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ON THE ESTIMATION OF NONLINEAR TWISTS OF THE
LIOUVILLE FUNCTION

AYYADURAI SANKARANARAYANAN

Dedicated in fond memory of Professor K. Ramachandra
on his eightieth birthday

Abstract. We prove a nontrivial upper bound for the quantity
(with e(z) = e2πiz), ∣∣∣∣ ∑

X≤n≤2X

λ(n)e(α
√
n)

∣∣∣∣,
where α is any nonzero real number. This upper bound is an
improvement of the earlier known results.

1. Introduction

In studying equi-distribution theory, zero-distribution of L-functions and
so on, nonlinear exponential twists of arithmetic functions arise naturally.
A more general nonlinear exponential sum is of the form

S(X,α) =
∑

X≤n≤2X

ane(α
√
n), 0 �= α ∈R.

Here as usual e(z) = e2πiz . The sum S(X,α) was first studied by Vinogradov
when an = Λ(n), the von Mangoldt function (see [3], [2] and [13]). For an =
Λ(n) and an = μ(n) (μ being the Möbius function), it has been established by
Iwaniec, Luo and Sarnak (see [4]) that, the sums S(X,α) are highly related to
the L-functions of GL2. When f is a holomorphic cusp form of even integral
weight, they proved that a good upper bound for |S(X,α)| implies the quasi-
Riemann hypothesis for L(s, f) on the upper half-plane. Upper bounds for
various an have been studied in [8] and [11].
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In this paper, we are interested on the sum S(X,α) when an = λ(n) or
μ(n) where the Liouville function λ(n) is completely multiplicative and it is
defined by λ(pk) = (−1)k for prime powers and using complete multiplicativity
of λ(n) for any positive integer n with λ(1) = 1, and the Möbius function μ(n)
is defined as μ(1) = 1, μ(p1p2 · · ·pk) = (−1)k, μ(n) = 0 if n is divisible by pl

with l≥ 2 for any prime p≥ 2.
As mentioned in [8], it is interesting to note that the hypothesis that for

some θ < 1, the bound ∑
n≤X

λ(n) =O
(
Xθ

)
implies the quasi-Riemann hypothesis. This approach is due to Pólya. It
should be noted that the Riemann hypothesis is equivalent to the assertion
that the above estimate holds for every θ > 1

2 . A relevant sum, namely

Sq(X) =
∑
n

ane(−2
√
nq)φ

(
n

X

)
with an � nε for any ε > 0 and φ being a smooth function compactly sup-
ported on R

+ has been considered by Iwaniec, Luo and Sarnak in [4] and they
established the bound that

(1.1) Sq(X)� q
1
4X

3
4+ε,

under the assumption (see C.4, p. 122 of [4]) that the associated L-function
A(s) =

∑∞
n=1 ann

−s has a holomorphic continuation to �s > 1
2 except for a

possible pole of finite order at s= 1 and satisfies the bound

A(s)� |s|ε, if �s= σ

for any 1
2 < σ < 1 and any ε > 0 (the implied constant depends only on σ

and ε). It should be noted that the result in (1.1) is more general. They
have also dealt therein with some interesting examples and they even showed
that the exponent 3/4 in (1.1) can not be improved in certain cases (see for
example C.33 of [4]).

In [11], Qingfeng Sun established unconditionally that (for any ε > 0 and
for any 0 �= α ∈R),

∑
n∼X

λ(n)e(α
√
n)�X

5
6 log7/2X +

(
1 +

1

|α|

)1/2

X3/4 log4X(1.2)

+ (1 + |α|)1/2X3/4 log7/2X +

(
|α|+ 1

|α|

)
X1/2+ε

holds where the implied constant depends only on ε.
The aim here is to prove unconditionally Theorem 1.
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Theorem 1. For any 0 �= α ∈R, we have∑
X≤n≤2X

λ(n)e(α
√
n)�ε X

3/4(logX)7/2(1 + |α|)1/2

+X1/2(logX)7/2
(
1 +

1

|α|

)1/2

+X
1
2+ε

(
|α|+ 1

|α|

)
.

Remark 1. Theorem 1 improves the bound in (1.2). This improvement
essentially comes from (2.7) and using the idea of exponent pairs to estimate
certain quantities (see Sections 5 and 6) in a better fashion. In addition, we
need to show that with our choice of the parameters U and V , the contribution

coming from the sum S
(1)
1,1(X,α) is controllable to at most what is claimed in

the Theorem 1. This is done in Section 4. An analogous result can be proved
for nonlinear exponential sums of similar type where λ(n) is replaced by μ(n).
More precisely, we also have Theorem 2.

Theorem 2. For any 0 �= α ∈R, we have∑
X≤n≤2X

μ(n)e(α
√
n)�ε X

3/4(logX)7/2(1 + |α|)1/2

+X1/2(logX)7/2
(
1 +

1

|α|

)1/2

+X
1
2+ε

(
|α|+ 1

|α|

)
.

Remark 2. It should be noted that if α = −2
√
q with any integer q ≥

1 and an = λ(n) or μ(n), then Theorems 1 and 2 agree with the estimate
in (1.1) uniformly for 1 ≤ q ≤ c1X for some effective positive constant c1.
Conjecturally one expects that the upper bounds of Theorems 1 and 2 to
hold with the exponent of X to be 1

2 + ε. However, it seems to be really deep
and difficult to achieve.

2. Notation and preliminaries

The letters C and A (and c and a) (with or without suffixes) denote effective
positive constants unless they are specified. They need not be the same at
every occurrence. The notation ε always denotes any arbitrarily small positive
constant. Throughout the paper, we assume T ≥ T0 and X ≥X0, where T0

and X0 are large positive constants. We write f(x)� g(x) to mean |f(x)|<
C1g(x) for x ≥ x0 (sometimes we denote this by the O notation also). Let
s= σ+ it, and w = u+ iv. The notation n∼X means that X ≤ n≤ 2X . For
n≥ 1 an integer, let τ(n) denote the number of positive integral divisors of n.

Following Davenport (see p. 139 of [1]) and Murty and Sankaranarayanan
(see Section 2 of [8]), we can describe the Vaughan’s identity as follows. For
any A,B �= 0 and F,G, we have the formal identity

(2.1)
A

B
= F −BGF +AG+

(
A

B
− F

)
(1−BG).
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Applying this identity (2.1) with A(s) = ζ(2s),B(s) = ζ(s), F (s) =∑
n≤U λ(n)n−s and G(s) =

∑
n≤V μ(n)n−s, then we have

(2.2) λ(n) = a1(n) + a2(n) + a3(n) + a4(n),

where

a1(n) =

{
λ(n) for n≤ U

0 for n > U,
a2(n) =−

∑
abc=n

b≤V,c≤U

μ(b)λ(c),(2.3)

a3(n) =
∑

b2c=n
c≤V

μ(c), a4(n) =
∑

abc=n

b>V,c>U

μ(b)λ(c).

In (2.3), U ≥ 1 and V ≥ 1 are free parameters to be chosen suitably later and
ζ(s) denotes the Riemann zeta-function. Note that

(2.4)
ζ(2s)

ζ(s)
=

∞∑
n=1

λ(n)

ns
, �s > 1.

Reduction process. Here after, our

S(X,α) :=
∑
n∼X

λ(n)e(α
√
n),

where 0 �= α ∈ R. To simplify the arguments below, in Vaughan’s identity
(2.2), we make the choice of the free parameters U,V such that U = V and
we suppose that these parameters satisfy the condition 1≤ U = V ≤ 1

100X
1/3

and of course X ≥X0 where X0 is sufficiently large. Then, we observe that
for n∼X , a1(n) = 0 and

(2.5) S(X,α) = S1(X,α) + S2(X,α) + S3(X,α),

where

S1(X,α) = −
∑
n∼X

∑
abc=n

b,c≤U

μ(b)λ(c)e(α
√
n),

S2(X,α) =
∑
n∼X

∑
b2c=n
c≤U

μ(c)e(α
√
n)

and

(2.6) S3(X,α) =
∑
n∼X

∑
abc=n

b,c>U

μ(b)λ(c)e(α
√
n).

We notice that for X1 ≥ 0,X2 ≥ 0 and for 0≤ δ ≤ 1, we have

min(X1,X2)≤Xδ
1X

1−δ
2 .
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Therefore, we obtain∣∣S2(X,α)
∣∣ ≤ ∑

b≤
√
2X

∑
c≤min(U,2X/b2)

1(2.7)

≤
∑

b≤
√
2X

min
(
U,2X/b2

)
≤

∑
b≤

√
2X

U1/2

√
2X

b

�X1/2U1/2 logX

�X2/3 logX

(
since 1≤ U = V ≤ 1

100
X1/3

)
.

We follow certain arguments of Zhao (see [14]). We set W =
√
2X . Then, we

have

S1(X,α) = −
∑
n∼X

∑
abc=n

b,c≤U

μ(b)λ(c)e(α
√
n)(2.8)

= −
∑
n∼X

∑
abc=n

b,c≤U,a≥W

μ(b)λ(c)e(α
√
n)

−
∑
n∼X

∑
abc=n

b,c≤U, X
U2 ≤a<W

μ(b)λ(c)e(α
√
n)

= −S1,1(X,α)− S1,2(X,α) (say)

and

S3(X,α) =
∑
n∼X

∑
abc=n

b,c>U

μ(b)λ(c)e(α
√
n)(2.9)

=
∑
n∼X

∑
abc=n

c>U,U<b<W

μ(b)λ(c)e(α
√
n)

+
∑
n∼X

∑
abc=n

b≥W,U<c≤W

μ(b)λ(c)e(α
√
n)

= S3,1(X,α) + S3,2(X,α) (say).

Throughout the paper, our choice for U and V are going to be U = V =
100X1/4.

Exponent pairs. We are interested on estimating the sum

(2.10) S :=
∑

B≤n≤B+h

e
(
f(n)

)
(B ≥ 1,1< h≤B).
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We suppose that A� |f (1)(x)| �A(A> 1
2 ). More generally, one can suppose

that

(2.11) AB1−r �
∣∣f (r)(x)

∣∣�AB1−r (r = 1,2,3, . . .).

An exponent pair is a pair of numbers (κ,λ) with 0≤ κ≤ 1
2 ≤ λ≤ 1 for which

the estimate

(2.12) |S| :=
∣∣∣∣ ∑
B≤n≤B+h

e
(
f(n)

)∣∣∣∣�AκBλ

holds. Trivially (0,1) is an exponent pair. Using

(2.13)
∑

a<n≤b

e
(
f(n)

)
=

∑
α−η<m<β+η

∫ b

a

e
(
f(x)−mx

)
dx+O

(
log(β−α+2)

)
and the Lemma 3.2 to estimate each integral as �m

−1/2
2 , one obtains the

bound

(2.14) S � (AB)1/2.

This means that the pair (12 ,
1
2 ) is an exponent pair. We note that the set of

all exponent pairs forms a convex set. We also know that (see [3]) there are at
least three processes through which we can produce a lot of exponent pairs.
Given exponent pairs (κ,λ) and (κ1, λ1), these processes are:

Process A: A(κ,λ) =

(
κ

2κ+ 2
,
1

2
+

λ

2κ+ 2

)
,

Process B: B(κ,λ) =

(
λ− 1

2
, κ+

1

2

)
and

Process C(t): C(t)(κ,λ)(κ1, λ1) =
(
κt+κ1(1− t), λt+λ1(1− t)

)
(0≤ t≤ 1).

The output pairs coming from these processes are indeed exponent pairs for
which we refer to [3]. Some of the exponent pairs are: ( 16 ,

2
3 ), (

2
7 ,

4
7 ), (

5
24 ,

15
24 ),

( 4
11 ,

6
11 ) etc. If α= 0.3290213568 . . . , then Rankin showed that (κ,λ) = (α2 +

ε, 12 + α
2 + ε) is an exponent pair such that the function F (κ,λ) = κ + λ is

minimal.

3. Some lemmas

Lemma 3.1. Let f(x) be a real-valued function, differentiable on [a, b]. If
f ′(x) is monotonic and f ′(x)≥m> 0 or f ′(x)≤−m< 0 throughout the in-
terval [a, b], then ∣∣∣∣∫ b

a

eif(x) dx

∣∣∣∣≤ 4

m
.

Proof. This is Lemma 4.2 of [12]. �
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Lemma 3.2. Let f(x) be a real-valued function, twice differentiable on [a, b].
If f ′′(x)≥ ν > 0 or f ′′(x)≤−ν < 0 throughout the interval [a, b], then∣∣∣∣∫ b

a

eif(x) dx

∣∣∣∣≤ 8√
ν
.

Proof. This is Lemma 4.4 of [12]. �

Lemma 3.3. Let f(x) be real-valued function with |f ′(x)| ≤ θ < 1 and
f ′(x) �= 0 on [a, b]. Then,∑

a<n≤2a

e
(
f(n)

)
=

∫ 2a

a

e
(
f(x)

)
dx+O

(
1

1− θ

)
.

Proof. This is Lemma 4.8 of [12] with precise O-term. For the proof, see,
for instance, Theorem 7.17 of [5] or Lemma 1.2 of [3]. �

Lemma 3.4. Let X,T ≥ 1. For any complex numbers an, we have∫ T

−T

∣∣∣∣ ∑
1≤n≤X

ann
−it

∣∣∣∣2 dt� (T +X)
∑

1≤n≤X

|an|2.

Proof. This is some what a weaker version of Montgomery–Vaughan theo-
rem (see [6] or [7] or [9] or [5]). �

4. The estimation of S1,1(X,α)

We follow some arguments of [11] closely. Recall that W =
√
2X . Let

(4.1) H(d) :=
∑
bc=d

b,c≤U

μ(b)λ(c).

Then (since W =
√
2X),

S1,1(X,α) =
∑
n∼X

∑
abc=n

b,c≤U,a≥W

μ(b)λ(c)e(α
√
n)(4.2)

=
∑
n∼X

∑
ad=n
a≥W

H(d)e(α
√
n)

=
∑
n∼X

∑
ad=n

a≥W,d≤W

H(d)e(α
√
n)

=
∑
n∼X

∑
ad=n

d≤W

H(d)e(α
√
n)−

∑
n∼X

∑
ad=n

a,d≤W

H(d)e(α
√
n)

= S
(1)
1,1(X,α)− S

(2)
1,1(X,α) (say).



558 A. SANKARANARAYANAN

Treatment of S
(1)
1,1(X,α). Let

(4.3) F (u) :=
∑
n≤u

∑
ad=n

d≤W

H(d).

Then

(4.4) S
(1)
1,1(X,α) =

∑
n∼X

∑
ad=n

d≤W

H(d)e(α
√
n) =

∫ 2X

X

e(α
√
u)dF (u).

For �s > 1, consider

(4.5) ζ(s)

(∑
d≤W

H(d)

ds

)
=

∞∑
n=1

b(n)

ns
where b(n) :=

∑
ad=n

d≤W

H(d).

Note that from (4.4), the integration variable u varies in the interval [X,2X].
From Perron’s formula, with T =X (see Lemma 3.19 of [12], see also Corol-
lary 2 of [10]), for any ε > 0, we have

(4.6) F (u) =
∑
n≤u

b(n) =
1

2πi

∫ 1+ 1
logX +iT

1+ 1
logX −iT

ζ(s)

(∑
d≤W

H(d)

ds

)
us

s
ds+O

(
Xε

)
.

We move the line of integration in (4.6) to �s = 1
2 . Note that ζ(s) has a

simple pole at s= 1 and hence by Cauchy’s residue theorem, we obtain (since
u≤ 2X)

F (u) = u

(∑
d≤W

H(d)

d

)
(4.7)

+
1

2πi

(∫ 1+ 1
logX −iT

1
2−iT

+

∫ 1
2+iT

1
2−iT

+

∫ 1+ 1
logX +iT

1
2+iT

)
ζ(s)

(∑
d≤W

H(d)

ds

)
us

s
ds

+O
(
Xε

)
.

We note that |H(d)| ≤ τ(d), where τ(d) denotes the number of divisors of

d. Keeping in mind T =X,W =
√
2X , we observe that the horizontal lines

contributions from (4.7) in absolute value is at most (since u≤ 2X)

Q1 �
∫ 1+ 1

logX

1/2

∣∣ζ(σ± iT )
∣∣(∑

d≤W

H(d)

dσ

)
Xσ

T
dσ(4.8)

� max
1
2≤σ≤1+ 1

logX

T
1
2 (1−σ)(logT )W 1−σ(log2W )Xσ

T
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since ζ(σ± iT )� T

1
2 (1−σ) logT for

1

2
≤ σ ≤ 1, |H(d)| ≤ τ(d)

)
� max

1
2≤σ≤1+ 1

logX

(
√
2X)1−σ(log3X)Xσ+ 1

2 (1−σ)

X

(since T =X,W =
√
2X)

� log3X.

Note that we have used the bound∑
n≤x

(
τ(n)

)l � x(logx)2
l−1.

Therefore,

F (u) = u

(∑
d≤W

H(d)

d

)
(4.9)

+
1

2πi

∫ 1
2+iT

1
2−iT

ζ(s)

(∑
d≤W

H(d)

ds

)
us

s
ds+O

(
Xε

)
.

Let E(u) =O(uε). Then, by partial integration, the contribution coming from

the O-term in (4.9) to S
(1)
1,1(X,α) is

(4.10)

∫ 2X

X

e(α
√
u)dE(u)�Xε

(
1 + |α|

√
X
)
.

The contribution of the first term in (4.9) to S
(1)
1,1(X,α) is

(4.11)
∑
d≤W

H(d)

d

∫ 2X

X

e(α
√
u)du�

√
X

|α|
∑
d≤W

τ(d)

d
�

√
X log2X

|α| .

The contribution of the second term in (4.9) to S
(1)
1,1(X,α) is

Q2 :=

∫ 2X

X

e(α
√
u)d

(
1

2πi

∫ 1
2+iT

1
2−iT

ζ(s)

(∑
d≤W

H(d)

ds

)
us

s
ds

)
(4.12)

=
1

2π

∫ T

−T

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)

×
{∫ 2X

X

u− 1
2+ite(α

√
u)du

}
dt

=
1

π

∫ T

−T

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt.
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Estimation of certain exponential integral. We need to estimate an
upper bound for |I| where

I :=

∫ √
2X

√
X

e

(
αv+

t

π
log v

)
dv.

Let V denote the interval [
√
X,

√
2X] and for v ∈ V , let f(v) = αv+ t

π log v.
Then

(4.13) f ′(v) = α+
t

πv
=

t+ απv

πv
, f ′′(v) =− t

πv2

so that

(4.14)
∣∣f ′(v)

∣∣≥ minv∈V |t+ απv|
π
√
X

,
∣∣f ′′(v)

∣∣≥ |t|
πX

.

First of all, we notice that from Lemmas 3.1 and 3.2,

(4.15) |I| ≤min

{
16π

√
X√

1 + |t|
,

4π
√
X

minv∈V |t+ απv|

}
if |t| ≥ 10.

Let T0 = 2π|α|
√
2X . If |t| ≥ T0, then |t+ απv| ≥ |t| − π|α|v ≥ |t|

2 .
(i) Suppose that T0 ≥ 10. Therefore, we get

(4.16) |I| ≤

⎧⎪⎪⎨⎪⎪⎩
√
X if |t| ≤ 10 (trivially),

16π
√
X√

1+|t|
if 10≤ |t| ≤ T0 (by Lemma 3.2),

4π
√
X

minv∈V |t+απv| ≤
8π

√
X

|t| if T0 ≤ |t| ≤ T (by Lemma 3.1).

For 1
2 ≤ σ < 1, |t| ≤ 10, we have∣∣∣∣ζ(s)− 1

s− 1

∣∣∣∣ =
∣∣∣∣∣
∞∑

n=1

(
1

ns
−
∫ n+1

n

du

us

)∣∣∣∣∣(4.17)

=

∣∣∣∣∣
∞∑

n=1

∫ n+1

n

(∫ u

n

dv

vs+1
(−s)

)
du

∣∣∣∣∣
≤ |s|

∫ ∞

1

dv

vσ+1

≤ |σ|+ |t|
|σ|

and hence for |t| ≤ 10, we have

(4.18)

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣≤ 25.

Also,

(4.19)

∣∣∣∣∑
d≤W

H(d)

d
1
2+it

∣∣∣∣≤ ∑
d≤W

τ(d)

d
1
2

�W
1
2 log2W �X1/4 log2X.



ESTIMATION OF NONLINEAR TWISTS OF THE LIOUVILLE FUNCTION 561

Therefore, we obtain

Q3 :=
1

π

∫
|t|≤10

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)
(4.20)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt

� X1/4
(
log2X

)√
X

� X3/4 log2X.

For 10< |t| ≤ T0, we split the interval (10, T0] into dyadic intervals of the
type (T1

2 , T1] so that there are at most � logT such intervals. Thus, it is
enough to estimate

Q4 :=

∫ T1

T1
2

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)
(4.21)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt

�
√
X√

1 + T1

(∫ T1

T1
2

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣2 dt)1/2

×
(∫ T2

T2
2

∣∣∣∣∑
d≤W

H(d)

d
1
2+it

∣∣∣∣2 dt)1/2

�
√
X√

1 + T1

(
T1(logT1)

)1/2(
(T1 +W ) log4W

)1/2
� (logX)5/2

√
X(T1 +W )1/2.

Note that we have used the second moment of ζ(s) on the critical line and
the Lemma 3.4 in deriving the estimate (4.21) for |Q4|.

Therefore, we obtain

Q5 :=
1

π

∫
10<|t|≤T0

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)
(4.22)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt

� (logT ) max
10≤T1≤T0

∣∣∣∣∫ T1

T1
2

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt

∣∣∣∣
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� (logX)7/2
√
X(T0 +W )1/2

�X3/4(logX)7/2(1 + |α|)1/2

(since W =
√
2X,T0 = 2π|α|

√
2X).

For T0 < |t| ≤ T , we split the interval (T0, T ] into dyadic intervals of the
type (T2

2 , T2] so that there are at most � logT such intervals. Thus, it is
enough to estimate

Q6 :=

∫ T2

T2
2

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)
(4.23)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt

�
√
X

T2

(∫ T2

T2
2

∣∣∣∣ζ(1

2
+ it

)∣∣∣∣2 dt)1/2

×
(∫ T2

T2
2

∣∣∣∣∑
d≤W

H(d)

d
1
2+it

∣∣∣∣2 dt)1/2

�
√
X

T2

(
T2(logT2)

)1/2(
(T2 +W ) log4W

)1/2
� (logX)5/2

√
X

(
1 +

(
W

T2

))1/2

.

Therefore, we obtain

Q7 :=
1

π

∫
T0<|t|≤T

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)
(4.24)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt

� (logT ) max
T0≤T2≤T

∣∣∣∣∫ T2

T2
2

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt

∣∣∣∣
� (logX)7/2

√
X

(
1 +

W

T0

)1/2

�X1/2(logX)7/2
(
1 +

1

|α|

)1/2

(since W =
√
2X,T0 = 2π|α|

√
2X).
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(ii) We suppose that T0 ≤ 10. Then, as before, we obtain

Q8 :=
1

π

∫
|t|≤T0

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)
(4.25)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt

� X3/4 log2X

and

Q9 :=
1

π

∫
T0<|t|≤T

ζ

(
1

2
+ it

)(∑
d≤W

H(d)

d
1
2+it

)
(4.26)

×
{∫ √

2X

√
X

e

(
αv+

t

π
log v

)
dv

}
dt

� X1/2 logX max
T0≤T3≤T

1

T3
(T3 logT3)

1/2

×
(
(T3 +W ) log4W

)1/2
� X1/2(logX)7/2

(
1 +

1

|α|

)1/2

.

Hence from (4.10), (4.11), (4.12), (4.20), (4.22), (4.24), (4.25) and (4.26),
we observe that

S
(1)
1,1(X,α) �

√
X log2X

|α| +X3/4 log2X(4.27)

+X3/4(logX)7/2
(
1 + |α|

)1/2
+X1/2(logX)7/2

(
1 +

1

|α|

)1/2

+Xε
(
1 + |α|

√
X
)

�ε X
1
2+ε

(
|α|+ 1

|α|

)
+X3/4(logX)7/2

(
1 + |α|

)1/2
+X1/2(logX)7/2

(
1 +

1

|α|

)1/2

.

We estimate more explicitly an upper bound than [11] for |S(2)
1,1(X,α)| using

exponent pairs in Section 6.
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5. Better estimations of S1,2(X,α), S3,1(X,α) and S3,2(X,α)

Arguing similar to Zhao (see [14]), we observe that

S1,2(X,α) =
∑
n∼X

∑
abc=n

b,c≤U, X
U2 ≤a<W

μ(b)λ(c)e(α
√
n)(5.1)

=
∑
n∼X

∑
ad=n

X
U2 ≤a<W

H(d)e(α
√
n)

=
∑

X
W <d≤2U2

H(d)
∑

X
U2 ≤a<W

ad∼X,a∈Z

e(α
√
ad).

It is important to note that the second sum in (5.1) exists only if the interval
[ XU2 ,W ) contains at least one positive integer. That is, the choice of our free

parameter U must satisfy the inequality 1 + X
U2 <W =

√
2X . Therefore, we

force our choice of U throughout the paper to satisfy U ≥ 100X1/4. Now,
with this choice of U , the interval [ XU2 ,W ) will contain certainly a block of
consecutive positive integers. We split the summation over d and a into dyadic
intervals so that we have

(5.2) S1,2(X,α)� log2X
∑
d∼D

∣∣H(d)
∣∣∣∣∣∣∑

a∼L
a∈Z

e(α
√
ad)

∣∣∣∣
where D and L satisfy the conditions X

W < D ≤ 2U2, X
U2 ≤ L < W and

DL=X . Note that |H(d)| ≤ τ(d).

Estimation of |
∑

a∼L
a∈Z

e(α
√
ad)|. Let

(5.3) Q10 :=
∑

L≤a≤2L

a∈Z

e(α
√
ad).

Taking f(a) = α
√
ad, then we find that

f (r)(a) =
α
√
d( 12 )(

1
2 − 1) · · · ( 12 − (r− 1))

a
1
2+(r−1)

.

We fix A= |α|
√
d√

L
. Then clearly

A

2
√
2
≤
∣∣f (1)(a)

∣∣≤ A

2
.

It should be noted that there can be some integers d in the interval [D,2D]
for which A> 1

2 and for the rest of the integers d in the interval [D,2D] for

which A≤ 1
2 .

(i) We consider those integers d in [D,2D] for which A> 1
2 .



ESTIMATION OF NONLINEAR TWISTS OF THE LIOUVILLE FUNCTION 565

With B = L, it is clear that

(5.4) AB1−r �r

∣∣f (r)(a)
∣∣�r AB

1−r.

Therefore, by the theory of exponent pairs, we have the estimate

Q10 :=
∑

L≤a≤2L

a∈Z

e(α
√
ad)(5.5)

� AκBλ

�
(
|α|

√
d√

L

)κ

Lλ,

where this estimate (5.5) holds for any exponent pair (κ,λ).
(ii) We consider those integers d in [D,2D] for which A≤ 1

2 .

We observe that if f(a) = α
√
ad, then∣∣f ′(a)

∣∣= |α|
√
d

2
√
a

>
|α|

√
d

2
√
2L

> 0

for D ≤ d≤ 2D,L≤ a≤ 2L.
Now, we use the Lemmas 3.3 and 3.1, and obtain

(5.6) Q10 �
2
√
2L

|α|
√
d
+ 1.

Therefore, from (5.5) and (5.6), we obtain (for all d in [D,2D])

(5.7) Q10 �
(
|α|

√
d√

L

)κ

Lλ +

√
2L

|α|
√
d
+ 1.

Hence, we obtain

S1,2(X,α)�
(
log2X

) ∑
d∼D

∣∣H(d)
∣∣∣∣∣∣∑

a∼L
a∈Z

e(α
√
ad)

∣∣∣∣(5.8)

�
(
log2X

) ∑
d∼D

τ(d)

{(
|α|

√
d√

L

)κ

Lλ +

√
2L

|α|
√
d
+ 1

}
� |α|κ

(
log2X

)
D1+κ

2 (logD)Lλ−κ
2

+

√
2D

√
2L(log2X)(log2D)

|α| + (D logD) log2X

� |α|κ
(
log3X

)
(DL)1+

κ
2 Lλ−1−κ

+
X1/2 log4X

|α| +
X log3X

L

� |α|κ
(
log3X

)
X1+κ

2

(
X

U2

)λ−1−κ

+
X1/2 log4X

|α|
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+U2 log3X since W ≥ L≥ X

U2

� |α|κXλ−κ
2

(
log3X

) 1

U2λ−2−2κ

+
X1/2 log4X

|α| +U2 log3X

� |α|1/2X1/4
(
log3X

)
U2 +

X1/2 log4X

|α|
+U2 log3X by taking (κ,λ) = (1/2,1/2)

� |α|1/2X3/4
(
log3X

)
+

X1/2 log4X

|α| +X1/2 log3X

if we choose our U = 100X1/4.

Estimations of S3,1(X,α) and S3,2(X,α). Note that d= bc where b and c
lie in certain intervals. To treat S3,1(X,α), we define

H1 :=
∑
ad=n,

1≤a≤ X
U2

μ(b)λ(c).

We note that for any given integer n ∈ [X,2X] and for any given integral
pair (b, c) (where U < b < W and c > U ) with d = bc and ad = n, it means
that 1≤ a≤ X

U2 and U2 < d= bc < 2X with ad= n and such an a is uniquely
determined. Therefore, a = n

bc is a positive integer in the said interval and
this means that there exists at least one integral pair (a1, a2) satisfying 1≤
a1, a2 ≤ X

U2 and for this pair we have a = a1a2 = n
bc . Moreover, given any

integral pair (b, c) lying in the said intervals with d = bc and ad = n, the
function μ(b)λ(c) assumes one of the values from the set {0,+1,−1}. Thus,
the sum H1 depends essentially on the factorisations of the positive integer a.
This means that

H1 =H1(a) :=
∑
ad=n,

1≤a≤ X
U2

μ(b)λ(c)

is a function only of a. Therefore, we have

S3,1(X,α) =
∑

1≤a≤ X
U2

H1(a)
∑

U2<d<2X

e(α
√
ad).

Similar reasoning holds good for S3,2(X,α) and hence

S3,2(X,α) =
∑

1≤a≤ X
WU

H2(a)
∑

WU<d<2X

e(α
√
ad)
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with

H2(a) :=
∑
ad=n,

1≤a≤ X
WU

μ(b)λ(c).

It is clear that |H1(a)| ≤ τ(a) and |H2(a)| ≤ τ(a). The key observation now is
that the role of a and d is interchanged with a and d being in appropriate in-
tervals. Therefore, the estimations of S3,1(X,α) and S3,2(X,α) are analogous
to (5.8) and hence we obtain∣∣S1,2(X,α)

∣∣+ ∣∣S3,1(X,α)
∣∣+ ∣∣S3,2(X,α)

∣∣(5.9)

� |α|1/2X3/4
(
log3X

)
+

X1/2 log4X

|α| +X1/2 log3X.

6. Better estimation of S
(2)
1,1(X,α) and the proof of Theorem 1

We find that

S
(2)
1,1(X,α) =

∑
n∼X

∑
ad=n

a,d≤W

H(d)e(α
√
n) =

∑
d≤W

H(d)
∑
a≤W

ad∼X,a∈Z

e(α
√
ad).(6.1)

As in Section 5, we split the summation over d and a into dyadic intervals
and find that

(6.2) S
(2)
1,1(X,α)�

(
log2X

) ∑
d∼D̃

∣∣H(d)
∣∣∣∣∣∣∑

a∼L̃
a∈Z

e(α
√
ad)

∣∣∣∣,
where D̃ and L̃ satisfy D̃ ≤W,L̃≤W and D̃L̃=X . Now, arguments similar
to Section 5 leads to

S
(2)
1,1(X,α)�

(
log2X

)(∑
d∼D̃

∣∣H(d)
∣∣∣∣∣∣∑

a∼L̃
a∈Z

e(α
√
ad)

∣∣∣∣)(6.3)

�
(
log2X

) ∑
d∼D̃

τ(d)

{(
|α|

√
d√

L̃

)κ

L̃λ +

√
2L̃

|α|
√
d
+ 1

}
� |α|κ

(
log2X

)
D̃1+κ

2 (log D̃)L̃λ−κ
2

+

√
2D̃

√
2L̃(log2X)(log2 D̃)

|α| + (D̃ log D̃) log2X

� |α|κ
(
log3X

)
W 1+λ +

X1/2 log4X

|α| +X1/2 log3X

� |α|1/2
(
log3X

)
X3/4 +

X1/2 log4X

|α| +X1/2 log3X
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by choosing the exponent pair (κ,λ) = (1/2,1/2) and since D̃ ≤ W =
√
2X

and L̃≤W =
√
2X . Now, the Theorem 1 follows from (4.27), (6.3), (2.7) and

(5.9).

7. Proof of Theorem 2

In the formal identity (2.1), we take (for �s > 1)

A(s) = 1, B(s) = ζ(s) =
∞∑

n=1

1

ns
,(7.1)

A(s)

B(s)
=

∞∑
n=1

μ(n)

ns
=

1

B(s)
, F (s) =

∑
n≤U

μ(n)

ns
, G(s) =

∑
n≤V

μ(n)

ns
.

The free parameters U,V are chosen in such a way to satisfy that 10≤ U =
V ≤ 1

100X
1/3. In fact, our choice here too is going to be U = V = 100X1/4.

With this setting, we observe that

(7.2) μ(n) = a1(n) + a2(n) + a3(n) + a4(n),

where

a1(n) = a3(n) =

{
μ(n) if n≤ U,

0 otherwise,

a2(n) = −
∑

abc=n

b,c≤U

μ(b)μ(c)

and

(7.3) a4(n) =
∑

abc=n

b>U,c>U

μ(b)μ(c).

We note that

(7.4) a1(n) = a3(n) = 0 for X ≤ n≤ 2X.

In place of H(d), we define

(7.5) H∗(d) :=
∑
bc=d

b,c≤U

μ(b)μ(c), so that
∣∣H∗(d)

∣∣≤ τ(d).

(Analogous to H1(a) and H2(a), we can also define H∗
1 (a) and H∗

2 (a)). Now
one needs to treat the sums similar to S1(X,α) and S3(X,α), where λ(c) is
replaced by μ(c) throughout. Now the whole arguments of this paper goes
through verbatim the same with these necessary changes. Thus, the proof of
Theorem 2 is complete.
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