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ON THE CLASSIFICATION OF DEGREE 1 ELLIPTIC
THREEFOLDS WITH CONSTANT j-INVARIANT

REMKE KLOOSTERMAN

Abstract. We describe the possible Mordell–Weil groups for
degree 1 elliptic threefold with rational base and constant j-
invariant. Moreover, we classify all such elliptic threefolds if the

j-invariant is nonzero. We can use this classification to describe

a class of singular hypersurfaces in P(2,3,1,1,1) that admit no
variation of Hodge structure (Remark 9.3).

1. Introduction

In this paper, we work over the field C of complex numbers. Let π : X → B
be an elliptic threefold with a (fixed) section σ0 : B → X , such that B is a
rational surface. Assume that X is not birationally equivalent to a product
E × B, with E an elliptic curve.

Fix a Weierstrass equation for the generic fiber of π. As explained in
Section 2, this establishes a degree 6k hypersurface Y ⊂ P(2k,3k,1,1,1) that
is birational to X and such that the fibration π is birationally equivalent to
projection from (1 : 1 : 0 : 0 : 0) onto a plane.

This integer k is not unique. We call the minimal possible k for which
such an Y exists the degree of π : X → B. One can easily show that if X is a
rational threefold then the degree equals 1 or 2, and that if X is Calabi–Yau
then the degree equals 3.

For a general point p ∈ B, we can calculate the j-invariant of the elliptic
curve π−1(p). This yields a rational function j(π) : B ��� P1.

In this paper, we study elliptic threefolds of degree 1 with rational base and
constant j-invariant. We would like to classify all such possible threefolds.
The two invariants that interest us are the configuration of singular fibers of
π and the structure of the Mordell–Weil group MW(π), the group of rational
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sections of π. The actual classification we are aiming at in this paper is
a classification of possible singular loci of irreducible and reduced degree 6
threefolds Y in P(2,3,1,1,1) together with the possibilities for MW(π). In
[8] it is explained how to obtain an elliptic threefold X from Y .

One way of constructing elliptic threefolds is taking a cone Y over an elliptic
surface S ⊂ P(2,3,1,1) ⊂ P(2,3,1,1,1). The Mordell–Weil group and the
configuration of singular fibers can be obtained from S. All possible degree 6
surfaces in P(2,3,1,1), that correspond to elliptic surfaces, have already been
classified by Oguiso and Shioda [9]. We refer to such Y as ‘obtained by the
cone construction’. We exclude such Y from our classification. One can show
that Y is a cone over an elliptic surface if and only if the discriminant curve
is a union of lines through one point.

We split our considerations in three cases, namely the general one j(π) �=
0,1728, and two special cases j(π) = 1728 and j(π) = 0.

The case j(π) �= 0,1728 is the easiest one. In this case, it is well known
that Y is given by

y2 = x3 + AP 2x + BP 3

with A,B ∈ C and P ∈ C[z0, z1, z2]2, i.e., P is homogeneous of degree 2. Our
assumptions on Y imply that P = 0 is a smooth conic. It turns out that in
this case MW(π) ∼= (Z/2Z)2.

The exceptional cases j(π) = 0,1728 are more interesting. In these cases,
one has an equation of the form

y2 = x3 + R, resp. y2 = x3 + Qx

with Q ∈ C[z0, z1, z2]4 and R ∈ C[z0, z1, z2]6.
To calculate the group MW(π), we use the results of [5]. It turns out that

MW(π) is determined by the type of singularities and the configuration of
singular points of Q = 0, resp., R = 0.

More precisely, the main result of [5] states that MW(π) is isomorphic to
the group of Weil divisors on Y modulo the Cartier divisors on Y . In our
case, this can be reformulated as

rankMW(π) = h4(Y )prim = dimcoker
(

F 2H4(P \ Y,C) →
⊕
p∈P

H4
p (Y,C)

)
,

where P consists of the points {x = y = Q = 0}sing, respectively, {x = y = R =
0}sing.

The Poincaré residue map yields a natural surjection from C[z0, z1, z2]2x ⊕
C[z0, z1, z2]4 onto F 2H4(P \ Y,C). To determine H4

p (Y,C), we use three
methods. Let p ∈ P .
(1) If (Y, p) is an isolated singularity and is semi-weighted homogeneous, then

there is a method of Dimca to compute an explicit basis for H4
p (Y,C),

together with the Hodge filtration.
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(2) If (Y, p) is not weighted homogeneous, but (Y, p) is isolated, then there is
a classical method of Brieskorn [1] to calculate H4

p (Y ). This method does
not produce the Hodge filtration, and in the weighted homogeneous case
it is more complicated than Dimca’s method.

This method is implemented in the computer algebra package Singular.
Since this case is rather exceptional, we preferred to calculate H4

p (Y,C)
by using Singular. Hence, several of the results in the sequel are only
valid up to the correct implementation of Brieskorn’s method in Singular.

(3) If (Y, p) is a non-isolated singularity, but is weighted homogeneous, then
the transversal type is an ADE-surface singularity. To calculate H4

p (Y,C),
we apply a generalization of Dimca’s method, due to Hulek and the author
[5].

We list now the possible groups.

Theorem 1.1. Suppose Y ⊂ P(2,3,1,1,1) is a degree 6 hypersurface, cor-
responding to an elliptic threefold π : X → B, not obtained by the cone con-
struction and not birational to a product E × B. Then MW(π) is one of the
following
• (Z/2Z)2 if j(π) �= 0,1728.
• (Z/2Z), (Z/2Z)2 or (Z/2Z) × Z2 if j(π) = 1728.
• 0,Z/3Z, (Z/2Z)2,Z2,Z4,Z6 if j(π) = 0.

In the case j(π) = 1728, we get a complete classification.

Theorem 1.2. Suppose Y satisfies the conditions of the previous theorem,
and suppose that j(π) = 1728.

We have that MW(π) ∼= (Z/2Z)2 if and only if Q = 0 defines a double conic
and MW(π) ∼= Z/2Z × Z2 if and only if Q = 0 is the unique quartic with two
A3 singularities.

For j(π) = 0, the number of cases to consider is quite large. One should
apply the following program:
(1) Determine all possible types of singularities of sextic curves. This is done

in [6].
(2) For each type of singularity, determine H4

p (Y ).
(3) Determine which combinations of singularities are possible on a sextic

curve. Here one might restrict oneself to combinations of singularities
that yield nontrivial H4

p (Y ).
(4) For each configuration, study the relation between h4(Y ) and the position

of the singularities.
The second point is completely done in this paper, except for six types of

singularities that are both not weighted homogeneous and not isolated. The
number of cases to consider at the third and fourth point is quite big. We
restrict ourselves to the case where the sextic is non-reduced, and the case
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where the sextic has ordinary cusps. (It turns out that if the sextic has a node
at p then H4

p (Y ) vanishes, for this reason we study sextic with cusps.)
The curves with only cusps as singularities yield examples for the groups

0,Z2,Z4 and Z6. One can show that MW(π) = (Z/2Z)2 if and only if R
defines a triple conic, and MW(π) = Z/3Z if and only if R defines a double
cubic. This suffices to provide examples for each of the groups mentioned in
Theorem 1.1.

As pointed out to the author by several persons there is a different ap-
proach possible. A degree 1 elliptic threefold X with base P2 defined over C
can also be considered as a rational elliptic surface S over C(t). The possi-
ble Mordell–Weil groups for rational elliptic surfaces over algebraically closed
fields have been determined by Oguiso and Shioda [9], hence the possible
Mordell–Weil groups for degree 1 elliptic threefolds correspond to the to the
possible subgroups of the Mordell–Weil group of S/C(t) fixed by the Galois
group Gal(C(t)/C(t)). In this way, one can obtain Theorem 1.1 with a little
effort (one needs to exclude the groups Z/2Z × Z4, (Z/2Z)2 × Z2 in the case
j(π) = 1728 and the group Z8 in the case j(π) = 0). Theorem 1.2 and our
results in the case j(π) = 0 are harder to obtain with this method. That is,
one needs to relate the singularities of the discriminant curve with the Galois
representation on the Mordell–Weil group. The main obstruction to this ap-
proach is that the Oguiso–Shioda classification gives estimates for the degree
of the generators of the Mordell–Weil group, but no explicit formulae in terms
of the coefficient of the Weierstrass equation. This final obstruction is severe,
that is, in many cases the Galois group is not solvable and hence we have
cannot give closed formulae for the generators. For this reason, we take a
more geometric approach.

The organization of this paper is as follows: In Section 2, we recall several
standard facts concerning elliptic threefolds. In particular we construct our
model Y . In Section 3, we limit the possibilities for the group MW(π). This is
done by studying the behavior of MW(π) under specialization and considering
the classification of rational elliptic surfaces [9]. In Section 4, we discuss
the possible singularities for quartic and sextic plane curves. This yields a
classification of possible singularities on Y . In Section 5, we calculate the local
cohomology H4

p (Y ) for each possible type of singularity on Y . In Section 6,
we give some details on how to calculate rankMW(π). In the following three
sections, we give a classification for the cases j(π) = 1728, j(π) = 0 and R = 0
is non-reduced and j(π) = 0 and R = 0 is a cuspidal sextic. In Section 10, we
prove Theorem 1.1.

Notation 1.3. Let x, y, z0, z1, z2 be coordinates on P(2,3,1,1,1).Through-
out this paper, Y ⊂ P(2,3,1,1,1) is a reduced and irreducible degree 6 hyper-
surface, containing the point (1 : 1 : 0 : 0 : 0), and such that Y corresponds
to an elliptic fibration with constant j-invariant, that is, Y has a defining
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equation of the form

y2 = x3 + AP 2x + BP 3, y2 = x3 + Qx, or y2 = x3 + R.

Here P,Q,R are homogeneous polynomials in z0, z1, z2 of degree 2,4 and 6
respectively and A,B ∈ C \ {0}. The curve C is the curve defined by P = 0,
Q = 0 or R = 0 (depending on the case). The set Q consists of the singular
points of Cred.

2. Preliminaries

Definition 2.1. An elliptic n-fold is a quadruple (X,B,π,σ0), with X a
smooth projective n-fold, B a smooth projective n − 1-fold, π : X → B a flat
morphism, such that the generic fiber is a genus 1 curve and σ0 is a section
of π.

The Mordell–Weil group of π, denoted by MW(π), is the group of rational
sections σ : B ��� X with identity element σ0.

We will focus on the cases n = 2,3. Note that in the case n = 2 any rational
section can be extended to a regular section.

Clearly MW(π) is a birational invariant, in the sense that if πi : Xi → Bi,
i = 1,2 are elliptic n-folds such that there exists a birational isomorphism
ϕ : X1

∼��� X2 mapping the general fiber of π1 to the general fiber of π2, then
ϕ∗ : MW(π2) → MW(π1) is well-defined and is an isomorphism.

We shall now describe in some detail how to associate to an elliptic n-
fold π : X → B a degree 6k hypersurface Y in the weighted projective space
P := P(2k,3k,1n−1) which is birational to X . Here, we restrict ourselves
to the case where B is a rational n − 1-fold. In this case, the morphism π
establishes C(X) as a field extension of C(B) = C(z1, . . . , zn−1). The field
C(X) is the function field of an elliptic curve E over C(z1, . . . , zn−1), that is,
C(X) = C(x, y, z1, . . . , zn−1) where

(1) y2 = x3 + f1(z1, . . . , zn−1)x + f2(z1, . . . , zn−1)

with f1, f2 ∈ C(z1, . . . , zn−1). One has a natural isomorphism

MW(π) ∼= E
(
C(B)

)
,

where E(C(B)) is the group of C(B)-rational points of E.
Without loss of generality, we may assume that (1) is a global minimal

Weierstrass equation, that is, f1, f2 are polynomials and there is no polynomial
g ∈ C[z1, . . . , zn−1] \ C such that g4 divides f1 and g6 divides f2.

To obtain a hypersurface in P, we need to find a weighted homogeneous
polynomial. Let k = �max{deg(f1)/4,deg(f2)/6}	 and define P and Q as the
polynomials

P = z4k
0 f1(z1/z0, . . . , zn−1/z0), Q = z6k

0 f2(z1/z0, . . . , zn−1/z0).
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Then
y2 = x3 + P (z0, z1, . . . , zn−1)x + Q(z0, z1, . . . , zn−1)

defines a hypersurface Y of degree 6k in P. Let Σ be the locus where all the
partial derivatives of the defining equation vanish. Consider the projection
ψ̃ : P ��� Pn−1 with center L = {z0 = · · · = zn−1 = 0} and its restriction ψ =
ψ̃|Y to Y . Then there exists a diagram

X

π

Y

ψ

S P2.

Note that Y ∩ L = {(1 : 1 : 0 : · · · : 0)}. If k = 1 then Psing consists of
two points, none of which lie on Y . If k > 1, then an easy calculation in local
coordinates shows that Psing is precisely L, that Σ and L are disjoint and that
Y has an isolated singularity at (1 : 1 : 0 : · · · : 0). For any k, we have that ψ

is not defined at (1 : 1 : 0 : · · · : 0). Let P̃ be the blow-up of P along L. Let
X0 be the strict transform of Y in P̃. An easy calculation in local coordinates
shows that X0 → Y resolves the singularity of Y at (1 : 1 : 0 : · · · : 0) and
that the induced map π0 : X0 → P2 is a morphism. Moreover, all fibers of π0

are irreducible curves.

Definition 2.2. The degree of an elliptic n-fold π : X → B, with ratio-
nal base, is the smallest k such that there is a degree 6k hypersurface Y in
P(2k,3k,1n−1) birational to π.

As remarked above, we can consider the generic fiber of π as an elliptic
curve E over C(z1, . . . , zn−1). In the sequel, we consider only elliptic curves
such that j(π) = j(E) is constant, that is, j(E) ∈ C. Most of the sequel will
be concentrated on j(π) ∈ {0,1728}. If this is the case, then E has complex
multiplication.

Lemma 2.3. Let K be a field, E/K an elliptic curve, such that E has com-
plex multiplication over K. Suppose rankE(K) is finite. Then rankZ E(K)
is even.

Proof. Since E(K) ⊗ Q is a vector space over End(E) ⊗ Q. Since
dimEnd(E) ⊗ Q if a quadratic extension of Q it follows that E(K) has even
Z-rank. �

The following minor results will be used several times.

Lemma 2.4. Let V/C be a variety. Let E/C(V ) be an elliptic curve
such that j(E) ∈ C. Suppose j(E) �= 0,1728, then (Z/2Z)2 is a subgroup of
E(C(V )).
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Proof. Let E′/C be an elliptic curve with j(E′) = j(E). Then we can find
a Weierstrass equation y2 = x3 + ax + b for E′, with a, b ∈ C. Let α1, α2, α3

be roots of x3 + ax + b.
Since j(E) �= 0,1728, we have that E is given by

y2 = x3 + aP 2x + bP 3

for some P ∈ C(V )∗. For i = 1,2,3, we have that x = αiP is a root of x3 +
aP 2x + bP 3, hence x = αiP,y = 0 is a point of order 2 on E(C(V )). From
this it follows that (Z/2Z)2 ⊂ E(C(V )). �

Lemma 2.5. Let K be any field not of characteristic 2,3. Let E/K be an
elliptic curve with j(E) = 1728 then E(K) contains a point of order 2.

Proof. Since K is not of characteristic 2,3, we have that E has a Weierstrass
equation y2 = x3 + ax with a ∈ K. The point (0,0) is a point of order 2. �

3. Possible Mordell–Weil groups & specialization

We describe now all possible Mordell–Weil groups for elliptic surfaces of
degree 1 with constant j-invariant. Using a specialization result this limits
the possibilities for Mordell–Weil groups for elliptic threefolds of degree 1.
Note that an elliptic surface is rational if and only if its degree is 1. We start
by recalling a consequence of the classification of rational elliptic surfaces by
Oguiso and Shioda [9].

Proposition 3.1. Suppose π : S → P1 is a rational elliptic surface such
that j(π) is constant, then MW(π) is a subgroup of

• (Z/2Z)2 if j(π) �= 0,1728.
• Z8, Z2 × Z/3Z, or (Z/2Z)2 if j(π) = 0.
• Z4 × Z/2Z or (Z/2Z)2 if j(π) = 1728.

The elements in the Mordell–Weil group of an elliptic threefold π : X → P2

correspond to the C(s, t)-rational points of the generic fiber of π. We can also
consider the generic fiber of π as a rational elliptic surface defined over the
t-line, defined over the field C(s), provided that the discriminant curve is not
an union of lines through a point. In particular, this shows that MW(π) is
a subgroup of the groups mentioned in Proposition 3.1. Using the results of
the previous section, we can exclude a few other possibilities.

Corollary 3.2. Suppose π : X → B is an elliptic threefold of degree 1,
j(π) is constant and j(π) �= 0,1728. Then MW(π) = (Z/2Z)2.

Proof. From Lemma 2.4, it follows that (Z/2Z)2 ⊂ MW(π). From Propo-
sitions 3.1, it follows that MW(π) ⊂ (Z/2Z)2, which yields the corollary. �
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Corollary 3.3. Suppose π : X → B is an elliptic threefold of degree 1,
j(π) is constant and equals 1728. Then MW(π) is one of the following:

(Z/2Z) × Zr, (Z/2Z)2

with r ∈ {0,2,4}.

Proof. From Lemma 2.5, it follows that (Z/2Z) ⊂ MW(π). From Lem-
ma 2.3, it follows that the rank is even. From Proposition 3.1, it follows that
MW(π) is a subgroup of either (Z/2Z) × Z4 or (Z/2Z)2, which yields the
corollary. �

Corollary 3.4. Suppose π : X → B is an elliptic threefold of degree 1 and
j(π) is constant and equals 0. Then MW(π) is one of the following:

Zr1 , (Z/3Z) × Zr2 , (Z/2Z)2

with r1 ∈ {0,2,4,8}, r2 ∈ {0,2}.

Proof. From Proposition 3.1, it follows that MW(π) is a subgroup of either
Z8, (Z/2Z)2 or Z/3Z × Z2. From Lemma 2.3, it follows that the rank is even.

To prove the corollary, we have to exclude the group Z/2Z. Suppose π has a
section of order two, that is, Y is given by an equation of the from y2 = x3 − T 3

and [z0, z1, z2] �→ [T,0, z0, z1, z2] is a section of order 2. Then for i = 1,2 the
morphisms [z0, z1, z2] �→ [ωiT,0, z0, z1, z2] define also sections of order 2, where
ω2 = −ω − 1, hence we have complete two-torsion. In particular, Z/2Z does
not occur as possible Mordell–Weil group. �

Let Y ⊂ P(2,3,1,1,1) be an elliptic threefold. Let � = {a0z0+a1z1+a2z2 =
0} ⊂ P2 be a line. Let H� = {a0z0 +a1z1 +a2z2 = 0} ⊂ P be the corresponding
hyperplane. Then Y� = Y ∩ H� ⊂ P(2,3,1,1) is a rational elliptic surface,
provided � was not a component of the discriminant curve of π.

The restriction of rational sections to � defines a group homomorphism
MW(π) → MW(π�): we can consider MW(π�) as the C(π�)-valued points
of the general fiber of π� and MW(π) as the C(π�)-rational sections of an
elliptic surface over C(π�). Then the map MW(π) → MW(π�) is just the
specialization map as defined in for example, [11, Section III.11], and this is
a group homomorphism if � is not a component of the disciminant curve.

Later on, we need that for a special choice of � the map MW(π) → MW(π�)
is injective. This result is probably known to the experts, but we did not find
a reference for this in the literature.

Proposition 3.5. Let Δred ⊂ P2 be the reduced curve defined by the van-
ishing of 4A3 + 27B2. Let � ⊂ P2 be a very general line. Then the map
MW(π) → MW(π�) is injective.

Moreover, suppose that Δred is neither a union of lines nor an irreducible
conic. Then there exists a line � such that
(1) � is tangent to Δred at some point.
(2) � intersects Δred in at least two distinct points.
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(3) The natural map
MW(π) → MW(π�)

is injective.

Proof. It suffices to prove that there are at most countable many lines such
that

MW(π) → MW(π�)

is not injective, since if Δred is not the union of lines nor a conic then there are
uncountable many lines that satisfy the first and second property the results
follows.

Let r = rankMW(π). Write MW(π)tor = {τ1, . . . , τk }. Fix σ1, . . . , σr ∈
MW(π) such that the σi and τj generate MW(π).

Consider a section σ = τj +
∑r

i=1 niσi ∈ MW(π). Write σ as

[z0, z1, z2] �→ [f, g, z0h, z1h, z2h],

where f , g, h are homogeneous polynomials in z0,z1 and z2 such that deg(f) =
2deg(h) + 2 and deg(g) = 3deg(h) + 3.

If σ lies in the kernel of MW(π) → MW(π�), then h needs to vanish along �.
In particular, there are at most finitely many lines � such that σ is mapped
to zero in MW(π�). Since MW(π) is countable there are at most countably
many lines � for which some σ is mapped to zero, that is, for which the map
MW(π) → MW(π�) is not injective. �

Later on, we will show that the cases r = 4, r1 = 8 and r2 = 2 can only
occur in the cone construction case. At this point we will show that in these
cases the curve C is a union of lines, but not necessarily through one point.

Assume that the j-invariant is constant. Then it is well known that the
rank of MW(π�) equals 2a − 4, where a is the number of singular fibers of π�,
that is, a = #C ∩ � (counted without multiplicities).

Lemma 3.6. Suppose C is not the union of lines. Then y2 = x3 + Px has
Mordell–Weil rank at most 2.

Proof. If P is of the form P 2
0 for some irreducible polynomial P0 of de-

gree 2, then for a very general line � the elliptic surface π� is an elliptic
surface with 2I∗

0 fibers, and therefore has rank 0. Since for a very general
line the map MW(π) → MW(π�) is injective (Proposition 3.5), we have that
rankMW(π) = 0.

Otherwise we can apply the second part of Proposition 3.5. Let � be a line
satisfying the properties mentioned in this proposition. Then π� has j = 1728
and one fiber either of type I∗

0 or III ∗ and hence by the classification of Oguiso
and Shioda [9] has rank at most 2. Since MW(π) → MW(π�) is injective, it
follows that MW(π) has rank at most 2. �
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Lemma 3.7. Suppose C is not the union of lines. Then y2 = x3 + Q has
Mordell–Weil rank at most 6.

Proof. The proof is similar to the previous lemma. If Q is a quadratic
polynomial to the power three, then for a general line π� is an elliptic surface
with 2 I∗

0 fibers has therefore rank 0 and hence rankMW(π) = 0.
Otherwise we can apply Proposition 3.5. Using this we find a line � such

that π� has a fiber of type IV , I∗
0 , IV ∗ or II ∗, and therefore rankMW(π)� ≤ 6,

and such that MW(π) → MW(π�) is injective. �

Lemma 3.8. Suppose j = 0 then 3 | #MW(π)tor if and only if Y is given
by an equation of the form y2 = x3 + f2, where f is a cubic polynomial.

If (Z/3Z) × Z2 is a subgroup of MW(π) then f = 0 is a union of lines.

Proof. Suppose 3 | #MW(π)tor. Since for a very general line � the map
MW(π) → MW(π�) is injective (Proposition 3.5) it follows that for such line
� the π� : X� → P1 is a rational elliptic surface with 3 torsion. It follows from
the classification of Oguiso and Shioda [9] that then the intersection C ∩ �
consists of three points with multiplicity 2 or one point with multiplicity 2
and one point with multiplicity 4. Hence, C is a double cubic.

Conversely, if Y is given by y2 = x3 + f2 then x = 0, y = f defines a section
of order 3.

Suppose f = 0 is not the union of lines. Then C is a reduced cubic. Then by
Proposition 3.5 there exists a line �, such that MW(π) → MW(π�) is injective
and such that #� ∩ C = 2, hence MW(π�) is finite. �

4. Singularities of quartic and sextic plane curves

4.1. Quartic curves. The classification of singular quartic curves is well-
known. We give a sketch. First, assume that C is reduced. Then either C is
the union of four lines through one point, or C has at most ADE singularities.
The first case corresponds to the cone construction case, so suppose we are in
the latter case. Let p1, . . . , pk be the singularities of C, let M1, . . . ,Mk be the
corresponding Milnor lattices. Then

⊕
Mi can be embedded in the lattice

corresponding to the affine Dynkin diagram Ẽ7. This limits the possibilities
to A1, . . . ,A7,D4 . . . ,D7 and E6,E7.

Assume that C is non-reduced and that Cred is not the union of lines
through one point. Then C is either a double line � together with a (possible
reducible) conic T , or a double conic. If C is a double conic, then it has to
be irreducible, hence Cred is smooth and P = ∅.

Let q be a point of the singular locus of Cred. The above discussion shows
that (C,q) is one of the following singularities
• t2s, i.e., � and T intersect transversely;
• t2(t − s2), i.e., � is tangent to T ;

• ts, (A1 singularity), i.e., T is the union of two lines.
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Note that in the second case we have that P consists of one point.

4.2. Sextic curves. Sextic curves have more possible singularities.

Theorem 4.1. A reduced sextic can have the following singularities [6]:

• Ak : x2 + yk+1, k ≤ 19.
• Dk : y(x2 + yk−1), k ≤ 19.
• E6 : x3 + y4.
• E7 : x3 + xy3.
• E8 : x3 + y5.
• Bk,l : xk + yl, 3 ≤ k ≤ l. If k = 3 then 6 ≤ l ≤ 12, if k > 3 then l ≤ 6.

• xBk,l : x(xk + yl), (k, l) ∈ {(2,5), (2,7), (3,4), (3,5), (4,5)}.
• yBk,l : y(xk + yl), (k, l) ∈ {(3,4), (3,5), (3,6), (4,5)}.
• xyBk,l : xy(xk + yl), (k, l) ∈ {(2,3), (3,4)}.
• Ck,l : xk +yl +x2y2, k ≤ l, 2/k+2/l ≤ 1 and k ≤ n(l), with n(l) = 15,14,14,

12,11,11,9 for l = 3,4, . . . ,9.
• yCk,l : y(xk + yl + x2y2). k ≤ l, 2/k + 2/l ≤ 1, k ∈ {3,5}. If k = 3 then

7 ≤ l ≤ 12. If k = 5 then l ∈ {5,6}.
• Dk,l : xk + yl + x2y3. 2/p + 3/q ≤ 1. If k = 3 then 9 ≤ 10 ≤ 13. Otherwise

(k, l) ∈ {(4,7), (5,6), (5,7), (6,5), (6,6), (6,7)}.
• Fk,l : xk + yl + x2y3 + x3y2. 6 ≤ k ≤ l ≤ 7.

• S2k−1 : (x2 + y3)2 + (a0 + a1y)xy4+k. a0 �= 0, a1 ∈ C, k = 1,2,3.
• S2k : (x2 + y3)2 + (a0 + a1y)x2y3+k. a0 �= 0, a1 ∈ C, k = 1,2,3.

All these singularities are also in Arnol’d’s list, so one might also use the
names given by Arnol’d. A translation between our name-giving and that of
Arnol’d can be found in [6, Remark 1].

Several of these singularities have distinct Milnor and Tjurina number, and
are therefore not semi-weighted homogeneous.

We do not present a classification of non-reduced sextics here. Essentially,
one has either

• a double line with a quartic,
• a double conic with another conic,
• a double cubic,
• a triple line with a cubic,
• a triple line with a double line and a line,
• a triple conic or
• a quadruple line with conic.

The possibilities for the singularities are a combination of the possibilities
of singularities for conics, cubics and quartic, and the possible intersection
numbers between the components.
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5. Calculating H4
p (Y,C)

In this section, we discuss three approaches to calculate H4
p (Y,Q). For

each singularity that we encounter, one of these methods applies, except for
six types of singularities. We list h4

p(Y ) for each of the singularities.

5.1. Dimca’s method. Let (Y, p) be a semi-weighted isolated hypersurface
singularity. We have a local equation of the form fp + gp = 0, such that
(Y, p) is a μ-constant deformation of fp = 0 and fp = 0 defines a weighted
homogeneous isolated hypersurface singularity.

Let w1, . . . ,w4 are the weights of the variables, wp = w1 + w2 + w3 + w4

and let dp be the (weighted) degree of f . Then Dimca [3] shows

H4
p (Y ) =

3⊕
i=1

R(f)idp −wp .

Moreover, this direct sum decomposition is just
⊕

GrF
4−iH

4
p (Y ). Finally,

Dimca shows that H4
p (Y ) has a pure weight 4 Hodge structure.

It turns out that all singularities under consideration satisfy R(f)dp −wp = 0
and R(f)3dp −wp = 0. This follows from the fact that in all cases dp < wp

and the existence of a non-degenerated pairing R(f)dp −wp × R(f)3dp −wp →
R(f)4dp −2wp

∼= C. This implies that H4
p (Y,C) = C(−2)k with k = h4

p(Y ).
If j(π) = 1728, then all singularities of Y are non-isolated, so for the rest

of this subsection assume that j(π) = 0.
We have a semi-weighted hypersurface singularity if and only if the sex-

tic C is reduced at q = ψ(p) and has a weighted homogeneous singular-
ity.1 This limits us to cases that C has either an ADE singularity, or a
Bk,l, xBk,l, yBk,l, xyBk,l singularity. We list now the singularities with non-
trivial H4

p (Y ).

Proposition 5.1. Suppose (C,q) is a weighted homogeneous singularity of
a sextic curve, not a point of order six, and such that h4

p(Y ) �= 0. Then (C,q)
is one of
• A2,A5,A8,A11,A14,A17,
• E6,
• B3,6,B3,8,B3,10,B3,12,B4,6.

The following lemmata yield a proof of this proposition and the proofs
provide basis for H4

p (Y,C) for each nontrivial case.

Lemma 5.2. Suppose C has an Ak singularity at q. If k ≡ 2 mod 3, then
H4

p (Y,C) is isomorphic to C(−2)2. Otherwise, H4
p (Y,C) vanishes.

1 From the discussion of singular sextics it follows that only the Sk singularities have
moduli. Since the Sk singularities are not semi weighted homogeneous it turns out that all

semi weighted homogeneous singularities are rigid and therefore weighted homogeneous.
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Proof. We have a local equation for Y of the form

y2 = x3 + t2 + sk+1.

Setting weights 6,3k + 3,2k + 2,3k + 3 for s, t, x, y, we obtain dp = 6k + 6,
wp = 8k + 14. Hence, 2dp − wp = 4k − 2. The Jacobian ideal is generated by
y, t, x2, sk. Hence, R(f)4k−2 is spanned by

xs(k−2)/3, s(2k−1)/3.

This means that H4
p (Y ) = 0 if k �≡ 2 mod 3 and H4

p (Y ) = C(−2) if k ≡
2 mod 3. �

Lemma 5.3. Suppose C has an Dk singularity at q then H4
p (Y,C) = 0.

Proof. We have a local equation for Y of the form

y2 = x3 + st2 + sk−1.

Setting weights 6,3k − 6,2k − 2,3k − 3, we obtain dp = 6k − 6, wp = 8k − 5.
Hence, 2dp − wp = 4k − 7. Every monomial in x, s, t has even degree and since
y is in the Jacobian ideal it follows that R(f)4k−7 = 0. �

Lemma 5.4. Suppose C has an Ek singularity at q, k ∈ {6,7,8} then
H4

p (Y,C) = C(−2)2 if k = 6 and H4
p (Y,C) = 0 otherwise.

Proof. E6: We have a local equation for Y of the form

y2 = x3 + t3 + s4.

Setting weights 3,4,4,6, we obtain dp = 12,wp = 17,2dp − wp = 7. The only
monomials of weights 7 are xs, ts and their classes provide a basis for R(fp)7.

E7: We have a local equation for Y of the form

y2 = x3 + t3 + s3t.

Setting weights 4,6,6,9, we obtain 2dp − wp = 11. Since there are no mono-
mials of degree 11, we obtain R(fp)11 = 0.

E8: We have a local equation for Y of the form

y2 = x3 + t3 + s5.

Setting weights 6,10,10,15, we obtain 2dp − wp = 19. Since there are no
monomials of degree 19, we obtain R(fp)10 = 0. �

Remark 5.5. Suppose (Y, p) is a weighted homogeneous hypersurface sin-
gularity. Let ({fp = 0},0) be a local equation of (Y, p), where fp is weighted
homogeneous. Then Sp = {fp = 0} defines a surface in P(w0,w1,w2,w3).
Dimca’s method (as well as the method of Hulek–Kloosterman) relies on the
isomorphism H4

p (Y,C) ∼= H2(Sp,C)prim(1).
Often one can simplify this calculation. If exactly three of the four weights

have a nontrivial common divisor one can apply the following procedure: Sup-
pose Sp ⊂ P(w0, gw1, gw2, gw3) and g � w0. Then there is an isomorphism
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ϕ : P(w0, gw1, gw2, gw3) → P(w0,w1,w2,w3) by sending (x0 : x1 : x2 : x3) →
(xg

0 : x1 : x2 : x3).
Let gp be the equation of ϕ(Sp). Suppose that gp has an isolated singularity,

that is, ϕ(Sp) is quasi-smooth. Since ϕ is an isomorphism, we have then
that H1,1(Sp)prim

∼= R(gp)d−w0−w1−w2−w3 . We often refer to this as the three
weights trick.

The reason to apply the three weights trick is the following: in several cases
it turns out that 1 lies in the Jacobian ideal of gp. This in turn implies that
R(gp) = 0, and h1,1(Sp)prim = 0.

Lemma 5.6. Suppose C has a Bk,l singularity and 6 � kl then H4
p (Y,C) = 0.

Proof. We have a local equation for (C,q) of the form

y2 = x3 + tk + sl

hence we can set the weights for s, t, x, y to be 6k,6l,2kl,3kl. If 2 � kl, we
may apply the three weight trick (Remark 5.5). Therefore, it suffices to study
y = x3 + tk + sl. If 3 � kl, we can also use the three weights trick, in this
case we obtain the singularity y2 = x + tk + sl. In both cases, 1 is in the
Jacobian ideal, hence the Jacobian ring (and therefore the local cohomology)
vanishes. �

Recall that in Theorem 4.1 we give a list of possible values (k, l) such that
Bk,l occurs as a singularity on a sextic.

Lemma 5.7. Suppose C has a Bk,l singularity and 6 | kl then

• H4
p (Y,C) = C(−2)2 if k = 3 and l ≡ 2,4 mod 6.

• H4
p (Y,C) = C(−2)4 if k = 3 and l ≡ 0 mod 6.

• H4
p (Y,C) = C(−2)2 if (k, l) = (4,6).

• H4
p (Y,C) = 0 if (k, l) = (5,6).

Proof. An easy computation shows that if (k, l) = (5,6) then R2dp −wp = 0
and there is no local cohomology.

If k = 3, then R2dp −wp is generated by

xts(l−6)/6, xs(l−2)/2, ts(l−2)/2, s(5l−1)/6.

If (k, l) = (4,6), then R2dp −wp is generated by xts, t2s. �

Lemma 5.8. Suppose C has an xBk,l, an yBk,l or an xyBk,l singularity
then H4

p (Y,C) vanishes.

Proof. We used the computer algebra package Singular to check for every
admissible value of (k, l) (see Theorem 4.1) that R2dp −wp = 0. �
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5.2. Method of Brieskorn. A second of class of singularities are non-
weighted homogeneous isolated hypersurface singularities.

Let fp be a local equation for (Y, p). Then fp = y2 + x3 + gp(s, t). We
explain now the method to calculate H4

p (Y ). First, observe that this group
equals H4(F )0 the part of the cohomology of the Milnor fiber that is invariant
under the monodromy.

Now H4(F ) is naturally isomorphic to the Milnor algebra of (fp,0). The
Milnor algebra can be easily calculated. Brieskorn [1] developed a method to
calculate the action of the monodromy on H4(F ). We will not explain this
method, but use the computer algebra package Singular, which contains an
implementation of this method.

For computational reasons, it is better to let Singular calculate the mon-
odromy action on H2(F1), where F1 is the Milnor fiber of gp(s, t) = 0. From
this, one can deduce the monodromy on H4(F ) as follows:

For an arbitrary singularity f(x1, . . . , xn) = 0, one can identify Hn(F ) with
the Milnor algebra M(f) := C[[x1, . . . , xn]]/(f, fx0 , . . . , fx0).

Now, the Milnor algebra of xd
n+1 + f is the direct sum

⊕d−2
i=0 xiM(f). One

easily shows that for h ∈ M(f) we have Txd
n+1+f (xjh) = exp(2jπi/d)xjTf (h),

where Tg is the monodromy operator for the singularity (g,0). More specific,
to find all the eigenvalues of Txd

n+1+f one needs to multiply all the eigenvalues
of Tf by all the dth roots of unity except for the root of unity 1. In the case
y2 + x3 + gp(s, t), we apply this procedure twice. Hence, the eigenvalues of
the monodromy of f get multiplied by exp(5/3πi) and exp(1/3πi), that is,
the two primitive sixth roots of unity. So, in order to determine H4

p (Y ) we
need to find the eigenspaces for the eigenvalues exp(5/3πi) and exp(1/3πi)
on H2(F1).

The computer algebra package Singular produced the following results.

Proposition 5.9. Suppose (C,q) is a Ck,l, yCk,l,Dk,l, Fk,l or Sk singular-
ity on a sextic curve. Then
• h4

p(Y,C) = 4 if (C,q) is C3k,3l singularity.
• h4

p(Y,C) = 2 if (C,q) is Ck,l singularity, where exactly one of k, l is divisible
by 3, or (C,q) is either a S3 or a S6 singularity.

• h4
p(Y,C) = 0 otherwise.

5.3. Method of Hulek–Kloosterman. The final method we use works
for non-isolated singularities. Let (Y, p) be such a singularity. Since we have
a minimal elliptic threefold, such a singularity is one-dimensional, and the
transversal types are ADE surface singularities.

There are three classes to distinguish:
• j(π) = 1728 and C has an isolated singularity at q.

• j(π) = 1728 and C has a non-isolated singularity at q.
• j(π) = 0 and C has a non-isolated singularity at q.
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If C is a quartic, then (C,q) is weighted homogeneous. If C is a sextic,
then except for six types of singularities, (C,q) is weighted homogeneous.
For the rest of this subsection, assume that (C,q) is weighted homogeneous.
Then (Y, q) is weighted homogeneous. This implies that we may apply [5,
Proposition 7.7], which is a generalization of Dimca’s method. We start by
giving a short outline of this method:

Let fp be a local equation for (Y, q), let wp and dp be as in Dimca’s method.
Let R(fp) be the Jacobian ring of fp. Hulek and the author proved that
H4

p (Y ) has pure Hodge structure of weight 4 with h4,0 = h0,4 = 0, h3,1 = h1,3 =
dimR(fp)dp −wp . To determine h2,2 we need to introduce some notation. The
equation fp = 0 defines a surface Sp in weighted projective 3-space P′. Now,
Hulek and the author show that h2,2(H4

p (Y )) = h1,1(Sp)prim.
The Hodge number h1,1(Sp)prim can be determined as follows: Let q1, . . . ,

qs be the points where all the partials of fp vanish. Then (Sp, qi) is an ADE
singularity. If q /∈ P′

sing then let Mq be the Milnor algebra of (Sp, q).
If q ∈ P′

sing we do the following: we have a degree 6 quotient map ϕ : P4 →
P′ let G be the Galois group of this cover. Let q̃ ∈ ϕ−1(q). Let Gq be the
stabilizer of q̃. Let g be a local equation of (Sp, q) in P′. Then Gq acts on the
Milnor algebra of g. Let Mq be the invariant part of M under Gq . One can
show that this definition is independent of the choices made. Let

R̃(fp)2dp −wp := kerR(fp)2dp −wp →
⊕

Mqi .

Then it follows from the work of Steenbrink [12] that

h1,1(Sp) = dim R̃(fp)2dp −wp .

This suffices to calculate all the Hodge numbers.

Remark 5.10. In addition to the three weights trick (Remark 5.5) there
is another trick we can apply. Namely, let Σ(fp) be the locus, where all the
partials of fp vanish. Assume that Σ(fp) ∩ P′

sing = ∅. Then

h1,1(Sp) = h1,1(S) −
∑

q∈Σ(fp)

μq,

where μq is the Milnor number of the singularity at q. (This formula holds,
since Sp has only ADE surface singularities. For a proof of this, see, for
example, [5, Lemma 6.1].)

As written above, we distinguish between three classes. First, assume
j(π) = 1728.

Proposition 5.11. Suppose (C,q) is a singularity of a quartic curve, not
a point of order four, such that h4

p(Y ) �= 0. Then (C,q) is isolated and one of
A3,A7,D7.
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Assume first that (C,q) is isolated. From the classification of singular
quartics, it follows that (C,q) is an ADE singularity.

In all cases, it turns out that dp − wp < 0, hence H4
p (Y ) is of pure (2,2)-

type. Since wp and dp are listed in every proof, we do not mention that
dp < wp. We prove now:

Lemma 5.12. Suppose C has an Ak singularity at q then H4
p (Y,C) =

C(−2)2 if k ≡ 3 mod 4 and H4
p (Y,C) = 0 otherwise.

Proof. If C has an Ak singularity at q, then Y is locally of the from fp = 0
with

fp = y2 + x3 +
(
tk+1 + s2

)
x.

Set the weights of s, t, x, y to be 2k + 2,4,2k + 2,3k + 3. The sum wp of the
weights equals 7k + 11. The degree dp equals 6k + 6.

To determine h2,2 we start by determining R2dp −wp = R5k+1. Since y,x2 +
tk+1 + s2, tkx and sx generate the Jacobian ideal, it follows that

R5k+1 = span
{
t(5k+1)/4, t(3k−1)/4s, t(k−3)/4s2, xt(3k−1)/4

}
.

Hence, R5k+1 = 0 if k �≡ 3 mod 4. From this, it follows that h4
p(Y ) = 0 if

k �≡ 3 mod 4.
Suppose that k ≡ 3 mod 4, i.e., k = 3 + 4(m − 1). Our defining equation is

of the form
y2 + x3 +

(
t4m + s2

)
x.

We set the weights of s, t, x, y to be 2m,1,2m,3m. Now, dp = 6m,wp = 7m+1.
From this, it follows that R(fp)2dp −wp is generated by

t5m−1, t3m−1s, tm−1s2, t3m−1x.

Since S has A1 singularities at (1 : 1 : 0 : 0) and (1 : −1 : 0 : 0). The Milnor
algebra is generated by 1, i.e., R̃2dp −wp is spanned by elements of R2dp −wp

that vanish at (1 : 1 : 0 : 0) and (1 : −1 : 0 : 0), hence it is spanned by

xt3m−1 and
(
t4m − s2

)
tm−1

and h4
p(Y ) = 2. �

Lemma 5.13. Suppose C has a Dk singularity at q. Then H4
p (Y,C) =

C(−2)2 if k ≡ 3 mod 4 and H4
p (Y,C) = 0 otherwise.

Proof. In this case, we have a local equation of the form

y2 + x3 + t
(
tk−2 + s2

)
x.

The weights here are 2k − 4,4,2k − 2,3k − 3. Hence dp = 6k − 6, wp = 7k − 5,
2dp − wp = 5k − 7. Consider

R2dp −wp =
(
C[x, y, t, s]/

(
y,x2 + tk−1 + s2t, stx,

(
(k − 1)tk−2 + s2

)
x
))

5k−7
.
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It is easy to see that t5/4k−7/4, t3/4k−3/4s, t1/4k+1/4s2, xt3/4k−5/4 span this
vector space. Hence, a necessary condition to have local cohomology is k ≡
±1 mod 4.

Consider first the case k ≡ 3 mod 4, i.e, k = 4m + 3, then we have a local
equation of the form

y2 + x3 + t
(
t4m+1 + s2

)
x.

We can normalize the weights such that they become 4m+1,2,4m+2,6m+3.
The degree is 12m + 6, the sum of the weights equals 14m + 8. The vector
space R10m+4 is spanned by

t5m+2, s2tm+1, xt3m+1.

The partials of fp vanish if t = x = y = 0 or if t4m+1 +s2 = x = y = 0. These
equations yield points q1, q2 where Sp has an A1 singularity. At such a point
the Milnor algebra is generated by 1, hence the kernel R(fp) → Mq1 ⊕ Mq2

consists of functions vanishing at q1 and q2. So R̃ is generated by(
t4m+1 + s2

)
tm+1, xt3m+1.

Thus H4
p (Y,C) = C(−2)2.

The case k ≡ 1 mod 4 is different. Set k = 4m + 1. Then we have a local
equation of the form

y2 + x3 + t
(
t4m−1 + s2

)
x.

The weights are 4m − 1,2,4m,6m. This surface is isomorphic to the surface
S given by

y2 + x3 + t
(
t4m−1 + s

)
x

in P(4m − 1,1,2m,3m). The surface S is of degree 6m and the sum of the
weights is 9m. The only monomials of degree 3m are y,xtm, t3m. Since y and
xt are in the Jacobian ideal it turns out that R(fp)2dp −wp is generated by t3m.

The surface S has an A1 singularity at q = (1 : −1 : 0 : 0). At this point
we have a trivial stabilizer. The Milnor algebra Mq is generated by 1 in local
coordinates. Hence, all elements of R̃(fp)2dp −wp have to vanish at q. So
t3m /∈ R̃(fp)2dp −wp , hence h4

p(Y ) = 0. �

Lemma 5.14. Suppose C has an Ek singularity at q then H4
p (Y,C) van-

ishes.

Proof. Case E6:
y2 + x3 +

(
s3 + t4

)
x,

the weights are 4,3,6,9. This surface is isomorphic to

y2 + x3 +
(
s + t4

)
x

in P(4,1,2,3). The degree is 6, the sum of the weights equals 10, whence
2dp − wp = 2. The only monomials of degree 2 are x and t2. Since x is
in the Jacobian ideal it follows that R2dp −wp is generated by t2. As S has
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an A1 singularity at (1 : 1 : 0 : 0), all elements of R̃2dp −wp have to vanish at
(1 : 1 : 0 : 0). Since t2 does not vanish, we obtain that h4

p(Y ) = 0.
Case E7:

y2 + x3 +
(
s3 + st3

)
x,

the weights are 12,8,18,27. This surface is isomorphic to

y + x3 +
(
s3 + st3

)
x

in P(6,4,9,27). Since 1 is in the Jacobian ideal, we obtain R is the zero ring,
hence H4

p (Y,C) = 0. �

We come now to the case where (C,q) is a not an isolated singularity.
From Section 4, it follows that we only have to consider the following two
singularities:

Lemma 5.15. Suppose (C,q) has local equation s2t = 0 or s2(s − t2) = 0.
Then H4

p (Y ) = 0.

Proof. In the first case, we have a local equation y2 = x3 + s2tx for (Y, p).
This defines a degree 6 surface S in P(1,2,2,3). Hence 2dp − wp = 4. The
monomials xt, s4, t2, s2t span R(fp)4. The surface S has two singularities,
namely at q1 := (1 : 0 : 0 : 0) and q2 := (0 : 1 : 0 : 0).

The Milnor algebra Mq1 is generated by 1 (which translates to s4 in global
coordinates). For q2, note that the Milnor algebra is generated by 1, x, s, s2.
The group Gq2 is generated by s �→ −s, hence M

Gq2
q2 is spanned by t2, xt, s2t

and R̃2dp −wp = 0.
Consider now y2 = x3 + s2(s − t2)x. This defines a surface in P(4,2,6,9)

and is isomorphic to y = x3 + s2(s − t2)x in P(2,1,3,9). This surface has
h2

prim = 0, hence H4
p (Y,C) = 0. �

We turn now to the final case, namely j(π) = 0 and C is non-reduced.

Lemma 5.16. Suppose (Y, p) is one of the following singularities
(1) y2 = x3 + t2s,
(2) y2 = x3 + t2(t − s3),
(3) y2 = x3 + t3s,
(4) y2 = x3 + t3(t − s2),
(5) y2 = x3 + t4s,
(6) y2 = x3 + t2s2.
Then H4

p (Y ) = 0.

Proof. For each case, we list a choice for the weights. We then either state
that we may apply the the three weights trick (Remark 5.5) or we give an
outline on how to compute R̃2dp −wp :
(1) 2,2,2,3: (three weights).
(2) 2,6,6,9: (three weights).



790 R. KLOOSTERMAN

(3) 3,1,2,3: In this case we have 2dp − wp = 3. A basis for R(fp)3 is s,xt. At
(1 : 0 : 0 : 0) we have the following stabilizer: x �→ ω2x, t �→ ωt. The Mil-
nor algebra has basis 1, x, t, xt. After taking invariants under the stabilizer
we find that 1, xt span M

Gp
p . Hence, R̃2dp −wp = 0.

(4) 3,6,8,12: (three weights).
(5) 2,1,2,3: In this case, we have 2d − w = 4. A basis for R(fp)4 is xs, xt2,

t2s, s2. At (1 : 0 : 0 : 0) we have t → −t as stabilizer. The Milnor algebra
is spanned by 1, x, t, xt, t2, xt2, hence the invariants under the stabilizer
are (in global coordinates) s2, xs, t2s,xt2. Hence, R̃(fp)2dp −wp = 0.

(6) 2,1,2,3: A basis for R(fp)4 is xt2, xs, t4, s2. At (1 : 0 : 0 : 0) the sta-
bilizer is generated by t → −t, the Milnor algebra is spanned by 1, x,
hence is invariant under the stabilizer, so we can exclude s2, xs. At
(0 : 1 : 0 : 0) we have no stabilizer, the Milnor algebra is spanned by 1, x
in local coordinates, hence t4, xt2 can be excluded. From this it follows
that R̃2dp −wp(fp) = 0. �

Lemma 5.17. Suppose T is a reduced quartic with a double and a triple
point. Then either
• T has exactly two singularities, the triple point is a D6 singularity and the

double point is an A1 singularity,
• T has exactly two singularities, the triple point is a D5 singularity and the

double point is an A1 singularity or
• T has a D4 singularity an up to 3 A1 singularities.

Proof. Suppose q1 is a double point and q2 a the triple point. Let � be
the line through q1 and q2. Since (T · �)q1 ≥ 2 and (T · �)q2 ≥ 3 it follows that
� is a component of T . Let K be the residual cubic. Then q1 is a smooth
point of K and q2 is double point of K. Since T is reduced, we have that � is
not a component of K. From this, it follows that (K · �)qi = i for i = 1,2. In
particular, at q1 we have an A1 singularity. Hence, all double points of T are
A1 singularities.

Note that if K has an Ak singularity at q1 then T has D3+k singularity.
Since K is a cubic we have that k ≤ 3.

If K has an A3 singularity at q1 then K is a conic Q together with a line
tangent to Q at q1. Hence, T has a D6 and an A1 singularity and no other
singularities.

If K has an A2 singularity at q1 then K is an irreducible cubic and smooth
outside q1. Hence T has a D5 and an A1 singularities.

If K has an A1 singularity at q1 then K has at most 2 other A1 singularities,
hence T has a D4 singularity and at most three A1 singularities. �

Lemma 5.18. Suppose C is a double line � together with a reduced quartic T .
Suppose that Y has at least two singularities such that H4

p (Y ) �= 0 then one of
the following occurs
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• C has at least two cusps, none of them along �.
• � is a bitangent of T , and C might be smooth or has double points along

C ∩ �.
• C has an E6 singularity, but not along C ∩ �, and there is a point q ∈ C ∩ �

such that (C · �)q ∈ {2,4}.
• C has an A2 or A5 singularity, C is smooth along C ∩ � and there is a point

q ∈ C ∩ � such that (C · �)q ∈ {2,4}.
• C has an A2 or A5 singularity not along C ∩ � and C has a double point

along C ∩ �.

Proof. Suppose first that T is smooth outside T ∩ �. Since we have at
least two singularities that are not rationally smooth, and the singularity
y2 = x3 + t2s is rationally smooth (Lemma 5.16), it follows that (T · �) ≥ 2 for
at least 2 points in the intersection. Hence, � is a bitangent.

Suppose that there is a singularity (T, q′), q′ /∈ � such that H4
p (Y ) �= 0. Then

(T, q′) is a A2,A5 or E6 singularity. Let q ∈ T ∩ �. If T is smooth at q it follows
from Lemma 5.16 that (T · �)q ∈ {2,4}.

If (T, q′) is an E6 singularity then it follows from Lemma 5.17 that T has
no double points. Since a reduced quartic has at most one triple point, this
implies that T is smooth outside q′. Hence the second singularity such that
H4

p (Y ) �= 0, comes from a point in q ∈ T ∩ �. From Lemma 5.16 it follows that
(T · �)q ∈ {2,4}.

If (T, q′) is an A2 or A5 singularity, then (T, q) might be smooth and the
intersection number (T · �)q is 2 or 4, or (T, q) is an Ak singularity.

Suppose none of the intersections points of T and � yields a non-trivial
H4

p (Y ). Then T has at least two singularities with types A2,A5,E6. Since
the combinations 2E6, 2A5, E6 + A2 and A5 + A2 are not possible, it follows
that T has at least two A2 singularities. �

Lemma 5.19. Suppose Q is a quartic with an Ak singularity at q and � is
a line through p, not contained in Q. Then (k, (Q · �)) is one of the following
• (k,2), 1 ≤ k ≤ 7.
• (k,3), 1 ≤ k ≤ 2.
• (k,4), 1 ≤ k ≤ 7, k �= 2.

Proof. Since Q is a quartic, we have 1 ≤ k ≤ 7. For a general line � we have
(Q · �) = 2. This yields the case (k,2).

Suppose now k = 2 and � is given by t = 0. The quartics locally given by
st + s3 or st + s4 yield the cases (1,3) and (1,4).

Suppose now that we have k > 1 then we have a local equation of the form

t2 +a30s
3 +a21s

2t+a12st
2 +a03t

3 +a40s
4 +a31s

3t+a22s
2t2 +a03st

3 +a04t
4.

Since � is not a component of Q, we have that either a30 or a40 is nonzero.
If a30 �= 0, then we have an A2 singularity and C · � = 3.
If a30 = 0, then k ≥ 3 and C · � = 4. �
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Remark 5.20. A straightforward calculation shows that the contact equiv-
alence class of t2f(t, s), where f is a singularity on a quartic curve, is deter-
mined by the type of singularity of f and the intersection number of t = 0
with f(t, s).

Lemma 5.21. Suppose C is a triple line � together with a reduced cubic K.
Suppose that Y has at least two singularities such that H4

p (Y ) �= 0 then K is
a cuspidal cubic, and � is a flex line at a smooth point of K.

Proof. Suppose K has two points q1, q2 not on � yielding nonzero H4
p (Y ),

then K has an A2 singularity at q1, q2. Since a cubic has at most one cusp,
this is not possible.

Suppose there is a point q ∈ K ∩ � yielding a nontrivial H4
p (Y ). Then from

Lemma 5.16 it follows that K is singular at q, or q is a flex point and � is a
flex line. This implies that there is at least one point q′ not on � yielding non
trivial local cohomology.

Since a cubic has only A1,A2 or D4 singularities, and A1,D4 singularities
yield rationally smooth points on Y , it follows that (K,q) is an A2 singularity.

Since cuspidal cubics have exactly one singularity, it follows that (K,q) is
smooth, hence � is the flex line of K at q. �

Lemma 5.22. Suppose C is a quadruple line � together with a reduced
conic T . Then Y has at most one singular point p with H4

p (Y ) �= 0.

Proof. Let q1 and q2 be points yielding nontrivial local cohomology. Since
T is a conic it is either smooth or has an A1 singularity. Since an isolated A1

singularity yields a rational smooth singularity on Y , we have that q1, q2 ∈ �.
In particular � is not a tangent of T . From Lemma 5.16, it follows that
H4

p (Y ) = 0 in this case. �

Lemma 5.23. Suppose C consists of two double lines �1, �2 together with
a reduced conic T . Suppose that Y has at least two singularities such that
H4

p (Y ) �= 0. Then �1 and �2 are tangent to T .

Proof. A point on T but not in T ∩ (�1 ∪ �2) is either an isolated A1 singu-
larity of C or smooth, hence has no no-trivial local cohomology.

From Lemma 5.16, it follows that transversal intersections of �1 with T has
trivial local cohomology. Hence �1 and �2 are tangent to C. �

Lemma 5.24. Suppose C consists of a smooth double conic K together
with a reduced conic T . Suppose that Y has at least two singularities such
that H4

p (Y ) �= 0 then C and K have common tangents at two intersections
points.

Proof. A point on T but not in T ∩ K is either an isolated A1 singularity
of C or smooth, hence has trivial local cohomology.
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Transversal intersections of K with T have trivial local cohomology. Hence
we need at least two points such that (K · T )q ≥ 2. Since K and T are conics,
this implies that K and T have two intersections points with intersection
multiplicity 2. �

Lemma 5.25. Suppose C consists of three double lines, not passing through
one point or C consists of the union of a triple line with a double and single
line, not all three passing through one point. Then there is no point with
non-trivial local cohomology.

Proof. Note that all intersections are transversal. Hence, the result follows
directly from Lemma 5.16. �

We still need to determine H4
p (Y ) for singularities of type (Ak,m). Note

that for (Ak,4), k ≥ 4 we have local equations(
t + s2

)2(
t2 + sk+1

)
which are not weighted homogeneous. For singularities of type (A2, k), for
k ∈ {3,4} we have local equations

t2
(
ts + (t − s)k

)
which are not weighted homogeneous. In total we have six types of singulari-
ties for which we do not have a method to calculate H4

p (Y ).
It remains to consider the cases (Ak,2), for 1 ≤ k ≤ 7, (A2,3), (A3,4) and

the case that Q is smooth at the intersection points with �, and � is a bitangent
or a quadruple tangent to Q.

Lemma 5.26. Suppose we have a singularity of the form

y2 = x3 + t2
(
t + s2k

)
with k ∈ {1,2}. Then H4

p (Y ) is two-dimensional.

Proof. Setting weights 1,2k,2k,3k, yields 2d − w = 5k − 1. Clearly, the de-
gree 2dp − wp part of R(fp)2dp −wp is spanned by s5k−1, xs3k−1, ts3k−1, xtsk−1.
At (1 : 0 : 0 : 0) we have an A2 singularity. The images of s5k−1 and xs3k−1

generate the local Milnor algebra, hence H4
p (Y ) is 2-dimensional. �

Lemma 5.27. Suppose we have an (Ak,2) singularity then H4
p (Y ) is non-

zero if and only if k ∈ {3,6}. If k ∈ {3,6}, then H4
p (Y ) = C(−2)2.

Proof. A local equation is of the form

y2 = x3 + s2
(
t2 + sk+1

)
.

Setting weights 6,3k + 3,2k + 6,3k + 9 shows that we can apply the three
weight trick if 3 � 2k + 6. Hence, if k �≡ 0 mod 3 then H4

p (Y ) = 0.
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If k = 3, we have that R2dp −wp is spanned by the images of xs2, xt, s4, t2.
The local Milnor algebra at y = x = s = 0 is generated by 1, x, hence R̃2dp −wp

is spanned by xs2, s4 and h4
p(Y ) = 2.

If k = 6, we have that R2dp −wp is spanned by the images of xs4, s6. The
local Milnor algebra at y = x = s = 0 is generated by 1, x, hence R̃2dp −wp =
R2dp −wp is spanned by xs3, s6 and h4

p(Y ) = 2. �

Lemma 5.28. Suppose we have an (A2,3) or an (A3,4) singularity then
H4

p (Y ) = 0.

Proof. In the first case, we have local equation y2 = x3 +t2(t2 +s3). Setting
weights 3,2,4,6, shows that we can apply the three weights trick to reduce to
the singularity y2 = x3 + s(s + t3) with weights 3,1,2,3. From Lemma 5.16,
it follows that this singularity has no local cohomology.

In the second case, we have local equation y2 = x3 + t2(t2 + s4). Setting
weights 6,3,8,12 shows that we can apply the three weights trick. Hence,
there is no local cohomology. �

Finally, in the case of a triple line and a cubic curve we have the following
singularity.

Lemma 5.29. Suppose (Y, p) is a singularity of type

y2 = x3 + t3
(
t + s3

)
.

Then H4
p (Y ) is two-dimensional.

Proof. If we set weights of s, t, x, y to be 1,3,4,6, we obtain 2d − w = 10.
The vector space R(fp)10 is spanned by xs6, xts3, xt2, t2s4ts7s10. We have
a singularity at (1 : 0 : 0 : 0). The stabilizer at this point is trivial and the
Milnor algebra is generated (in global coordinates) by s10, xs6, ts7, xts3, hence
R̃ is generated by t2s4, xt2. �

6. Determining the Mordell–Weil rank

To determine the Mordell–Weil rank of an elliptic threefold, we use the
main result of [5]: Let Y ⊂ P(2,3,1,1,1) be a hypersurface given by

y2 = x3 + Px + Q,

where P and Q are polynomials in z0, z1, z2 of degree 4 and 6 respectively.
Let ψ : Y ��� P2 be the projection from (1 : 1 : 0 : 0 : 0) onto the plane

{x = y = 0}. The map ψ is not defined at (1 : 1 : 0 : 0 : 0). Let X0 be the
blow-up of Y at (1 : 1 : 0 : 0 : 0). This blow-up resolves the singularity of ψ
and endows X0 with the structure of a Weierstrass fibration in the sense of
Miranda. Miranda gave a description of which birational transformations one
needs to apply in order to obtain an elliptic threefold π : X → S.
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The torsion part of MW(π) can be determined by specialization and we will
come back to this later. In [5] we gave together with Klaus Hulek a procedure
that for general Y calculates rankMW(π). To determine the rank of MW(π)
one can use that if H4(Y,C) has a pure weight 4 Hodge structure then

rankMW(π) = rankH2,2
(
H4(Y,C)

)
∩ H4(Y,Z) − 1.

In general, intersections of the type H2,2(H4(Y,C)) ∩ H4(Y,Z) are hard to
calculate. An exception is the case where H4(Y,C) = H2,2(Y,C). This is
actually always the case in all our examples.

Lemma 6.1. Suppose every non-isolated singularity of Y is weighted ho-
mogeneous. Then H4(Y,C) is pure of type (2,2).

Proof. Consider the exact sequence

· · · →
⊕
p∈Σ

H4
p (Y ) → H4(Y ) → H4

(
Y ∗)

.

We start by proving that the mixed Hodge structure on H4(Y ) is pure of
weight 4. Since Y ∗ is smooth, it follows that H4(Y ∗) has only Hodge weights ≥
4, whereas H4(Y ) has only Hodge weights ≤ 4, since Y is proper (both state-
ments can be found in [10, Section 5.3]). Hence to prove the above claim, it
suffices to prove that the Hodge structure on H4

p (Y ) is of pure weight 4.
Suppose p ∈ Ysing and suppose we have a weighted homogeneous singularity

at p. Then by the results of Dimca [2] and of [5], it follows that H4
p (Y ) has

pure weight 4. If (Y, p) is not weighted homogeneous then this singularity
is isolated. The procedures in the Singular library gmssing.lib allow us to
calculate the weight filtration on H4

p (Y ). It turns out that for all singularities
mentioned in Theorem 4.1 the Hodge structure on H4

p (Y ) is pure of weight 4.
From this it follows that H4(Y ) is pure of weight 4.

In order to prove that H4(Y ) is pure of type (2,2), consider f : Ỹ → Y ,
a resolution of singularities of Y . Let � ⊂ P2 be a general line. Then Y� :=
f −1(ψ−1(�)) is irreducible and is a rational elliptic surface. Moreover, since �

is ample, we have by Lefschetz’ hyperplane theorem that H2(Ỹ ) → H2(Y�) is
injective. From the rationality of Y� it follows that h2,0(Y�) = 0 and therefore
h2,0(Ỹ ) = 0. Using Poincaré duality one obtains h3,1(Ỹ ) = h1,3(Ỹ ) = 0. In
particular H2,2(Ỹ ) = H4(Ỹ ).

We have an exact sequence H3(E) → H4(Y ) → H4(Ỹ ). Since E is proper
it turns out that there the graded piece of weight 4 in H3(E) is trivial. Since
H4(Y ) is pure of weight 4 this exact sequence implies that H4(Y ) injects in
H4(Ỹ ). The latter Hodge structure is pure of type (2,2), so the same holds
for H4(Y ). �

Proposition 6.2. Suppose (Y, p) is a semi-weighted homogeneous hyper-
surface singularity. Then H4(P \ Y,C) → H4

p (Y ) is surjective.
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Proof. Suppose first that j = 0. Then there exist positive integers d (divis-
ible by 6), v1, v2, α, β, γ, δ such that v1α + v2β = v1γ + v2δ = d, and the gcd
of d/6, v1 and v2 equals 1 and (Y, p) is locally given by y2 + x3 + sαtβ + sγtδ

plus terms of the same or higher (weighted) degree. Moreover, since C is a
sextic we may assume that α + β and γ + δ are at most 6.

If both v1 and v2 are divisible by 2 then three of the weights are divisible
by 2 and we can apply the 3 weights trick and obtain that H4

p (Y ) = 0. The
same conclusion holds if both v1 and v2 are divisible by 3.

For all other choices of (v1, v2) we used the computer program Singular
to calculate 2d − w and d − w. If C[x, y, s, t]2d−w is spanned by elements of
(usual) degree at most 4, then the map H4(U) → H4

p (Y ) is surjective. The
only triples (d, v1, v2) not satisfying this criterion are d = 12, v1 = 1, v2 = 3 and
d = 12, v1 = 1, v2 = 4. Since the singularity lies on a sextic it turns out that
this corresponds to the singularities

y2 = x3 + t3
(
t + s3

)
resp. y2 = x3 + t2

(
t + s4

)
.

For both singularities we know H4
p (Y ) = 0.

The case j = 1728 can be treated similarly, but turns out to be easier. This
finishes the proof. �

Summarizing, we have that rankMW(π) = h4(Y ) − 1, that h4(Y ) − 1 equals
the dimension of the cokernel of

H4(P \ Y,C) →
⊕
p∈Σ

H4
p (Y )

and that if Σ consists of one point at which Y has a weighted homogeneous
singularity then this cokernel is trivial.

To calculate in practice the cokernel, we might use that this cokernel is of
pure (2,2)-type, hence it suffices to calculate

coker
(
Gr2F H4(U,C) → Gr2F H4

p (Y )
)
.

In the sequel, we will only calculate the rank in the case that (Y, p) is weighted
homogeneous, hence for the rest of this section assume that Y has only
weighted homogenous singularities. In the previous section, we showed for
each weighted homogeneous singularity that H4

p (Y ) is pure of type (2,2).
Hence, it suffices to calculate

coker
(
Gr2F H4(U,C) → H4

p (Y )
)
.

There is a natural map C[x, y, z0, z1, z2]4 → Gr2F H4(U,C) given by

g �→ g

f2
Ω.

Here f is a defining equation for Y and Ω is the “standard” 4-form on P (cf.
[5, Section 5]). The Jacobian ideal lies in the kernel of this map (see e.g.,
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[2]). Since y is in the Jacobian ideal, we get a surjection C[x, z0, z1, z2]4 →
H4(U,C).

The map H4(U,C) → H4
p (Y,C) can be calculated as follows. In the pre-

vious section we provided generators g1, . . . , gk for H4
p (Y,C). Now the map

C[z0, z1, z2]2x ⊕ C[z0, z1, z2]4 → H4
p (Y,C) is given by

G →
(

∂G

∂g1
(p), . . . ,

∂G

∂gk
(p)

)
.

We can simplify the calculation of the Mordell–Weil rank further: the only
interesting cases are j(π) = 0,1728. In that case, the fibration with section
has an extra automorphism, namely

ω : (x, y, z0, z1, z2) → (ωx, y, z0, z1, z2)

with ω2 = −ω − 1 (if j(π) = 0) or

i : (x, y, z0, z1, z2) → (−x, iy, z0, z1, z2) if j(π) = 1728.

Let σ either be ω or i. The action of σ gives MW(π) the structure of a
Z[σ]-module. In particular the Z-rank of MW(π) is twice the Z[σ]-rank of
MW(π). If we fix a basis P1, . . . , Pr for MW(π)/MW(π)tor as Z[σ]-module,
then P1, σP1, . . . , Pr, σPr is a basis for MW(π)/MW(π)tor as Z-module.

Then σ acts on Pi, σPi as(
0 −1
1 −1

)
resp.

(
0 −1
1 0

)
.

This implies that on MW(π) ⊗Z Q the only eigenvalues of σ are ω,ω2 resp.
i, −i, and the corresponding two eigenspaces have the same dimension.

The automorphism σ induces actions on H4(Y,C)prim, H4
p (Y,C) and the

graded piece Grk
F H4(U,C). Recall that we are interested in the calculation

of the cokernel of
F 3H4(U,C) →

⊕
p∈P

H4
p (Y ).

The cokernel is a direct sum of the two eigenspaces and both eigenspaces have
the same dimension. Hence, it suffices the calculate the dimension of the ω2

(resp. i) eigenspace of the cokernel.
Since σ(Ω) = ωΩ if j(π) = 0 (resp. −iΩ if j(π) = 1728) and F 3H4(U,C) is

a quotient of (
xC[z0, z1, z2]2 ⊕ C[z0, z1, z2]4

)
· 1
f2

Ω,

it follows that the ω2-eigenspace, respectively, the i eigenspace is the co-kernel
of

xC[z0, z1, z2]2 · 1
f2

Ω →
⊕

H4
p (Y,C)σ−ω2,σ+i.
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At the level of the local cohomology the same phenomena happens i.e., σ
acts on monomials of the form xh(t, s) as multiplication by ω2 resp. i, and on
monomials of the form h(t, s) it acts as ω, resp. −i.

Remark 6.3. It should be remarked that on H4
p (Y ) the two eigenspaces

have the same dimension. However, on F 3H4(U,C) the two eigenspaces have
different dimensions, namely 6 and 15. For computational reasons we choose
to work with the 6-dimensional space.

7. Classification I: j(π) = 1728

This case is rather easy.

Lemma 7.1. Suppose j(π) = 1728. Then MW(π)tor �∼= Z/2Z if and only if
C is a double conic. If C is a double conic then MW(π)tor = (Z/2Z)2.

Proof. From Lemma 2.5 it follows that Z/2Z is a subgroup of MW(π).
Suppose that #MW(π)tor > 2, then for a general line � the specialization map
MW(π) → MW(π�) is injective hence π� is a rational elliptic surface j(π�) =
1728 and the torsion subgroup of MW(π�) consists of at least 3 elements. From
the classification of rational elliptic surfaces it follows that C ∩ � consists of
two points with multiplicity 2. Hence C is a double conic. Conversely, if C
is a double conic, then Y is given by y2 = x3 + f2x. This threefold has x =
±f, y = 0 and x = 0, y = 0 as sections of order 2. Hence MW(π)tor ⊃ (Z/2Z)2.
From Corollary 3.3 it follows that then MW(π)tor = (Z/2Z)2. �

Theorem 7.2. Suppose j(π) = 1728 and that Cred is not the union of lines
through one point. Then MW(π) is infinite if and only if C is a quartic with
two A3 singularities.

Moreover, we have
• MW(π) ∼= Z/4Z if and only if C is a double conic,
• MW(π) ∼= Z/2Z × Z2 if and only if C is a quartic with two A3 singularities.
• MW(π) ∼= Z/2Z otherwise.

Proof. Suppose C is a quartic with two A3 singularities. A smooth de-
gree 4 curve has Euler characteristic −4. Since the Milnor number of an A3

singularity is 3, we obtain that C has Euler characteristic −4 + 6 = 2, hence
h1(C) = 0, because h0(C) = h2(C) = 1. This implies that C is a rational
curve. Hence without loss of generality we may assume that C is given by
z4
0 − z2

1z2
2 . It remains to show that

y2 = x3 −
(
z4
0 − z2

1z2
2

)
x

has Mordell–Weil rank 2. Since h4
p(Y ) = 2 and Σ consists of two points, we

have rankMW(π) ≤ 4. From the surjectivity of H4(U) → H4
p (Y ) (Proposi-

tion 6.2), it follows that the cokernel H4(U) → H4
Σ(Y ) has dimension at most
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3, and, since this dimension is even, it follows that rankMW(π) ∈ {0,2}. Note
that x = z2

0 , y = z0z1z2 is a point of infinite order. Hence, rankMW(π) = 2.
Conversely, we have that H4

p (Y,C) is non-zero if and only if (C,q) is an
isolated singularity if type A3,A7 or D7. Since H4(U,C) → H4

p (Y,C) is sur-
jective for each such singularity, we need to have at least two singularities for
positive rank. This means that C is a quartic with 2 A3 singularities.

To finish the proof, note that from Corollary 3.3 implies that if MW(π) is
finite then it is isomorphic to Z/2Z or (Z/2Z)2. From the previous lemma, it
follows that the latter only occurs if C is a double conic. �

8. Partial classification: Case j(π) = 0 and C is non-reduced

Suppose C is a non-reduced sextic. Consider first the case that C is a
reduced quartic with a double line. In this case, we cannot calculate H4

p (Y )
for six types of the singularities that occur in this case. For this reason, we
give we give a few examples with positive rank.

Example 8.1. Suppose C is the union of a double line � and a quartic Q.
Then MW(π) has rank 2 if one of the following occurs
• C has an E6 singularity, and � intersects Q with multiplicity 4 in a smooth

point or
• C has two A3 singularities along �.

Proof. In the first case we may assume that, after a change of coordinates
if necessary, Y is given by y2 = x3 + z2

0(z4
1 + z0z

3
2). Since H4

Σ(Y ) is four-
dimensional, H4(U) → H4

Σ(Y ) is not the zero map, and the cokernel has even
dimension, we have that rankMW(π) ∈ {0,2}. Now x = z0z2 and y = z0z

2
1 is

a point of infinite order, showing that rankMW(π) = 2.
In the case, we may assume that, after a change of coordinates if necessary,

Y is given by y2 = x3 + z2
0(z4

0 + z2
1z2

2). Since C has two A3 singularities it
follows that H4

Σ(Y ) is four-dimensional. By the same reasoning as above, we
have that rankMW(π) ∈ {0,2}. The point x = z0z1z2, y = z0z

2
1 has clearly

infinite order, hence the rank equals 2. �

From the results in Section 5, it follows that there are non-reduced sextics,
not being a double line with a quartic, that might yield elliptic threefolds with
positive rank. In all these cases, it turns out that the rank equals 2.

Theorem 8.2. Suppose C is one of the following
• C is a triple line � together with cuspidal cubic K, and � is a flex line at a

smooth point of K,
• C is a conic together with two double lines �1, �2, such that the �i,red are

tangent to C or
• C is a conic together C1 with a double conic C2, and C1 and C2,red intersect

in precisely two points with multiplicity 2.
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Then MW(π) = Z2.

Proof. Using a specialization argument, it follows that in all these cases the
torsion part is trivial. In all cases, Σ consists of two points, and both points
have h4

p(Y ) = 2. The map H4(P \ Y ) → H4
p1

(Y ) ⊕ H4
p2

(Y ) is not the zero map
by Proposition 6.2, hence the cokernel has dimension at most 3 and therefore
rankMW(π) ≤ 3. Since the rank is even, one has rankMW(π) ∈ {0,2}. In
order to prove the results, it suffices to give a non-trivial section.

In the first case, without loss of generality we may assume that Y is given
by

y2 = x3 + z3
0

(
z2
0z1 − z3

2

)
.

Then the section x = z0z2, y = z2
0z1 is non-torsion.

In the second case, without loss of generality we may assume that Y is
given by

y2 = x3 +
(
z2
0 + z1z2

)
z2
1z2

2 .

Then the section x = −z1z2, y = z0z1z2 is non-torsion.
In the third case, without loss of generality we may assume that without

loss of generality Y is given by

y2 = x3 +
(
z2
0 + z1z2

)(
αz2

0 + z1z2

)2
,

with α ∈ C. The section x = (αz2
0 + z1z2), y = (

√
1 − α)z2

0(αz2
0 + z1z2) is

non-torsion. �

9. Case j(π) = 0 and C is a cuspidal curve

Suppose C is a sextic with only cusps. It is well known that C can have
at most 9 cusps. Moreover, at most 3 of such cusps can lie on a line and at
most 6 of them on a conic.

We need the following lemma.

Lemma 9.1. Let {p1, . . . , pm}, m ≤ 9 be a set of distinct points in P2, with
no four points collinear and no seven points lying on the same conic. Let K
be the cokernel of the evaluation map at p1, . . . , pm:

ϕ : C[z0, z1, z2]2 → Cm.

Then dimK = m − 6 for m ≥ 7, and dimK = 0 for m ≤ 5. For m = 6 we have
dimK = 1 if all the points lie on a conic, dimK = 0 otherwise.

Proof. If m ≥ 7, then the m points do not lie on a conic, hence the kernel
of ϕ is trivial and the cokernel has dimension 6 − m.

If m = 6 and the points do not lie on a conic, then the kernel of ϕ is again
trivial and dimK = 0.

If m = 6 and the points do lie on a conic, then the kernel of ϕ is one-
dimensional and so is the cokernel.
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If m < 6, then K is nontrivial only if the elements in the kernel have a
common component. Such a component is necessarily a line and m ≥ 3.
A straightforward calculation shows that if 3 ≤ m ≤ 5 and precisely three
of the m points are collinear then the kernel of ϕ has dimension 6 − m, so
dimK = 0. �

Let Y be an elliptic threefold of the form y2 = x3 +f(z0, z1, z2) where f = 0
is a reduced sextic with only cusps as singularities. For each cusp pi of f = 0,
fix a direction �i such that C intersects �i with multiplicity 3 at pi.

In Lemma 5.2, we studied the singularity y2 = x3 + t3 + s2. It turns out
that H4

p (Y ) is generated by the class of x and t.
This implies that we can determine the cokernel of the map H4(U,C) →

H4
Σ(Y ) as follows:

xC[z0, z1, z2]2 ⊕ C[z0, z1, z2]4 →
(
C2

)m
,

where (xf2 + f4) is mapped to (f2(pi), ∂
∂�i

f4). To simplify matters, we can
decompose the cokernel into eigenspaces for the complex multiplication. One
eigenspace is the cokernel of

C[z0, z1, z2]4 → Cm, f4 → ∂

∂�i
f4,

where the other is the cokernel of

xC[z0, z1, z2]2 → Cm, xf2 �→ f2(pi).

By the above lemma, this map has one dimensional cokernel if m = 6 and
the cusps lie on a conic or m = 7, a two-dimensional cokernel if m = 8 and a
three-dimensional cokernel of m = 9. The latter case is well known, it means
that the curve C is the dual of a smooth cubic.

Since both eigenspaces have equal dimension we obtain the following result.

Theorem 9.2. Let f = 0 be a reduced sextic, with only cusps as singulari-
ties. Suppose the cusps are at p1, . . . , pm. Then the elliptic threefold

y2 = x3 + f

has the following Mordell–Weil group:
• If m ≤ 5 or m = 6 and the pi do not lie on a conic then MW(π) = 0.
• If m = 6 and the pi lie on a conic then MW(π) = Z2.
• If m ≥ 7 then MW(π) = Z2(m−6).

In particular, this shows the existence of the Mordell–Weil groups Z2r for
r = 0,1,2,3.

Remark 9.3. Suppose C is a sextic with 9 cusps. Then C is the dual
curve of a smooth cubic. Hence there is a one-dimensional family of sextics
with 9 cusps, and hence a one-dimensional family of elliptic threefolds with
Mordell–Weil rank 6. Since the Mordell–Weil rank is six and H4(Y ) is pure
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of type 2,2 it follows that H4(Y,Q) = Q(−2)7. All other cohomology groups,
except for H3, can be calculated using the Lefschetz hyperplane theorem, i.e.,
H2i(Y,Q) = Q(−i) for i = 0,1,3 and Hi(Y,Q) = 0 for i /∈ {0,2,3,4,6}.

As explained in [7, Section 3], it follows that H3(Y,Q) = Q(−1)12. All co-
homology groups have Hodge structures of Tate type, and there is no variation
of Hodge structures possible. In particular, a Torelli type result as obtained
by Grooten–Steenbrink [4, Section 6] in a similar setting is not possible in our
case.

10. Possible Mordell–Weil groups

In the previous section, we have seen the existence of the groups Z2r for
r = 0,1,2,3. In order to prove Theorem 1.1 we have to show the existence of
the groups Z/3Z, (Z/2Z)2.

Remark 10.1. We have that Z/3Z ⊂ MW(π) if and only if Y has an
equation of the form

y2 = x3 + f2,

where f = 0 is a cubic. We showed Lemma 3.8 that then MW(π) = Z/3Z
unless f = 0 is the union of three lines, and since we have excluded the cone
construction case, f = 0 is the union of three lines �1, �2, �3 without a common
intersection point. That means that Σ consists of three points {p1, p2, p3}
and at each point we have a local equation y2 = x3 + (ts)2. As explained in
Lemma 5.16, we have that H4

pi
(Y ) = 0, whence MW(π) = Z/3Z in this case,

and Z/3Z × Z2 is not possible.

Remark 10.2. Suppose we have that MW(π) = Z8. We showed before
that than C is a reduced sextic, and is a union of six lines, not through
one point. That means that for each p ∈ Σ we have a local equation of the
form y2 = x3 + tm + sm with 2 ≤ m ≤ 5. For each such singularity, we have
H4

p (Y ) = 0, so if C is the union of lines then MW(π) is finite. This shows
that Z8 is not possible.

Summarizing we get the following theorem.

Theorem 10.3. Let y2 = x3 + f be an elliptic threefold, f = 0 is not the
union of lines through one point.
• MW(π) ∼= (Z/2Z)2 if and only if f = 0 is triple conic.
• MW(π) ∼= (Z/3Z) if and only if f = 0 is double cubic.
• Otherwise MW(π) is one of 0,Z2,Z4,Z6, and all these cases occur.
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