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ZERO SETS OF REAL POLYNOMIALS CONTAINING
COMPLEX VARIETIES

NGUYEN QUANG DIEU

Abstract. We give necessary conditions for real algebraic hyper-
surfaces (possibly with singularities) to contain nontrivial germs

of complex hypersurfaces. Moreover, if a real hypersurface S in

C2 is defined by a real polynomial of a sufficiently general form

and if S contains a nontrivial analytic disk, then, using the above
result, we show that S must contain certain complex lines.

1. Introduction

Given a real polynomial p in Cn, n ≥ 2, we are concerned with the problem
of finding explicit necessary and sufficient conditions so that S := {z : p(z) = 0}
contains a germ of a complex variety i.e., there exists a complex variety V in
some open subset U of Cn such that V ⊂ S. This problem is connected with
a well known theorem of Trépreau in [Tr] stating that if a is a smooth point
of a real hypersurface S such that there is no germ of a complex hypersurface
passing through a, then there exists a one side neighbourhood of a in S for
which we have the extension property i.e., there exists a neighbourhoods basis
{Uj }j≥1 of a and a connected component Ω of Cn\S such that holomorphic
functions on Ω ∩ Uj extends holomorphically to Uj for every j ≥ 1. The main
result of this note (Theorem 2.2) asserts that if a real algebraic hypersurface
S contains a a germ of complex variety then S must include an algebraic
variety. Moreover, if S contains an algebraic hypersurface then we obtain
an algebraic decomposition formula for the defining function of S. It follows
easily from this result that if S is defined by the vanishing locus of a real
valued, real homogeneous polynomial in C2 then either S does not contain a
germ of a complex hypersurface or S includes a complex line passing through
the origin (cf. Proposition 2.3). Moreover, we also give in Corollary 2.4,
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sufficient conditions for a wide class of real algebraic hypersurface in C2 to
contain a nontrivial analytic disk. Here by a nontrivial analytic disk we mean
the image in Cn of the unit disk in C under some nonconstant holomorphic
map. The final result of the note is a complete description of complex curves
lying in a certain class of real algebraic hypersurfaces in C2.

We should say that a different approach to our problem, using an interesting
variant of the classical Frobenius theorem, has been discussed in [HT].

2. Main results

We adopt the following terminology. By a complex (resp. real) polynomial
in Cn, we mean a polynomial in z1, . . . , zn (resp. in z1, z1, . . . , zn, zn), where
(z1, . . . , zn) are coordinates of Cn. For a point z = (z1, . . . , zn) ∈ Cn, we denote
z = (z1, . . . , zn). Given a real analytic function f on an open subset U of Cn,

we denote by f̂ the complexification of f i.e., f is holomorphic in U × U ,
where U = {z : z ∈ U } and satisfies f̂(z, z) = f(z) for every z ∈ U. If p is a
complex polynomial in Cn, then the conjugate p is defined as p(z) := p(z).
Finally, if p is a real or complex polynomial in Cn then we denote by p̃ the
leading homogeneous component of p.

The first result of the note is the following elementary fact.

Proposition 2.1. Let f be a real valued, C s(1 ≤ s ≤ ∞) smooth func-
tion in a neighbourhood of 0 ∈ Cn. Assume that there is a smooth complex
submanifold H of codimension k defined in a neighbourhood of the origin sat-
isfying 0 ∈ H ⊂ {f = 0}. Let g1, . . . , gk be holomorphic defining functions for
H . Then there exist complex valued Cs−1 smooth functions h1, . . . , hk defined
near 0 such that

f =
k∑

j=1

(hjgj + hjgj).

If f is real analytic, then hj can be chosen to be real analytic.

Proof. After a biholomorphic change of coordinates, we may assume that
gj = zj for all 1 ≤ j ≤ k. For every z = (z1, . . . , zk, z′), where z′ = (zk+1, . . . , zn)
near the origin we set F (t, z) = f(tz1, . . . , tzk, z′). Since f(z) = 0 whenever
z1 = · · · = zk = 0, by the fundamental theorem of calculus we get

f(z) = F (1, z) =
∫ 1

0

∂

∂t
F (t, z)dt =

k∑
j=1

(
hj

(
z1, z

′)zj + hj

(
z1, z′

)
zj

)
,

where hj(z1, z
′) :=

∫ 1

0
∂

∂z1
f(tz1, z

′)dt. The desired conclusion now follows. �

As happens frequently, more precise information can be derived for real
algebraic hypersurfaces.



ZERO SETS 71

Theorem 2.2. Let f be a non constant, real valued, real polynomial in
Cn, f �≡ 0. Assume that the hypersurface S := {z ∈ Cn : f(z) = 0} contains
a germ of a complex variety of pure codimension k,1 ≤ k ≤ n − 1. Then the
following assertions hold.

(i) S contains an irreducible algebraic variety of pure codimension k′ ≤ k.
(ii) If k = 1, then there exist an irreducible complex polynomial p in Cn, a

real polynomial q in Cn such that for every ξ ∈ H := {z ∈ Cn : p(z) = 0} ∩ S
we have

(a) H ⊂ {z ∈ Cn : f̂(z, ξ) = 0} ⊂ S.
(b) deg f = deg p + deg q and

(1) f = pq + pq on Cn.

In particular, H ⊂ S. Moreover, given p with 2deg p > deg f then there exists
at most a real polynomial q satisfying (1).

Recall that by an algebraic variety we mean the common zero set of a
finitely many complex polynomials in Cn.

Proof of Theorem 2.2. (i) We will use some ideas from [DF]. By assump-
tion, there exists an open set U in Cn and holomorphic functions g1, . . . , gk

on U such that

V :=
{
z : z ∈ U,g1(z) = · · · = gk(z) = 0

}
⊂ S

and ∂g1 ∧ · · · ∧ ∂gk �≡ 0 on V . Pick a point a ∈ V such that ∂g1(a) ∧ · · · ∧
∂gk(a) �= 0. Then, by Proposition 2.1, there is a neighbourhood W around a
and real analytic functions h1, . . . , hk on W such that V ∩ W is a (connected)
smooth complex submanifold in W and that

f(z) =
k∑

j=1

(
hj(z)gj(z) + hj(z)gj(z)

)
∀z ∈ W.

This implies that

(2) f̂(z,w) =
k∑

j=1

(
hj(z,w)gj(z) + ĥj(z,w)gj(w)

)
∀(z,w) ∈ W × W.

It follows from (2) that

(3) f̂(z,w) = 0 ∀z,w ∈ V ∩ W.

Set

W ′ =
⋂

w∈V ∩W

{
z ∈ W : f̂(z,w) = 0

}
, W ′ ′ =

⋂
w∈W ′

{
z ∈ W : f̂(z,w) = 0

}
.
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Then W ′,W ′ ′ are complex subvarieties of W and V ⊂ W ′ in view of (3). It
follows that W ′ ′ ⊂ W ′. Notice also that f̂(z,w) ≡ 0 on W ′ × (V ∩ W ). By
reality of f , we obtain

f̂(z,w) = f̂(w,z) ∀z,w ∈ Cn.

It follows that f̂(z,w) = 0 on (V ∩ W ) × W ′. By the definition of W ′ ′, we
get that V ∩ W ⊂ W ′ ′. Since, obviously, f̂(z,w) = 0 on W ′ ′ × W ′, we have
f̂(z, z) = 0 for every z ∈ W ′ ′. Thus, W ′ ′ ⊂ S. Now we set

W ∗ =
⋂

w∈W ′

{
z ∈ Cn : f̂(z,w) = 0

}
.

By the above reasoning, we can choose an irreducible branch W̃ of W ∗ such
that V ∩ W ⊂ W̃ . It is easy to see that W̃ is an algebraic variety of pure
codimension k′ ≤ k in Cn. Since f ≡ 0 on W̃ ∩ W , we infer that f ≡ 0 on W̃
as well. Thus, W̃ ⊂ S.

(ii) If k = 1, then by (i) and Noetherian property of the rings of complex
polynomials we can find an irreducible complex polynomial p in Cn and a
point ξ ∈ S such that (a) holds. Now we pick a regular point a on the algebraic
hypersurface {p = 0}. Then there is a small neighbourhood W of a such that
S ∩ W is a smooth connected complex hypersurface. To get the conclusion (b),
we use a reasoning inspired by the proof of Lemma 3.8 in [BG]. After a linear
change of coordinates, we may arrange that f and p are monic polynomial in
z1 i.e.,

f̂(z,w) = zs
1 +

s−1∑
j=0

zj
1fj

(
z′,w

)
, p̂(z) = zd

1 +
d−1∑
j=0

pj

(
z′)zj

1,

where s = deg f, z = (z1, z
′), d = deg p and fj (resp. pj) are polynomials in

z′,w (resp. in z′). Then we can find an algebraic subvariety A of Cn−1 such
that the equation p(z1, z

′) = 0 has exactly d distinct roots for every fixed
z′ /∈ A. Consider the algebraic variety

V :=
{
(z,w) ∈ Cn × Cn : p(z) = p(w) = 0

}
.

Clearly, V is irreducible and of codimension 2 in C2n and V ′ := V ∩ (W ×
W ) is smooth and connected. Since the polynomial f(z,w) vanishes on the
totally real manifold V ′ ∩ {(z,w) : z = w} of codimension 2, we deduce f(z,w)
vanishes on V ′ and therefore also on V . Now we can write

(4) f(z,w) = ad(z,w)p(z) +
d−1∑
j=0

aj

(
z′,w

)
zj
1,
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and

(5) aj

(
z′,w

)
= bj,d

(
z′,w

)
p(w) +

d−1∑
k=0

bj,k

(
z′,w′)wk

1 ∀0 ≤ j ≤ d − 1,

where aj , bk,0 ≤ j ≤ d,0 ≤ k ≤ d − 1 are complex polynomials. Notice that
degad = s − d. Inserting (5) into (4), on V we have

(6) →
0≤j,k≤d−1

∑
bj,k

(
z′,w′)zj

1w
k
1 = 0.

Fix (z′,w′) /∈ (A × Cn−1) ∪ (Cn−1 × A) where B = {z′ : z′ ∈ A}. Then we
get d distinct roots z1,1, . . . , z1,d of the equation p(z1, z

′) = 0 and d distinct
roots w1,1, . . . ,w1,d of the equation p(w1,w

′) = 0. Now in (6) we replace z1

by z1,i with fixed i and w1 by w1,1, . . . ,w1,d. This yields a d linear system
in terms of

∑
1≤j≤d bj,k(z′,w′)zj

1,i for 0 ≤ k ≤ d − 1. Since the determinant of
the Vandermonde matrix (wβ

1,α)1≤α,β≤d is nonzero, we get∑
1≤j≤d

bj,k

(
z′,w′)zj

1,i = 0 ∀0 ≤ k ≤ d − 1.

Next we fix k and vary i. By the same argument as above, we obtain
bj,k(z′,w′) = 0 for 0 ≤ j, k ≤ d − 1. Combining this and (4) and (5) one gets
a polynomial b0 in z,w such that for every (z,w) ∈ Cn × Cn such that
(z′,w′) /∈ (A × Cn−1) ∪ (Cn−1 × A) we have

(7) f̂(z,w) = ad(z,w)p(z) + bd(z,w)p(w).

Since A is nowhere dense in Cn−1 we infer that (6) holds on Cn × Cn entirely.
It also follows from (7) that deg bd ≤ s − d. Now from the reality of f , by
setting q = 1/2(ad + bd) we obtain (1) as well as the conclusion on degree of q.
Finally, assume that 2deg p > deg f. Suppose that there are two distinct real
polynomial q1 and q2 satisfying (1). By complexification, we get for every
(z,w) ∈ Cn × Cn

f(z,w) = p(z)qi(z,w) + p(w)qi(w,z), i = 1,2.

This implies(
q1(z,w) − q2(z,w)

)
p(z) =

(
q2(z,w) − q1(z,w)

)
p(w) ∀(z,w) ∈ Cn × Cn.

After a linear change of coordinates, we may write p(w) as a monic polynomial
of degree d in w1 where w = (w1,w

′). Thus, we have

(8) q1(z,w) − q2(z,w) = r(z,w)p(w) +
d−1∑
j=0

wj
1rj

(
z,w′),

where rj are polynomials in z,w′. Since p is irreducible, there exists a com-
plex subvariety B of Cn−1 such that for all w′ /∈ B, the equation q(w1,w

′) = 0
has exactly d distinct roots in w1. Fix w′ /∈ B and z ∈ Cn such that p(z) = 0.



74 N. Q. DIEU

We also deduce from (8) that the equation
∑d−1

j=0 wj
1rj(z,w′) = 0 has d dis-

tinct roots in w1. Thus rj(z,w′) = 0 for all 0 ≤ j ≤ d − 1. This implies
that rj(z,w′) = 0 for all z,w ∈ Cn. Therefore, p divides q1 − q2, and hence
deg p ≤ deg(q1 − q2) ≤ deg f − deg p. This contradicts the assumption on degree
of p. �

Remarks. (a) It is not true that for every polynomial p satisfying {z ∈
Cn : p(z) = 0} ⊂ {z ∈ Cn : f(z) = 0} we can find a real polynomial q satisfying
the identity (2). For a simple example, we may take p(z,w) = zw where
(z,w) ∈ C2 and f(z,w) = Re(zw).

(b) We do not know if the assertion (ii) still holds if k ≥ 2.
(c) Given a complex polynomial p with 2deg p ≤ deg f, the representation

(1) is no longer unique. Indeed, we can always write

f = pq + pq = p(q − ip) + p(q + ip).

(d) For every ξ ∈ S, the complex hypersurface {z ∈ Cn : f̂(z, ξ)} = 0 is
called the Segre variety associated to ξ. This concept has proved to be quite
fruitful in the study of real analytic hypersurfaces. For more profound appli-
cations of Segre varieties, the reader may consult [We], [BG], [DF] and the
references given therein.

As an illustration of the strength of Theorem 2.2 we have the following
proposition.

Proposition 2.3. Let f be a real valued, real polynomial of degree s in
Cn. Denote by f̃ the homogeneous component of f of degree s. Assume that
S := {z : f(z) = 0} contains a germ of a complex hypersurface. Then there
exist an irreducible algebraic hypersurface H in Cn lying in S and a complex
homogeneous polynomial of degree less than s whose zero set is included in

S̃ξ :=
{
z : f̃(z) = 0

}
∩

{
z : ˜̂

fξ(z) = 0
}

∀ξ ∈ H,

where f̂ξ(z) := f̂(z, ξ). In particular, if n = 2 then the zero set of f̃ contains a
complex line passing through the origin.

Proof. By Theorem 2.2(ii), we can find a real polynomial q and an irre-
ducible complex polynomial p in Cn such that

(a) H := {z : p(z) = 0} ⊂ {z : f̂(z, ξ) = 0} ⊂ S ∀ξ ∈ H;
(b) deg p + deg q = deg f and f ≡ pq + pq on Cn.

It follows from (a) and irreducibility of p that p divides f̂ξ(z) for all ξ ∈ H.

This implies that the zero set of p̃ is included in that of ˜̂
fξ for all ξ ∈ H. On

the other hand, from (b) we obtain

f̃ ≡ p̃q̃ + p̃q̃ on Cn.

Putting all this together, we see that p̃ is the desired homogeneous polyno-
mial. �
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We have the following simple application of the above result to the case
where the leading homogeneous component of the defining function for S
contains no complex monomial.

Corollary 2.4. Let S be the real algebraic hypersurface in C2 defined by
a real valued, real polynomial f of degree k ≥ 2. Suppose that f = p + q + r,
where p (resp. q) are real valued, real homogeneous polynomials of degree k
(resp. k − 1) and r is a real valued, real polynomials of degree k − 2. Assume
that p, q satisfy the following conditions:

(i) p(z) = �(z1p1(z) + z2p2(z) + z1
2p3(z) + z2

2p4(z)), where p1, p2 are
complex homogeneous polynomials of degree k − 1 and p3, p4 are homogeneous
polynomials of degree k − 2.

(ii) q(z) = �(q1(z) + q2(z)), where q1 is a complex homogeneous polyno-
mial of degree k − 1 and q2 contains no complex monomial of degree k − 1.

(iii) p1(0, z2) = α1z
k−1
2 , p2(0, z2) = α2z

k−1
2 , q(0, z2) = α3z

k−1
2 with

α1α2α3 �= 0.
Assume that S includes a nontrivial analytic disk. Then S must contain

one of the following complex lines.
(a) l1 = {(w1,w2) : α1w1 + α2w2 + α3 = 0}.
(b) l2 = {(w1,w2) : w1p1(1, λ) + w2p2(1, λ) + q1(1, λ) = 0}, where λ is a

constant satisfying
p1(1, λ) + λp2(1, λ) = 0.

Proof. It follows from (i) and (ii) that for every w = (w1,w2) ∈ C2,

˜̂
f(z,w) =

1
2
(
w1p1(z) + w2p2(z) + q1(z)

)
.

Using Proposition 2.3, we can find an irreducible polynomial p, a complex
line d passing through the origin such that H := {(w1,w2) ∈ C2 : p(w1,w2) =
0} ⊂ S and for every (z1, z2) ∈ d, (w1,w2) ∈ H we have

(9) p(z1, z2) = 0, w1p1(z1, z2) + w2p2(z1, z2) + q1(z1, z2) = 0.

Consider two cases.
Case 1. d = {z1 = 0}. It follows from (9) that S contains the complex

line l1.
Case 2. d �= {z1 = 0}. Then we may parameterize d = {(z1, λz1) : z1 ∈ C}

where λ is a constant. Inserting into (9) and using homogenieties of p1, p2

and q we obtain

p1(1, λ) + λp2(1, λ) = 0, w1p1(1, λ) + w2p2(1, λ) + q1(1, λ) = 0.

The proof is complete. �

Given a real algebraic hypersurface S, it is rather hard to find all germs of
complex varieties lying in S. However, it is possible in some special cases.
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Proposition 2.5. Let f = �(f1f2), where f1 and f2 are complex polyno-
mials in C2. Assume that f1(0) = f2(0) = 0 and that the map Φ := (f1, f2)
is proper from C2 onto C2. Let H be a nontrivial analytic disk lying in
S := {z ∈ C2 : f(z) = 0}. Then H is contained in {af1 + bf2 = 0} where a
and ib are real numbers satisfying a2 − b2 > 0.

Proof. We consider the particular case where f(z1, z2) = z1, g(z1, z2) = z2.
By the proof of Proposition 2.3(b), we can find a point (α,β) ∈ S\{(0,0)}
such that

H ⊂ {αz1 + βz2 = 0} ⊂ S.

Assume that α �= 0, then we can choose a = |α|2, b = αβ. For the general case,
it suffices to notice that, since Φ is proper, the image Φ(H) of H under Φ, is
a complex curve lying in S′ := { �(z′

1z
′
2) = 0}. By the special case considered

above, we conclude the proof. �
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