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THE EXACTNESS OF CERTAIN RANDOMIZED
C∗-ALGEBRAS

BERNHARD BURGSTALLER

Abstract. We construct a non-atomic strong operator topology-
dense probability measure on the set of unitary operators acting

on a separable Hilbert space, such that the C∗-algebra generated

by n ≥ 3 independently chosen random unitaries is almost surely
non-exact.

1. Introduction

Recall that a C∗-algebra E is called exact if for every short exact sequence
0 → A → B → C → 0 of C∗-algebras A,B and C we have a short exact se-
quence

0 → E ⊗min A → E ⊗min B → E ⊗min C → 0.

Many constructions of C∗-algebras are given by a couple or countable many
generators satisfying certain “ideal” relations. Examples we have in mind are
the group C∗-algebra of a discrete group, or the Cuntz algebra On. Then often
these C∗-algebras satisfy certain nice properties, for example the property to
be exact. But what happens if one little bit disturbs the “perfect” relations of
such constructions. What, if the relations of the generators of the C∗-algebra
are “unperfect” and “non-constructed”? Or, what happens if we choose the
relations by random? Is then the resulting C∗-algebra exact? Almost never,
or almost sure?

In this paper, we give a partial answer to this question as follows (H is
always a separable Hilbert space, and U (B(H)) denotes the unitary group of
B(H)). Recall that the distribution μ of a random element x : Ω → X , where
X is a measurable space and (Ω,P) is the underlying probability space, is
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964 B. BURGSTALLER

the probability measure μ on X given by μ(A) = P(x−1(A)) = P(x ∈ A) for
measurable subsets A ⊆ X .

Theorem 1.1. There exits a non-atomic strong operator topology-dense
probability measure PU on U (B(H)), such that independent PU -distributed
random variables U1, . . . ,Un generate almost surely a non-exact C∗-algebra
C∗(U1, . . . ,Un) when n ≥ 3.

We point out that we use a classical “commutative” probability space, but
the random objects are non-commutative algebras. On the other hand, in
non-commutative or quantum probability theory (recent samples are for ex-
ample [4], [6], [7]), the probability space itself is non-commutative, but the
random objects could be interpreted as real or complex valued in their pri-
mary intention. It is worth to mention that algebraical random objects were
also considered in other categories, for example random groups by Gromov
in [1]. Haagerup and Thorbjørnsen show in [2, Corollary 8.4] that there
exists a probability measure Pfree on the unitary group of the ultraproduct∏

n∈N
Mn/

∑
n∈N

Mn such that r independent Pfree-distributed random uni-
taries generate almost surely the reduced C∗-algebra C∗

λ(Fr) of the free groups
Fr. In this sense, our theorem might be regarded as the full C∗-algebraic coun-
terpart of the result of Haagerup and Thorbjørnsen: perhaps C∗(U1, . . . ,Un)
of Theorem 1.1 is almost surely the full C∗-algebra C∗(Fr), see Remark 4.4
why one may conjecture this. There is even some overlapping operator space
theoretical technique of proof, compare [2, Section 2] with Sections 3 and 4.

This paper is organized as follows. In Section 2, we introduce a family of
probability measures on B(H). A random C∗-algebra is then a C∗-algebra
C∗(x1, . . . , xn) which is generated by n (usually independent and identically
distributed) random elements x1, . . . , xn in B(H). In Section 3, we recall the
local theory of operator spaces (completely bounded Banach–Mazur distance)
investigated by Pisier, and we state exactness criteria for exact C∗-algebras
due to him ([8], [10]). The proof of Theorem 1.1 is heavily relying on these
results. We highlight that it is possible and also promising to ask whether a
random C∗-algebra is an exact C∗-algebra (to be precise, it is possible to ask
for the probability that the C∗-algebra is exact).

In Section 4, we introduce the notion of widely spread isometries (S1, . . . ,
Sn). We show that in that case the C∗-algebra C∗(S1, . . . , Sn) is not exact
(here we use the theory in [8]), provided n ≥ 3. In Section 5, we use this result
to prove Theorem 1.1.

2. Probability measures on B(H) and random C∗-algebras

Let H be a separable Hilbert space. Since B(H) is non-separable, there is
some radius r > 0 such that B(H) contains uncountably many disjoint balls Bi

with radius r. Hence, if we have a probability measure P on B(H), then P(Bi)
is non-zero only for countably many indices i’s. In this respect, a probability
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measure on B(H) is always unsatisfying. However, this drawback can be
compensated to some extend by just requiring P(X) > 0 for all open strong
operator topology neighborhoods X in B(H). In this case we say that P is
strong operator topology-dense.

If one asks for translation invariant measures the answers are well known.
There does not exist a translation invariant measure which generalizes the
Lebesgue measure to infinite dimensional spaces. Also, there does not exist
a translation invariant measure on the not locally compact unitary group
U (B(H)). Anyway, there exist more or less interesting probability measures
on B(H).

A simple approach is to choose a discrete dense set D in K, the compact op-
erators on B(H), and endow B(H) with a measure PD that is atomic on D and
vanishing outside of D. Then PD is a strong operator topology-dense measure,
however, trivially a C∗-algebra generated by PD-distributed random elements
is a subalgebra of K, and thus nuclear and exact. This example hints that the
strong operator topology-density, though a natural property to require, is not
a too strong indicator for the “quality” of a measure. Another more natural
approach would be to consider the random operator X = (αi,jTi,j)i,j∈N where
T is a Hilbert–Schmidt operator with matrix representation T = (Ti,j)i,j∈N,
and where (αi,j)i,j∈N is a family of independent N(0,1) normal distributed
random variables. However, X is almost surely Hilbert–Schmidt and hence
once again compact.

We regard H and B(H), respectively, as measurable spaces by endowing
them with the Borel structure induced by the norm topology on H and B(H),
respectively. In this respect, the following lemma is useful (and its proof is
straightforward).

Lemma 2.1. Let H be separable. The Borel structures induced by the norm,
the strong operator, and the weak operator topology on B(H) all coincide.

We now introduce the type of probability measures we will use in the proof
of Theorem 1.1. At first we need a probability measure on a separable Hilbert
space H with normal base (ei)i≥1. A natural candidate is the Wiener measure
on C([0,1]), which we can extend to L2([0,1]) (the probability measure on
L2([0,1]) \ C([0,1]) is set to zero). Another construction is the probability
measure on H associated to the random element

x =
∞∑

k=1

ak(αk + iβk)ek ∈ �2(N),

where the αk and βk are independent N(0,1) normal distributed random
variables. Here (ak) is an element in �2(N). The series x then converges a.s.
in H (since E‖x‖2 = E

∑
‖ak(αk + iβk)ek ‖2 < ∞).

We say that a random element x ∈ H is norm-dense, if P(x ∈ B) > 0 for all
non-empty open balls B in H . We say that x is non-degenerate, if P(x ∈ L) = 0
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for all finite dimensional subspaces L ⊆ H . Notice, that both above measures
on H are norm-dense and non-degenerate.

To construct a random element in U (B(H)), we start with a sequence
(x1, x2, x3, . . . ) of independent non-degenerate norm-dense random elements
xi ∈ H . Then we form a normal basis (y1, y2, y3, . . . ) of the Hilbert space
lin{x1, x2, x3, . . . } by the well-known procedure of Gram–Schmidt, that is, we
define

yn =

(
xn −

n−1∑
i=1

〈xn, yi〉yi

)/∥∥∥∥∥xn −
n−1∑
i=1

〈xn, yi〉yi

∥∥∥∥∥.

Observe that yn is a measurable random element in H , and yn is a.s. well
defined, since the probability that we have a division by zero in yn is∫

· · ·
∫ ∫

1{xn ∈lin(x1,...,xn−1)} dxn dxn−1 · · · dx1 = 0

by the non-degenerateness of xn. Then we introduce a measurable (because
the map (x1, x2, . . . ) �→ yn is measurable) random operator U ∈ B(H) by
U(en) = yn for all n ≥ 1. In fact, U is a.s. an isometry with range

Im(U) = lin{y1, y2, y3, . . . } = lin{x1, x2, x3, . . . }.

We can achieve that U is a.s. a unitary operator as follows.

Lemma 2.2. U is almost surely a unitary operator if the sequence (xi) is
independent identically distributed.

Proof. Given a non-empty open ball B in H we have infinitely many
chances i ∈ N such that the event xi ∈ B happens, and therefore P(∃i ≥ 1 :
xi ∈ B) = 1. Let D be a countable dense subset of H , and B(x, r) be the open
ball in H with center x and radius r. Then

P
(
(xi) is dense in H

)
= P

(
∀k ≥ 1, ∀x ∈ D, ∃i ≥ 1 : xi ∈ B(x,1/k)

)
= 1.

Hence, U(H) = H a.s. �

To obtain a random element X in B(H) one may take two independent
random elements U,V ∈ U (B(H)), and two independent normal distributed
real valued random variables α,β, and set X = α(U +U ∗)+ iβ(V +V ∗). This
approach seems natural, because on the other hand any X ∈ B(H) permits
such a representation (by spectral calculus; this is well known).

A random C∗-algebra A is then a C∗-algebra A = C∗(X1, . . . ,Xn) or A =
C∗(X1,X2, . . . ) which is generated in B(H) by a finite or infinite sequence
of random elements Xi ∈ B(H). Notice, however, that A is not a random
element in the usual sense in the set of separable C∗-algebras since we do not
ask for measurability.



THE EXACTNESS OF CERTAIN RANDOMIZED C∗-ALGEBRAS 967

3. Pisier’s local theory of exactness

Most of this section can be found well presented in [10]. Let E,F be finite
dimensional operator spaces which are isomorphic as vector spaces. Then the
completely bounded Banach–Mazur distance is the number

dcb(E,F ) = inf
{

‖u‖cb

∥∥u−1
∥∥

cb
|u : E → F linear isomorphism

}
.

Notice that dcb(E,F ) ≥ 1, and dcb(E,F ) = 1 if and only if E and F are com-
pletely isometric. The word “distance” for dcb is justified by the following
fact: if we consider the set OSn of n-dimensional operator spaces where com-
pletely isometric operator spaces are identified, then δcb(E,F ) = logdcb(E,F )
defines a metric on OSn. We will always regard linear subspaces of B(H) as
operator subspaces of B(H).

Lemma 3.1. Let X be a normed linear space (endowed with the Borel struc-
ture of the norm topology) and n ≥ 1. Then the linear dimension function
dim : Xn → N0 : dim(x1, . . . , xn) = dim(lin(x1, . . . , xn)) is measurable.

Proof. The set

Y = Yi,j1,...,jk
=

{
(x1, . . . , xn) ∈ Xn|xi ∈ lin(xj1 , . . . , xjk

)
}

is measurable for fixed 1 ≤ i, j1, . . . , jk ≤ n. Indeed, Y can be expressed as
Y = p(f −1(0)) where f : Ck × Xn → X is given by f(λ,x) = xi −

∑k
r=1 λrxjr ,

and p : Cn × Xn → Xn is the canonical projection. Now the set Am = {x ∈
Xn| dim(x) ≤ m} can be described as a finite Boolean expression of such sets
Yi,j1,...,jk

. �

Lemma 3.2. If x1, . . . , xn, y1, . . . , yn ∈ B(H), Ex = lin(x1, . . . , xn) and Ey =
lin(y1, . . . , yn), then dcb(Ex,Ey) (there where it is defined) is continuous in
(x1, . . . , xn, y1, . . . , yn) w.r.t. the norm in B(H)2n.

If we put dcb(Ex,Ey) = ∞ for dim(Ex) �= dim(Ey), then (x, y) �→ dcb(Ex,
Ey) is a measurable function everywhere on B(H)2n.

Proof. The first claim follows by an application of [10, Lemma 2.13.2].
The second claim follows from this and the fact that the set {(x, y) ∈
B(H)2n| dim(Ex) = dim(Ey)} is measurable by Lemma 3.1. �

Let K be the set of compact operators of B(H). Let X be any operator
space. Then the completely bounded Banach–Mazur distance of X to the
compact operators is ([8])

dSK(X) = sup
E⊆X

inf
F ⊆K

dcb(E,F ),

where the supremum is taken over all finite dimensional subspaces E ⊆ X ,
and the infimum is taken over all finite dimensional subspaces F ⊆ K such
that E and F are isomorphic as linear spaces. Notice that dSK(X) = dSK(X)
for not necessarily norm closed operator spaces X by Lemma 3.2.
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We have the following local characterization of exact C∗-algebras.

Theorem 3.3 ([8]). A C∗-algebra A is exact if and only if dSK(A) = 1.

Even more, the following remarkable theorem shows that under some cir-
cumstances a small particular subspace E of a C∗-algebra A “decides” whether
A is exact or not.

Theorem 3.4 ([10], Theorem 17.9). Let V be a set of unitary operators in
B(H) containing 1. Let A be the C∗-algebra generated by V . Then A is exact
if and only if dSK(lin(V )) = 1.

If A = C∗(X1,X2, . . . ) is a random C∗-algebra generated by a finite or infi-
nite sequence X = (X1,X2, . . . ) of random elements Xi ∈ B(H), then we will
check that dSK(A) is measurable. In particular, we can ask for the probability
that A is exact since we have

P(A is exact) = P
(
dSK(A) = 1

)
.

Lemma 3.5. dSK(A) is measurable.

Proof. Let W be the countable set of all ∗-polynomials in the variables
x1, x2, x3, . . . with scalar coefficients in Q + iQ ⊆ C. Let D be a countable
dense subset of K. Then we have

dSK(A) = sup
n≥1

sup
f ∈W n

inf
y∈Dn

dcb

(
lin

(
f1(X), . . . , fn(X)

)
, lin(y1, . . . , yn)

)
.

Hence, dSK(A) is measurable since the function

X �→ dcb

(
lin

(
f1(X), . . . , fn(X)

)
, lin(y1, . . . , yn)

)
is measurable by Lemma 3.2. �

The following theorem can be used to show that the full group C∗-algebra
C∗(Fn) of the free group Fn with n generators is not exact. Let U1, . . . ,Un

be the canonical generators of C∗(Fn), and let En
U = lin(U1, . . . ,Un).

Theorem 3.6 ([8]). dSK(En
U ) ≥ n(2

√
n − 1)−1. In particular, dSK(En

U ) > 1
for n ≥ 3.

Hence, if n ≥ 3 and A is any C∗-algebra which contains a completely iso-
metric copy of En

U , then A is not exact, since dSK(A) ≥ dSK(En
U ) > 1. In

particular, this is obviously true for A = C∗(Fn).

Theorem 3.7 ([3]). The metric space OSn = (OSn, δcb) is not separable
for n ≥ 3.

Let OSn(K) be the subset of OSn which consists of all n-dimensional sub-
operator spaces of K. Then OSn(K) is separable (cf. Lemma 3.2). Let D
be a dense subset of OSn(K). Let B(F, r) be the ball in OSn with center
F and radius r. Now let A = C∗(X1, . . . ,Xn) be a random C∗-algebra and
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E = lin(X1, . . . ,Xn). Since OSn contains uncountable many disjoint balls
with radius r (for suitable small r) by Theorem 3.7, is it then really likely
that

E ∈
⋃

F ∈D

B(F, r)?

We ask this, because otherwise logdSK(E) ≥ r, or dSK(E) > 1, and A would
not be exact. However, the answer of this question does not seem so easy as
it looks at first glance. We namely have the following: Let dk(E,F ) denote
the Banach–Mazur distance of two n-dimensional operator spaces E and F
on the kth matrix level. Then the distance of any E to the compact operators
K on the kth matrix level vanishes, that is, we have infF ⊆K dk(E,F ) = 1 ([10,
Lemma 21.9]). So one really needs to know the operator space structure of E
thoroughly, and one has to use the dcb-distance to answer the above question.

4. Widely spread isometries

Let H be a separable Hilbert space with normal base (e1, e2, e3, . . . ). Let
U1, . . . ,Un be the canonical generators of C∗(Fn) of the free group Fn with n
free generators, and let En

U = lin(U1, . . . ,Un).
The goal of the following definition is Lemma 4.3.

Definition 4.1. A tuple (S1, . . . , Sn) of isometries Si ∈ B(H) is called
widely spread if for all k ≥ 1, all isometries T1, . . . , Tn ∈ B(H), and all ε > 0
there exists an isometry V ∈ B(H) such that∣∣〈SaV ei, SbV ej 〉 − 〈Taei, Tbej 〉

∣∣ ≤ ε

for all 1 ≤ a, b ≤ n and 1 ≤ i, j ≤ k.

Notice that the definition is independent of the normal base (ei). Further,
the values of Ta and V are just relevant on the vectors e1, . . . , ek, and we thus
have the following fact.

Lemma 4.2. There exists a countable set S of unitaries which is dense
w.r.t. the strong operator topology in the set of all isometries. Hence, in the
last definition, it is sufficient to require that the T1, . . . , Tn are elements of S .

Proof. For each n let Dn be a countable dense subset of {(Se1, . . . , Sen) ∈
Hn|S isometry}. Choose any unitary Un,x (x ∈ Dn) such that Un,x(ek) = xk

for all 1 ≤ k ≤ n. Then the family S = (Un,x)n≥1,x∈Dn satisfies the claim. �

Lemma 4.3. Let S1, . . . , Sn be widely spread isometries and F = lin(S1, . . . ,
Sn). Then the linear map φ : En

U → F , such that φ(Ui) = Si, is completely
isometric.

Proof. Assume that C∗(Fn) is represented on H . Let Pk be the orthogonal
projection onto lin(e1, . . . , ek). Let ε > 0 and α1, . . . , αn ∈ Mm(C). For some
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large N ≥ 1, and any unitaries S̃1, . . . , S̃n ∈ B(H) satisfying SiPN = S̃iPN

(1 ≤ i ≤ N ) we obtain∥∥∥∥∥
n∑

i=1

αi ⊗ Si

∥∥∥∥∥
Mm ⊗B(H)

≤
∥∥∥∥∑

i

αi ⊗ S̃iPN

∥∥∥∥ + ε

≤
∥∥∥∥∑

i

αi ⊗ Ui

∥∥∥∥ + ε.

(For the last inequality, notice that the canonical ∗-homomorphism C∗(U1, . . . ,

Un) → C∗(S̃1, . . . , S̃n) is a complete contraction.) For the reverse estimation,
choose N ≥ 1 and ξ ∈ �2m ⊗ lin(e1, . . . , eN ) with ‖ξ‖ ≤ 1 such that∥∥∥∥∥

n∑
i=1

αi ⊗ Ui

∥∥∥∥∥
Mm ⊗B(H)

≤
∥∥∥∥
(∑

i

αi ⊗ UiPN

)
ξ

∥∥∥∥
�2m ⊗H

+ ε.

An easy calculation shows that there exists a continuous function f :
Cn2N2 → R such that (using ‖η‖ =

√
〈η, η〉 in a Hilbert space)∥∥∥∥∥

(
n∑

i=1

αi ⊗ xiPN

)
ξ

∥∥∥∥∥
�2m ⊗H

= f
(((

〈xaes, xbet〉
)n

a,b=1

)N

s,t=1

)
for all x1, . . . , xn in B(H), and where ((〈xaes, xbet〉)n

a,b=1)
N
s,t=1 ∈ Cn2N2

. Since
(S1, . . . , Sn) is widely spread, we can choose some small δ > 0 and some isom-
etry V ∈ B(H) such that∣∣〈SaV es, SbV et〉 − 〈Uaes,Ubet〉

∣∣ ≤ δ

for all 1 ≤ a, b ≤ n and 1 ≤ s, t ≤ N , and such that, by the continuity of f , we
have ∥∥∥∥∑

i

αi ⊗ Ui

∥∥∥∥ − ε ≤
∥∥∥∥
(∑

i

αi ⊗ UiPN

)
ξ

∥∥∥∥
= f

(((
〈Uaes,Ubet〉

)
a,b

)
s,t

)
≤ f

(((
〈SaV es, SbV et〉

)
a,b

)
s,t

)
+ ε

=
∥∥∥∥
(∑

i

αi ⊗ SiV PN

)
ξ

∥∥∥∥ + ε

≤
∥∥∥∥∑

i

αi ⊗ Si

∥∥∥∥ + ε.

Since ε > 0 and αi ∈ Mm were arbitrary, φ is completely isometric. �
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By the last proof, we see that φ is also a complete isometry if the condition
stated in Definition 4.1 only holds for U1, . . . ,Un rather than for all isometries
T1, . . . , Tn.

Remark 4.4. If S1, . . . , Sn are unitaries and the unitization

φ+ : lin(1,U1, . . . ,Un) → lin(1, S1, . . . , Sn)

of φ of Lemma 4.3 is a complete isometry, then φ+ extends to a ∗-isomorphism
Φ : C∗(Fn) → C∗(S1, . . . , Sn) by [9, Proposition 6] (or see [10, Proposition
13.6]). However, Φ need not be an isomorphism in general. If T1, . . . , Tn

are widely spread isometries, S is an isometry and U is a unitary, then
ST1U, . . . , STnU are also widely spread isometries. Taking here widely spread
unitaries T1, . . . , Tn, S = T ∗

1 , and U = 1, yields an example of widely spread
unitaries 1, T ∗

1 T2, . . . , T
∗
1 Tn whose associated unitization φ+ is obviously not

a complete isometry, and so Φ is not an isomorphism.

Theorem 4.5. Let S1, . . . , Sn be widely spread isometries in B(H), and let
n ≥ 3. Then C∗(S1, . . . , Sn) is not exact.

Proof. Let F = lin(S1, . . . , Sn) and A = C∗(S1, . . . , Sn). By Lemma 4.3 and
Theorem 3.6, we have dSK(A) ≥ dSK(F ) = dSK(En

U ) > 1. Hence, the claim
follows from Theorem 3.3. �

The integer n ≥ 3 is really sharp here. By what we have remarked above,
there exist widely spread unitaries u1u

∗
1, u2u

∗
1, say, but C∗(u2u

∗
1) is not exact.

The following Lemma 4.6 follows also immediately from Theorem 5.4 (the
proof of Theorem 5.4 does not depend on this lemma), but the lemma is also
a corollary of Theorems 3.3 and 3.6, and we will give a short proof.

Lemma 4.6. Let n ≥ 3. Then there exists a strong operator topology-
dense subset D of U (B(H))n such that A = C∗(V1, . . . , Vn) is not exact for
all (V1, . . . , Vn) ∈ D.

Proof. Let Pm be the orthogonal projection onto lin(e1, . . . , em). For k ≥ 1
and (u1, . . . , un) ∈ U (B(H))n consider the linear space L = lin{uaei|1 ≤ a ≤
n,1 ≤ i ≤ k} with dimension r = dim(L). Choose isometries S and T , respec-
tively, with range I − Pr and L⊥, respectively. Then choose any unitaries
V1, . . . , Vn such that

VaPk = uaPk, (VaPr)H = L, Va(I − Pr) = TUaS∗.

Hence, the proofs of Lemma 4.3 and Theorem 4.5 show that lin(V1, . . . , Vn) is
completely isometric to En

U , and A is not exact. �
By choosing D countably in Lemma 4.6, we can choose an atomic strong op-

erator topology-dense probability measure on U (B(H))n such that C∗(X1, . . . ,
Xn) is almost surely non-exact for random elements (X1, . . . ,Xn) ∈ U (B(H))n.
By contrast, notice that in Theorem 1.1 the Xi are chosen independently iden-
tically distributed.
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5. A probability measure resulting in non-exactness

The aim of this section is the proof of Theorem 1.1. To this end, we will
start with three simple lemmas which give rough uniform estimates on the
output of the Gram–Schmidt process depending on the input, in particular
when the input is already almost a normalized orthogonal sequence.

Let (x1, x2, x3, . . . ) be a sequence in H , and let (y1, y2, y3, . . . ) be the nor-
malized orthogonal sequence in H by applying the Gram–Schmidt process to
(x1, x2, x3, . . . ). Then (y1, y2, y3, . . . ) can be described by

(y1, y2, y3, . . . ) =
(
f(P0, x1), f(P1, x2), f(P2, x3), . . .

)
,

where Pi ∈ B(H) is the orthogonal projection onto lin(x1, . . . , xi), and

f(P,x) = (x − Px)/‖x − Px‖
for all projections P ∈ B(H) and x ∈ H (as far as ‖x − Px‖ �= 0).

Lemma 5.1. Let P0 ∈ B(H) be a projection, 0 < ε ≤ 1/4, and x1, . . . , xn ∈ H
such that ∣∣‖xi‖ − 1

∣∣ ≤ ε,
∥∥P0(xi)

∥∥ ≤ ε,
∣∣〈xi, xj 〉

∣∣ ≤ ε

for all 1 ≤ i �= j ≤ n. Let Pi be the orthogonal projection onto the Hilbert
space spanned by the image space of P0 and the vectors x1, . . . , xi. Then
‖Pi−1xi‖ ≤ 8iε.

Proof. Let x̃1 = f(P0, x1). Then for the projection P1 we have P1(xi) =
P0(xi) + 〈xi, x̃1〉x̃1 for 2 ≤ i ≤ n. We thus get∥∥P1(xi)

∥∥ ≤
∥∥P0(xi)

∥∥ +
| 〈xi, x1 − P0(x1)〉 |

1 − 2ε

≤ 2
(∥∥P0(xi)

∥∥ +
∣∣〈xi, x1〉

∣∣ +
∣∣〈xi, P0(x1)

〉∣∣)
≤ 8ε.

In the same way we proceed by induction. �

Lemma 5.2. Let P ∈ B(H) be a projection, let e,x ∈ H and 0 < ε ≤ 1/4,
such that ‖e‖ = 1, ‖x − e‖ ≤ ε and ‖Px‖ ≤ ε. Then ‖f(P,x) − e‖ ≤ 11ε.

Proof. The estimation is straightforward. �

Lemma 5.3. Let P0 ∈ B(H) be a projection and 0 < ε ≤ 1/4. Let e1, . . . ,
en ∈ H be orthogonal normalized vectors. Let x1, . . . , xn ∈ H such that

‖xi − ei‖ ≤ ε,
∥∥P0(xi)

∥∥ ≤ ε (i = 1, . . . , n).

Let Pi be the orthogonal projection onto the Hilbert space spanned by the image
space of P0 and the vectors x1, . . . , xi. Then∥∥f(Pi−1, xi) − ei

∥∥ ≤ 33 · 8nε (i = 1, . . . , n).
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Proof. For i �= j, we have | 〈xi, xj 〉| = | 〈xi, xj 〉 − 〈ei, ej 〉 | ≤ 3ε. Hence,
‖Pi−1(xi)‖ ≤ 8n · 3ε by Lemma 5.1, and consequently ‖f(Pi−1, xi) − ei‖ ≤
11 · 8n · 3ε by Lemma 5.2. �

Theorem 5.4. There exists a non-atomic strong operator topology-dense
probability measure PU on U (B(H)), such that independent PU -distributed
random elements U1, . . . ,Un are almost surely widely spread for n ≥ 1.

In particular, C∗(U1, . . . ,Un) is almost surely not exact when n ≥ 3.

Proof. Step 1. In the first step, we construct the probability measure
PU . Let H = �2(Z), and σ ∈ B(�2(Z)) be the shift operator. We choose
independent non-degenerate norm-dense random variables x1, x2, x3, . . . and
w1,w2,w3, . . . in �2(Z). We require that the sequence (wi) is identically dis-
tributed. For a sequence of integers ki, which we will specify below, we put

y1 = σk1(x1),
y2 = w1,

(y3, y4) =
(
σk2(x3), σk2(x4)

)
,

y5 = w2,

(y6, y7, y8) =
(
σk3(x6), σk3(x7), σk3(x8)

)
,

y9 = w3,

· · · = · · · ,

(ysn , ysn+1, . . . , ysn+n−1) =
(
σkn(xsn), σkn(xsn+1), . . . , σkn(xsn+n−1)

)
,

ysn+n = wn,

· · · = · · · ,

where (s1, s2, s3, . . . ) = (1,3,6,10, . . . ). For the distribution of the sequence
(xi), we require that

xsn+i−1
d= xsm+i−1 ∀1 ≤ n < m ∀i = 1, . . . , n.

Let Pi be the orthogonal projection onto lin(y1, y2, . . . , yi). Since for fixed
i and any (independent) random element z ∈ �2(Z) we have ‖Piσ

k(z)‖ → 0
(k → ∞) a.s., we also have convergence of this sequence in probability ([5,
Lemma 3.2]). That means that for all n ≥ 1

sup
i=1,...,n

∥∥Psn −1σ
k(xsn+i−1)

∥∥ P−→ 0 (k → ∞)

in probability. We define the ki inductively as follows. Let n ≥ 1, and assume
that we have already defined k1, . . . , kn−1. Then for εn = 1/n we choose kn ∈ N

such that
P

(
sup

i=1,...,n

∥∥Psn −1σ
kn(xsn+i−1)

∥∥ ≤ εn

)
≥ 1 − εn.
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The basic idea behind is that this means

P
(∥∥Psn −1(ysn+i−1)

∥∥ ≤ εn ∀i = 1, . . . , n
)

≥ 1 − εn.

(Roughly speaking, the idea is that when we orthogonalize the sequence
(y1, y2, y3, . . . ) by Gram–Schmidt to obtain a normal basis (z1, z2, z3, . . . ), then
zsn , . . . , zsn+n−1 is with high probability almost independent from the prede-
cessor sequence (z1, . . . , zsn −1). Thus, the sequence (zsn , . . . , zsn+n−1) is a
new chance to obtain desired values in H .)

We fix a normal base (e1, e2, e3, . . . ) in �2(Z). Let (zi) be the orthogonal
normalized sequence obtained by applying the Gram–Schmidt procedure to
(yi). Then we define a random operator U by

U(ei) = zi = f(Pi−1, yi) ∀i ≥ 1.

Since the sequence (wi) is i.i.d., the set {w1,w2, . . . } is a.s. a dense subset of
H by the proof of Lemma 2.2. Hence U is a.s. a unitary operator since the
set {w1,w2, . . . } lies in the image of U by construction.

Let V be a unitary operator, n ≥ 1 and ε > 0. Then the probability that
supi=1,...,n ‖yi − V ei‖ ≤ ε is positive. Applying Lemma 5.3 (P0 = 0), we obtain
that the probability of supi=1,...,n ‖Uei − V ei‖ ≤ 33 · 8nε is positive. Hence,
the random element U is strong operator topology-dense in U (B(H)).

Step 2. Let U1, . . . ,Um be independent PU -distributed random elements.
That is, for 1 ≤ a ≤ m we choose independent random sequences (xa

1 , xa
2 ,

xa
3 , . . . ) and (wa

1 ,wa
2 ,wa

3 , . . . ), respectively, which are distributed as (xi) and
(wi), respectively, construct (ya

i ) from (xa
i ) and (wa

i ) like (yi) is constructed
from (xi) and (wi) (for one common sequence (ki)), and set

Ua(ei) = za
i := f

(
P a

i−1, y
a
i

)
(i ∈ N),

where P a
i is the projection onto lin(ya

1 , . . . , ya
i ).

Now we fix any n ≥ 1, any isometries T 1, . . . , Tm ∈ B(�2(Z)), and any 0 <
ε ≤ 1/4. For all v ≥ n set

Aa
v =

{
ω ∈ Ω|

∥∥xa
sv+i−1(ω) − T a(ei)

∥∥ ≤ ε ∀i = 1, . . . , n
}
.

Notice that P(Aa
n) = P(Aa

v) for v ≥ n, since xa
sn+i−1

d= xa
sv+i−1 as required.

Set
Ba

v =
{
ω ∈ Ω|

∥∥P a
sv −1

(
ya

sv+i−1(ω)
)∥∥ ≤ εv ∀i = 1, . . . , n

}
.

By an above inequality, we have P(Ba
v ) → 1 if v tends to infinity. Let

Ca
v = Aa

v ∩ Ba
v (v ≥ n).

Choose v0 ≥ n such that εv0 ≤ ε. Then we have∥∥ya
sv+i−1(ω) − σkv

(
T a(ei)

)∥∥ ≤ ε,∥∥P a
sv −1

(
ya

sv+i−1(ω)
)∥∥ ≤ ε
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for all i = 1, . . . , n, v ≥ v0 and ω ∈ Ca
v . By applying Lemma 5.3, we obtain∥∥za

sv+i−1(ω) − σkv
(
T a(ei)

)∥∥ ≤ 33 · 8nε

for all i = 1, . . . , n, v ≥ v0 and ω ∈ Ca
v . We let

Cv = C1
v ∩ · · · ∩ Cm

v ,

and we similarly define Av and Bv . Let V be the isometry V (ei) = ei+1. We
then obtain ∣∣〈Ua(ω)V sv −1ei,U

b(ω)V sv −1ej

〉
−

〈
T aei, T

bej

〉∣∣(1)

=
∣∣〈Ua(ω)esv+i−1,U

b(ω)esv+j−1

〉
−

〈
T aei, T

bej

〉∣∣
=

∣∣〈za
sv+i−1(ω), zb

sv+j−1(ω)
〉

−
〈
σkvT aei, σ

kvT bej

〉∣∣
≤ 3 · 33 · 8nε

for all 1 ≤ a, b ≤ m and 1 ≤ i, j ≤ n, v ≥ v0 and ω ∈ Cv .
We next choose a sequence v1, v2, v3, . . . of integers inductively as follows.

Let v0 < v1 < · · · < vr−1 be already chosen. Let Ds be the event

Ds = (Ω − Cv1) ∩ (Ω − Cv2) ∩ · · · ∩ (Ω − Cvs) ∀s ≥ 1.

Since P(Bv) → 1 for v → ∞, we have∣∣P(Bvr ∩ Avr |Dr−1) − P(Avr |Dr−1)
∣∣ ≤ P(An)/2

for some vr > vr−1. Observe that the event Avr (which only depends on
xa

svr
, . . . , xa

svr +n−1) is independent from the event Dr−1 (which only depends
on xa

1 , . . . , xa
svr −1 and (wa

i )). We hence obtain∣∣P(Cvr |Dr−1) − P(Avr )
∣∣ ≤ P(An)/2.

Since P(Avr ) = P(An), this yields

P(Ω − Cvr |Dr−1) ≤ 1 − P(An)/2 =: δ < 1.

Thus we have

P(Dr) = P(Dr−1)P(Ω − Cvr |Dr−1) ≤ P(Dr−1)δ.

By induction, we obtain P(Dr) ≤ P(D1)δr−1 → 0 for r → ∞. Hence,
P(

⋃∞
v=v0

Cv) = 1, which means that the above estimate (1) holds a.s.
If we vary over all n ≥ 1, all ε = 1/k, and all T 1, . . . , Tm ∈ S for the count-

able set S of Lemma 4.2, then we have proved that (U1, . . . ,Um) is a.s. widely
spread. It now follows from Theorem 4.5 that C∗(U1, . . . ,Um) is a.s. not exact
for m ≥ 3. �

Remark 5.5. We remark that in the proof of the last theorem we may also
remove the sequence (wi) and set y1 = σk1(x1), (y2, y3) = (σk2(x2), σk2(x3)),
and (y4, y5, y6) = (σk3(x4), σk3(x5), σk3(x6)), and so on. But then the ran-
dom element U may no longer be a unitary, but just a random isometry. All
other claims of the theorem, however, remain valid. It is an open question
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whether we would also get a.s. widely spread isometries if we used the se-
quence yi = σi(xi) ((xi) i.i.d.) in the last proof. For the sequence yi = xi ((xi)
i.i.d.) we are less confident (mainly due to numerical experiments). However,
there exists a rearrangement f of N such that the random measure associ-
ated to the sequence yi = σfi(xi) ((xi) i.i.d.) yields widely spread isometries.
Indeed, start with f1 = 1, choose k2 “large enough” (similarly as in the last
proof) and set (f2, f3) = (k2, k2 +1), then fill the gap (2, . . . , k2 − 1) in the im-
age of f by setting (f4, . . . , f4+(k2−1)−2) = (2, . . . , k2 − 1), then, once again,
choose k3 large enough and set (fk2+2, fk2+3, fk2+4) = (k3, k3 + 1, k3 + 2),
then once again fill the gap (k2 + 2, . . . , k3 − 1) in the image of f by letting
(fk2+5, . . . , fk2+5+(k2+2)−(k3−1)) = (k2 + 2, . . . , k3 − 1), and so on.

Let Ui be the random unitaries of the last theorem, and fix two random uni-
taries V and W . Then V U1W, . . . , V UnW is another example of a.s. widely
spread unitaries. It is unclear whether the random C∗-algebra constructed
in Theorem 5.4 is almost surely canonically isomorphic to C∗(Fn), see Re-
mark 4.4 why one might conjecture this.
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