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ON THE BEHAVIOUR OF STRONG SEMISTABILITY IN
GEOMETRIC DEFORMATIONS

HOLGER BRENNER AND AXEL STÄBLER

Abstract. Let Y → B be a relative smooth projective curve
over an affine integral base scheme B of positive characteristic.

We provide for all prime characteristics example classes of vector

bundles S over Y such that S is generically strongly semistable
and semistable but not strongly semistable for some special fibre.

Introduction

Let B be an affine base scheme over a field k of positive characteristic p and
consider a relative smooth projective curve Y →B. Let S be a vector bundle
over Y so that every point t ∈B induces a vector bundle St on the fibre Yt. We
are interested in the question how the property of St being strongly semistable
varies with t. Recall that a vector bundle on a smooth projective curve over a
field of positive characteristic is called strongly semistable if all its Frobenius
pull-backs are semistable.

The set of base points t ∈B such that the bundle St is semistable is open
(possibly empty)—see [18, Theorem 2.8]. As we are in equal characteristic p,
the eth Frobenius pull-back F e∗S is again a bundle on the given curve and
the semistability property of its induced bundles on the fibres also defines an
open subset. Therefore the set of points parametrising strongly semistable
bundles is a countable intersection of open subsets. In characteristics 2 and 3,
P. Monsky has given examples (in the language of Hilbert–Kunz theory) over
the affine line (minus some points) such that the bundle is strongly semistable
over the generic point but for no closed point (see [21], [22]).

In this paper, we want to provide in all characteristics new example classes
of bundles over Y →B, where B is an affine smooth curve of finite type over k,
such that the generic bundle Sη over Yη is strongly semistable for the generic
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point η ∈B and semistable but not strongly semistable for some closed point
t ∈ B. By localising at t, we get then a bundle over a relative curve over a
discrete valuation domain such that the generic bundle is strongly semistable
and such that the special bundle is semistable but not strongly semistable.

We describe here two constructions which lead to such examples. In both
constructions, we use syzygy bundles S = Syz, that is, bundles given by short
exact sequences of the form

0−→ Syz(f1, . . . , fn)−→
n⊕

i=1

OY (−di)
f1,...,fn−→ OY −→ 0.

Here the fi are homogeneous elements of degree di in a graded ring R with
Y =ProjR which are primary to the maximal graded ideal. Syzygy bundles
exhibit a rich behaviour yet they are accessible for computations. In the end,
we will work with syzygy bundles of rank two (given by three generators)
on plane curves. One should also remark that on a smooth curve over an
algebraically closed field every vector bundle is, up to twist, a syzygy bundle
(see, e.g., [5, Proposition 3.8]).

In the first construction (Section 1) the curve family will be trivial, that is,
a product Y0 ×B →B where Y0 is a smooth projective curve over k, and the
syzygy bundle will be given by homogeneous elements varying with the basis.
With this construction we provide explicit examples in all characteristics for
Fermat curves of some degree δ ≥ 5.

In the second construction (Sections 3 and 4 after some preparatory work
in Section 2), the syzygy bundle is defined on the projective plane P2 and
the family arises by restricting to a certain family of plane curves of degree 4.
Due to computational constraints, we can provide with this method only
examples for odd characteristics p ≤ 3433 with 105 exceptions, the smallest
one being 103.

1. Deforming syzygy bundles on a fixed curve

Suppose that we have a fixed smooth projective curve Y over an alge-
braically closed field k of positive characteristic. The moduli space M of
semistable vector bundles of given rank and degree [17] may also contain
points representing stable but not strongly semistable bundles. In fact, by
[14, Theorem 1] such bundles exist for all curves of genus ≥ 2. If we connect
such a point with a point representing a strongly semistable bundle by an
integral affine curve B, then the universal bundle on M (if it exists) induces
a bundle S on Y ×B such that for some closed point b0 ∈B the bundle S0 is
strongly semistable and such that for some closed point b1 ∈B the bundle S1

is semistable but not strongly semistable. In this case, the bundle Sη on the
generic curve Yη over κ(η) is also strongly semistable.
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We are particularly interested in bundles of degree 0. So there is no univer-
sal bundle. As the referee points out, one can then still use moduli construc-
tions to obtain such examples. Specifically, one can use the existence of quasi
universal families (cf. [12, Proposition 4.6.2]) or one can use the existence of
quasi sections (cf. [20, I.2.25 and I.3.26]) and apply the construction outlined
above to the Quot scheme from which the moduli space is constructed (cf.
also [12, Chapter 4]).

However, we would like to get concrete examples with such a behaviour.
Therefore, we work instead directly with syzygy bundles and deform their
defining sections. Fix an ample line bundle OY (1) on Y and a degree type
(d1, . . . , dn). For a tuple of global sections fi ∈ Γ(Y,OY (di)) we get a syzygy
bundle S0 = Syz(f1, . . . , fn) provided that the sections determine a surjective
map

⊕
iOY (−di)→OY . If g1, . . . , gn is another such tuple (with the same

degree type and syzygy bundle S1 = Syz(g1, . . . , gn)), then we can consider for
t1, . . . , tn ∈ k the family

Syz
(
t1g1 + (1− t1)f1, . . . , tngn + (1− tn)fn

)
of syzygy bundles on Y × An → An (or over an open subset of An). For
t= (t1, . . . , tn) = (0, . . . ,0) the fibre is S0 and for t= (1, . . . ,1) the fibre is S1.
Note that one should look at this family over an open subset of An to make
sure that the corresponding morphisms are surjective for every parameter
(this is not automatically fulfilled, as the example Syz(x, y) and Syz(y,x)
on P1

k, where k is a field of characteristic �= 2, shows). Also, if S0 and S1

are semistable, one might shrink the open subset further to ensure that all
bundles in the family are semistable.

The following simple instance of this construction yields already a large
class of examples of families with the properties described in the introduc-
tion. We look at examples of semistable rank two syzygy bundles on Fermat
curves and we deform one parameter of the defining sections to get the trivial
bundle.

Theorem 1.1. Let δ ≥ 5 be a natural number and let p be a prime number
such that there exists e so that 2re < δ < 3re, where r = p mod δ, and where re

is considered modulo δ as the least nonnegative representative. Let k be a field
of characteristic p and let

S = Syz
(
x2, y2, tz2 + (1− t)xy

)
(3)

be the syzygy bundle on the smooth relative curve

Y =Projk[t][x, y, z]/
(
xδ + yδ − zδ

)
−→ Speck[t].

Then for t= 1 the special bundle S1 is semistable but not strongly semistable
and for t= 0 the special bundle S0 is trivial, hence strongly semistable. For
the generic point η ∈ Speck[t] the bundle Sη on Yη is strongly semistable.
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Proof. First of all, note that Y → Speck[t] is flat by [10, Proposition III.9.7].
Furthermore, the sheaf of relative differentials is locally free so that the mor-
phism is indeed smooth. The specialisation t = 1 yields the syzygy bundle
Syz(x2, y2, z2)(3) which is semistable but not strongly semistable under the
given numerical condition by virtue of [2, Corollary 2].

The specialisation t = 0 yields Syz(x2, y2, xy)(3) which is already defined
on P1

k and splits as O2
Y0

(the trivialising sections are the syzygies (0, x,−y) and
(y,0,−x)). Therefore S0 is strongly semistable and hence Sη is also strongly
semistable by the openness of semistability. �

The bundles in this family have rank 2 and degree 0. We do not know
whether the bundles are semistable for all t, but they are for an open subset.
The locus of points parametrizing strongly semistable bundles need not be
open. Note that the generic bundle in this family is not trivial. Indeed,
the specialisation at t = 1 does not have a non-trivial global section and by
semicontinuity ([10, Theorem III.12.8]) this also holds generically.

If δ is a prime number ≥ 5, then there do exist prime numbers p fulfilling
the given numerical condition. On the other hand, for every prime number p
there exist natural numbers δ with 2p < δ < 3p and δ ≥ 5. Hence, Theorem 1.1
provides examples for all characteristics.

Localising we immediately obtain the following corollary.

Corollary 1.2. Let δ ≥ 5 be a natural number and let p be a prime number
such that there exists e so that 2re < δ < 3re, where r = p mod δ. Let k be a
field of characteristic p and let V = k[t](t−1). Then the syzygy bundle

S = Syz
(
x2, y2, tz2 + (1− t)xy

)
(3)

on the smooth relative curve

Y =ProjV [x, y, z]/
(
xδ + yδ − zδ

)
−→ SpecV

has strongly semistable generic fibre and the special fibre is semistable but not
strongly semistable.

Example 1.3. For δ = 5 exactly the prime characteristics p with p= 2,3
mod 5 fulfill the numerical condition of Theorem 1.1. For p= 1,4 mod 5 we
do not know whether there are semistable but not strongly semistable fibres
in the family.

2. Sufficient criteria for semistability

In this section, we provide several sufficient criteria for deciding whether a
given vector bundle on a curve is (strongly) semistable. Similar considerations
also occur in [13, Chapter 3]. We say that a global section s ∈ Γ(Y,Syz(m))
is a syzygy of total degree m.
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Lemma 2.1. Let Y be a smooth projective curve of genus g > 0 over a field
k of positive characteristic p > 0 with an ample line bundle OY (1). Let S
be a vector bundle of slope μ. Then S is strongly semistable if and only if
(F e∗S)(m) has no global section for m<− μ

degOY (1)q for all q = pe.

If moreover, OY (1) has a non-trivial global section then it is enough that
for all q = pe the bundle (F e∗S)(m) has no non-trivial global sections, where
m=−([ μ

degOY (1)q] + 1).

Proof. If F e∗S(m) has a non-trivial global section, with m<− μ
degOY (1)q,

then we obtain an exact sequence 0→OY (−m)→ F e∗S contradicting semi-
stability.

Conversely, let 0→E → F e∗S be exact, where E is a bundle with μ(E)> qμ.

Let q′ = pe
′
be such that q′(μ(E)− qμ)≥ g+degOY (1), and let l be such that

−degOY (1)≤ μ
((
F (e+e′)∗S

)
(l)

)
= pe+e′μ+ ldegOY (1)< 0,

that is, −1− pe+e′μ
degOY (1) ≤ l <− pe+e′μ

degOY (1) . We have the injection (F e′∗E)(l)→
(F (e+e′)∗S)(l) and

μ
((
F e′∗E

)
(l)

)
= q′μ(E) + ldegOY (1)

≥ q′μ(E)− degOY (1)− pe+e′μ≥ g.

By Riemann–Roch for vector bundles (see, e.g., [23, Theorem 7.D.3]) applied

to T = (F e′∗E)(l) we therefore obtain χ(T )
rkT = μ(T ) + χ(OY ) ≥ 1. It follows

that T and therefore also (F (e+e′)∗S)(l) has a non-trivial global section.
If OY (1) and S(m) both have a non-trivial global section then a for-

tiori S(m + 1). Hence, in this case it is enough to check that F e∗S has
no global sections in degree m, where m is the maximal m ∈ Z such that
μ((F e∗S)(m))< 0. �

We will call the degree occurring in the last statement of the previous
lemma the critical degree. A similar proof yields the following sufficient con-
dition for semistability.

Lemma 2.2. Let Y be a smooth projective curve of genus g > 0 over a field
k of positive characteristic p > 0 with an ample line bundle OY (1). Let S be
a vector bundle of slope μ. Suppose that (F e∗S)(m) has no global sections for
m<− μ

degOY (1)q for some q = pe ≥ g+degOY (1). Then S is semistable.

If moreover, OY (1) has a non-trivial global section then S is semistable
if (F e∗S)(m) has no global sections, where m=−([ μ

degOY (1)q] + 1) for some

q = pe ≥ g+degOY (1).

For a plane curve of degree δ the bound in the previous lemma becomes
q ≥ 1

2δ(δ − 1) + 1.
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Lemma 2.3. Let Y be a smooth projective curve over a field k of positive
characteristic p > 0 with a fixed ample line bundle OY (1). Let S be a vector
bundle of rank 2 on Y . If (F ∗S)(m) has a global section s without zeros, where

m < − pdegS
2degOY (1) and p � mdegOY (1) then S is semistable but not strongly

semistable.

Proof. First of all, since S has rank two any Harder–Narasimhan filtration

is automatically strong. Moreover, 0→OY (−m)
·s−→ F ∗S is a strong Harder–

Narasimhan filtration of F ∗S . By the second assumption OY (−m) cannot be
a Frobenius pullback of another line bundle. Hence, S is semistable. �

Note that this method is in principle also applicable for smooth surfaces
since we may pass to the reflexive hull of a destabilising subsheaf which is
locally free ([11, Corollary 1.4]).

3. Restricting a syzygy bundle to varying curves—generic case

In this section, we want to “fix the syzygy bundle and deform the curve.”
What we mean by this is that we fix a syzygy bundle S on P2

k and study the
restriction of S to a family of plane curves Yt ⊂ P2

k of a certain degree δ. So S =
Syz(f1, . . . , fn) with homogeneous polynomials fi ∈ k[x, y, z] and Yt = V+(Gt)
where Gt ∈ k[t, x, y, z] is homogeneous with respect to x, y, z and where t is
a new variable of degree zero. If S is semistable on P2, then it is natural to
expect that for (very) generic t the restriction to Yt is (strongly) semistable,
but for specific t anything may happen. There are many strong results in
this direction ([19], [8], [1], [3], [15]). In fact, as the referee points out, [16,
Theorem 4.1] shows that the restriction of S to a generic hypersurface in P2

k

of sufficiently high degree is strongly semistable.
We shall study the semistability properties of St = Syz(f1, . . . , fn)|Yt by

looking at the existence of non-trivial global sections of the Frobenius pull-
backs

F e∗St
∼= Syz

(
f q
1 , . . . , f

q
n

)
|Yt .

(q = pe) in certain critical degree twists of the bundle. The existence of such
non-trivial global sections is equivalent to the property that certain systems
of linear equations have a non-zero solution, which in turn depends on the
(non)vanishing of certain determinants. These determinants will be non-zero
polynomials in t, but for certain values of t they will have a zero producing a
(strong) semistability behaviour different from the generic behaviour.

We will mainly work with the syzygy bundles Syz(xa, ya, za) and their
restrictions to a family of plane curves, where we allow transcendental coeffi-
cients. For a= 1, this is directly related to the Hilbert–Kunz multiplicity of
the corresponding coordinate ring.
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Theorem 3.1. Let k denote a field of positive characteristic p > 0 and
consider the smooth generic plane projective curve Y of even degree δ (prime
to p) given by the homogeneous coordinate ring

k(t)[x, y, z]/
(
xδ + yδ + tx

δ
2 y

δ
2 − zδ

)
.

Then the syzygy bundle Syz(xa, ya, za) (a ∈ N+ such that δ � a) is strongly
semistable on Y .

Proof. By Lemma 2.1, it is enough to show that for every q = pe the syzygy
bundle Syz(xaq, yaq, zaq) has no global sections of total degree < 3

2aq.
Write aq = δl+ r with 0< r < δ (note that we have strict inequality due to

the constraints we imposed on a and δ). By [2, Lemma 1] global sections of
minimal degree of F e∗S = Syz(xaq, yaq, zaq) stem from global sections of

Fl = Syz
(
xaq, yaq,

(
xδ + yδ + tx

δ
2 y

δ
2

)l)
(add r to the total degree) or of

Fl+1 = Syz
(
xaq, yaq,

(
xδ + yδ + tx

δ
2 y

δ
2

)l+1)
(of the same total degree) or a sum of such syzygies.1 Set f = xδ+yδ+ tx

δ
2 y

δ
2 .

To determine the global sections of Fl and Fl+1, we can work on the projective
line P1

k(t) or the ring k(t)[x, y] respectively. The critical degree of S is 	3aq
2 
−1

while the critical degree of Fl is 	 3aq−r
2 
−1 and that of Fl+1 is 	 3aq+δ−r

2 
−1.
We will show that Fl and Fl+1 have no non-trivial global sections of critical
degree. Then also F e∗S will not have non-trivial global sections of critical
degree.

First, we consider the case Fl. Assume that there is a non-trivial syzygy
αxaq+βyaq+γf l = 0 of critical degree m. In particular, we must have γf l ≡ 0
mod (xaq, yaq) (conversely, if this condition holds for some non-zero γ then
we obtain a non-trivial syzygy). That is, we must have that each coefficient
ωv (in k[t]) in

γf l =
∑
v

ωvx
vym−v

with m− v < aq and v < aq is zero. This is the case if and only if wv = 0 for
m− aq+ 1= δl

2 ≤ v ≤ aq− 1 =m− δl
2 . Let us write

f l =

δl∑
i=0

Dix
iyδl−i and γ =

m−δl∑
u=0

cux
uym−δl−u.

1 A section (s1, s2, s3) of Fl yields the syzygy (zrs1, zrs2, s3) of Syz(xaq , yaq , zaq) and a

section (t1, t2, t3) of Fl+1 yields the syzygy (t1, t2, zδ−rt3) of Syz(xaq , yaq, zaq).
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Then ωv =Dvc0 + · · ·+Dv−m+δlcm−δl. In particular, we set Di = 0 if i < 0

or if i > deg f l. The condition that the wv be zero translates to a system of

linear equations in the cu which we may write in the form of a square matrix

of length m− δl+ 1= aq− δl
2 as

⎛
⎜⎜⎜⎜⎜⎜⎝

w δl
2

w δl
2 +1

...
wm− δl

2 −1

wm− δl
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

D δl
2

D δl
2 −1 D δl

2 −2 . . . D 3
2 δl−m

D δl
2 +1 D δl

2
D δl

2 −1 . . . D 3
2 δl−m+1

...
...

...
. . .

...
Dm− δl

2 −1 Dm− δl
2 −2 Dm− δl

2 −3 . . . D δl
2 −1

Dm− δl
2

Dm− δl
2 −1 Dm− δl

2 −2 . . . D δl
2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

c0
c1
...

cm−δl−1

cm−δl

⎞
⎟⎟⎟⎟⎟⎠

.

The ith column of the matrix is obtained by taking the coefficients of f l whose

degrees in x range from δl
2 − i+ 1 to aq− i.

This system has a non-trivial solution if and only if the determinant, call

it D(q), of this square matrix is zero. Note that D(q) is a polynomial in k[t].

The coefficient D δl
2
is of the form tl+ terms of lower degree and the other

entries Dj for j �= δl
2 are polynomials of degree ≤ l − 1 in t. Since the D δl

2

occur exactly in the diagonal of the matrix we have that the determinant is a

polynomial of degree l(aq− δl
2 ) in t. In particular, it is not the zero polynomial

and hence invertible in k(t). Therefore, there is no non-trivial solution to the

above system.

Next, we turn our attention to the case of Fl+1. Again we denote the

critical degree by m. By a similar argument to the previous case we obtain

that there is a non-trivial syzygy (α,β, γ) of total degree m if and only if the

wv in γf l+1 =
∑

v=0wvx
vym−v are zero for m− aq+1= δ(l+1)

2 ≤ v ≤ aq− 1.

Again we write

f l+1 =

δ(l+1)∑
i=0

Eix
iyδl−i and γ =

m−δ(l+1)∑
u=0

cux
uym−(l+1)δ−u.

We set Ei = 0 for i < 0 or i > deg f l+1. This translates to a system of linear

equations in the ci which we write with the following square matrix of length
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m− δ(l+ 1) + 1 = aq−δ+r
2 = aq− δ(l+1)

2 as

⎛
⎜⎜⎜⎜⎜⎜⎝

E δ(l+1)
2

E δ(l+1)
2 −1

E δ(l+1)
2 −2

. . . E 3
2 δ(l+1)−m

E δ(l+1)
2 +1

E δ(l+1)
2

E δ(l+1)
2 −1

. . . E 3
2 δ(l+1)−m+1

...
...

...
. . .

...
E

m− δ(l+1)
2 −1

E
m− δ(l+1)

2 −2
E

m− δ(l+1)
2 −3

. . . E δ(l+1)
2 −1

E
m− δ(l+1)

2
E

m− δ(l+1)
2 −1

E
m− δ(l+1)

2 −2
. . . E δ(l+1)

2

⎞
⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎝

c0
c1
...

cm−δ(l+1)−1

cm−δ(l+1)

⎞
⎟⎟⎟⎟⎟⎠

.

The coefficient Ei is a polynomial in t of degree l + 1 if i= δ(l+1)
2 and of

degree < l+1 otherwise. Hence, we obtain that the determinant, call it E(q),

is a polynomial of degree (l+1)(aq− δ(l+1)
2 ) in t. In particular, the matrix is

invertible over k(t). �

Remark 3.2. In the class of examples considered in Theorem 3.1 we may
assume that gcd( δ2 , a) = 1. For if mr = δ

2 and mb = a, then we can obtain

Syz(xa, ya, za) as the pull-back of Syz(ub, vb,wb) on X =Projk[u, v,w]/(u2r+
v2r+ turvr−w2r) along the mapping u �→ xm, v �→ ym,w �→ ym. In particular,
if r = 1 then X ∼= P1

k and semistability coincides with strong semistability.

Corollary 3.3. Let k denote a field of positive characteristic p > 0 and
consider the smooth generic plane projective curve Y of even degree δ (prime
to p) given by the homogeneous coordinate ring

k(Cν)[x, y, z]
/(∑

|ν|=δ

Cνx
ν1yν2zν3

)
.

Then the syzygy bundle Syz(xa, ya, za) (a ∈ N+ such that δ � a) is strongly
semistable on Y .

Proof. By Lemma 2.1, it is enough to show that for every q = pe the syzygy
bundle Syz(xaq, yaq, zaq) has no global sections of total degree < 3

2aq. Since
the non-existence of non-trivial sections is an open property by semicontinuity
(cf. [10, Theorem III.12.8]), we may restrict to the curve given by

zδ = xδ + yδ + tx
δ
2 y

δ
2

over k(t), where t is an indeterminate. Then the result follows from Theo-
rem 3.1. �
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Remark 3.4. Corollary 3.3 can also be deduced (for a= 1 and δ ≥ 2) from
a result of Buchweitz and Chen (see [6, Corollary 1]). They show that the
Hilbert–Kunz multiplicity of the homogeneous coordinate ring of a generic
plane curve of degree δ ≥ 2 is the minimal possible one. This is equivalent to
the strong semistability of the syzygy bundle.

In fact, one can use this to show that S = Syz(xa, ya, za) is strongly semi-
stable on general plane curves of degree la, l ≥ 2. Consider the morphism
ϕ : P2

k → P2
k which maps x, y, z to xa, ya, za. Then ϕ∗ Syz(x, y, z) = S and

ϕ∗OP
2
k
(1) =OP

2
k
(a). So if Syz(x, y, z) is strongly semistable restricted to some

member of the linear system OP
2
k
(l) then S will be strongly semistable re-

stricted to the corresponding member of OP
2
k
(la).

4. Restricting a syzygy bundle to varying curves—special case

We now study semistability properties of the restriction of Syz(xa, ya, za)

to the curve given by zδ = xδ+yδ+ t0x
δ
2 y

δ
2 for special parameters t0 ∈ k. Also

note that in order to obtain a smooth family we have to restrict ourselves to
t0 �=− δ

2 ,
δ
2 .

The following lemma collects several criteria in terms of the determinants
D(q) and E(q) that occured in the proof of Theorem 3.1.

Lemma 4.1. Let k be a field of characteristic p > 0 and denote by S the
syzygy bundle Syz(xa, ya, za) on

Y =Projk[t][x, y, z]/
(
xδ + yδ + tx

δ
2 y

δ
2 − zδ

)
,

where δ � a, δ even and p � δ. Write aq = δl+ r with 0< r < δ, where q = pe,
and denote by D(q) the determinant associated to

Fl = Syz
(
xaq, yaq,

(
xδ + yδ + tx

δ
2 y

δ
2

)l)
and by E(q) the determinant associated to

Fl+1 = Syz
(
xaq, yaq,

(
xδ + yδ + tx

δ
2 y

δ
2

)l+1)
(as in the proof of Theorem 3.1). Let t0 ∈ k be such that Yt0 is a smooth fibre
of Y → Speck[t]. Then the following hold:

(a) If D(q)(t0) �= 0 and E(q)(t0) �= 0 for all q = pe then S|Yt0
is strongly

semistable. If D(q′)(t0) �= 0 and E(q′)(t0) �= 0 for some q′ ≥ 1
2δ(δ − 1) + 1

then S|Yt0
is semistable.

(b) If D(q)(t0) = 0 for some q = pe with r = 1, then F e∗S|Yt0
is not semistable.

In particular, S|Yt0
is not strongly semistable.

(c) If Fl has a non-zero global section of total degree 	 3aq
2 
− r− 1 or if Fl+1

has a non-zero global section of total degree 	 3aq
2 
 − 1 for some q = pe,

then F e∗S|Yt0
is not semistable.
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Proof. Part (a) follows via the arguments employed in Theorem 3.1. The
second statement follows from Lemma 2.2. As to part (b), we may assume
that δ ≥ 4. Since r = 1, sections of critical degree for Fl|Yt0

yield sections of

critical degree for F e∗S|Yt0
.

Part (c) is clear since a section of Fl of total degree m yields a section of
total degree m+ r in F e∗S|Yt0

and a section of Fl+1 yields a section of the
same total degree. �

We do not have a general result which guarantees the existence of spe-
cial elements t0 ∈ k with the several semistability behaviours described in
Lemma 4.1. However, this lemma provides the basis for various computational
methods to find such special elements. These methods were implemented in
CoCoA (see [7]) and Macaulay2 (see [9]). The computations were made only
for δ = 4 and a= 1, so we restrict to this case.

• Part (b) of Lemma 4.1 yields in theory a way to produce examples of bundles
with the properties described in the introduction if p≡ 1 mod δ. Fix a prime
characteristic p and let D(q) be the determinant of the matrix corresponding
to Fl and E(q) the determinant of the matrix corresponding to Fl+1 for
q = pe (a = 1). If (D(q) · E(q))(t) �= 0 for some q ≥ (δ − 1)2, then St is
semistable. If D(q)(t) = 0 for some q = pe (think of a larger q), then F e∗St

is not semistable, hence St is not strongly semistable. So for given p we
“only” have to look for t ∈ k and q ≥ (δ − 1)2 such that (D(q) ·E(q))(t) �= 0
but D(qp)(t) = 0. As q grows the matrices get larger and so it is natural to
expect that the number of zeros grows as well.

We implemented this as follows. Assume that H(q)(t) := (D(q) ·E(q))(t)
and D0(t) :=D(qp)(t) are as above. One divides Di by gcd(H(q),Di). Call
the resulting polynomial Di+1, increment i by one and repeat this process
until gcd(H(q),Di) = 1. If the resulting polynomial has positive degree,
then we find t0 as required. Unfortunately, computing determinants is very
expensive. Hence, we were only able to use it for p= 5,13 to get elements
t0 ∈ k such that the syzygy bundle is semistable but not strongly semistable.

• Lemmata 2.3 and 4.1(c) provide the following method. Fix a prime num-
ber p. For all elements t0 ∈ Fp we compute syzygies of Fl, Fl+1 (for
q = p) of minimal degree in Fp[x, y] (note that it simplifies computational
matters substantially to work in two variables).2 These yield syzygies of

Syz(xp, yp, zp) on the curve given by zδ = xδ + yδ + t0x
δ
2 y

δ
2 .

Suppose that such a syzygy s= (s1, s2, s3) of F
∗S = Syz(xp, yp, zp) shows

that this bundle is not semistable, which is just a degree condition. Then
we check the conditions of Lemma 2.3. To verify that s has no zeros we
have to check that s1, s2, s3 generate an R+-primary ideal. This in turn is

2 We restricted ourselves to prime fields since CoCoA does not yet support general finite

fields.
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equivalent to checking that (k[x, y, z]/(xδ + yδ + t0x
δ
2 y

δ
2 − z4))/(s1, s2, s3)

is zerodimensional. Finally, we check that the degree fulfills the divisibility
condition. If for some t0 ∈ Fp all these three conditions are fulfilled, then
the syzygy bundle is semistable and its first Frobenius pull-back is not
semistable anymore.

With this method we have found examples for most prime numbers
p ≤ 3433, but also with many exceptions. For p ≤ 100 the exceptions are
7,23,31, 47 and 89. For p= 7, we also worked with higher Frobenius pull-
backs but this was not successful.

• For the prime numbers p= 7,23,31,47,89 (the only cases ≤ 100 where the
second method failed) we worked with Fp2 instead. This is computationally
more expensive as we need a third variable. The second method directly
applied to Fp2 is also expensive as we have to run through p2 elements.
Hence, we rather looked at the zeros of the determinants and found elements
t0 ∈ Fp2 with the looked-for behaviour.

Example 4.2. Let p= 3. Then the determinants associated to

F0 = Syz
(
x3, y3,

(
x4 + y4 − tx2y2

)0)

and to

F1 = Syz
(
x3, y3,

(
x4 + y4 − tx2y2

)1)

are D = 1 and E = t, respectively. So only E has a zero over F3 and the
corresponding curve is the Fermat quartic x4+ y4− z4 over F3. Then F1|t0 =
Syz(x3, y3, (x4+ y4)) is generated by (x, y,−1), (y3,−x3,0). Hence, we obtain
the syzygies s = (x, y,−z) and t = (y3,−x3,0) for Syz(x3, y3, z3). Both sec-
tions do not have a zero since the components generate a primary ideal on
the Fermat quartic. The syzygy s is of total degree 4 and t is a (Koszul-)
syzygy of total degree 6. In particular, the total degree of t fails to satisfy
both of the numerical conditions of Lemma 2.3 while the total degree of s
satisfies these conditions. Hence, we obtain via Lemma 2.3 that Syz(x, y, z)
is semistable on the Fermat quartic over F3 while its first Frobenius pull-back
is not semistable.

Example 4.3. For p= 7, we have 7 = 4 ·1+3 and so we obtain the matrices

⎛
⎜⎜⎜⎜⎝

t 0 1 0 0
0 t 0 1 0
1 0 t 0 1
0 1 0 t 0
0 0 1 0 t

⎞
⎟⎟⎟⎟⎠
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with determinant D = t5+4t3+2t (corresponding to F1) which has the zeros
0,1,3,4,6 over F7 and ⎛

⎝t2 + 2 0 2t
0 t2 + 2 0
2t 0 t2 + 2

⎞
⎠ ,

with determinant E = t6 + 2t4 + 4t2 + 1 which factors as (t2 + 2)(t2 + 5t +
2)(t2 + 2t+ 2). In particular, E has no zeros over the prime field. However,
all syzygies for Syz(x7, y7, z7) that we obtained via F1 fail to be of total

degree <− pdegS
2degOY (1) =

21
2 . In order to settle the case p= 7, we then looked

at the fibre t0 in F49 satisfying t20+2= 0 and directly computed generators of
Syz(x7, y7, z7) on the curve z4 = x4 + y4 + t0x

2y2. In particular, this yielded
the syzygy (−2y3t0 − x2y,−2x3t0 − xy2, xyz) which is primary and satisfies
all the numerical conditions of Lemma 2.3.

Remark 4.4. In order to prove that for all (or at least for infinitely many)
prime numbers there exist elements t0 ∈ Fp such that Syz(x, y, z) is semistable
but not strongly semistable on the corresponding curve one needs probably a
better understanding of the structure of the matrices occurring in the proof
of Theorem 3.1 and their determinants. By the structure theorem on finitely
generated modules over principal ideal domains, these matrices are similar to
diagonal matrices ⎛

⎜⎜⎜⎝
Q1 0 . . . 0
0 Q2 . . . 0
... . . .

. . .
...

0 . . . 0 Qs

⎞
⎟⎟⎟⎠ ,

with polynomial entries Qi where Qi divides Qi+1. For t0 ∈ Fp, the number
of polynomials occurring on the diagonal which vanish at t0 is directly related
to the minimal degree k where Fl(k) (or Fl+1(k)) has a non-zero section
and hence via Lemma 4.1(c) to the destabilizing behaviour of F e∗ Syz. We
do neither know an explicit description of the polynomials occurring on the
diagonal nor what it means when t0 is a zero of higher order of some of these
polynomials.

Combining the generic result of Section 3 and the computations, we obtain
the following class of examples.

Proposition 4.5. Let k be a field of positive characteristic p and consider
the syzygy bundle S = Syz(x, y, z) on the curve

Y =Projk[t][x, y, z]/
(
x4 + y4 + tx2y2 − z4

)
→ Speck[t].

Then S is strongly semistable on the generic fibre Yk(t). For all primes p ≤
3433, p �= 2, 103, 151, 199, 239, 241, 257, 263, 281, 311, 313, 337, 367, 401,
409, 433, 457, 577, 601, 641, 647, 673, 719, 727, 743, 809, 823, 881, 887,
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911, 919, 937, 953, 967, 977, 1033, 1129, 1153, 1217, 1249, 1279, 1303, 1327,
1399, 1409, 1423, 1471, 1481, 1487, 1511, 1543, 1583, 1601, 1607, 1609, 1663,
1697, 1759, 1801, 1823, 1831, 1871, 1873, 1913, 1951, 1993, 1999, 2063, 2081,
2087, 2089, 2113, 2137, 2153, 2161, 2207, 2287, 2297, 2311, 2399, 2441, 2447,
2473, 2503, 2543, 2591, 2609, 2617, 2633, 2713, 2719, 2801, 2833, 2879, 2927,
2969, 3001, 3023, 3041, 3049, 3089, 3167, 3191, 3217, 3257, 3313, 3343, 3359,
there is a closed point t0 ∈ Speck[t] with smooth fibre Yt0 such that the special
bundle St0 on Yt0 is semistable but not strongly semistable.

Proof. The first claim is immediate from Theorem 3.1. To check semista-
bility, we applied the method based on Lemmata 2.3 and 4.1(c) to S . �

Remark 4.6.

(a) The bundles in Proposition 4.5 do not have degree 0, but this can be
remedied easily. Consider the finite covering

ϕ : X =Projk[t][u, v,w]/
(
u8 + v8 + tu4v4 −w8

)
−→ Y

induced by x �→ u2, y �→ v2 and w �→ z2 and note that ϕ∗OY (1) =OX(2).
Hence, we obtain that degϕ= 4. Consequently,

ϕ∗S ⊗OX(3) = Syz
(
u2, v2,w2

)
(3)

is of degree zero.
Moreover, S is still generically strongly semistable. Since ϕ is separa-

ble, ϕ∗S is still semistable but not strongly semistable for some special
fibre for any p as in Proposition 4.5. Thus passing to a finite separable
covering we find examples where S is of degree zero.

(b) Passing to a quartic field extension of k(t) and then applying a suitable
automorphism of P1 we may rewrite our curve equation as z4 − xy(x+
y)(( 2a

a+b − 1)x + a+b
a−by), where ±a,±b denote the zeros of x4 + tx2 + 1.

Write A = ( 2a
a+b − 1) and B = a+b

a−b . Again passing to a field extension,

transforming z �→ A− 1
4 z and replacing t by s= B

A as a variable we have

an isomorphism with z4 − xy(x+ y)(x+ sy).

Remark 4.7. It is worth mentioning that similar examples already oc-
curred in characteristics 2 and 3 in Hilbert–Kunz theory. More precisely,
Paul Monsky showed in [22, Theorem III] that the Hilbert–Kunz multiplicity
of (x, y, z) in the fibre ring

F3[t][x, y, z]/
(
z4 − xy(x+ y)(x+ ty)

)
is 3+ 1

9d
or 3 depending on whether t is algebraic or not, where d= (F3(t) : F3).

Via the interpretation of Hilbert–Kunz multiplicities in terms of vector bun-
dles over curves one obtains that S = Syz(x, y, z) is strongly semistable if and
only if its Hilbert–Kunz multiplicity is 3 (see [4, Corollary 4.6]). Since semista-
bility is an open property one thus obtains special fibres where S is semistable
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but not strongly semistable. Also note that the first example of Monsky in
characteristic 3 is generically isomorphic to our example after passing to a
finite field extension—this follows from the discussion in Remark 4.6(b).

In characteristic 2, the results of [21] say that the Hilbert–Kunz multiplicity
of

F2[t][x, y, z]/
(
z4 + xyz2 + x3z + y3z + tx2y2

)
depends on whether t is algebraic or not. This in turn implies that the syzygy
bundle Syz(x, y, z) on

ProjF2[t][x, y, z]/
(
z4 + xyz2 + x3z + y3z + tx2y2

)
−→ SpecF2[t]

is generically strongly semistable and semistable but not strongly semistable
for certain (in fact all smooth) special fibres.

Remark 4.8. Since Proposition 4.5 is not applicable in characteristic 2, we
provide a separate example for this case. Consider S = Syz(x2, y2, z2)(3) on
the smooth relative curve Y = Projk[t][x, y, z]/(x5 + y5 − z5 + tx2y3), where
k is a field of characteristic 2. We denote the generic fibre of S by St and the
special fibre at 0 by S0.

First, we claim that S0 is semistable but not strongly semistable. The first
Frobenius pullback of Syz(x2, y2, z2) on the fibre t= 0 admits the syzygy s=
(x, y, z) in total degree 5. Hence, S0 is semistable but not strongly semistable
by Lemma 2.3.

Next, we claim that S is strongly semistable on the generic fibre. In fact,
F 3∗(Syz(x2, y2, z2)t) has the (generically) linearly independent global sections

s1 =
(
x4y4, x8t4 + y8, y4z4

)
and

s2 =
(
x2y5zt5 + y7zt4 + x2y5z + x2z6, x6yzt9 + x4y3zt8 + x2y5zt7 + x5y2zt6

+ y7zt6 + x6yzt4 + xy6zt4 + x2y5zt2 + x5y2zt+ y2z6t+ x3y4z,

y8t6 + x3y5t5 + xy7t4 + x2y6t2 + y8t+ x8 + x3y5
)

of total degree 24. Observe furthermore that s1 has no zeros. Hence, F 3∗(St)
is trivial and in particular strongly semistable. It follows that St is strongly
semistable as well.

From Proposition 4.5, we also immediately obtain the following corollary.

Corollary 4.9. Consider the twisted syzygy bundle S = Syz(u2, v2,w2)(3)
on the relative curve

ProjV [u, v,w]/
(
u8 + v8 + tu4v4 −w8

)
−→ SpecV

over the discrete valuation ring V =K[t](t−t0), where K is a field of positive
characteristic p≤ 3433, with the exceptions mentioned in Proposition 4.5, such
that Fp2 ⊆K and t0 is a suitable element of K. Then S is of degree zero and
generically strongly semistable and it is semistable but not strongly semistable
in the special fibre.
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Proof. Fix a fibre as in Proposition 4.5 and pull back to the curve given in
Remark 4.6(a). Replacing k by a suitable quadratic extension if necessary we
may assume that this fibre corresponds to a rational point so that its ideal is
of the form (t− t0). Localising thus yields the result. �
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