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THE LOEWNER AND HADAMARD VARIATIONS

OLIVER ROTH AND ERIC SCHIPPERS

Abstract. We give an explicit formula relating the infinitesimal
generators of the Loewner differential equation and the Hadamard

variation. This is applied to establish an extension of the Hada-
mard variation to the case of arbitrary simply-connected do-
mains and to prove the existence of Loewner chains with arbi-
trary smooth initial generator starting at an arbitrary univalent

function which is sufficiently smooth up to the boundary. As

another application of this method, we show that every subordi-
nation chain ft is differentiable almost everywhere and satisfies
a Loewner equation, without assuming that f ′

t(0) is continuous.

1. Introduction

The Hadamard (or Julia) variational formula for Green’s function is ob-
tained by varying the boundary of a sufficiently smooth domain along its
normal by an amount of fixed sign which varies from point to point. One
thus obtains a chain of domains of increasing or decreasing size, and a cor-
responding variational formula. On the other hand, in the case of simply
connected domains the Loewner differential equation describes continuously
increasing or decreasing families of domains using subordination chains of the
corresponding normalized conformal maps [5]. Since Hadamard variation can
reach essentially arbitrary nearby domains, it is natural to expect a relation
between the two variational methods.

In this paper, we relate the Hadamard and Loewner variations in an explicit
way in terms of their infinitesimal generators. For instance, we obtain a con-
nection between these two variational methods for the case that the Loewner
chain is sufficiently smooth, see Theorem 1 below. For the proof, we use a
generalization of the Hadamard variational formula to arbitrary homotopies
which was recently derived in [9].
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This explicit relation between the two variational methods makes it possible
to study Hadamard variation from the viewpoint of Loewner’s theory and vice
versa. In Section 2.2, we focus on one direction of this relation and use the
Loewner equation to give a generalization of the Hadamard formula to the
case of arbitrary simply-connected domains and a wider class of perturbations.
In Section 3 and Section 4, we take the opposite point of view and investigate
the Loewner differential equation using Hadamard variation. In Section 3, we
derive in this way an existence theorem for the Loewner partial differential
equation, which says that given sufficiently smooth initial function f0 and
initial generator p of positive real part, there is a Loewner chain ft so that in
the Loewner partial differential equation

∂ft

∂t
(z) = zpt(z)

∂ft

∂z
(z)

we have that p0 = pt. In other words, one can specify not just the initial
function (as is well known) but also the initial direction. In the final Section 4,
we prove a strengthening of Pommerenke’s extension [6], [7] of the Loewner
method, where we do not require continuity of the first derivative of the
mappings ft. This is achieved by applying a variational formula for Green’s
function due to Heins [2], which is closely related to Hadamard variation.

2. Relation between the Hadamard and Loewner variations

2.1. Outward variations: the case of smoothly bounded initial
domain. A conformal map f : D → C defined on the unit disk D := {z ∈
C : |z| < 1| } is called a normalized Riemann map if f(0) = 0 and f ′(0) > 0.
Let ft : D → C, t ∈ [0, T ], be normalized Riemann maps such that fs ≺ ft for
0 ≤ s ≤ t ≤ T (that is, fs(D) ⊂ ft(D)). Then

ft(z) = α(t)z + · · · ,

where α : [0, T ] → (0, ∞) is a monotonically increasing function. The subor-
dination chain ft is called a normalized subordination chain [6] or a Loewner
chain [7] if

α(t) = et.

Let ft be a Loewner chain defined on the interval [0, T ] for some T .

Definition 1. We say that

(1) F : [a, b] × [0,L] → C

is a “Cm injective homotopy of closed curves” if F is injective on [a, b] × [0,L),
F (t,0) = F (t,L) for all t ∈ [a, b], and F has a Cm extension to an open set
containing [a, b] × R which is L periodic in the second variable. We say that
a subordination chain ft defined on the interval [a, b] is Cm on [a, b] if ft has
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Figure 1. Definition 2.

a continuous injective extension to D for each t ∈ [a, b] and the corresponding
injective homotopy

F : [a, b] × [0,2π] → C,

(t, τ) �→ ft(eiτ )

is Cm.

Remark 1. The “closed curves” in the above terminology are of course
the curves τ �→ F (t, τ) for fixed t.

Up to first order, any sufficiently smooth homotopy behaves like a Hada-
mard variation. To make this precise, we need to make some definitions.
Consulting Figure 1 may be helpful.

Definition 2. Let F : [a, b] × [0,L] be a C2 injective homotopy of closed
curves. Let nt(τ) denote the unit outward normal to F (t, ·) at τ . For suffi-
ciently small t − t0, let Δnt0(t, τ) be the distance from F (t0, τ) to the curve
F (t, ·) along the normal nt0(τ). Define

νt0(τ) =
d

dt

∣∣∣∣
t=t0

Δnt0(t, τ).

It is intuitively clear that for small enough t − t0, Δnt0(t, τ) is well defined,
and hence νt0 is well defined. Proofs can be found in [9].

Remark 2. It will sometimes be convenient to write νt0(u) for νt0(τ) where
u is the complex variable u = F (t0, τ) parameterizing the boundary of ft0(D).
Similarly, n(u) or nu will denote the unit outward normal at u, etc.

Let gt denote Green’s function of the domain ft(D). One would expect
that the first-order variation of gt0 should behave as though the homotopy
were in fact a variation along the normal lines by the amount (t − t0)νt0(τ) at
each point F (t0, τ). (This is because the variation in the direction tangent to
the boundary does not change the domain up to first order). More precisely,
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we have that [9, Theorem 1]

gt(z,w) − gt0(z,w) =
1
2π

(t − t0)
∫

∂Dt

∂gt0

∂nu
(u, z)

∂gt0

∂nu
(u,w)νt0(u)dsu(2)

+ O(|t − t0|2),
where for convenience we denote νt0(u) = νt0(τ) for u = F (t0, τ) along the
boundary of Dt0 , su is arc length in the u variable, and nu denotes the unit
outward normal at u. The remainder term is understood to be O(|t − t0|2)
uniformly on compact subsets of Dt0 in both z and w. Furthermore, the
remainder term is harmonic. Differentiating

(3) ġt(z,w) =
1
2π

∫
∂Dt

∂gt

∂nu
(u, z)

∂gt

∂nu
(u,w)νt(u)dsu.

Let P denote the set of holomorphic functions p defined on D satisfying
p(0) = 1 and Re(p) > 0. We now give an expression for νt in terms of the
generator pt ∈ P appearing in the Loewner equation.

Theorem 1. Let ft be a C2 Loewner chain on [a, b], and let pt be the
infinitesimal generator in the Loewner partial equation

ḟt(z) = zpt(z)f ′
t(z).

For t0 ∈ [a, b), if s denotes arc length along the boundary of ft0(D), then for
the homotopy F (t, τ) = ft(eiτ ) we have

νt0(u) = − Re
(

1
i

f −1
t0 (u)

f −1
t0

′
(u)

pt0 ◦ f −1
t0 (u)

dū

ds

)
.

Proof. Fix u ∈ ∂ft0(D) and let z = f −1
t0 (u). Define x(t) = u + Δnt0(u, t) ×

nt0(u). We claim that

lim
t→t0

Re
(

ft(z) − x(t)
t − t0

nt0(u)
)

= 0;

that is

(4) lim
t→t0

ft(z) − x(t)
t − t0

is in the direction of the tangent to ∂Dt0 at u(s). To see this, by Definition 2,

lim
t→t0

x(t) − ft0(z)
t − t0

= lim
t→t0

Re
(

Δnt0(z, t)
t − t0

nt0(u)
)

= νt0(u)nt0(u).

Since,

lim
t→t0

ft(z) − ft0(z)
t − t0

= ḟt0(z)
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Figure 2. Proof of Theorem 1.

it follows that the limit (4) exists. Next, we set z = eiτ0 , and observe that
x(t) = ft(eiτ(t)) for some τ(t) (see Figure 2). Since the homotopy is C2, it
follows that

lim
t→t0

ft(eiτ0) − ft0(e
iτ0)

t − t0
= lim

t→t0

ft(eiτ(t)) − ft0(e
iτ(t))

t − t0
= ḟt0(e

iτ0).

Thus by the existence of the limit (4), we may rearrange the terms above to
get

lim
t→t0

ft(z) − x(t)
t − t0

= lim
t→t0

ft0(e
iτ0) − ft0(e

iτ(t))
t − t0

which is clearly in the direction of the tangent to ∂ft0(D). This proves the
claim.

Thus,

Re(ḟt0(z)nt0(u)) = lim
t→t0

Re
(

ft(z) − ft0(z)
t − t0

nt0(u)
)

= Re
((

ft(z) − x(t)
t − t0

+
x(t) − ft0(z)

t − t0

)
nt0(u)

)

= νt0(u).

The lemma now follows from the observation that the outward unit normal is
given by

nt0(u) =
1
i

du

ds
. �

Thus, we have the following extension of the Hadamard variational formula.

Corollary 1. Let ft, pt, etc. be as in Theorem 1. Let jt(z) = zpt(z). We
have

ġt(z,w) = Re
(

2
πi

∫
∂Dt

∂gt

∂u
(u, z)

∂gt

∂u
(u,w)jt ◦ f −1

t (u)f ′
t ◦ f −1

t (u)du

)
.

Proof. Since g is constant along the boundary,

Im
(

1
i

∂gt

∂u

du

ds

)
= 0
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so
∂gt

∂n
=

2
i

∂gt

∂u

du

ds
.

Thus,
∂gt

∂nu
(u, z)

∂gt

∂nu
(u,w) = −4

∂gt

∂u
(u, z)

∂gt

∂u
(u,w)

(
du

ds

)2

and this expression is real. The claim follows from (2) and the fact that
|du/ds| = 1. �

2.2. Extensions of the Hadamard variational formula. In this section,
we clarify to what extent the Loewner equation for the Riemann map provides
an extension of the Hadamard variational formula for Green’s function.

We first note that one can easily derive a variational formula for Green’s
function from the Loewner partial differential equation.

Theorem 2. Let ft be a Loewner chain on [0, T ], and pt ∈ P be the corre-
sponding generator (measurable in t) in the Loewner partial differential equa-
tion ḟt(z) = zpt(z)f ′

t(z). If gt is Green’s function of ft(D), then for almost all
t ∈ [0, T ]

ġt(z,w) = −2Re
(

∂gt

∂z
(z,w)jt ◦ f −1

t (z)f ′
t ◦ f −1

t (z)(5)

+
∂gt

∂w
(z,w)jt ◦ f −1

t (w)f ′
t ◦ f −1

t (w)
)

.

Proof. Green’s function in terms of ft is

(6) gt(z,w) = − log
∣∣∣∣ f −1

t (z) − f −1
t (w)

1 − f −1
t (w)f −1

t (z)

∣∣∣∣.
Differentiate and apply the Loewner equation. �

Evaluating the integral in Corollary 1 results in the formula above. It
is natural to ask whether Theorem 2 can be given in a form closer to the
Hadamard variational formula with a suitable interpretation of the integral.
This is easily done as follows.

Theorem 3. If ft, pt and gt satisfy the hypotheses of Theorem 2 then

ġt(z,w) = lim
r→∞

Re
(

2
πi

∫
γr

∂gt

∂u
(u, z)

∂gt

∂u
(u,w)jt ◦ f −1

t (u)f ′
t ◦ f −1

t (u)du

)
,

where γr is the hyperbolic circle of radius r centred on 0 in ft(D).

Proof. Since ∂g/∂u is holomorphic in u with a simple pole at z (resp. w),
for all r large enough the above integral can be evaluated and equals the
expression for ġt in Theorem 2. �
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It is clear that Theorem 1 also holds for solutions to the inwardly directed
Loewner partial differential equation

(7) ḟt = −zpt(z)f ′
t(z),

so long as F (t, τ) = ft(eiτ ) is a C2 injective homotopy. One simply changes
the sign of the formula:

νt0(u) = Re
(

1
i

f −1
t0 (u)

f −1
t0

′
(u)

pt0 ◦ f −1
t0 (u)

dū

ds

)
.

Equation (7) was considered by Friedland and Schiffer [3] and is sometimes
called the time-reversed Loewner equation or the Friedland–Schiffer equation.
They established the existence of solutions for any pt ∈ ext P measurable in t
where

ext P =
{

1 + κz

1 − κz

∣∣∣∣ |κ| = 1
}

and for any holomorphic initial function f0(z) on the disc. The solutions are
of the form ft(z) = f0(gt(z)) where gt(z) is a bounded univalent function on
D satisfying g0(z) = z and g′

t(0) = e−t. In particular, if f0 is univalent, then ft

can be thought of as an inwardly directed Loewner chain with initial function
f0. However, their existence proof does not rely in any way on the fact that
p is of the above form, and holds for any pt ∈ P which is measurable in t.
A proof can also be found in [8].

Theorems 2 and 3 thus clearly hold with a change of sign. That is, let ft

be a solution to equation (7) on the interval [0, T ]. For almost all t ∈ [0, T ],
we have that

ġt(z,w) = − lim
r→∞

Re
(

2
πi

∫
γr

∂gt

∂u
(u, z)

∂gt

∂u
(u,w)jt ◦ f −1

t (u)f ′
t ◦ f −1

t (u)du

)
(8)

= 2Re
(

∂gt

∂z
(z,w)jt ◦ f −1

t (z)f ′
t ◦ f −1

t (z)

+
∂gt

∂w
(z,w)jt ◦ f −1

t (w)f ′
t ◦ f −1

t (w)
)

,

where γr is the hyperbolic circle of radius r centred on 0 in Dt = ft(D) and
jt(z) = zpt(z).

Remark 3. For sufficiently smooth solutions to the time-reversed Loewner
equation, Corollary 1 holds with the opposite sign.

However, given the existence of solutions to the time-reversed Loewner
equation (7) for arbitrary measurable pt ∈ P , equation (8) can be stated in
a stronger form using the Herglotz representation of pt. Furthermore, the
quantity ∂g/∂n can be defined in a natural way for any simply-connected
domain by making use of the conformal invariance of Green’s function. The
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idea is to “parameterize” the boundary by hyperbolic angle, and write ∂g/∂n
in terms of the Poisson kernel on D.

Let f : D → D be a normalized Riemann map. Then the hyperbolic circle
γr of radius r centred at 0 is given by θ �→ f(Reiθ) for some R > 0, and θ can
be interpreted as the hyperbolic angle between the geodesics f(s), s ∈ [0,1)
and f(seiθ), s ∈ [0,1). Green’s function is constant on γr so for u = f(Reiθ)
and any z ∈ D

Im
(

1
i

∂g

∂u
(u, z)

du

dθ

)
= 0

so setting ζ = Reiθ

∂g

∂n
(ζ, z)

ds

dθ
=

2
i

∂g

∂u
(ζ, z)

du

dθ
= 2ζ

∂g

∂u
(ζ, f −1(z))f ′(ζ)(9)

= 2ζ
∂gD

∂ζ
(ζ, f −1(z)),

where gD is Green’s function of D. A computation shows that

(10) lim
R↗1

2ζ
∂gD

∂ζ
(Reiθ, f −1(z)) = − Re

(
eiθ + f −1(z)
eiθ − f −1(z)

)
.

Theorem 4. Let D0 be a simply connected domain containing 0, and let
μt be an increasing function of bounded variation on [0,2π) measurable in t
on [0, T ], such that dμt has total measure one. Then there exists a family of
simply connected domains Dt such that Dt ⊂ Ds for all s < t whose Green’s
functions gt satisfy

ġt(z,w) = − 1
2π

∫ 2π

0

Re
[
eiθ + f −1

t (z)
eiθ − f −1

t (z)

]
Re

[
eiθ + f −1

t (w)
eiθ − f −1

t (w)

]
dμt(θ)

for almost all t in [0, T ].

Proof. Let pt be the normalized function of positive real part associated
with the measure dμt, let ft be the corresponding solution of the Friedland–
Schiffer equation (7) and let Dt = ft(D). Let γr be the hyperbolic circle of
radius r centred at 0 in Dt; so γr is the image of the Euclidean circle of radius
R under ft for some R. By equation (8), for all r large enough, we have for
u = ft(ζ)

ġt(z,w) = − Re
(

2
πi

∫
γr

∂gt

∂u
(u, z)

∂gt

∂u
(u,w)jt ◦ f −1

t (u)f ′
t ◦ f −1

t (u)du

)

= − Re
(

1
2πi

∫
f −1

t ◦γr

(
ζ
∂g

∂u
(ft(ζ), z)f ′

t(ζ)
)

×
(

ζ
∂g

∂u
(ft(ζ),w)f ′

t(ζ)
)

pt(ζ)
dζ

ζ

)
.
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By equation (9), the quantities in brackets are real and

ġt(z,w) = − 1
2π

∫ 2π

0

(
Reiθ ∂g

∂u
(ft(Reiθ), z)f ′

t(Reiθ)
)

·
(

Reiθ ∂g

∂u
(ft(Reiθ),w)f ′

t(Reiθ)
)

Rept(Reiθ)dθ.

Now, we can choose a sequence Rn ↗ 1 for which the measures Rept(Rnei·)
converge in the weak∗-topology to the probability measure μt on [0,2π] as-
sociated with pt via Herglotz formula, and the claim follows from equa-
tion (10). �

Theorem 4 is a natural extension of the Hadamard formula (3). In the case
that Dt is smoothly bounded and pt is smooth up to the boundary, it follows
from Theorem 1 that if ds denotes infinitesimal arc length then (with ζ, u,
etc. as above)

ν(u)
dθ

ds
= − Rept(ζ).

Thus, by equation (10)

ġt(z,w) = − 1
2π

∫ 2π

0

Re
[
eiθ + f −1

t (z)
eiθ − f −1

t (z)

]
Re

[
eiθ + f −1

t (w)
eiθ − f −1

t (w)

]
dμt(θ)

=
1
2π

∫
∂Dt

(
∂g

∂nu
(u, z)

ds

dθ

)(
∂g

∂nu
(u,w)

ds

dθ

)
ν(u)

dθ

ds
dθ

which agrees with equation (2).

Remark 4. Theorem 3 can also be written in terms of the Herglotz repre-
sentation of pt. However, given an arbitrary increasing μt of bounded variation
and unit total measure there need not be a solution to the Loewner equation
(see Example 3 ahead).

3. An application

3.1. Existence of solutions to the Loewner partial differential equa-
tion with prescribed initial generator. As an application of Theorem 1,
we establish the existence of solutions to the Loewner equation with suffi-
ciently smooth initial infinitesimal generators p0 ∈ P .

Theorem 5. Let f0 : D → D0 be a one-to-one and onto holomorphic map-
ping such that f0(0) = 0 ∈ D0. Assume that f0 ∈ C3(D), and that the boundary
of D0 is a simple curve. For any p ∈ P ∩ C2(D), there exists a Loewner chain
ft defined on an interval [0, T ] satisfying the Loewner partial differential equa-
tion

ḟt = zpt(z)f ′
t(z)

such that p0 = p.
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The proof requires the intuitive geometric fact that for any smooth simple
closed curve there exists an interval on which a normal variation is injective.

Lemma 1. Let γ : [0,L] → C be a C2 simple closed curve with outward
normal n(t). Let K be the maximum of the curvature of γ. Let d(t1, t2) =
|γ(t1) − γ(t2)|, and let M be the minimum of d on

{(t1, t2) | π/(5K) ≤ |t1 − t2| ≤ L/2}.

Finally let R = min{(
√

2K)−1,M/2}. Then the map (t, r) �→ γ(t) + rn(t) is
injective on [0,L] × (−R,R).

Proof. By [9, Lemma 2], (t, r) �→ γ(t) + rn(t) is one-to-one on [α,β] ×
(−1/(

√
2K),1/(

√
2K)) whenever |β − α| < π/(4K). Now assume that there

exist t1 and t2 such that |t1 − t2| ≤ L/2 and γ(t1)+r1n(t1) = γ(t2)+r2n(t2) =
w for |ri| < R, i = 1,2. It follows that |t1 − t2| > π/(5K). On the other hand,
we must also have that

|γ(t1) − γ(t2)| ≤ |γ(t1) − w| + |γ(t2) − w|
= |r1| + |r2| < 2R < M

which is a contradiction. �

Proof of Theorem 5. Let u(s) parameterize ∂D0 by arc length. Let ν(u(s))
be defined by

ν(u(s)) = − Re
(

f −1(u(s))p ◦ f −1(u(s))f ′ ◦ f −1(u(s))
1
i

dū

ds

)
.

By setting u(s(t)) = f(eit), it is easily computed that ν(u(s)) > 0 for all s.
Consider the curve s �→ u(s)+ν(u(s))r. Since p is in C2(D) and f ′ ∈ C2(D),

ν(u(s)) is C2 and in particular uniformly bounded on [0,L]. Thus, since ∂D0 is
C2, by Lemma 1 the homotopy (s, r) �→ u(s)+ ν(u(s))r is injective on [0,L] ×
[0, T ′] for some T ′, and furthermore since ν(u(s)) is C2 the homotopy is C2.
In particular, for each fixed r the resulting curve bounds a simply connected
domain Dr. Let νr(s) be as in Definition 2. It follows from Theorem 1 that
ν0(s) = ν(u(s)). Note that this is not true for other values of r.

Let f̂r : D → Dr be the conformal mapping such that f̂r(0) = 0 and
f̂ ′

r(0) > 0. We claim that the conformal radius log |f̂ ′
r(0)| is a C1 function

of r. To see this, by equation (2) we have

d

dr
gr(z,w) =

1
2π

∫
∂Dr

∂gr

∂nu
(u, z)

∂gr

∂nu
(u,w)νr(u)dsu,

where νr is C1 in r and ∂gr/∂nu is C2 in r on ∂Dr. Thus,

d

dr
log |f̂ ′

r(0)| =
d

dr
lim
z→0

(
gr(z,0) + log |z|

)
= lim

z→0

d

dr

(
gr(z,0) + log |z|

)
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is C1. Furthermore, since ν0(s) = ν(u(s)) one has that the derivative of the
conformal radius is 1 at r = 0. To see this, we proceed as in the proof of
Corollary 1:

d

dr

∣∣∣∣
r=0

log |f̂ ′
r(0)|

= lim
z→0

d

dr

∣∣∣∣
r=0

gr(z,0)

= lim
z→0

Re
(

2
πi

∫
∂D0

∂g0

∂u
(u,0)

∂g0

∂u
(u, z)f −1(u)p ◦ f −1(u)f ′ ◦ f −1(u)du

)

= lim
z→0

Re(p ◦ f −1(z)) = 1.

Now, choose a reparameterization of the subordination chain ft = f̂r(t) so
that f ′

t(0) = et. By the above computation, dr/dt = 1. Thus,

d

dt
gr(t)(z,0)

∣∣∣∣
t=0

=
d

dr

∣∣∣∣
r=0

gr(z,0)

= Re
(

2
πi

∫
∂D0

∂g0

∂u
(u,0)

∂g0

∂u
(u, z)f −1(u)p ◦ f −1(u)f ′ ◦ f −1(u)du

)

= Rep ◦ f −1(z).

For simplicity, we will denote gt = gr(t); thus, ġ0(z,0) = Rep ◦ f −1(z).
To complete the proof, let pt be the infinitesimal generator in the Loewner

equation for ft. We want to show that p0 = p. Let

ht(z) = − log
f −1

t (z)
z

denote the unique choice of analytic completion of gt(z,0) + log |z| satisfying
Imht(0) = 0. By the Loewner equation,

ḣ0 = − 1
f −1
0

d

dt

∣∣∣∣
t=0

f −1
0 = p0 ◦ f −1

0

is a holomorphic function, whose real part is

Re(ḣ0) = ġ0 = Re(p ◦ f −1
0 ).

Since p(0) = p0(0) = 1, it follows that p0 = p. �

Theorem 5 also shows that one can arbitrarily prescribe the endpoint and
initial generator in the ordinary Loewner equation, so long as these are suffi-
ciently smooth.
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Corollary 2. Let f be any univalent function on D satisfying f(0) = 0
and f ′(0) = 1 such that the boundary of f(D) is C3. Let p ∈ P ∩ C2(D). There
exists a solution to the Loewner ordinary differential equation

ẇt = −wt · pt ◦ wt

with w0(0) = 0, w′
t(0) = e−t, and p0 = p, such that

lim
t→∞

etwt(z) = f(z).

Proof. By Theorem 5, there exists a Loewner chain f̃t defined on [0, T ] with
initial generator p0 = p. By reparameterizing (and thus possibly changing T )
one can ensure that f̃ ′

t(0) = et. Let f̂ be any normalized Loewner chain on
[T, ∞) starting at f̃T . Defining ft = f̃t for t ∈ [0, T ] and ft = f̂t for t ∈ (T, ∞),
we have constructed a normalized Loewner chain on [0, ∞) satisfying the
Loewner equation with initial generator p0 = p. Thus wt = f −1

t ◦ f has the
desired properties. �
3.2. Some examples. It is unclear to what extent the assumptions of The-
orem 5 can be weakened. The following examples put some limits on this.

For some choices of initial functions f0, there are p ∈ P for which there
does not exist a subordination chain on any interval [0, T ] so that the initial
generator p0 in the Loewner equation is equal to p.

Example 1. Let k(z) = z/(1 − z)2, kt(z) = etz/(1 − z)2 for some b > 1 and
f0(z) = k−1

t ◦ k(z). For some interval I = (−1, x0] on the real axis, f0 maps D

onto D\I . Furthermore f0 extends continuously to D, and maps some point
z0 ∈ ∂D onto x0. Assume that p ∈ P ∩ C2(D), and p 
= 0 on f −1

0 (J) for some
open interval J ⊂ (−1, x0). It is clear that there is no subordination chain
starting at f0 with initial generator p.

It is easy to see that one could find a similar example for which f0(∂D) is
smooth.

If the boundary of f0(D) is not smooth, f −1 · p ◦ f −1 · f ′ ◦ f −1 need not be
continuous even if p ∈ P ∩ C2(D).

Example 2. Set w0 = −(1 + i)/2 and let f(z) =
√

z + i + w0 where the
branch of square root is chosen so that D is contained in its domain and√

i = (1 + i)/
√

2. Thus f has a continuous extension mapping −i to a corner
of interior angle π/2 located at w0.

It is easily computed that

f −1(w) = (w − w0)2 − i and f ′ ◦ f −1(w) =
1

2(w − w0)
.

Setting p(z) = 1 + z, we have

f −1(w) · p ◦ f −1(w) · f ′ ◦ f −1(w) = − 1 + i

2(w − w0)
+

1 − 2i

2
(w − w0)+

1
2
(w − w0)3.
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One would expect that for p ∈ ext(P ) and f0(z) = z, the singularity of p
on the boundary would prevent the existence of a subordination chain such
that ft is differentiable in t at t = 0 and p0 = p. We have been unable to
demonstrate this. However, the following example shows that there is a choice
of pt for t ∈ [0, T ] with pt in C2(D) on (0, T ] and p0 ∈ ext P , for which there is
no solution to the Loewner partial differential equation on any interval [0, T ′]
with generator pt and initial point f0(z) = z.

Example 3. Let

pt(z) =
1 + e−3tz

1 − e−3tz
.

Then the (normalized) solution ft to the Loewner equation

∂ft

∂t
= z

∂ft

∂z
pt

with f0(z) = z is

ft(z) = 1 −
√

1 − 2etz + e−2tz2.

This function is not analytic in D for any t > 0.

It should be noted that by a result of Becker [1] every solution ft to the
Loewner partial differential equation which is analytic in the disk |z| < r(t)
such that etr(t) → +∞ as t → +∞ is actually analytic in the whole unit disk
(see [1, Satz 2]). Thus, if a solution ft to the Loewner equation does not
live on all of D, its domain of definition has to shrink sufficiently fast. This
makes it difficult to construct such solutions. Example 3 also shows that the
assumption etr(t) → ∞ in Becker’s result is sharp in a sense.

4. A Loewner equation for general subordination chains

In [2], Heins gave an interesting derivation of the Loewner equation. His
approach was to first prove that Green’s function satisfies a kind of Loewner
equation directly, and then use this to derive the Loewner equation for the
mapping function. He considered only the special case of Loewner chains of
maps onto the disc minus an arc joining the boundary.

In this section, we will show that his approach extends to arbitrary Loewner
chains. In fact, this allows the removal of any assumption on the continuity
of f ′

t(0). We will also show that Heins’ formula agrees with Theorem 2 and
thus with the Hadamard variational formula.

Recall that a subordination chain is called normalized if ft(0) = 0 and
f ′

t(0) = et. It is shown in [6], [7] that a normalized subordination chain ft is
differentiable (a.e.) w.r.t. t and that the evolution of ft can be described with
the help of a differential equation (the Loewner equation). The differentiabil-
ity is based on the fact that every normalized subordination chain satisfies a
Lipschitz condition w.r.t. t locally uniformly in D.
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Remark 5. If ft(z) = α(t)z + · · · is a subordination chain such that α : [0,
T ] → (0, ∞) is continuous, then the substitution t∗ = logα(t) introduces a new
parameter and (w.r.t. to the new parameter) yields a normalized subordina-
tion chain ft∗ , see [6], [7]. Thus, if α(t) is continuous, one can select a parame-
terization which ensures differentiability (a.e.). This is akin to Hilbert’s fifth
problem, concerning the introduction of differentiable coordinates in continu-
ous groups.

The following theorem shows that in fact every subordination chain is dif-
ferentiable (a.e.). The proof is based on an idea of Heins [2]. The differen-
tiability and the associated Loewner-type equation come ultimately from the
monotonicity of Green’s function gt of ft(D).

Theorem 6. Let ft : D → C, t ∈ [0, T ], be normalized Riemann maps such
that fs ≺ ft for 0 ≤ s ≤ t ≤ T . Then there exists a function pt(z) analytic in
|z| < 1 and measurable in t ∈ [0, T ] satisfying

Rept(z) ≥ 0, z ∈ D, t ∈ [0, T ]

and a set N ⊂ [0, T ] of measure zero such that

ḟt(z) = zpt(z)f ′
t(z), t ∈ [0, T ]\N,z ∈ D.

The map t �→ ft(D) is continuous on [0, T ]\N in the sense of kernel conver-
gence.

Proof. (a) Let At := ft(D) and let gt(w) denote Green’s function of At

with pole at w = 0. Note that there exists an open disk K around w = 0,
which is compactly contained in A0, and thus in every At. By subordination,
As ⊂ At for 0 ≤ s ≤ t ≤ T , so t �→ gt(w) is monotonically increasing for every
fixed w ∈ K. If E := {wm}, w1 := 0, is a dense countable subset of K, then
there exists for every nonnegative integer m a nullset Nm ⊆ [0,1] such that
t �→ gt(wm) is differentiable on [0, T ]\Nm with derivative ≥ 0. Thus, for N :=⋃

m≥1 Nm, the derivative of gt(w) w.r.t. t exists on [0, T ]\N for every w ∈ E.
Then for each t0 ∈ [0, T ]\N the limit

(11) ht0(w) := lim
t→t0

gt(w) − gt0(w)
t − t0

exists locally uniformly in K and ht0 is a nonnegative and harmonic function
in K. This follows from the facts that the difference quotients on the right
side are nonnegative harmonic functions in K and thus from a normal family,
and the limit (11) exists on a dense subset of K.

In particular, gt(w) + log |w| → gt0(w) + log |w| locally uniformly in K as
t → t0 for every t0 /∈ N .

(b) We now show At → At0 as t → t0 for any t0 /∈ N in the sense of kernel
convergence.
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The idea is simply this. We know that t �→ gt(w) is continuous at every
t0 /∈ N locally uniformly w.r.t. w ∈ K. Using the relation of Green’s function
gt to the conformal map ft, this implies ft → ft0 locally uniformly first in a
neighborhood of z = 0 and then, by normality, in the whole of D, so At → At0

as t → t0 /∈ N .
Fix t0 /∈ N and let Gt denote the holomorphic function in At with

ReGt(w) = gt(w) + log |w| and ImGt(0) = 0, that is, by the Schwarz integral
formula and shrinking K a little,

(12) Gt(w) =
1

2πi

∫
∂K

ζ + w

ζ − w

(
gt(ζ) + log |ζ|

)dζ

ζ
, w ∈ K.

In particular, Gt → Gt0 uniformly in K as t → t0 and Ġt0(w) exists uniformly
in w ∈ K. Using the relation between Green’s function gt and the conformal
map ft,

f −1
t (w) = we−Gt(w),

we see that f −1
t → f −1

t0 uniformly in K as t → t0. By the Koebe one-quarter
theorem, there is a disk D ⊆ D such that D ⊂ f −1

t (K) for all t ∈ [0, T ]. It
follows that ft → ft0 locally uniformly in D as t → t0. Since {ft : t ∈ [0, T ]} is
a normal family, we deduce that ft → ft0 locally uniformly in D as t → t0, so
ft(D) → ft0(D) as t → t0 in the sense of kernel convergence.

(c) From (a) and (b), we deduce that for any t0 ∈ [0, T ]\N the limit (11)
exists locally uniformly in At0 and ht0 is harmonic and nonnegative in At0 .
Hence, the function Gt0 is analytic in At0 , Ġt0(w) exists locally uniformly for
w ∈ At0 and

Re Ġt0(w) = ht0(w), w ∈ At0 .

If Ht0 denotes the analytic function in At0 with Ht0(0) = Ġt0(0) and
ReHt0(w) = ht0(w) ≥ 0, we therefore get

Ġt0(w) = Ht0(w), w ∈ At0 .

Since f −1
t (w) = we−Gt(w), we arrive at

d

dt
(f −1

t )
∣∣∣∣
t=t0

(w) = −Ht0(w)f −1
t0 (w), w ∈ At0 .

Again, the derivative w.r.t. t at t = t0 on the left side exists locally uniformly
for w ∈ At0 . This also implies that (f −1

t )′(w) is differentiable w.r.t. t at t = t0
locally uniformly for w ∈ At0 . By the Bürmann–Lagrange formula,

(13) ft(z) =
1

2πi

∫
γ

ζ(f −1
t )′(ζ)

f −1
t (ζ) − z

dζ, |z| < r,0 < r < 1,

where γ is a smooth Jordan curve in At which contains ft(|η| = r) in its
interior. Thus for fixed 0 < r < 1, since ft(D) → ft0(D) as t → t0, there is a
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smooth Jordan curve γ ⊂ At0 which contains ft(|η| = r) in its interior for all
t sufficiently close to t0. Hence, (13) implies that the limit

ḟt0(z) = lim
t→t0

ft(z) − ft0(z)
t − t0

exists locally uniformly in D. From f −1
t (ft(z)) = z, we therefore get

ḟt0(z) = zf ′
t0(z)Ht0(ft0(z)), z ∈ D.

If we define
pt(z) := Ht(ft(z)),

then pt(z) is analytic in |z| < 1 with nonnegative real part and measurable in
[0, T ], and we arrive at the Loewner differential equation for ft. �

Remark 6. This proof does not rely on the second coefficient estimate,
distortion theorem or growth theorem for univalent functions. It only relies
on the Koebe 1/4 theorem, whose proof also does not require them (see for
example [4]).

We conclude with a few observations. First, Theorem 6 generalizes Theo-
rem 2 to the case of an arbitrary subordination chain:

Remark 7. Let Dt be any sequence of domains parameterized by t ∈ [0, T ]
such that Dt ⊂ Ds whenever t < s. Let gt(z,w) be Green’s function for Dt.
There exists a function pt ∈ P which is measurable in t and a set N of measure
zero such that

ġt(z,w) = −2Re
(

∂gt

∂z
(z,w)jt ◦ f −1

t (z)f ′
t ◦ f −1

t (z)

+
∂gt

∂w
(z,w)jt ◦ f −1

t (w)f ′
t ◦ f −1

t (w)
)

,

where jt(z) = zpt(z), for any t ∈ [0, T ]\N . Furthermore, gt(z,w) + log |z −
w| → gt0(z,w) + log |z − w| locally uniformly for all t0 ∈ [0, T ]\N .

Proof. Differentiate equation (6) using Theorem 6. �

Remark 8. Remark 7 (and thus Theorem 2) agree with Heins’ Loewner
equation for Green’s function. To see this, set w = 0 in the above formula. In
that case, by equation (6)

∂g

∂z
(z,0) = − f −1

t

′
(z)

2f −1
t (z)

.

Thus since jt(0) = 0 and ft(0) = 0, we have

ġt(z,0) = − Re(pt ◦ f −1
t (z)).

This is Heins’ formula (see equations (2) and (3) in [2]).
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Remark 9. Theorem 6 shows that the assumption that dμt have unit total
measure can be removed from Theorem 4.
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