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HOMOLOGICAL CONJECTURES, OLD AND NEW

MELVIN HOCHSTER

This paper is written to honor the many contributions of Phil Griffith to commutative
algebra.

Abstract. We discuss a number of the local homological conjectures,
many of which are now theorems in equal characteristic and conjectures
in mixed characteristic. One focus is the syzygy theorem of Evans and
Griffith, and its connection with the direct summand conjecture, the ex-
istence of big Cohen-Macaulay modules and algebras, and tight closure
theory.

1. Introduction

All given rings in this paper are commutative, associative with identity,
and Noetherian. Our objective is to discuss some conjectures and theorems
related to the local homological conjectures—for example, almost all of the
results have some connection with the direct summand conjecture. Some of
the conjectures have been around for decades. Others are quite recent, and
some have grown out of our understanding of the related subjects of tight
closure theory and existence of big Cohen-Macaulay algebras.

In Section 2 we discuss the syzygy theorem of Evans and Griffith, and
several related intersection theorems. We are naturally led to consider the
direct summand conjecture: other results, which either are equivalent to or
imply the direct summand conjecture are considered in Section 3. Some of
these other results involve the behavior of the local cohomology of the absolute
integral closure, defined in Section 3. See [23], [26], and [21].

In Section 4 we give a characteristic p proof of the key lemma in the proof
of the syzygy theorem that uses a little known variant of tight closure theory,
following [30, Section 10]. One of our reasons for giving the argument is that
this particular variant of tight closure is almost entirely unexplored, despite
the fact that it has important applications.
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In Section 5 we describe recent progress in dimension 3: there was a spec-
tacular breakthrough by Heitmann in [20], and the result of that paper was
used in [25] to establish the existence of big Cohen-Macaulay algebras in di-
mension 3 in mixed characteristic.

Section 6 treats the strong direct summand conjecture, which was shown in
[41] to be equivalent to a conjecture on vanishing of maps of Tor that can be
proved in equal characteristic either using tight closure theory [33, Theorem
4.1] or the existence of big Cohen-Macaulay algebras in a weakly functorial
sense as described in [34, Section 4].

In Section 7 we describe some recent results of G. Dietz [11] on when
algebras over a local ring of characteristic p > 0 can be mapped to a big
Cohen-Macaulay algebra. Finally, in Section 8 we treat quite briefly some
other homological questions about local rings that remain open.

2. The syzygy theorem and some intersection theorems

A remarkable theorem of Evans and Griffith [15] and [16, Corollary 3.16]
asserts the following:

Theorem 2.1 (Syzygy Theorem). Let R be a Cohen-Macaulay local ring
that contains a field and let M be a finitely generated k th module of syzygies
that has finite projective dimension over R. If M is not free, then M has rank
at least k.

This is not the most general result known: the condition that the ring be
Cohen-Macaulay may be relaxed. However, the theorem is of great interest,
and very hard to prove, even when the ring is regular! The original proof of
Evans and Griffith used the existence of big Cohen-Macaulay modules [22],
and while it is now known that the result can be deduced from a priori weaker
statements, such as the direct summand conjecture [21], [23], it remains an
open question in mixed characteristic, even when the ring is regular.

In fact, the theorem has the following amazing consequence [16, Theorem
4.4]:

Corollary 2.2. Let R be a regular local ring of dimension at least three
such that R contains a field. Let I be an ideal of R that is generated by
three elements and is unmixed of height 2. Then R/I is Cohen-Macaulay or,
equivalently, the projective dimension of I over R is 1.

This result was so unexpected that I did not believe it. I tried repeatedly
to give counterexamples, and on one occasion called Phil at an inconvenient
time claiming that I had one. This turned out to be wrong, of course.

The method of proof of Evans and Griffith in essence showed that the the-
orem follows from an intersection theorem of the type introduced by Peskine
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and Szpiro [39], [40] and also studied by Roberts [42], [43], [44], [45], [46],
Dutta [12], [13] and in my papers [22], [23]. Here is the result:

Theorem 2.3 (Evans-Griffith improved new intersection theorem). Let
(R, m) be a local ring of Krull dimension d that contains a field and let

0−→Gn−→ · · · −→G1−→G0−→ 0

be a finite complex of finitely generated free modules such that
(1) Hi(G•) has finite length for i ≥ 1, and
(2) H0(G•) has a minimal generator that is killed by a power of m.

Then d ≤ n.

The new intersection theorem of Peskine and Szpiro is the case where
H0(G•) is nonzero of finite length. To see that this really is an intersection
theorem, we deduce the Krull height theorem from it: consider a minimal
prime P of an ideal generated by d elements, x1, . . . , xd. We may pass to RP ,
and we want to show that dim (RP ) ≤ d. This follows by applying the new in-
tersection theorem to the Koszul complex K•(x1, . . . , xd; R), which has finite
length homology with nonzero H0

(
K•(x1, . . . , xd; R)

) ∼= R/(x1, . . . , xd)R.
By the main results of [23], the direct summand conjecture, which asserts

that regular local rings are direct summands of their module-finite exten-
sions, implies the improved new intersection theorem. In fact, this work of
the author and the results of S. P. Dutta [13] combine to show that the di-
rect summand conjecture, the improved new intersection theorem, and the
canonical element conjecture,1 are equivalent. What we want to get across is
that the direct summand conjecture appears to be central, and I conjecture
that whatever method leads to its solution will also yield the existence of big
Cohen-Macaulay algebras.

With the exception of the new intersection conjecture, these conjectures
all remain open in mixed characteristic in dimension four or more. Progress
in dimension 3 is discussed in Section 5. The new intersection conjecture
was proved in complete generality by P. Roberts [45], [46], [47]. This work
made use of an idea of S. P. Dutta [12] as well as techniques from intersection
theory developed in [5]: an exposition of the latter material is given in [17].
For further background see also [50], and my review of [47] in [25]. Note that

1We shall not discuss this conjecture [23] in detail here, but here is one statement: a free
resolution of the residue class field K of the local ring (R, m, K) may be truncated so as to
end at a d th module of syzygies S of K, where d = dim (R): call the complex one obtains
G•. If x1, . . . , xd is any system of parameters, the obvious surjection R/(x1, . . . , xd)R � K
lifts to a map of the Koszul complex K•(x1, . . . , xd; R)−→G• and so there is a map at the
d th spots, R−→S. The conjecture asserts that no matter what choices are made, the image
of 1 ∈ R in S (and even in S/(x1, . . . , xd)S) is not 0. In fact, it turns out to be equivalent
to assert that even after one takes a direct limit as the system of parameters varies, one has
that the image of 1 in Hd

m(S) (this image is the canonical element) is not 0.
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the results of [39] showed that an affirmative answer to Bass’s question [2] (if a
local ring has a finitely generated nonzero module of finite injective dimension,
must it be Cohen-Macaulay) and M. Auslander’s zerodivisor conjecture [1]
(which asserts that a zerodivisor on a nonzero finitely generated module M
of finite projective dimension over a local ring R must be a zerodivisor in
the ring) both follow from the version of the intersection theorem stated in
[39], and this follows easily from the new intersection theorem. Thus, Bass’s
question is affirmatively answered, and the zerodivisor conjecture is true, even
in mixed characteristic.

3. The direct summand conjecture and local cohomology of R+

We mentioned in Section 1 that the direct summand conjecture is equivalent
to a host of other conjectures. In fact, even to give all the known forms of
the conjecture would require a lengthy manuscript. In this section we want
to discuss primarily one form, which is connected with the behavior of the
local cohomology of rings of the form R+, where this notation is defined in
the next paragraph.

By the absolute integral closure of a domain R, denoted R+, we mean the
integral closure of R in an algebraic closure of its fraction field. The domain
R+ is unique up to non-unique isomorphism, since this is true of the algebraic
closure of the fraction field. It is a maximal integral extension of R that is
still a domain. Note that every monic polynomial over R (or R+) factors into
monic linear factors over R+, and this characterizes R+. Evidently, if R ⊆ S
are domains, we may identify R+ with a subring of S+, so that there is a
commutative diagram

R+ −−−−→ S+x x
R −−−−→ S

where the horizontal arrows are inclusions. Likewise, given a surjection S−→T
of domains, so that T ∼= S/Q, there is a prime ideal Q′ of S+ lying over Q.
Since S+/Q′ is an integral extension of T in which every monic polynomial
factors into linear factors, we have that S+/Q′ may be identified with T+,
and so there is a commutative diagram

S+ −−−−→ T+x x
S −−−−→ T

where the horizontal arrows are now surjections. Since every homomorphism
of domains R−→T is the composition of an injection and a surjection, it
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follows that there is a commutative diagram

R+ −−−−→ T+x x
R −−−−→ T

for every homomorphism R−→T of domains.
The rings R+ have attracted great interest recently for several reasons. In

[32] it was shown that when R is an excellent local domain of characteristic
p > 0, R+ is a big Cohen-Macaulay algebra over R, that is, every system
of parameters of R is a regular sequence on R+, and the maximal ideal of
R expands to a proper ideal. This is false, in general, in equal characteristic
0. However, recent work of Heitmann [20] has used the properties of the
local cohomology of these rings to prove the direct summand conjecture in
dimension 3 in mixed characteristic: see Section 5.

The equivalence given in the following result on the direct summand con-
jecture in mixed characteristic is, I feel, somewhat surprising. It was first
observed in [23, Theorem (6.1)], but does not seem to be well known except
to experts on the problem.

Theorem 3.1. Let V be a complete discrete valuation ring of mixed char-
acteristic p, and let A = V [[x2, . . . , xd]]. Let m be the maximal ideal of A.
Then the direct summand conjecture holds for regular rings of dimension d in
mixed characteristic if and only if for every such A, Hd

m(A+) 6= 0.

Before giving the proof, we remark that standard and relatively straight-
forward manipulations reduce the problem of proving the direct summand
conjecture to the case where the regular ring A is a complete regular local
ring. A subtler argument given in [23] makes the reduction to the case where
A has the form above.

Proof. The fact that the direct summand conjecture implies that Hd
m(A+)

6= 0 is easy: it suffices to show that the map Hd
m(A)−→Hd

m(A+) is injective,
and since A+ is the direct limit of module-finite extension domains B of A,
it suffices to see that for each such B the map Hd

M (A)−→Hd
m(B) is injective.

But this is immediate if B = A⊕A W for some A-module W .
To prove the other direction we want to show that every ring A as above is

a direct summand of every module-finite extension ring B, and it suffices to
consider domains, for we may first kill a minimal prime P of B disjoint from
A−{0}. (A splitting of A ↪→ B/P composed with B � B/P gives a splitting
of A ↪→ B.) In fact, we shall show that under the condition Hd

m(A+) 6= 0
considered in Theorem 3.1, A is a direct summand of A+.

We may identify Hd
m(A+) ∼= Hd

m(A) ⊗A A+, and Hd
m(A) = E is the

injective hull of K = A/m over A. If Hd
m(A+) 6= 0, we can conclude that
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HomA(Hd
m(A+), E) 6= 0, and this may be written

HomA(A+ ⊗A E, E) ∼= HomA

(
A+, HomA(E, E)

)
by the adjointness of tensor and Hom. We have that A ∼= HomA(E, E) by
Matlis duality, since A is complete. Thus, our hypothesis implies that there is
a nonzero A-linear map f : A+−→A. Let π be the generator of the maximal
ideal of V . The image of this map is a nonzero ideal of A, and we can write
the image in the form πtJ , where t is a nonnegative integer chosen as large as
possible, so that J * πA. We may compose f with πtJ ∼= J ⊆ A to obtain a
map f1 : A+−→A whose image is J . Hence, for some a ∈ A+ we know that
f1(a) /∈ πA. Define g : A+−→A via g(r) = f1(ar) for all r ∈ A+. Then g is an
A-linear map A+−→A such that g(1) /∈ πA. Since

⋂∞
N=1(π, xN

2 , . . . , xN
d )A =

πA, we can fix N > 0 such that g(1) /∈ (π, xN
2 , . . . , xN

d )A.
Let A0 = V [[xN

2 , . . . , xN
d ]] ⊆ A, which has maximal ideal

m0 = (π, xN
2 , . . . , xN

d )A0.

Then A is A0-free over A0, and g(1) ∈ A − m0A is part of a free basis.
Thus, there is an A0-linear map h : A−→A0 that sends g(1) to 1. Then
h ◦ g : A+−→A0 is an A0-linear map sending 1 to 1, and it follows that A0 is
a direct summand of A+ as an A0-module. Since A is module-finite over A0,
we have that A+ is also A+

0 , and so A0 ↪→ A+
0 splits over A0. Since A0

∼= A,
it follows that A ↪→ A+ splits over A. �

We next want to describe a conjecture, which we refer to as the Galois
conjecture, that implies the direct summand conjecture in all characteristics.
This observation was first made in [26].

The Galois conjecture, made explicit below, asserts that a certain module
is “small” in a sense that we shall make precise. This is true both in equal
characteristic p > 0 and in equal characteristic 0: in fact, in both equichar-
acteristic cases, the module is not just small—it is 0. It is striking that the
reasons why it is zero in those two cases appear to be completely different.

Let V be a complete discrete valuation ring, which may be either equal
characteristic or mixed characteristic. In the mixed characteristic case assume
that the residual characteristic p is the generator of the maximal ideal. In
either case, denote the generator of the maximal ideal by x = x1. Let A =
V [[x2, . . . , xd]] be a formal power series ring over V . Let F denote the fraction
field of A, and then the fraction field of A+ is an algebraic closure F of F . Let
G be the Galois group of F-automorphisms of F , which also acts on A+. Note
that A+G

= A when F has characteristic zero, which includes the case where
A has equal characteristic zero and the case where A has mixed characteristic.

We let E = Hd
m(A), the highest (in fact, the only) nonzero local cohomology

module of A with support in m = mA, since it is also an injective hull EA(K)
for the residue field K = A/m of A over A. We write M∨ for HomA(M, E).
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If (B,n, L) is any complete local ring, we shall call a B-module Q small if
EB(L), the injective hull of L = B/n over B, cannot be injected into Q. Note
that if EB(L) is a submodule of Q, then it is actually a direct summand of
Q, since EB(L) is an injective B-module. Thus, the condition that a module
be small does not seem unduly restrictive.

Theorem 3.1 above implies that in order to prove the direct summand
conjecture, it suffices to show that the modules Hd

m(A+) are not zero.
Now x = x1 is a regular parameter in A, and we have a short exact sequence

0 −−−−→ A+ x−−−−→ A+ −−−−→ A+/xA+ −−−−→ 0.

If we contradict the direct summand conjecture and assume that Hd
m(A+) =

0, part of the corresponding long exact sequence for local cohomology gives:

Hd−1
m (A+) x−−−−→ Hd−1

m (A+) −−−−→ Hd−1
m (A+/xA+) −−−−→ 0.

This implies an isomorphism

Hd−1
m (A+/xA+) ∼= Hd−1

m (A+)/xHd−1
m (A+).

The regular ring A/xA injects into A+/xA+ (because A is normal, the prin-
cipal ideal xA is contracted from A+). Suppose that A provides a counterex-
ample to the direct summand conjecture of smallest dimension or that A has
mixed characteristic, provides a counterexample, and x = p. Under either
hypothesis, A provides a counterexample, but the direct summand conjec-
ture holds for the regular ring A/xA. Then A/xA is a direct summand of
A+/xA+ as an (A/xA)-module, and it follows that Hd−1

m (A/xA) injects into
Hd−1

m (A+/xA+). Evidently, since G acts on A+, m is contained in the ring
of invariants of this action, and the element x is an invariant, we have that
G acts on Hd−1

m (A+)/xHd−1
m (A+), and it is clear that Hd−1

m (A/xA) injects
into (

Hd−1
m (A+)/xHd−1

m (A+)
)G ⊆ Hd−1

m (A+)/xHd−1
m (A+).

We therefore will have a contradiction that establishes the direct summand
conjecture if we can prove the following:

Conjecture 3.2 (Galois Conjecture). Let (A, m, K) be a complete regu-
lar local ring of dimension d with fraction field F , let G be the automorphism
group of the algebraic closure F over F , and let x be a regular parameter in
A. Then

(
Hd−1

m (A+)/xHd−1
m (A+)

)G is a small (A/xA)-module.

Theorem 3.3. The Galois Conjecture holds if dim A ≤ 2 or if A contains
a field. In fact, in all of these cases

(
Hd−1

m (A+)/xHd−1
m (A+)

)G = 0.

Proof. The explanation when A contains a field is quite different depending
on whether the field has characteristic 0 or positive characteristic. In the first
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case, it turns out that G is an exact functor here, so that what we have is(
Hd−1

m (A+G
)/xHd−1

m (A+G
)
)
,

and since A+G
= A, this is Hd−1

m (A)/xHd−1
m (A), and Hd−1

m (A) = 0. In the
positive characteristic case we know from the main result of [32] that A+ is a
big Cohen-Macaulay algebra, so that Hd−1

m (A+) = 0, and the result follows
again. The same argument shows that the conjecture is true when A has
dimension at most two. �

From the discussion above, we have the following:

Theorem 3.4. If the Galois Conjecture is true whenever A is a formal
power series ring V [[x2, . . . , xd]] over a complete discrete valuation domain
(V, pV, K) of mixed characteristic and residual characteristic p > 0, and x =
p, then the direct summand conjecture is true. �

4. A “tight closure” proof of the syzygy theorem in
characteristic p

In this section, we give a “tight closure” proof of a key lemma in the proof
of the syzygy theorem. The usual notion of tight closure in a Noetherian ring
R of characteristic p > 0 uses a fixed multiplier c that is required not to be
in any minimal prime of R. The reader is referred to [30], [29], [31], [35], [37],
[28], and [8] for background. The argument below, based on a treatment in
[30, Section 10], utilizes a variant notion of tight closure in which the only
restriction placed on c is that it be nonzero. This has certain disadvantages.
The operation one gets, when iterated, typically produces a larger closure.
However, the usefulness of this variant notion in the argument below argues
that it deserves further study. One of our main motivations in presenting the
argument here is to encourage investigation of this variant notion.

We first present a family of variant notions of tight closure:
Consider a non-empty family of nonzero ideals C in a Noetherian ring R of

characteristic p > 0 with the property:

(∗) if C, C ′ ∈ C then there exists C ′′ ∈ C such that C ′′ ⊆ C ∩ C ′.

Then we can define the tight closure with respect to C: an element u ∈ N ⊆ M
is in the tight closure with respect to C of N in M if there exists an ideal C ∈ C
such that Cuq ∈ N [q] for all q = pe � 0.2 We can also define the small tight

2Let R be Noetherian of prime characteristic p > 0. We abbreviate q = pe, and let Fe

denote the e th iteration of the Frobenius functor: this is the base change functor Se ⊗R ,
where Se is the R-algebra whose structural homomorphism is F e : R−→R, with F e(r) = rq

for all r ∈ R. If N ⊆ M , let N [q] be the image of Fe(N)−→Fe(M). If u ∈ M , let uq denote

1 ⊗ u in Fe(M). Then N [q] is the R-span within M of the elements {uq : u ∈ N}. In

particular, for ideals I ⊆ R, I[q] = (iq : i ∈ I)R.
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closure of N in M with respect to C: for this we require that for some C ∈ C,
Cuq ∈ N [q] for all q (which includes q = 1). The property (∗) is needed so
that the tight closure of N will be closed under addition.

If we take the family C to consist of all principal ideals generated by an
element of R ◦, we obtain the usual notion of tight closure.

If the family consists of only the unit ideal R, tight closure with respect
to this family is Frobenius closure, while the small tight closure of N is the
submodule N itself.

If R has a test element, tight closure with respect to the family consisting
of the single ideal it generates gives ordinary tight closure, as does small tight
closure with respect to the family consisting of the single ideal it generates.

We note that iterating one of these variant tight closure operations may
give a larger result than performing it once. One can show that iterating the
operation gives the same result if the family of ideals has the property that for
all C, C ′ ∈ C, there exists C ′′ ∈ C such that C ′′ ⊆ CC ′. To see this, suppose
that the tight closure Q of N with respect to C has generators ui. For every
i, we can choose Ci ∈ C such that Ciu

q ∈ N [q] for all q � 0. By property
(∗) we can choose C ⊆

⋂
i Ci with C ∈ C. It follows that CQ[q] ⊆ N [q] for all

q � 0. If v is in the tight closure of Q with respect to C, then we can choose
C ′ such that C ′vq ⊆ Q[q] for all q � 0. Then C ′Cvq ⊆ N [q] for all q � 0,
and so if C ′′ ∈ C and C ′′ ⊆ C ′C, then C ′′vq ⊆ N [q] for all q � 0. An entirely
similar argument establishes the corresponding fact for small tight closure.

We now want to show how one of these variant notions of tight closure can
be used to prove the Evans-Griffith syzygy theorem. We want to make two
remarks. First, it is immediate from the definition that u ∈ M is in the tight
closure (respectively, small tight closure) with respect to C of N in M if and
only if the image of u in M/N is in the tight closure (respectively, small tight
closure) of 0 in M/N with respect to C. The second remark we state as:

Lemma 4.1. If (R, m, K) is local, C is a non-empty family of nonzero
ideals of R, and x is a minimal generator of a finitely generated module M ,
then x is not in the tight closure (nor in the small tight closure) of 0 in M
with respect to C.

Proof. If u is in the tight closure of 0 in M we have that Cxq = 0 in
F e(M) for all q � 0. We can map M � K so that x 7→ 1. We get an induced
surjection F e(M)−→R/m[q]. It follows that C ⊆ m[q] for all q � 0, which
implies that C = (0), a contradiction. �

We shall need to make use of the notion of order ideal.

Definition 4.2. Let x be an element of M , a finitely generated module
over a Noetherian ring R. We define the order ideal OM (x) = O(x) to be
{f(x) : f ∈ HomR(M, R)}.
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For finitely generated modules over a Noetherian ring R, the formation of
the order ideal commutes with localization. The map R−→M sending 1 7→ x
evidently splits if and only if OM (x) = R.

Also note that for any finitely generated free R-module G, any R-linear
map M−→G takes x into OM (x)G.

The Evans-Griffith syzygy theorem asserts that a k th module of syzygies
over a regular local ring, if not free, has rank at least k. They prove more
general statements, in which the conditions on the ring are weakened but
the module is assumed to have finite projective dimension. However, the key
point in their proof is the following:

Theorem 4.3 (Evans-Griffith). Let R be a local ring such that R contains
a field, let M be a k th module of syzygies of a finitely generated module of
finite projective dimension, and suppose that MP is RP -free for every prime P
of R except the maximal ideal, i.e., M is locally free on the punctured spectrum
of R. Let x ∈ M be a minimal generator. Then O(x) is either the unit ideal
or else has height at least k.

In fact, they show that this is true by using the fact that the improved new
intersection theorem is true when R contains a field, which they deduce from
the existence of big Cohen-Macaulay modules in the equal characteristic case.
We shall not duplicate their argument here. But we shall prove a better result
in characteristic p, with depth replacing height and without the assumption
that M is locally free on the punctured spectrum. This is where we use a
variant notion of tight closure. The following is [30, Theorem 10.8, p. 103].

Theorem 4.4. Let (R, m, K) be a local ring of prime characteristic p > 0
and let N be a finitely generated module of finite projective dimension over
R. Let M be a finitely generated k th module of syzygies of N , and let x ∈ M
be a minimal generator of M . Let I = OM (x). Then either I = R or else
depthI R ≥ k.

Proof. If not, let y1, . . . , yd be a maximal regular sequence in the proper
ideal I, where d < k, and let J = (y1, . . . , yd)R. Then we can choose c ∈ R−J
such that cI ⊆ J . Let c′ denote the image of c in R′ = R/J . Let G•
be a resolution of N by finitely generated free modules over R such that
Gk−→Gk−1 factors Gk � M ↪→ Gk−1, which we know exists because M is
a k th module of syzygies of N over R. Let B denote the image of Gk+1 in
Gk. Let G′

j denote R′ ⊗R Gj , while M ′ denotes R′ ⊗R M and B′ denotes the
image of R′ ⊗R B in G′

k. Choose an element z of Gk that maps onto x ∈ M .
We shall obtain a contradiction by showing that the image z′ of z in G′

k is in
the tight closure of B′ in G′

k with respect to the family {c′R′}. This implies
that the image x′ of x in M ′ is in the tight closure of 0 in M ′ with respect to
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the family {c′R′}, a contradiction using the Lemma 4.1 above, because x′ is
a minimal generator of M ′.

To see this, note that F e
R(G•) remains acyclic for all e: the determinan-

tal ranks of the maps and the depths of the ideals of minors do not change.
Thus, this is a free resolution of F e

R(N), and it follows that R′ ⊗R F e
R(G•)

has homology TorR
•
(
R′, F e

R(N)
)
. Since pdR R′ = d < k, we have that

TorR
k

(
R′, F e

R(N)
)

= 0. But the complex R′⊗R F e
R(G•) may be identified with

F e
R′(G′

•). Let δ denote the map G′
k−→G′

k−1. Now consider the value of the
R-linear map F e

R′(δ) evaluated on c′(z′)q. This is evidently c′F e
R′(δ)

(
(z′)q)

)
.

Since the map Gk−→Gk−1 factors through M , the image of z, which maps to
x ∈ M , is in IGk−1. It follows that the image of z′ under δ in IG′

k−1, and,
hence, that the image of (z′)q under F e(δ) is in

I [q]F e(G′
k−1) ⊆ IF e

R′(G′
k−1).

Since cI ⊆ J and J becomes 0 in R′, we have that F e
R′(δ)

(
c′(z′)q

)
= 0.

Since c′(z′)q is a cycle and the homology at this spot is 0, it follows that
c′(z′)q is a boundary, which means that it is in the image (B′)[q] of F e

R′(B′).
Thus, z′ is in the tight closure with respect to the family {c′R′} of B′ in
G′

k, and this means that x′ is in the tight closure with respect to {cR′} of
0 in M ′. Since x is a minimal generator of M and J ⊆ m, it follows that
x′ is a minimal generator of M ′, and we have obtained the contradiction of
Lemma 4.1 mentioned earlier. �

It is quite easy to deduce the syzygy theorem from Theorem 4.3: for details
see, for example, [30, Cor. 10.10, p. 105].

Finally, note that the equal characteristic 0 cases of both Theorem 4.3 and
of the syzygy theorem can be deduced from the equal characteristic p > 0
case by standard methods of reduction to characteristic p.

5. Recent progress in dimension 3

Ray Heitmann [20] recently proved the direct summand conjecture in di-
mension 3. The argument is very difficult. The main result of Heitmann’s
paper (although stated differently from the version in [20]) is:

Theorem 5.1 (Heitmann). Let (R, m, K) be a complete local domain of
mixed characteristic p and dimension 3. Then every element of Hm(R+) is
killed by arbitrarily small powers of p, i.e., by p1/N for arbitrarily large values
of the positive integer N .

This result can be expressed more concretely as follows: let x, y, z be a
system of parameters for a three dimensional complete local domain R of
mixed characteristic p, and suppose that zu ∈ (x, y)R. Then for every positive
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integer N there exists a module-finite extension domain S of R such that
p1/N ∈ S and p1/Nu ∈ (x, y)S.

We make the curious observation that, in general, the direct summand
conjecture seems to follow if we can show that, for all complete local domains
R of dimension d, Hd

m(R+) is “big” (in fact, simply nonzero) or if we can show
that for all such R of dimension d, Hd−1

m (R+) is “small” (in one of several
senses that are rather technical).

In [27] Heitmann’s result is used to prove that every complete local domain
of dimension at most 3 has a big Cohen-Macaulay algebra. In characteristic p,
one has a “weakly functorial” version of the existence of big Cohen-Macaulay
algebras: if R−→S is a local homomorphism of complete local domains, one
has a commutative diagram:

R+ −−−−→ S+x x
R −−−−→ S

and, hence, a commutative diagram:

B −−−−→ Cx x
R −−−−→ S

where B and C are big Cohen-Macaulay algebras. A corresponding result for
the equal characteristic 0 case is proved in [34] by reduction to characteristic
p. It is shown in [27] that one has:

Theorem 5.2 (weakly functorial big Cohen-Macaulay algebras in dimen-
sion at most 3). Let R−→S be a local homomorphism of complete local do-
mains, both of mixed characteristic, and both of dimension at most 3. Then
there exists a commutative diagram

B −−−−→ Cx x
R −−−−→ S

where B is a big Cohen-Macaulay algebra over R and C is a big Cohen-
Macaulay algebra over S.

I conjecture that a sufficiently good result on the weakly functorial existence
of big Cohen-Macaulay algebras in mixed characteristic is equivalent to the
existence of tight closure theory in mixed characteristic. This is an admittedly
vague statement. A much more precise version of this statement is made in
[11]. Some of the results of [11] are discussed in Section 7.
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We note that the existence of big Cohen-Macaulay algebras in a weakly
functorial sense implies the vanishing conjecture for maps of Tor discussed in
Section 6 just below.

6. The strong direct summand conjecture and vanishing of maps
of Tor

In this section we discuss one of the new homological conjectures, the van-
ishing conjecture for maps of Tor. It is a theorem in equal characteristic but
remains open in mixed characteristic. In a reasonably non-technical version,
the conjecture may be phrased as follows:

Conjecture 6.1 (Vanishing conjecture for maps of Tor). Suppose that
A−→R−→T are homomorphisms of Noetherian rings such that:

(1) A is regular.
(2) R is a module-finite and torsion-free extension of A.
(3) T is regular.

Then for every A module M and i ≥ 1, the map

TorA
i (M, R)−→TorA

i (M, T )

is 0.

It is reasonably straightforward to reduce to the case where M is finitely
generated, i = 1, T and A are complete regular local rings, and R is a complete
local domain. As mentioned earlier, proofs for the equicharacteristic case are
given in [33, Section 4] and [32, Theorem (4.1)].

This conjecture, when it is true, is a very powerful tool. For example, it
implies the direct summand conjecture [33, Section 4] and the statement that
a ring R that is a direct summand of a regular ring T is Cohen-Macaulay.
The latter statement was originally proved for certain rings of invariants [36],
and stronger statements are true in equal characteristic 0 [7].

The proof of the statement that direct summands of regular rings are
Cohen-Macaulay may be sketched as follows. One can come down to the
case where R is complete local and module-finite over a regular local ring
(A, m, K). But then the maps

TorA
i (K, R)−→TorA

i (K, T ),

which are injective because R is a direct summand of T , are 0 for i ≥ 1 by
the Vanishing Conjecture (6.1), and so the modules Tori(K, R) = 0 for i ≥ 1,
which implies that R is Cohen-Macaulay.

Although Conjecture 6.1 does not appear to be purely a result about “split-
ting,” N. Ranganathan proved that it is equivalent to the following conjecture
in [41]:
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Conjecture 6.2 (Strong direct summand conjecture). Let A−→R be a
local homomorphism where A is a regular local ring and R is a domain module-
finite over A. Let Q be a height one prime ideal of R lying over xA, where x
is a regular parameter for A (i.e., A/xA is again a regular local ring). Then
the inclusion map xA−→Q splits as a map of A-modules.

Note that this result implies the direct summand conjecture, for xA ⊆
xR ⊆ Q, and so xA is a direct summand of xR, which means that A is a
direct summand of R. The direct summand conjecture has an easy proof in
equal characteristic 0, using a trace argument, but Conjecture 6.2 appears
subtle and difficult in all characteristics.

7. Algebras that map to big Cohen-Macaulay algebras

A central and challenging open question is this: given an algebra S over a
complete local domain R, when can S be mapped to a big Cohen-Macaulay
algebra over R? Following [11], we call such an R-algebra S a seed over R.
Some remarkable results about seeds in characteristic p > 0 are obtained
in [11]. Whether there are corresponding results in equal characteristic 0
is an open question: in these instances, standard methods of reduction to
characteristic p do not succeed.

Theorem 7.1 (G. Dietz). Let (R, m) be a complete local domain of char-
acteristic p > 0. Then every seed S over R maps to a seed T with all of the
following properties:

(1) T is a domain.
(2) T is absolutely integrally closed, i.e., T = T+.
(3) T is m-adically complete and separated.

Theorem 7.2 (G. Dietz). If R−→R′ is a local homomorphism of complete
local domains and S is a seed over R then R′⊗R S is a seed over R′. That is,
for every big Cohen-Macaulay algebra B over R there is a big Cohen-Macaulay
C over R′ and a commutative diagram

B −−−−→ Cx x
R −−−−→ R′

Remark 7.3. Note that before the work of [11], it was known that there
exist big Cohen-Macaulay algebras B and C such that the diagram commutes:
one can take, for example, B = R+ and C = S+. But it was not known that
one can construct such a diagram for every given B.

Theorem 7.4 (G. Dietz). Let R be a complete local domain and let S and
S′ be seeds over R. Then S ⊗R S′ is a seed over R. Equivalently, given big
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Cohen-Macaulay algebras B and B′ over R there exists a big Cohen-Macaulay
algebra C and a commutative diagram

B −−−−→ Cx x
R −−−−→ B′

Of course, in mixed characteristic in dimension 4 or more, we do not even
know whether the complete local domain R is itself a seed over R: this question
is the existence of big Cohen-Macaulay algebras.

Even in characteristic p, we do not fully understand how to characterize
seeds. First, we recall:

Definition 7.5. If R is a domain, an R algebra S is called solid if there
exists a nonzero R-linear module homomorphism f : S−→R.

If (R, m) is a complete local domain of dimension d, it turns out that R
is solid if and only if Hd

m(R) 6= 0 [24, Corollary (2.4)]. We refer the reader
to [24] for a detailed treatment. It is an open question in characteristic p
whether an R-algebra S is solid if and only if it is a seed. However, this is
known to be false in equal characteristic 0.3

8. Other questions

In this final section we want to make some brief comments on other homo-
logical questions. The conjecture of Buchsbaum and Eisenbud [3], reported
in [4] as a question by Horrocks, that the i th Betti number of a module of
finite length over a local ring is at least

(
n
i

)
remains open in dimension 5 or

more.
Serre’s conjecture [49] that if (R, m) is regular local of Krull dimension

d and M , N are finitely generated nonzero modules such that M ⊗R N has
finite length then

χ(M, N) =
d∑

i=0

`(TorR
i

(
M, N)

)
3For example, let X = (xij) be a 2 × 3 matrix of indeterminates over a field K of

characteristic 0, and let ∆1, ∆2, ∆3 be the 2 × 2 minors. Then R = K[∆1, ∆2, ∆3] ⊆
K[xij ] = S splits, since R = SG, where G = SL(2, K) acting so that γ ∈ G maps the
entries of X to the corresponding entries of γX. The splitting is a consequence of the
fact that G is reductive: these ideas originate in [51], but see also [36, p. 119]. We still

have the splitting after applying bR ⊗R . Thus, T = bR ⊗R S is solid over bR, but T

does not map to a big-Cohen Macaulay algebra over bR. In any such algebra the relationsP3
j=1(−1)j−1xij∆j = 0 will force each xij into the ideal J generated by the ∆j , which,

since each ∆j is a quadratic form in the xij , implies that ∆j ∈ J2, so that J = J2. This is

not possible when J is generated by a proper regular sequence.
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is nonnegative and vanishes if and only if dim (M)+dim (N) < dim (R) (Serre
showed that one must have dim (M)+dim (N) ≤ dim (R)) remains open. The
conjecture was already proved by Serre if R̂ is formal power series over a field
or a discrete valuation ring. That χ(M, N) = 0 if dim (M) + dim (N) <
dim (R) was proved by P. Roberts [44] and Gillet-Soulé [18] independently.
See also [47, Corollary 13.1.1]. Non-negativity in the remaining cases was
proved by O. Gabber (there is an exposition in [6]) using results of De Jong
[10] on alterations. Strict positivity in the mixed characteristic case when
dim (M) + dim (N) = dim (R) remains an open question.

This intersection multiplicity is defined more generally when the local ring
is not necessarily regular, but M , N are finitely generated modules such that
M ⊗R N has finite length and one of them, say M , has finite projective
dimension. But in this generality χ(M, N) can be negative [14], although [40]
has an affirmative result for the graded equicharacteristic case.

With the same hypotheses as in the preceding paragraph, one may ask
whether it must be true that dim (M) + dim (N) ≤ dim (R). See [39], [40].
This is very much an open question. In fact, Peskine and Szpiro [39] even
raised the following question: under the same hypotheses, with I = AnnR M ,
must it be true that dim (N) ≤ depthI R (which is always ≤ dim (R) −
dim (M)). This remains open.

A conjecture of M. Auslander on the rigidity of Tor for modules of finite
projective dimension was disproved by Ray Heitmann [19] using “generic”
modules of projective dimension two introduced in [22].

Finally, we mention that [9] has results over local complete intersections
connecting a version of rigidity and the dimension inequality

dim (M) + dim (N) ≤ dim (R).
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