(u)

)
.

We then have∫
X

u2g dm≤ 2

∫
X

(
u−L(u)

)2
g dm+ 2L(u)2

∫
X

g dm

≤ 4
(
c+

)2 ∫
X

(
u−L+(u)

)2
g dm+ 4

(
c−

)2 ∫
X

(
u−L−(u)

)2
g dm

+ 2

∫
X
g dm

(
∫
X
ϕdm)2

(∫
X

uϕdm

)2

.

Letting

C = 4
((
c+

)2
+

(
c−

)2)∨(
2

∫
X
g dm

(
∫
X
ϕdm)2

)
,

we see from (3.5) that

1

C

∫
X

u2g dm≤ E(u,u) +C

(∫
X

uϕdm

)2

.

Hence, we have the next corollary.
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Corollary 3.4. Assume M satisfies (PC). If (E ,D(E)) is recurrent, then
for any ϕ ∈ Bb,0(X) with

∫
X
ϕdm �= 0 there exists a strictly positive function

g in L1(X;m) and a positive constant C such that

(3.6)
1

C

∫
X

u2g dm≤ E(u,u) +C

(∫
X

uϕdm

)2

, u ∈De(E).

Applying Corollary 3.4 to (Eμ,h,D(Eμ,h)), we have

Corollary 3.5. Assume M satisfies (PC). If (Eμ,D(Eμ)) is critical, then
for any ϕ ∈ Bb,0(X) with

∫
X
ϕhdm �= 0 there exist a strictly positive bounded

function g and a positive constant C such that

(3.7)
1

C

∫
X

u2g dm≤ Eμ(u,u) +C

(∫
X

uϕdm

)2

, v ∈De

(
Eμ

)
.

Proof. By Corollary 3.4, for any φ ∈ Bb,0(X) with
∫
X
φh2 dm �= 0 there

exists a function g in L1(X;h2m) a positive constant C such that

(3.8)
1

C

∫
X

v2gh2 dm≤ Eμ,h(v, v) +C

(∫
X

vφh2 dm

)2

, u ∈De

(
Eμ,h

)
.

Putting u = vh ∈ De(Eμ) and ϕ = φh ∈ Bb,0(X), we have (3.7). Note that∫
X
φh2 dm �= 0 is replaced by

∫
X
ϕhdm �= 0. �

The inequality (3.7) is established in [11] for critical Schrödinger differential
operators. We would like to emphasize that (3.7) is derived from (3.2).

Lemma 3.6. If (Eμ,h,D(Eμ,h)) is transient for h ∈H+, then there exists a
strictly positive continuous function g such that ‖Gμ,h(g)‖∞ ≤ 1.

Proof. First, note that Mμ,h satisfies (I) and (LSC). Applying [7, Corollary
(2.3)], we can show by the same argument as in [14, Lemma 2.4] that there
exists a strictly positive continuous function f such that the measure fh2m
belongs to the Green-tight Kato class associated with Mμ,h, and consequently
‖Gμ,h(f)‖∞ <∞ by Chen [2, Proposition 2.2]. Hence, g := f/‖Gμ,h(f)‖∞ is
a desired one. �

Theorem 3.7. Let h ∈H+ and suppose (Eμ,h,D(Eμ,h)) is transient. Then
there exists a strictly positive continuous function g such that for u ∈De(Eμ)

(3.9)

∫
X

u2g dm≤ Eμ(u,u).

Proof. Let g be the function in Lemma 3.6. We see from (2.3) that∫
X

v2gh2 dm≤ Eμ,h(v, v), v ∈De

(
Eμ,h

)
.
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Putting u= hv ∈De(Eμ), we obtain∫
X

u2g dm≤ Eμ,h

(
u

h
,
u

h

)
= Eμ(u,u). �

We would like to emphasize that the inequalities (3.2), (3.9) hold for all ele-
ments in the extended Schrödinger space De(Eμ). In particular, this extension
is crucial for defining the criticality of Schrödinger forms.

4. Criticality and subcriticality

Lemma 4.1. Suppose that (Eμ,h,D(Eμ,h)) is recurrent for a function h in
H+. Then the function h belongs to De(Eμ) and Eμ(h,h) = 0.

Proof. We see from [6, Theorem 1.6.3] that the constant function 1 be-
longs to De(Eμ,h) if and only if (Eμ,h,D(Eμ,h)) is recurrent. Hence, there
exists an approximating sequence {ϕn} ⊂ D(Eμ,h) of 1. Then {hϕn} ⊂ D(E)
becomes an approximating sequence of h, and thus this lemma follows from
the definition of extended Schrödinger form. �

Lemma 4.2. Suppose H+ is not empty. If (Eμ,h,D(Eμ,h)) is transient for
some h ∈H+, then so is for any h ∈H+.

Proof. First, note that by (I), (Eμ,h,D(Eμ,h)) is either transient or recur-

rent. Suppose that for h and h̃ in H+, (Eμ,h,D(Eμ,h)) and (Eμ,h̃,D(Eμ,h̃)) are
transient and recurrent respectively. Then it follows from Theorem 3.7 there
exists g > 0 such that

(4.1)

∫
X

u2g dm≤ Eμ(u,u), for u ∈De

(
Eμ

)
.

Since h̃ belongs to De(E),

(4.2)

∫
X

h̃2g dm≤ Eμ(h̃, h̃) = 0

by (4.1) and Lemma 4.1. Consequently, h̃= 0 m-a.e., which is contradictory.
�

Lemma 4.3. Suppose H+ is not empty. If (Eμ,h,D(Eμ,h)) is recurrent for

some h ∈H+, then each h̃ ∈H+ can be written as h̃= ch. Here c is a positive
constant.

Proof. By Theorem 3.2 and Lemma 4.1,∫
X

(
h̃−Dh(h̃)h

)2
g(x)m(dx)≤ Eμ(h̃, h̃) = 0,

and thus h̃= ch, c=Dh(h̃). �
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On account of Lemma 4.2 and Lemma 4.3 we define the subcriticality,
criticality and supercriticality for Schrödinger forms as follows.

Definition 4.4. Let μ ∈ Kloc −K and (Eμ,D(Eμ)) the Schrödinger form
defined by (2.4).

(1) (Eμ,D(Eμ)) is said to be subcritical if (Eμ,h,D(Eμ,h)) is transient for some
h ∈H+.

(2) (Eμ,D(Eμ)) is said to be critical if (Eμ,h,D(Eμ,h)) is recurrent for some
h ∈H+.

(3) (Eμ,D(Eμ)) is said to be supercritical if H+ = ∅.

Remark 4.5. Suppose H+ is not empty. Then for h ∈H+,

Eμ(u,u) = Eμ,h

(
u

h
,
u

h

)
≥ 0.

Hence, if Eμ is not positive definite, then H+ is empty, i.e., (Eμ,D(Eμ)) is
supercritical by definition.

A Dirichlet form (E ,D(E)) is said to be local, if E(u, v) = 0 for any u, v ∈
D(E) with supp[u]∩ supp[v] = ∅.

Lemma 4.6. If (E ,D(E)) is local, then so is (Eμ,h,D(Eμ,h)).

Proof. Since

supp[u]∩ supp[v] = ∅ ⇐⇒ supp[hu]∩ supp[hv] = ∅,

this lemma follows from the definition of (Eμ,h,D(Eμ,h)). �

Assume that (E ,D(E)) is local. We set

H̃+ =
{
h ∈Dloc(E)∩C(X) : Eμ(h,ϕ)≥ 0 for any ϕ ∈D(E)∩C+

0 (X)
}
.

Lemma 4.7. If (E ,D(E)) is local, then

H+ = H̃+.

Proof. (i) (H+ ⊂ H̃+). Let ϕ ∈D(E)∩C0(X). Then

Eμ,h

(
u,

ϕ

h

)
= Eμ(hu,ϕ), u ∈D

(
Eμ,h

)
.

By Lemma 4.6, the Dirichlet form Eμ,h(u, v) is written as

Eμ,h(u, v) =
1

2

∫
X

dμ̃c
〈u,v〉 +

∫
X

uv dk̃,

where μ̃c
〈u,v〉 is the energy measure of u and v associated with the strongly

local part of Eμ,h and k̃ is the killing measure (see [6, Theorem 5.3.1]).
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For u ∈D(E)∩C0(X) such that u= 1 on supp[ϕ],

Eμ,h

(
u,

ϕ

h

)
=

1

2

∫
X

dμ̃c
〈u,ϕ/h〉 +

∫
X

u
ϕ

h
dk̃

=
1

2

∫
X

dμ̃c
〈1,ϕ/h〉 +

∫
X

ϕ

h
dk̃ =

∫
X

ϕ

h
dk̃.

In addition,

Eμ(hu,ϕ) =
1

2

∫
X

dμc
〈hu,ϕ〉+

∫
X

huϕdμ=
1

2

∫
X

dμc
〈h,ϕ〉+

∫
X

hϕdμ= Eμ(h,ϕ),

where μc
〈u,v〉 is the energy measure of the strongly local part of E . Hence for

any non-negative function ϕ in D(E)∩C0(X)

Eμ(h,ϕ) = Eμ(hu,ϕ) = Eμ,h(u,ϕ/h) =

∫
X

ϕ

h
dk̃ ≥ 0.

(ii) (H+ ⊃ H̃+). Let L=D(E) ∩C0(X). Then L is a Stone vector lattice,

if f, g ∈ L, then f ∨ g ∈ L, f ∧ 1 ∈ L. For h ∈ H̃+, define the functional I by

(4.3) I(ϕ) = Eμ(h,ϕ), ϕ ∈ L.

Then I(ϕ) is a pre-integral, that is, I(ϕn) ↓ 0 whenever ϕn ∈ L and ϕn(x) ↓ 0
for all x ∈ X . Indeed, let ψ ∈ D(E) ∩ C0(X) such that ψ = 1 on supp[ϕ1].
Then ϕn ≤ ‖ϕn‖∞ψ and

I(ϕn)≤ ‖ϕn‖∞ · I(ψ) ↓ 0, n→∞.

Noting that the smallest σ-field generated by L is identical with the Borel
σ-field, we know that there exists a Borel measure ν such that

I(ϕ) =

∫
X

ϕdν

[5, Theorem 4.5.2]. Moreover, we see that the measure ν is smooth. Indeed,
let K be a compact set of zero capacity, and take a relatively compact open
set D such that K ⊂D. Then there exists a sequence {ϕn} ⊂ D(E) ∩C0(D)
such that ϕn ≥ 1 on K and E1(ϕn, ϕn)→ 0 as n→∞. For ψ ∈D(E)∩C0(X)
with ψ = 1 on D,

I(ϕn) = Eμ(hψ,ϕn)≤ Eμ(hψ,hψ)1/2 · Eμ(ϕn, ϕn)
1/2.

Since ∫
X

ϕ2
n dμ≤ ‖G1μ‖∞ · E1(ϕn, ϕn)→ 0, n→∞,

Eμ(ϕn, ϕn)→ 0 as n→∞. Consequently,

ν(K)≤
∫
X

ϕn dν = I(ϕn)≤ Eμ(hψ,hψ)1/2 · Eμ(ϕn, ϕn)
1/2 → 0.
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The equation (4.3) is equivalent to

E(h,ϕ) =−
∫
X

ϕhdμ+

∫
X

ϕdν =

∫
X

ϕ(−hdμ+ dν).

On account of [6, Theorem 5.5.5], we have

h(Xt) = h(X0) +M
[h]
t +

∫ t

0

h(Xs)dA
μ
s −Aν

t , Px-a.s. q.e. x.

Hence, by Itô’s formula

e−Aμ
t h(Xt) = h(X0) +

∫ t

0

e−Aμ
s dM [h]

s +

∫ t

0

e−Aμ
s h(Xs)dA

μ
s

−
∫ t

0

e−Aμ
s dAν

s −
∫ t

0

e−Aμ
s h(Xs)dA

μ
s

= h(X0) +

∫ t

0

e−Aμ
s dM [h]

s −
∫ t

0

e−Aμ
s dAν

s Px-a.s. q.e. x.

Since
∫ t

0
e−Aμ

s dM
[h]
s is a local martingale, there exists a sequence {σn} such

that limn→ζ σn =∞ and
∫ σn∧t

0
e−Aμ

s dM
[h]
s is a martingale. Hence,

Ex

(
e−Aμ

σn∧th(Xσn∧t)
)
≤ h(x) q.e. x

and thus, by Fatou’s lemma, pμt h(x)≤ h(x) for q.e. x. Note that pμt h is lower-
semi-continuous. Then the set B := {x ∈X : pμt h(x) > h(x)} is open and of
zero capacity, and so empty. �

5. Existence of superharmonic functions

In this section, we discuss the existence of a function in H+ if (Eμ,D(Eμ))
is subcritical or critical. Assume that μ is non-trivial, μ− �≡ 0. Define

(5.1) λ(μ) := inf

{
E(u,u) +

∫
X

u2 dμ+ : u ∈D(E),
∫
X

u2 dμ− = 1

}
.

Owing to [15, Lemma 2.2], we have the following lemma.

Lemma 5.1.

(5.2) λ(μ)≥ 1 ⇐⇒ inf

{
E(u,u) +

∫
X

u2 dμ :

∫
X

u2 dm= 1

}
≥ 0.

For ν ∈Kloc, let M
ν = (P ν

x ,Xt) be the subprocess of M killing at rate ν,

P ν
x (Λ; t < ζ) =Ex

(
exp

(
−Aν

t

)
1Λ; t < ζ

)
, Λ ∈ Ft.

Let {pνt }t≥0 and {Gν
β}β≥0 be the semigroup and resolvent of Mν ,

pνt f(x) =Ex

(
e−Aν

t f(Xt)
)
, Gν

βf(x) =Ex

(∫ ζ

0

e−βt−Aν
t f(Xt)dt

)
.
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We write Gν for Gν
0 simply. Denote by Gν(x, y) the Green kernel of Mν , the

integral kernel of Gν ,

Ex

(∫ ζ

0

e−Aν
t f(Xt)dt

)
=

∫
X

Gν(x, y)f(y)dm(y).

In the sequel, we suppose that (Eμ+

,D(Eμ+

)) is transient and μ− is a non-

trivial measure in K∞(Gμ+

), the set of Green-tight measures associated with

Mμ+

.

5.1. Subcritical case. In this subsection, we treat the case that λ(μ)> 1.
Let gμ(x) be a so-called gauge function defined by

(5.3) gμ(x) =Eμ+

x

(
eA

μ−
ζ

)
.

Then it is known in [2, Theorem 5.1] that gμ is bounded function if and only
if λ(μ)> 1.

Lemma 5.2. The function gμ is pμt -excessive, p
μ
t g

μ(x) ↑ gμ(x) as t ↓ 0.

Proof. By the Markov property of Mμ+

Ex

(
e−Aμ

t gμ(Xt)
)
=Ex

(
e−Aμ

t gμ(Xt); t < ζ
)
=Eμ+

x

(
eA

μ−
t gμ(Xt); t < ζ

)
=Eμ+

x

(
eA

μ−
t Eμ+

Xt

(
eA

μ−
ζ

)
; t < ζ

)
=Eμ+

x

(
Eμ+

x

(
eA

μ−
t +Aμ−

ζ (θt)1{t<ζ}|Ft

))
.

The right-hand side equals Eμ+

x (eA
μ−
ζ ; t < ζ) because Aμ−

t + Aμ−

ζ (θt) =

Aμ−

ζ on {t < ζ}. Therefore, as t ↓ 0

pμt g
μ(x) =Eμ+

x

(
eA

μ−
ζ ; t < ζ

)
↑Eμ+

x

(
eA

μ−
ζ

)
= gμ(x). �

Lemma 5.3. It holds that

(5.4) gμ(x) = 1+Gμ+(
gμμ−)

(x).

Proof. Define a uniformly integrable martingale Mt by

Mt =Eμ+

x

(
eA

μ−
ζ |Ft

)
.

Then ∫ t

0

gμ(Xs)dA
μ−

s =

∫ t

0

e−Aμ−
s Ms dA

μ−

s , t < ζ

because

e−Aμ−
t Mt1{t<ζ} = e−Aμ−

t Eμ+

x

(
eA

μ−
ζ 1{t<ζ}|Ft

)
= e−Aμ−

t Eμ+

x

(
eA

μ−
t +Aμ−

ζ (θt)1{t<ζ}|Ft

)
=Eμ+

Xt

(
eA

μ−
ζ

)
1{t<ζ} = gμ(Xt)1{t<ζ}.
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By Itô’s formula,

e−Aμ−
t Mt =M0 +

∫ t

0

e−Aμ−
s dMs −

∫ t

0

e−Aμ−
s Ms dA

μ−

s ,

and thus

Eμ+

x (M0) =Eμ+

x

(
e−Aμ−

ζ Mζ

)
+Eμ+

x

(∫ ζ

0

e−Aμ−
s Ms dA

μ−

s

)
.

Noting that Eμ+

x (M0) = gμ(x), e−Aμ−
ζ Mζ = e−Aμ−

ζ eA
μ−
ζ = 1 and

Eμ+

x

(∫ ζ

0

e−Aμ−
s Ms dA

μ−

s

)
=Eμ+

x

(∫ ζ

0

gμ(Xs)dA
μ−

s

)
=Gμ+(

gμμ−)
(x),

we have this lemma. �

Lemma 5.4. The function gμ belongs to Dloc(E)∩Cb(X).

Proof. On account of Lemma 5.3, we have only to prove that Gμ+

(gμμ−) ∈
Dloc(E) ∩ Cb(X). First note that gμμ− ∈ K∞(Gμ+

). Hence, Gμ+

(gμμ−) ∈
Bb(X) by [2, Proposition 2.2] and pμ+t (Gμ+

(gμμ−)) ∈ Cb(X) by the strong

Feller property of Mμ+

. Since∥∥Gμ+(
gμμ−)

− pμ+t
(
Gμ+(

gμμ−))∥∥
∞ = sup

x∈X
Eμ+

x

(∫ t

0

gμ(Xs)dA
μ−

s

)
≤

∥∥gμ∥∥
∞

(
sup
x∈X

Eμ+

x

(
Aμ−

t

))
↓ 0, t ↓ 0

by μ− ∈ K(Gμ+

) and (2.2), Gμ+

(gμμ−) also belongs to Cb(X). By the same

argument as in [9, Theorem 3], we can prove Gμ+

(gμμ−) ∈Dloc(E). �

Lemma 5.5. The Dirichlet form (Eμ,gμ

,D(Eμ,gμ

)) on L2(X; (gμ)2m) is
transient.

Proof. Since for u ∈De(Eμ+

)

Eμ+

(u,u)≥ λ(μ)

∫
X

u2 dμ−, λ(μ)> 1,

we have

Eμ(u,u) = Eμ+

(u,u)−
∫
X

u2 dμ− ≥
(
λ(μ)− 1

λ(μ)

)
· Eμ+

(u,u).

Since (Eμ+

,D(Eμ+

)) is transient, there exists a bounded function g+ > 0 such
that ∫

X

u2g+ dm≤ Eμ+

(u,u), u ∈De

(
Eμ+)
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and thus for v ∈De(Eμ,gμ

)∫
X

v2g+
(
gμ

)2
dm=

∫
X

(
gμv

)2
g+ dm≤ Eμ+(

gμv, gμv
)

≤
(

λ(μ)

λ(μ)− 1

)
· Eμ

(
gμv, gμv

)
=

(
λ(μ)

λ(μ)− 1

)
· Eμ,gμ

(v, v),

which leads us to this lemma. �

Note that if μ+ is non-trivial, μ+ �≡ 0, then Mμ,gμ

is not conservative,

pμ,g
μ

t 1(x)< 1. Indeed, we show in the proof of Lemma 5.2 that

pμt g
μ(x) =Eμ+

x

(
eA

μ−
ζ ; t < ζ

)
.

Since Pμ+

x (ζ =∞)< 1 for all x ∈X ,

lim
t→∞

pμt g
μ(x) =Eμ+

x

(
eA

μ−
ζ ; ζ =∞

)
< gμ(x),

and thus pμ,g
μ

t 1(x) < 1. As a result, the Dirichlet form (Eμ,gμ

,D(Eμ,gμ

)) is
transient.

Lemma 5.5 leads us to the next theorem.

Theorem 5.6. If λ(μ)> 1, the Schrödinger form (Eμ,D(Eμ)) is subcritical.

Next two lemmas are used to show the existence of a bounded function in
H+(μ) when (Eμ,D(Eμ)) is critical.

Lemma 5.7. Let μ= μ+−μ− ∈Kloc−K∞(Gμ+

). If λ(μ)> 1, then for any
compact set K,

sup
x∈K

Gμ1K(x)<∞.

Proof. Let gμ be the gauge function in (5.3). The Markov semigroup pμ,g
μ

t

is strong Feller. Indeed, for f ∈ Bb(X), pμt (g
μf) belongs to Cb(X) by the

strong Feller property of pμt . Hence pμ,g
μ

t f ∈ Bb(X) ∩ C(X) = Cb(X). As a

result, pμ,g
μ

t is a transient semigroup with (LSC). We now see from [7, Corol-
lary 2.3] that for any compact set K, Gμ,gμ

1K is bounded, ‖Gμ,gμ

1K‖∞ <∞.
Noting

inf
x∈K

gμ(x) ·Gμ1K(x)≤Gμ
(
1Kgμ

)
(x) = gμ(x) ·Gμ,gμ

1K(x)

≤
∥∥Gμ,gμ

1K
∥∥
∞ · gμ(x),

we have by Lemma 5.4

sup
x∈K

Gμ1K(x)≤
∥∥Gμ,gμ

1K
∥∥
∞ · supx∈K gμ(x)

infx∈K gμ(x)
<∞. �
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Lemma 5.8. Let μ = μ+ − μ− ∈ Kloc − K∞(Gμ+

) with λ(μ) > 1. Let ν
be a smooth positive Radon measure and K the fine support of ν, K = {x ∈
X : Px(τ

ν = 0) = 1} (τν = inf{t > 0 : Aν
t > 0}). Then

(5.5) sup
x∈X

Gμν(x)≤ sup
x∈K

Gμν(x) · sup
x∈X

Eμ+

x

(
eA

μ−
τD ; τD < ζ

)
,

where D is the complement of K and τD is the first exit time from D.

Proof. Noting that dAν
t = 0 on {t < τD}, we have

Gμν(x) =Ex

(∫ ζ

0

e−Aμ
t dAν

t

)
=Ex

(∫ ζ

τD

e−Aμ
t dAν

t ; τD < ζ

)
.(5.6)

Because ζ = τD + ζ(θτD ) on {τD < ζ}, Aμ
τD+t =Aμ

τD +Aμ
t (θτD ) and Aν

τD+t =
Aν

τD +Aν
t (θτD ), the right-hand side of (5.6) equals

Ex

(∫ ζ(θτD )

0

e−Aμ
τD+t dAν

τD+t; τD < ζ

)
=Ex

(∫ ζ(θτD )

0

e−Aμ
τD

−Aμ
t (θτD ) dAν

t (θτD ); τD < ζ

)
=Ex

(
e−Aμ

τDEXτD

(∫ ζ

0

e−Aμ
t dAν

t

)
; τD < ζ

)
by the strong Markov property. Therefore, the right-hand side is less than or
equal to

sup
x∈K

Gμν(x) ·Ex

(
e−Aμ

τD ; τD < ζ
)
= sup

x∈K
Gμν(x) ·Eμ+

x

(
eA

μ−
τD ; τD < ζ

)
because τD equals the first hitting time of K on {τD < ζ}. �

Lemma 5.8 tells us that if λ(μ)> 1

(5.7) sup
x∈X

Gμν(x)≤ sup
x∈K

Gμν(x) · sup
x∈X

gμ(x)≤C sup
x∈K

Gμν(x)

because

sup
x∈X

Eμ+

x

(
eA

μ−
τD ; τD < ζ

)
≤ sup

x∈X
Eμ+

x

(
eA

μ−
ζ

)
<∞.

If μ− equals zero, μ= μ+, then

sup
x∈X

Gμ+

ν(x)≤ sup
x∈K

Gμ+

ν(x) · sup
x∈X

Pμ+

x (τD < ζ)≤ sup
x∈K

Gμ+

ν(x).

Consequently, supx∈X Gμ+

ν(x) = supx∈K Gμ+

ν(x), which is known as the
maximum principle (e.g., [10, Theorem 1.10]). Hence, the inequality (5.5)
is regarded as a version of the maximum principle for Green functions of
Schrödinger operators.
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5.2. Critical case. In this subsection, we treat the case that λ(μ) = 1.

Lemma 5.9. Let ν ∈Kloc. Then Gνϕ belongs to De(Eν) for ϕ ∈ B+
b,0 , and

Eν
(
Gνϕ,f

)
=

∫
X

ϕf dm, f ∈D(E)∩C0(X).

Proof. The function Gν
βϕ, β > 0, belongs to D(Eν) and Gν

βϕ ↑Gνϕ as β ↓ 0.
Moreover,

Eν
(
Gν

βϕ,G
ν
βϕ

)
≤ Eν

β

(
Gν

βϕ,G
ν
βϕ

)
=

(
ϕ,Gν

βϕ
)
≤

(
ϕ,Gνϕ

)
<∞

by Lemma 5.7. Hence, Gνϕ belongs to De(Eν) from Lemma 2.9. Using
Lemma 5.7 again, we have

Eν
(
Gνϕ,f

)
= lim

β↓0
Eν

(
Gν

βϕ,f
)
= (ϕ,f)m − lim

β↓0
β
(
Gν

βϕ,f
)
m
= (ϕ,f)m. �

We see from [14, Theorem 2.1] that the minimizer v in (5.1) exists:

(5.8) λ(μ) = E(v, v) +
∫
X

v2 dμ+,

∫
X

v2 dμ− = 1.

We now show that a version of v belongs to H+ by the arguments in [15,
Section 4]. The function v is the first eigenfunction corresponding to the

generator of the time changed process of Mμ+

by Aμ−

t . We see that the time
changed process is irreducible and thus v > 0 μ−-a.e. by [4, Theorem 7.3].

Lemma 5.10. The measure v ·μ− is of finite energy integral with respect to

Eμ+

.

Proof. Let f ∈De(Eμ+

). Then∫
X

fv dμ− ≤
(∫

X

v2 dμ−
)1/2(∫

X

f2 dμ−
)1/2

,

and the right-hand side is dominated by C · Eμ+

(f, f)1/2 by (2.3). �

The function v is also characterized by

(5.9) E(v, f) +
∫
X

vf dμ+ =

∫
X

vf dμ−, f ∈De

(
Eμ+)

.

Hence, we see from Lemma 5.10 that

Eμ+

(v, f) =

∫
X

vf dμ− = Eμ+(
Gμ+(

vμ−)
, f

)
,

and thus

(5.10) v(x) =Gμ+(
vμ−)

(x) =Ex

(∫ ζ

0

exp
(
−Aμ+

t

)
v(Xt)dA

μ−

t

)
, m-a.e.
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We now define

(5.11) h(x) :=Ex

(∫ ζ

0

exp
(
−Aμ+

t

)
v(Xt)dA

μ−

t

)
.

Lemma 5.11. The function h is finely continuous.

Proof. By the Markov property,

h(Xs) =EXs

(∫ ζ

0

exp
(
−Aμ+

t

)
v(Xt)dA

μ−

t

)
=Ex

(∫ ζ

0

exp
(
−Aμ+

t (θs)
)
v(Xt+s)dA

μ−

t (θs)
∣∣∣Fs

)
= exp

(
Aμ+

s

)
Ex

(∫ ζ

0

exp
(
−Aμ+

t

)
v(Xt)dA

μ−

t

∣∣∣Fs

)
− exp

(
Aμ+

s

)∫ s

0

exp
(
−Aμ+

t

)
v(Xt)dA

μ−

t .

Since the first term of the right-hand side is right continuous because of the
right continuity of Fs, h is finely continuous by [6, Theorem A.2.7]. �

Noting that h = v q.e. by (5.10) and [6, Lemma 4.1.5], we have the next
lemma from [6, Theorem 4.1.2].

Lemma 5.12. The function h is strictly positive and satisfies

(5.12) h(x) =Ex

(∫ ζ

0

exp
(
−Aμ+

t

)
h(Xt)dA

μ−

t

)
for all x ∈X .

Lemma 5.13. For w ∈ B+
b,0 with

∫
X
wdm > 0, let ν = μ + w · m. Then

λ(ν)> 1.

Proof. On account of the argument above, we have a function h′ ∈De(Eμ+

)
attaining the infimum:

λ(ν) = inf

{
E(u,u) +

∫
X

u2
(
dμ+ +w · dm

)
: u ∈D

(
Eμ

)
,

∫
X

u2 dμ− = 1

}
.

We can assume that h′ is strictly positive. Hence, if λ(ν) = 1, then λ(μ)< 1.
�

Lemma 5.14. For w ∈ B+
b,0 with

∫
X
wdm > 0, let ν = μ + w · m. The

function h defined in (5.11) satisfies

(5.13) h(x) =Gν(hw)(x) for any x ∈X.
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Proof. Noting that Eμ(h,Gν
βϕ) = 0 by (5.9), we have for any ϕ ∈ B+

b,0 and
any β > 0

Eν
(
h,Gν

βϕ
)
= Eμ

(
h,Gν

βϕ
)
+

∫
X

hGν
βϕ ·wdm=

∫
X

hwGν
βϕdm.

On account of Lemma 5.9, we obtain, by letting β ↓ 0∫
X

hϕdm=

∫
X

hwGνϕdm=

∫
X

Gν(hw)ϕdm

and thus

h=Gν(hw) m-a.e.

In the equality above we can replace “m-a.e. x” by “any x” by the same
argument as in Lemma 5.11. �

Lemma 5.15. The function h is bounded.

Proof. Since h is quasi-continuous, there exists a compact set K with
m(K) > 0 on which h is continuous. Let ν = μ+ 1Km. Then λ(ν) > 1 and
h = Gν(1Kh) by Lemma 5.13 and Lemma 5.14. Hence, Lemma 5.8 tells us
that

h(x) =Gν(1Kh)(x)≤ sup
x∈K

Gν(1Kh)(x) · sup
x∈X

Eν+

x

(
eA

ν−
ζ

)
= sup

x∈K
h(x) · sup

x∈X
gν(x),

where ν+ = μ+ + 1Km and ν− = μ−. The right-hand side is finite because
λ(ν)> 1. �

Lemma 5.16. The function h satisfies pμt h= h.

Proof. Note that there exists a generalized compact nest {Fk} associated
with μ because μ is a smooth Radon measure [6, p. 83]. Thus the space
Db(EFn) = {u ∈ Db(E) : u= 0 q.e. on X \ Fn} is contained in D(Eμ). Hence,
it holds that Eμ(h,ϕ) = 0, that is,

E(h,ϕ) =−
∫
X

ϕ(h · dμ) for any ϕ ∈
∞⋃

n=1

Db

(
EFn

)
.

We then see from [6, Theorem 5.4.2] that

h(Xt) = h(X0) +M
[h]
t +

∫ t

0

h(Xs)dA
μ
s , Px-a.s. q.e. x,

where M
[h]
t is the martingale part of the Fukushima decomposition [6, Theo-

rem 5.2.2]. Hence, we see from Itô’s formula

e−Aμ
t h(Xt) = h(X0) +

∫ t

0

e−Aμ
s dM [h]

s , Px-a.s. q.e. x.
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Let τn = inf{t > 0;Aμ+

t > n} (n= 1,2, . . .). Then
∫ τn∧t

0
e−Aμ

s dM
[h]
s is a mar-

tingale, and

h(x) =Ex

(
e−Aμ

τn∧th(Xτn∧t)
)
=Eμ+

x

(
eA

μ−
τn∧th(Xτn∧t)

)
.

Note that

eA
μ−
τn∧th(Xτn∧t)≤ ‖h‖∞ · eA

μ−
ζ ∈ L1

(
Pμ+

x

)
and that τn → ∞ as n → ∞ Pμ+

x -a.s. We then see that by the dominated
convergence theorem

h(x) = lim
n→∞

Eμ+

x

(
eA

μ−
τn∧th(Xτn∧t)

)
=Eμ+

x

(
eA

μ−
t h(Xt)

)
= pμt h(x), q.e. x,

and thus for all x. �

The next corollary follows from Lemma 5.16 and the strong Feller property
of pμt .

Corollary 5.17. The function h is in Cb(X).

We see from Corollary 5.17 that the function h is an element of Dloc(E)
because a bounded function f in De(E) belongs to Dloc(E). Indeed, let
{fn} be an approximating function of f , that is, fn(x) → f(x) m-a.e. and
supn E(fn, fn) < ∞. We may assume |fn(x)| ≤ ‖f‖∞. Let D and G be
relatively compact open sets such that G ⊂ Ḡ ⊂ D and ϕ a function in
D(E)∩C0(D) such that ϕ= 1 on G. Then fnϕ→ fϕ m-a.e. and

sup
n

E(fnϕ,fnϕ)1/2 ≤ ‖f‖∞ · E(ϕ,ϕ)1/2 + ‖ϕ‖∞ · sup
n

E(fn, fn)1/2 <∞.

Hence, fϕ belongs to De(E) ∩ L2(X;m) and so to D(E) by [6, Theo-
rem 1.5.2(iii)]. Since f = fϕ on G, f belongs to Dloc(E).

The function h belongs to De(Eμ+

)(⊂ De(E)) and Eμ(h,h) = 0. Conse-
quently, the constant function 1 belongs to De(Eμ,h) and Eμ,h(1,1) = 0; this
implies that (Eμ,h,D(Eμ,h)) is recurrent. Therefore, we have the next theorem.

Theorem 5.18. If λ(μ) = 1, then the Schrödinger form (Eμ,D(Eμ)) is
critical.

We can show that λ(μ) < 1 if and only if inf{Eμ(u,u);
∫
X
u2 dm = 1} < 0

[15, Lemma 2.2]. Namely, if λ(μ) < 1, then Eμ is not non-negative defi-
nite. Hence the Schrödinger form (Eμ,D(Eμ)) is supercritical by Remark 4.5.
Therefore, we can summarize these facts above as follows.

Theorem 5.19. Let μ ∈Kloc −K∞(Gμ+

). Then

(i) (Eμ,D(Eμ)) is subcritical if and only if λ(μ)> 1;
(ii) (Eμ,D(Eμ)) is critical if and only if λ(μ) = 1;
(iii) (Eμ,D(Eμ)) is supercritical if and only if λ(μ)< 1.
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Let us consider the symmetric α-stable process Mα on R
d with 0<α< 2.

We assume that α < d, that is, Mα is transient. Let (E(α),D(E(α))) be the
Dirichlet form generated by Mα:{

E(α)(u, v) = 1
2A(d,α)

∫ ∫
Rd×Rd\�

(u(x)−u(y))(v(x)−v(y))
|x−y|d+α dxdy,

D(E(α)) = {u ∈ L2(Rd) :
∫ ∫

Rd×Rd\�
(u(x)−u(y))2

|x−y|d+α dxdy <∞},

where �= {(x,x) : x ∈R
d} and

A(d,α) =
α2d−1Γ(α+d

2 )

πd/2Γ(1− α
2 )

[6, Example 1.4.1]. Let μ be a measure in the Green-tight class of Mα.
Suppose that the Schrödinger form E(α)(u,u)−

∫
Rd u

2 dμ is critical. Then∫
Rd

u2 dμ≤ E(α)(u,u) for any u ∈De(E),

and the two sides are equal if and only if u equals the function h constructed
in Section 5.2. On account of Theorem 3.2, we can refine the inequality above
as follows:∫

Rd

u2 dμ+

∫
Rd

(
u−Dh(u)h

)2
g dx≤ E(α)(u,u) for any u ∈De(E).

Note that Dh(h) = 1 by the definition of Dh(u).
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