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ON TILTING MODULES OVER CLUSTER-TILTED
ALGEBRAS

DAVID SMITH

Abstract. In this paper, we show that the tilting modules over
a cluster-tilted algebra A lift to tilting objects in the associated

cluster category CH . As a first application, we describe the in-
duced exchange relation for tilting A-modules arising from the ex-
change relation for tilting object in CH . As a second application,

we exhibit tilting A-modules having cluster-tilted endomorphism
algebras.

Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [FZ02] in the
context of canonical basis of quantized enveloping algebras and total positivity
for algebraic groups, but quickly turned out to be related to many other fields
in mathematics. In the representation theory of finite dimensional algebras,
the so-called cluster categories were introduced in [BMR+06] (and also in
[CCS06] for the An case) as a natural categorical model for the combinatorics
of the corresponding cluster algebras of Fomin and Zelevinsky. The construc-
tion is as follows. Let Q be a quiver without oriented cycles. There is then,
for a field k, an associated finite dimensional hereditary path algebra H = kQ.
Since H has finite global dimension, its bounded derived category Db(H) of
the finitely generated modules has almost split triangles [Hap88]. Let τ be
the corresponding Auslander–Reiten translation functor. Denoting by F the
composition τ −1[1], where [1] is the shift functor in Db(H), the cluster cat-
egory CH was defined as the orbit category Db(H)/F , and was shown to be
canonically triangulated [Kel05] and to have almost split triangles [BMR+06].
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In this model, the exceptional objects are associated with the cluster vari-
ables of [FZ02] while the tilting objects correspond to the clusters. Remark-
ably, one also defines an exchange relation on the tilting objects in CH , corre-
sponding to the exchange relation on the clusters of [FZ02]. More precisely,
an almost complete tilting object T in CH has exactly two nonisomorphic
indecomposable complements M and M ∗, and these are related by exchange
triangles

M ∗ g
B

f
M M ∗[1] and M

f ∗

B∗ g∗

M ∗ M [1],

where f, g∗ are minimal right addT -approximations and f ∗, g are minimal left
addT -approximations (see [BMR+06]).

In view of the importance of tilting theory in the representation theory of fi-
nite dimensional algebras, the (opposite) endomorphism algebras EndCH

(T )op

of these tilting objects T , called cluster-tilted algebras, were then introduced
and studied in [BMR07] (see also [CCS06]). Their module theory was shown
to be to a large extent determined by the cluster categories in which they
arise. Indeed, given a cluster category CH and a tilting object T in CH , it was
shown by Buan, Marsh, and Reiten [BMR07] that the functor HomCH

(T, −)
induces an equivalence HT : CH/addT [1] modEndCH

(T )op .
Since then, cluster-tilted algebras have been studied by several authors, and

revealed to have very nice properties, see for instance [ABS08a], [ABS08b],
[BIRS08], [BMR08], [Kel08], [KR07]. In particular, they were shown in [KR07]
to be Gorenstein algebras of Gorenstein dimension at most one, in [ABS08b]
to be trivial extensions of tilted algebras and in [BIRS08], [Kel08] to be given
by quivers with potentials.

In this paper, we are interested in the problem of identifying tilting mod-
ules over cluster-tilted algebras. Our motivation comes from two points of
view. On one side, the nice exchange relation for tilting objects over cluster
categories should carry over Buan–Marsh–Reiten’s equivalence and result in a
similar exchange relation for tilting modules over cluster-tilted algebras, allow-
ing to identify many tilting modules. Of course, one then has to care about
projective dimensions. On the other hand, as stressed above, cluster-tilted
algebras enjoy some very nice properties. Tilting theory being intimately re-
lated to derived equivalences (under which many properties are known to be
preserved) by Happel’s and Rickard’s theorems [Hap88], [Ric89], the study of
tilting modules is then a natural question.

In what follows, we present two different methods to find tilting modules
over cluster-tilted algebras, dividing the paper in two distinct parts.

The first approach follows the above discussion, in the sense that we study
the exchange relation of tilting modules over cluster-tilted algebras coming
from the exchange relation of tilting objects for cluster categories. As pointed
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out above, one then has to care about projective dimension in the follow-
ing sense: if T and T ′ are two tilting objects over a cluster category CH

such that addT [1] ∩ addT ′ = {0}, then it follows from Buan–Marsh–Reiten’s
equivalence (see also [KR07], [KZ]) that the image of T ′ under the equivalence

HT : CH/addT [1] modEndCH
(T )op is exceptional and has the right num-

ber of indecomposable direct summands to be a tilting module, but a priori
no one knows about its projective dimension, which generally turns out to be
infinite; in other words HT (T ′) is generally not a tilting EndCH

(T )op-module.
The situation is better in the other direction. Indeed, while lifting tilting
modules over cluster-tilted algebras to objects in the cluster category obvi-
ously does not bring any projective dimension problems, one now has to care
about the exceptionality of the resulting objects, since the cluster category
contains more maps, namely those factoring through addT [1]. The following
theorem says that such problems do not occur.

Here, and in the sequel, we let H −1
T be a quasi-inverse for the induced

equivalence HT : CH/addT [1] modEndCH
(T )op .

Theorem 1. Let CH be a cluster category, T be a tilting object in CH and
A = EndCH

(T )op. Let M,N be objects in CH . If HT (M) and HT (N) are
A-modules of projective dimension at most one such that

Ext1A(HT (M), HT (N)) = 0 and Ext1A(HT (N), HT (M)) = 0,

then
Ext1CH

(M,N) = 0 and Ext1CH
(N,M) = 0.

In particular, the tilting A-modules lift to tilting objects in CH .

From this, we get that the endomorphism algebras of tilting modules over
cluster-tilted algebras are quotients of cluster-tilted algebras (Corollary 2.4).

On the other hand, the study of the possible complements for an almost
complete tilting module has been the central point of many investigations
during the past years. It is known that an almost complete tilting module
of projective dimension at most one admits at most two nonisomorphic com-
plements. Combining Theorem 1 with a result from [CHU94], [Hap95] (see
Theorem 3.1) then allows to show that for a cluster-tilted algebra, these two
complements are related by the exchange relation in CH .

Theorem 2. Let CH be a cluster category, T be a tilting object in CH

and A = EndCH
(T )op. Let S = S ⊕ M be a (basic) tilting A-module, with M

indecomposable. Also, let

M ∗ g
B

f H −1
T (M) M ∗[1] and H −1

T (M)
f ∗

B∗ g∗

M ∗ H −1
T (M)[1]

be the corresponding exchange triangles in CH , where f, g∗ are minimal right
add H −1

T (S)-approximations in CH and f ∗, g are minimal left add H −1
T (S)-
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approximations in CH . The following are equivalent:

(a) There exists an indecomposable module M ′, not isomorphic to M , such
that S ⊕ M ′ is a tilting A-module;

(b) S ⊕ HT (M ∗) is a tilting A-module;
(c) HT (M ∗) �= 0 and pdA HT (M ∗) ≤ 1.
(d) Either HT (f) is an epimorphism in modA or HT (f ∗) is a monomorphism

in modA;
(e) S is a faithful A-module.

The second method deals with completely different tools. Given an alge-
bra A, we consider the left part LA and the right part RA of its module
category modA (see [HRS96]). In [ACT04], Assem, Coelho, and Trepode
studied the algebras A for which the subcategory add LA is functorially finite
in modA (in the sense of [AS80]) and called them left supported. Dually,
they defined the right supported algebras (see Section 4 for details). They
proved that A is left supported if and only if a specific A-module L is a tilt-
ing module, and similarly for the right supported algebras. As we shall see,
the left and the right parts of a cluster-tilted not hereditary algebra are both
finite, implying that any cluster-tilted algebra is left and right supported.
The module L is the direct sum of the indecomposable Ext-injective modules
in add LA and the indecomposable projective modules which are not in LA.
Hence, L determines a “slice” in LA given by the sum of all indecomposable
Ext-injective modules in add LA. Our results show that any basic object S in
add LA, which is maximal for the property that Ext1A(S,S) = 0, gives rise to a
tilting module. However, the ones given by slices in LA, called LA-slices (see
Definition 5.12) give remarkable tilting modules, since their endomorphism
algebra is still cluster-tilted.

Theorem 3. Let CH be a cluster category, T be a tilting object in CH and A
be the cluster-tilted algebra EndCH

(T )op. Assume that A is not hereditary and
let Σ be an LA-slice. Also, let F =

⊕m
i=1 Pi denote the direct sum of all

indecomposable projective modules not in LA. Then:

(a) TΣ = Σ ⊕ F is a tilting A-module;
(b) The algebra AΣ = EndA(TΣ)op is isomorphic to EndCH

(H −1
T (TΣ))op, in

particular AΣ is cluster-tilted;
(c) The quiver of AΣ is obtained from that of A with a finite number of

reflections at sinks.

This paper is organized as follows. In Section 1, we collect the necessary
background concerning cluster categories and cluster-tilted algebras. Sec-
tions 2 and 3 are devoted to the proofs of Theorem 1 and Theorem 2, respec-
tively. Finally, after some necessary preliminaries on supported algebras in
Section 4, we prove Theorem 3 in Section 5.
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1. Definitions and first preliminaries

In this section, we review some useful notions and results that will be used
for the proofs of Theorem 1 and Theorem 2. More preliminaries concerning
Theorem 3 are postponed to Section 4.

1.1. Basic notations. In this paper, all algebras are connected finite di-
mensional algebras over a field k, unless otherwise specified. For an algebra A,
we denote by modA the category of finitely generated (right) A-modules. For
an A-module M , we, respectively, denote by pdA M and idA M the projective
dimension and the injective dimension of M .

More generally, for an additive category A we let ind A be a full subcategory
whose objects are representatives of the isomorphism classes of indecompos-
able objects in A. By an indecomposable object in A, we therefore mean an
object in ind A. In case A = modA, for some algebra A, we write indA in-
stead of ind(modA). For an object T in A, addT denotes the full subcategory
of A with objects all direct summands of direct sums of copies of T .

1.2. Approximations. Let A be an additive category and B be a full addi-
tive subcategory of A. For an object A in A, a map f : B A , with B ∈ B
is called a right B-approximation if any other map f ′ : B′ A with B′ ∈ B
factors through f , that is there exists g : B′ B such that f ′ = fg. There is
the dual notion of a left B-approximation. If any object in A admits a right
(left) B-approximation, then B is said to be a contravariantly (covariantly)
finite subcategory of A. It is called functorially finite if it is both contravari-
antly finite and covariantly finite. Finally, a minimal right B-approximation is
a right B-approximation f : B A such that for every g : B B such that
fg = f , the map g is an isomorphism. The minimal left B-approximations are
defined dually. These notions were introduced in [AS80].

1.3. Almost complete tilting objects. Although the notions of tilting
objects slightly differ according to the type of categories we consider (see
Sections 1.4 and 1.5 for details), we will in any case say that an object T in
an additive category A is an almost complete tilting object if it is not a tilting
object but there exists an indecomposable object M in A such that T ⊕ M is
a tilting object. In this case, M is called a complement for T . All (partial)
tilting objects T we consider are assumed to be basic, that is, if T =

⊕n
i=1 Ti is

a decomposition in indecomposable direct summands of T , then i �= j implies
Ti � Tj .

1.4. Cluster categories and tilting objects. Let H be a hereditary al-
gebra. As mentioned in the Introduction, the cluster category CH is the
orbit category Db(H)/F , where F = τ −1[1]. Thus, the objects in CH are
the F -orbits X = (F iX̃)i∈Z, where the X̃ are objects in Db(H). The set of
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morphisms from X = (F iX̃)i∈Z to Y = (F iỸ )i∈Z in CH is given by

HomCH
(X,Y ) =

∏
i∈Z

HomDb(H)(X̃,F iỸ ).

It is shown in [Kel05] that CH is a triangulated category and that the canonical
functor Db(H) CH is a triangle functor. Moreover, CH has almost split
triangles and the Auslander–Reiten translation τCH

is equal to [1], the shift
functor in CH .

Let F = ind(modH ∪ H[1]) in Db(H), that is the set consisting of the
indecomposable H-modules together with the objects P [1] where P is an
indecomposable projective H-module. It is easily seen that F contains exactly
one representative from each F -orbit of indecomposable objects in Db(H).
Hence, in many situations, like in the context of our proofs, we may (and will)
identify F with ind CH , and thus assume that any indecomposable object in
CH is a H-module or of the form P [1]. For two objects M̃, Ñ in F , we have
HomDb(H)(M̃,F iÑ) = 0 for all i �= 0,1 (see [BMR+06, (1.5)]).

Thus, more generally, the space HomCH
(X,Y ) =

∏
i∈Z

HomDb(H)(X̃,F iỸ )
is always finite dimensional. Also, by [BMR+06, (1.4), (1.7)],

D Ext1CH
(Y,X) ∼= Ext1CH

(X,Y ) ∼= D HomCH
(Y,X[1]),

where D = Homk(−, k).
We recall the following definition from [BMR+06].

Definition 1.1. Let T be a basic object in CH . Then T is called a cluster-
tilting object, or a tilting object for short, provided Ext1CH

(T,T ) = 0 and T
has a maximal number of nonisomorphic direct summands (that is the same
number as the number of nonisomorphic simple H-modules).

By [BMR+06, (3.3)], up to derived equivalence, one can always assume
that a given tilting object T is induced by a tilting module over H . Also, an
almost complete basic tilting object T in CH has exactly two nonisomorphic
complements M and M ∗, and these are related by some exchange triangles

M ∗ g
B

f
M M ∗[1] and M

f ∗

B∗ g∗

M ∗ M [1]

where f, g∗ are minimal right addT -approximations and f ∗, g are minimal left
addT -approximations. The following particular case will be heavily exploited
in Section 5. For more details on cluster categories, we refer to [BMR+06].

Remark 1.2. Let T , M and B be as above and let M Q τ −1
CH

M

M [1] be the almost split triangle starting at M . If Q ∈ addT , then Q = B and
therefore M ∗ = τ −1

CH
M = M [−1]. Hence, the exchange of M by M ∗ coincides

with an almost split exchange in CH .
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1.5. Cluster-tilted algebras and tilting modules. We start by recalling
the following definition from [BMR07].

Definition 1.3. Let H be a hereditary algebra, CH be the associated
cluster category and T be a tilting object in CH . The algebra A = EndCH

(T )op

is called cluster tilted.

In this case, the functor HomCH
(T, −) induces an equivalence

HT : CH/addT [1] modA

under which the almost split sequences in modA are induced by almost split
triangles in CH [BMR07]. Moreover, it was shown in [KR07] that any cluster-
tilted algebra A is Gorenstein of Gorenstein dimension at most one, meaning
that every projective module is of injective dimension at most one, and du-
ally every injective module is of projective dimension at most one. As an
important consequence, the projective dimension and the injective dimension
of any A-module are either both infinite, or both are less than or equal to one
(see [KR07, Section 2.1]). In particular, the tilting modules are of projective
dimension at most one.

Therefore, in this context, a (basic) A-module S is a tilting A-module if:
• pdA S ≤ 1 (equivalently idA S ≤ 1);
• Ext1A(S,S) = 0;
• The number of indecomposable direct summands of S equals the number

of simple A-modules (equivalently the number of simple H-modules).

2. Proof of Theorem 1

In this section, we recall some useful features of the modules of projective
or injective dimension at most one and prove Theorem 1. We start with the
following well-known lemma (see [ASS06, (IV.2.13), (IV.2.14)] for instance).

Lemma 2.1. Let A be an algebra and M be an A-module.
(a) pdA M ≤ 1 if and only if HomA(DA,τM) = 0. Moreover, if pdA M ≤ 1,

then Ext1A(M,N) ∼= D HomA(N,τM) for each A-module N ;
(b) idA M ≤ 1 if and only if HomA(τ −1M,A) = 0. Moreover, if idA M ≤ 1,

then Ext1A(N,M) ∼= D HomA(τ −1M,N) for each A-module N ;
where D = Homk(−, k) : modAop modA denotes the usual duality.

We note that if CH is a cluster category and T is a tilting object in CH ,
with A = EndCH

(T )op, then the equivalence CH/addT [1] modA takes the
objects in addT to projective A-modules and the objects in addT [2] to injec-
tive A-modules. In view of this and the Gorenstein property of cluster-tilted
algebras (see Section 1.5), the above lemma immediately implies the following
result.
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Lemma 2.2. Let CH be a cluster category and T be a tilting object in CH .
Let A = EndCH

(T )op and M be an A-module. The following conditions are
equivalent:
(a) pdA M ≤ 1;
(b) In CH , any map from an object in addT [2] to H −1

T (M)[1] factors through
addT [1];

(c) idA M ≤ 1;
(d) In CH , any map from H −1

T (M)[−1] to an object in addT factors through
addT [1].

We are now in position to prove Theorem 1.

Theorem 1. Let CH be a cluster category, T be a tilting object in CH and
A = EndCH

(T )op. Let M,N be objects in CH . If HT (M) and HT (N) are
A-modules of projective dimension at most one such that

Ext1A(HT (M), HT (N)) = 0 and Ext1A(HT (N), HT (M)) = 0,

then
Ext1CH

(M,N) = 0 and Ext1CH
(N,M) = 0.

In particular, the tilting A-modules lift to tilting objects in CH .

Proof. Clearly, it suffices to prove the theorem for M,N indecomposable.
Moreover, we assume that T is induced by a tilting H-module.

We first assume that, in CH , M and N are two H-modules (see Section 1.4).
Also, assume to the contrary that Ext1CH

(M,N) �= 0. Then

0 �= Ext1CH
(M,N) ∼= D HomCH

(N,τCH
M)

= D HomDb(H)(N,τM) ⊕ D HomDb(H)(N,M [1])
∼= HomDb(H)(M,N [1]) ⊕ D HomDb(H)(N,M [1])

and thus HomDb(H)(M,N [1]) �= 0 or HomDb(H)(N,M [1]) �= 0. Assume, with-
out loss of generality, that HomDb(H)(M,N [1]) �= 0. Also, we have

0 = D Ext1A(HT (N), HT (M))
∼= HomA(HT (M), τ HT (N))

∼= HomCH
(M,N [1])

{ f : M N [1] factoring through addT [1]} ,

where the first isomorphism follows from Lemma 2.1. Therefore, any map
in HomCH

(M,N [1]) factors through addT [1], and similarly for any map in
HomCH

(N,M [1]). Lifting this property to Db(H) means, in particular, that
any map in HomDb(H)(M,N [1]) factors through add(τT ⊕ T [1]). Now, let
{f1, . . . , fn} be a basis for HomDb(H)(M,N [1]). For each i, there exist T ′

i , T
′ ′
i

in addT and maps (αi
βi

) : M τT ′
i ⊕ T ′ ′

i [1] and (γi, δi) : τT ′
i ⊕ T ′ ′

i [1] N [1]
such that fi = (γi, δi) ◦ (αi

βi
). Thus, taking T ′ =

⊕n
i=1 T ′

i , T ′ ′ =
⊕n

i=1 T ′ ′
i , α =
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diag(α1, . . . , αn) and β = diag(β1, . . . , βn), we see that any map in
HomDb(H)(M,N [1]) factors through (α

β) : M τT ′ ⊕ T ′ ′[1] . In other words,
we have a surjective map

HomDb(H)(τT ′,N [1]) ⊕ HomDb(H)(T ′ ′[1],N [1])
◦(

α
β)

HomDb(H)(M,N [1]) .

Under the natural isomorphism

HomDb(H)(X,Y [1]) ∼= Ext1H(X,Y ) ∼= D HomH(Y, τX) for X,Y ∈ modH,

the map β : M T ′ ′[1] becomes an element of D HomH(T ′ ′, τM). More
generally, the above surjective map becomes the surjective map

D HomH(N,τ2T ′) ⊕ HomH(T ′ ′,N) D HomH(N,τM)

taking a pair (g,h) in D HomH(N,τ2T ′) ⊕ HomH(T ′ ′,N) to the morphism
HomH(N,τM) k sending an element f ∈ HomA(N,τM) onto the element
g(τ(α)f) + β(fh).

Applying the duality D yields an injective map

HomH(N,τM) HomH(N,τ2T ′) ⊕ D HomH(T ′ ′,N)

taking an element g ∈ HomH(N,τM) to the pair (τ(α)g, g), where g(h) =
β(gh) for h ∈ HomH(T ′ ′,N).

Now, recall that by assumption 0 �= HomDb(H)(M,N [1]) ∼= HomH(N,τM).
Hence, let g be a nonzero morphism in HomH(N,τM). The injectivity of the
above map gives τ(α)g �= 0 or gh �= 0 for some h ∈ HomH(T ′ ′,N). In other
words, one of the two compositions

N
g

τM
τ(α)

τ2T ′ and T ′ ′ h
N

g
τM

is not zero. However, since any map in

HomCH
(N,M [1]) = HomDb(H)(N,τM) ⊕ HomDb(H)(N,M [1])

factors through addT [1], g factors through add τT in modH , say through
τT ′ ′ ′, with T ′ ′ ′ ∈ addT . The above compositions then yield a nonzero map
of the form τT ′ ′ ′ τ2T ′ or T ′ ′ τT ′ ′ ′ , a contradiction to Ext1CH

(T,T ) = 0.
Hence, Ext1CH

(M,N) = 0, and dually Ext1CH
(N,M) = 0.

We now assume that M ∈ modH and N ∈ addH[1]. Let P be an inde-
composable projective H-module such that N = P [1]. Then τN = I , where
I is the indecomposable injective H-module satisfying soc I = topP . Now,
assume that Ext1CH

(M,N) �= 0 �= Ext1CH
(N,M). We have

0 �= Ext1CH
(M,N) = Ext1CH

(M,P [1]) = D HomDb(H)(P [1],M [1])

and so HomH(P,M) �= 0. Similarly, Ext1CH
(N,M) yields HomH(M,I) �= 0.

Let f ∈ HomH(P,M) and g ∈ HomH(M,I) be nonzero morphisms. Since
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soc I = topP , we get a nonzero composition P
f

M
g

I whose image in
modA is a nonzero composition

τ −1HT (N)
HT (f) HT (M)

HT (g)
τ HT (N) .

Since pdA HT (M) ≤ 1 and pdA HT (N) ≤ 1, it follows from the first part of the
proof that f factors through addT while g factors through add τT , contra-
dicting Ext1H(T,T ) = 0. Hence, Ext1CH

(M,N) = 0 = Ext1CH
(N,M). Finally, if

M and N are both in addH[1], then Ext1CH
(M,N) = 0 = Ext1CH

(N,M) and
we are done. �

The following easy example shows that Theorem 1 is no longer true if we
drop the assumption that pdA HT (M) ≤ 1 and pdA HT (N) ≤ 1.

Example 2.3. Let Q be the quiver 1 2 3 and H = kQ be the path
algebra. The AR-quiver of the corresponding cluster category CH is given by

1
2
3

3[1] 2[1] ∼= 3

2
3

1
2

2
3[1] 1

2[1] ∼= 2
3

3 2 1
1
2
3
[1] 3[2] ∼= 1

2
3

where the indecomposable objects are represented by the Loewy series of the
corresponding H-modules. Let T be the tilting object T = 3 ⊕ 1

2
3

⊕ 1 and
A = EndCH

(T )op be the corresponding (self-injective) cluster-tilted algebra.
Its AR-quiver is given by

2
1

1
3

1 2 3 1

1
3

3
2

2
1

where the dashed lines represent the Auslander–Reiten translates and the
identified modules are the projective–injective modules. In CH , let M = 3
and N = 1

2. We have

Ext1CH
(M,N) = HomCH

(M,N [1]) = HomCH
(M,τCH

N) �= 0.

However, HT (M) = 1
3 and HT (N) = 2, and since HT (M) is projective–injecti-

ve, we have

Ext1A(HT (M), HT (N)) = Ext1A(HT (N), HT (M)) = 0.
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Since pdA HT (M) ≤ 1 but pdA HT (N) = ∞, this shows that Theorem 1 is no
longer true when we drop the assumption that pdA HT (M) ≤ 1 and
pdA HT (N) ≤ 1.

Also, consider N ′ = 2
3 in CH . Then Ext1CH

(M,N ′) = Ext1CH
(N ′,M) = 0 but

pdA HT (N ′) = ∞, showing moreover that the converse of Theorem 1 generally
fails.

As a consequence of Theorem 1, we obtain the following nice result.

Corollary 2.4. Let CH be a cluster category, T be a tilting object in CH

and A = EndCH
(T )op. Let S be a tilting A-module. Then EndA(S)op is a

quotient of the cluster-tilted algebra EndCH
(S)op.

Proof. By Theorem 1, H −1
T (S) is a tilting object in CH , thus

EndCH
(H −1

T (S))op is cluster-tilted. The result then follows from the Buan–
Marsh–Reiten equivalence HT : CH/addT [1] modA . �

In Section 5, we discuss examples where EndA(S)op ∼= EndCH
(H −1

T (S))op.

3. Exchange relation for cluster-tilted algebras

Here, we discuss the induced exchange relation of tilting modules over
cluster-tilted algebras in view of Theorem 1 and the exchange relation for
tilting objects in the cluster categories. For clear reasons (for instance when a
cluster-tilted algebra has projective–injective modules), it is not always pos-
sible to exchange an indecomposable direct summand M of a tilting module
S ⊕ M by another indecomposable M ∗ such that S ⊕ M ∗ is a tilting module.
In this section, we give sufficient and necessary conditions for the existence of
such a complement M ∗ for cluster-tilted algebras. Basically, we show that if
such a M ∗ exists, then it is given by the exchange triangles in CH .

More generally, complements of almost complete tilting modules (of arbi-
trary finite projective dimension) over artin algebras have been studied by
several authors, in particular by Coelho, Happel and Unger (see [CHU94],
[Hap95] for instance). A very weak version of one of their main results, but
sufficient for our purpose, goes as follows. Recall the the finitistic dimension
of an algebra is the supremum of the projective dimensions of its (finitely
generated) modules of finite projective dimension.

Theorem 3.1 ([CHU94], [Hap95]). Let A be an artin algebra with fi-
nite finitistic dimension. Let S be an almost complete tilting module with
pdA S ≤ 1.
(a) If S is not faithful, then S admits a unique complement.
(b) If S is faithful, then S admits exactly two complements M and M ′ and

there exists a short exact sequence

0 M
f

C
g

M ′ 0
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where f is a minimal left addS-approximation and g is a minimal right
addS-approximation.

Below, we show that Theorem 2 is obtained by combining Theorem 3.1
with Theorem 1. We need to recall one further result, borrowed from [KZ,
(2.3)].

Lemma 3.2. Let CH be a cluster category, T be a tilting object in CH and

A = EndCH
(T )op. Let L

g
M

f
N

h
L[1] be a triangle in CH . Then, in

modA:
(a) HT (f) is a monomorphism if and only if HT (g) = 0.
(b) HT (f) is an epimorphism if and only if HT (h) = 0.

We are now able to prove Theorem 2. Recall from Section 1.5 that cluster-
tilted algebras are Gorenstein of Gorenstein dimension at most one, forcing
them to have finitistic dimension at most one.

Theorem 2. Let CH be a cluster category, T be a tilting object in CH

and A = EndCH
(T )op. Let S = S ⊕ M be a (basic) tilting A-module, with M

indecomposable. Also, let

M ∗ g
B

f
H −1

T (M) h
M ∗[1] and H −1

T (M)
f ∗

B∗ g∗

M ∗ h∗
H −1

T (M)[1]

be the corresponding exchange triangles in CH , where f , g∗ are minimal right
add H −1

T (S)-approximations in CH and f ∗, g are minimal left add H −1
T (S)-

approximations in CH . The following are equivalent:
(a) There exists an indecomposable module M ′, not isomorphic to M , such

that S ⊕ M ′ is a tilting A-module;
(b) S ⊕ HT (M ∗) is a tilting A-module;
(c) HT (M ∗) �= 0 and pdA HT (M ∗) ≤ 1.
(d) Either HT (f) is an epimorphism in modA or HT (f ∗) is a monomorphism

in modA;
(e) S is a faithful A-module.

Proof. We mention that the existence of the exchange triangles in the state-
ment follows from Theorem 1.

Clearly, the equivalence of (a) and (e) follows from Theorem 3.1. The same
theorem also shows that (b) implies (e), while trivially (b) implies (c).

We now show that (c) implies (b) and (d). By the exchange relation in
CH , we know that H −1

T (S) ⊕ M ∗ is a tilting object in CH . In particular,
Ext1CH

(H −1
T (S) ⊕ M ∗, H −1

T (S) ⊕ M ∗) = 0, and so

Ext1A
(
S ⊕ HT (M ∗), S ⊕ HT (M ∗)

)
= 0

(see [KZ, (4.9)]). Since pdA HT (M ∗) ≤ 1 by assumption, S ⊕ HT (M ∗) is a
tilting A-module. This shows (b). Now, by Theorem 3.1, there exists a short
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exact sequence of the form

0 HT (M ∗) C
j

M 0 or 0 M
j∗

C∗ HT (M ∗) 0,

where C,C∗ ∈ addS. Assume that the first exact sequence exists, and let
j : H −1

T (C) H −1
T (M) be a morphism in CH such that HT (j) = j. Now,

since f : B H −1
T (M) is a right add H −1

T (S)-approximation, there exists

f ′ : H −1
T (C) H −1

T (B) such that j = ff ′. Then j = HT (j) = HT (f) ◦
HT (f ′), showing that HT (f) is an epimorphism. Similarly, if the second
short exact sequence exists, then HT (f ∗) is a monomorphism. This shows
(d).

Conversely, (d) implies (c). Indeed, assume for instance that HT (f) is
an epimorphism. By Lemma 3.2, we have HT (h) = 0. Hence, h[−1] factors
through addT . Since pdA M ≤ 1, Lemma 2.2 (d) implies that h[−1] factors
through addT [1]. Thus, by [KZ, (3.4)], we get a short exact sequence

0 HT (M ∗)
HT (g)HT (B)

HT (f)
M 0

in modA. Since pdA M ≤ 1 and pdA HT (B) ≤ 1, we get pdA HT (M ∗) < ∞,
and so pdA HT (M ∗) ≤ 1. Moreover, HT (M ∗) �= 0 since M /∈ addS. Since a
similar proof holds when HT (f ∗) is a monomorphism, (d) implies (c).

Finally, we show that (e) implies (b). Assume that S is faithful. By
Theorem 3.1, there exists an indecomposable module M ′, not isomorphic to
M , such that S ⊕ M ′ is a tilting module. By Theorem 1, H −1

T (S) ⊕ H −1
T (M ′)

is a tilting object in CH , and since M ′ �= M , we infer that H −1
T (M ′) = M ∗.

So M ′ = HT (M ∗), and consequently, S ⊕ HT (M ∗) is a tilting module. �

4. More preliminaries: the left and right parts

Here starts the second part of the paper, whose objective is to exhibit some
tilting modules over cluster-tilted algebras whose endomorphism algebras are
again cluster-tilted. This is achieved with the help of Theorem 1, but also
with the property of cluster-tilted algebras of being left and right supported.
Here, we gather the necessary terminology for the rest of the paper.

4.1. Paths and cycles. Let A be an algebra. A path in indA, or simply

a path, is a sequence δ : M = M0
f1

M1
f2 · · · ft

Mt = N (t ≥ 0) where
Mi ∈ indA and fi is a nonzero morphism for each i. In this case, we write
M � N and we say that M is a predecessor of N and N is a successor
of M . If each fi is irreducible, then δ is sectional if it contains no triples
(Mi−1,Mi,Mi+1) such that τAMi+1 = Mi−1. A refinement of δ is a path
M = M ′

0 M ′
1 · · · M ′

s = N, with s ≥ t, with an injective order-
preserving function σ : {1, . . . , t − 1} {1, . . . , s − 1} such that Mi = M ′

σ(i)
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when 1 ≤ i ≤ t − 1. Finally, a path δ is a cycle if M = N and at least one fi

is not an isomorphism. A subquiver Σ of a connected component Γ of the
AR-quiver of A is acyclic if it contains no cycles and convex if any path in Γ
starting and ending at modules in Σ consists only of modules in Σ.

4.2. The left and right parts of a module category. For an algebra A,
we define the left part LA and the right part RA of modA as follows (see
[HRS96]):

LA = {M ∈ indA : pdA N ≤ 1 for each predecessor N of M },(1)
RA = {M ∈ indA : idA N ≤ 1 for each successor N of M }.(2)

Clearly, LA is closed under predecessors and RA is closed under successors.
The left and the right parts have been used in recent years to describe many
classes of algebras, amongst them the quasitilted [HRS96] and the laura alge-
bras [AC03]. The next result is helpful to detect the modules lying in these
parts.

Lemma 4.1 ([AC03, (1.6)]). Let A be an algebra.

(a) LA consists of the modules M ∈ indA such that, if there exists a path from
an indecomposable injective module to M , then this path can be refined to
a path of irreducible morphisms, and any such refinement is sectional.

(b) RA consists of the modules N ∈ indA such that, if there exists a path from
N to an indecomposable projective module, then this path can be refined
to a path of irreducible morphisms, and any such refinement is sectional.

4.3. Left and right supported algebras. The study of the left and right
parts lead in [ACT04] to the introduction of the left and right supported
algebras.

Definition 4.2 ([ACT04]). Let A be an algebra. Then A is called left
supported provided the subcategory add LA is functorially finite in modA,
and right supported provided the subcategory add RA is functorially finite in
modA (see Section 1.2).

Since LA is closed under predecessors, add LA is clearly covariantly finite.
Thus, an algebra A is left supported if add LA is contravariantly finite, and
dually right supported if add RA is covariantly finite. For instance, any hered-
itary algebra is trivially left and right supported.

In what follows, we mainly focus on left supported algebras, instead of right
supported algebras, and leave the primal-dual translation to the reader.

When dealing with left supported algebras, the Ext-injective modules in
add LA play a prominent role since they determine whether the algebra is left
supported or not. Recall that a module M ∈ LA is Ext-injective in add LA

if Ext1A(N,M) = 0 for each N ∈ LA, or equivalently if τ −1M /∈ LA. Then, by
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[ACT04, (3.1)], the class E of indecomposable Ext-injective modules in LA is
the union of two disjoint subclasses:

E1 = {M ∈ LA : there exists an injective I in indA and a path I � M },

E2 = {M ∈ LA\E1 : there exists a projective P ∈ indA\LA and a
sectional path P � τ −1M }.

Hence, E = E1 ∪ E2 and we denote by E (or E1, or E2) the direct sum of all
indecomposable A-modules lying in E (or E1, or E2 respectively). We also
denote by F the direct sum of a full set of representatives of the isomorphism
classes of indecomposable projective A-modules not lying in LA. We let L =
E ⊕ F and U = E1 ⊕ τ −1E2 ⊕ F . With these notations, we have the following
reformulation of [ACT04, (3.3), (4.2)] and [ACPT07, (5.4)].

Theorem 4.3. An algebra A is left supported if and only if L is a tilting
A-module, and this occurs if and only if U is a tilting A-module.

As we will see, any cluster-tilted algebra is left supported, and so the above
provides canonical tilting modules, whose endomorphism algebras will turn
out to be again cluster-tilted. For instance, in the easiest (but unfortunately
degenerate and not interesting) case where LA = ∅, we get the trivial tilting
module L = U = A, whose endomorphism algebra is obviously cluster-tilted.
Notice that we often get LA �= ∅. In fact, it is easily verified that for an
algebra A, we have LA �= ∅ if and only if the ordinary quiver of A has a sink.

5. Special tilting modules

In this section, we prove Theorem 3. This is made in several steps. We
start by proving that any cluster-tilted is left (and right) supported.

5.1. Cluster-tilted algebras are left supported. Let A be a cluster-
tilted algebra. If A is hereditary, then add LA = modA, and so A is trivially
left (and dually right) supported. Our first aim is to show that this property
still holds for cluster-tilted not hereditary algebras. We need the following
lemma.

Lemma 5.1. Let CH be a cluster category, T be a tilting object in CH and
A = EndCH

(T )op. Assume that A is not hereditary. Then any connected
component of the AR-quiver of A either contains no projective modules and
no injective modules, or contains at least one projective module and at least
one injective module.

Proof. Let ΓA denote the AR-quiver of A. Let P be an indecomposable
projective A-module and Γ be the connected component of ΓA containing P .
Also, let Σ be the maximal full, connected and convex subquiver of Γ con-
taining only indecomposable projective modules, including P . Since A is not
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hereditary, it follows from the shape of the AR-quivers of cluster-tilted alge-
bras that Σ has less vertices then the number of τ -orbits in Γ. Hence, there
exists P ′ in Σ together with an irreducible morphism M P ′ in Γ, where
M is indecomposable not projective. By construction, M belongs to Γ. Let
T ′ be the indecomposable direct summand of T such that HT (T ′) = P ′. In
CH , we have the following diagram of irreducible morphisms

τ2T ′ τT ′ T ′.

H −1
T (τM) E1 H −1

T (M)

En

Since M is not projective, we have τM �= 0. Then n ≥ 1 and there is in
Γ an irreducible morphism from the indecomposable injective A-module I =
HT (τ2T ′) to τM . Hence, Γ contains at least one injective module. Dually, any
connected component containing an injective module also contains a projective
module. �

Proposition 5.2. Let A be a cluster-tilted not hereditary algebra. Then
LA and RA are finite sets. In particular, A is left and right supported.

Proof. Assume that LA �= ∅. Since LA is closed under predecessors, LA

contains projective modules. Let P be such a module. By [CL02, (1.1)] and
Lemma 5.1, there exists an integer m ≥ 0 such that τ −mP is a successor of an
injective module. Let m be minimal for this property. Then, by Lemma 4.1,
we have τ −m−1P /∈ LA and so τ −mP ∈ E . Since this holds for any projective
in LA, this shows that A is left supported by [ACT04, (3.3)], and that LA is
finite by [ACT04, (5.4)]. Dually, RA is finite. �

As a consequence, we get a straightforward characterization of the cluster-
tilted algebras which are laura. Recall from [AC03] that an algebra A is laura
provided the set indA \ (LA ∪ RA) is finite.

Corollary 5.3. A cluster-tilted algebra is laura if and only if it is hered-
itary or representation finite.

Example 5.4. Let A be the cluster-tilted algebra (of type A8) given by
the quiver

•
β

• • • • •
α

•
γ

• •

with the relations αβ = 0, βγ = 0 and γα = 0. Its AR-quiver is given in
Figure 1, in which the projective modules are identified with circles and the
injective modules are identified with squares. The left part LA has two clearly
identified connected components, that one can compute using Lemma 4.1.
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Figure 1. AR-quiver of the algebra of Example 5.4.

Both ends are identified along the vertical dotted lines, in the inverse order like
a Mobiüs band. Finally, the black diamonds represent the (indecomposable)
Ext-injective modules in add LA.

Definition 5.5. Let A be an artin algebra and P denote the direct sum of
all indecomposable projective modules in LA. The algebra Aλ = EndA(P )op

is called the left support algebra of A.

In [ACT04], [Sko03], the left support algebra was studied and shown to be
a direct product of quasitilted algebras, hence not connected in general. In
Example 5.4, one can observe that Aλ is a direct product of (two) hereditary
algebras, and also that E1 = ∅ since, equivalently, LA contains no injective
module. Also, the left part is given by the modules which are not successors
of any injective module. This is not a coincidence as the following results
show.

Proposition 5.6. Let A be a Gorenstein algebra of Gorenstein dimension
at most one. The left support algebra Aλ is a direct product of hereditary
algebras.

Proof. Since LA ⊆ modAλ by [ACT04], it suffices to show that if P is a pro-
jective module in LA and M P is an irreducible morphism, then M is pro-
jective. If M is not projective, then τM �= 0, and thus HomA(τ −1(τM), P ) �= 0.
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By Lemma 2.1, this gives idA τM > 1. The Gorenstein property then implies
pdA τM > 1 (see Section 1.4), a contradiction to τM ∈ add LA. Thus, M is
projective. �

Corollary 5.7. Let CH be a cluster category, T be a tilting object in CH

and A = EndCH
(T )op. If A is not hereditary, then E1 = ∅.

Proof. We first show that if I ′ is an injective module in LA and f : I ′ M
is an irreducible morphism, with M indecomposable, then M ∈ LA. Indeed,
assume that M /∈ LA. Then τM is Ext-injective in LA and τM ∈ E1 ∪ E2

(observe that M is not projective otherwise f would be an isomorphism).
If M ∈ E1, then there exists an injective module I ′ ′ in LA together with a
path I ′ ′ = N0 · · · Nm = τM I ′ in LA. Now, since Aλ is hereditary
by Proposition 5.6, τM is injective, and so M = 0, a contradiction. Hence,
τM ∈ E2. Then, there exists an indecomposable projective module P /∈ LA

and a sectional path δ : P � M . Let T ′ be the direct summand of T such that
HT (T ′) = P and T ′ ′ be the direct summand of T such that HT (T ′ ′[2]) = I ′.
Then, lifting the path δ in CH , and using the fact that δ does not factor
through I ′ (since I ′ ∈ LA), yields a sectional (thus nonzero) path from T ′ to
T ′ ′[1], a contradiction to HomCH

(T,T [1]) �= 0. Therefore M ∈ LA.
Now, assume that I is an injective module in LA. Let Γ be the connected

component of the AR-quiver of A containing I and Σ be the maximal full,
connected and convex subquiver of Γ containing only indecomposable injective
modules, including I . Observe that since LA is closed under predecessors, and
in view of the first part of the proof, any injective module in Σ lies in LA.
Now, dualizing the arguments in the proof of Lemma 5.1 yields an injective
module I ′ in Σ together with an irreducible morphism I ′ M , where M is
not injective. But since I ′ ∈ LA, we get M ∈ LA by the first part of the proof,
a contradiction to the fact that Aλ is a direct product of hereditary algebras
(since M is not injective). �

Thus, the left part of a cluster-tilted not hereditary algebra contains no
injective modules. We get the following easy consequence of Lemma 4.1.

Corollary 5.8. Let A be a cluster-tilted algebra. If A is not hereditary,
then

LA = {M ∈ indA : M is not a successor of an injective module},

RA = {M ∈ indA : M is not a predecessor of a projective module}.

The following lemma, whose proof follows directly from the above corollary,
will be useful in the next section.

Lemma 5.9. Let CH be a cluster category, T be a tilting object in CH and
A = EndCH

(T )op. The functor HomCH
(T, −) induces an equivalence

LT LA , where LT is the set of all indecomposable objects M in CH \
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addT [1] such that if there exists a path from an indecomposable object
in addT [2] to M , then (at least one morphism in) this path factors through
addT [1].

Proposition 5.6 has another nice direct consequence.

Corollary 5.10. Let A be a Gorenstein algebra of Gorenstein dimension
at most one. Then A is hereditary if and only if A ∈ add LA, and this occurs
if and only if A is quasitilted (see [HRS96, (II.1.14)]).

5.2. Endomorphism algebras of LA-slices. Here, we introduce the con-
cept of LA-slices and show that if A is cluster-tilted, then these LA-slices
induce tilting modules whose endomorphism algebras are again cluster-tilted.

We first recall the following definition.

Definition 5.11. Let (Γ, τ) be a connected translation quiver. A con-
nected full subquiver Σ of Γ is a section in Γ if:
(S1) Σ is acyclic;
(S2) For each x ∈ Γ, there exists a unique n ∈ Z such that τnx ∈ Σ;
(S3) Σ is convex in Γ.
In case Γ is a connected component of the AR-quiver of an algebra A, then a
section Σ is called a complete slice provided it is faithful and HomA(X,τY ) = 0
for each X,Y ∈ Σ.

The well-known criterion of Liu and Skowroński (see [ASS06, (VIII.5.6)]
for instance) asserts that an algebra A is tilted if and only if its AR-quiver
has a connected component containing a complete slice.

By [ACT04, Theorem B], an algebra A is left supported if and only if each
connected component of Aλ is a tilted algebra and the restriction of E (see
Section 4.3) to this component is a complete slice. Since, by construction, we
have LA ⊆ modAλ ⊆ modA, this motivates the following definition.

Definition 5.12. Let A be an algebra and Aλ = A1 × · · · × Am be its left
support algebra. An LA-slice is a direct product S = S1 × · · · × Sm, with each
Si a complete slice in modAi ∩ LA.

Such LA-slices do not always exist, for instance when A = Aλ is a qua-
sitilted not tilted algebra, or worse when LA = ∅. Here, we give two canonical
examples of LA-slices when A is cluster-tilted.

Example 5.13. Let A be a cluster-tilted algebra such that LA �= ∅.
(a) By Proposition 5.6, Aλ is a direct product of hereditary algebras. Then

the full subquiver generated by the set ΣP = {P1, . . . , Pn} of indecompos-
able projective modules in LA is an LA-slice.

(b) By Proposition 5.2, A is left supported. Hence, by [ACT04, Theorem B],
the direct sum E of the indecomposable Ext-injective modules in add LA

is an LA-slice (compare with Example 5.4).
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Clearly, these two examples are extremal, in the sense that any LA-slice
lies between these two. Moreover, we get the following lemma.

Lemma 5.14. Let A be a cluster-tilted not hereditary algebra. Let ΣP be
the LA-slice generated by the projective modules in LA. Then any LA-slice Σ
can be reached from ΣP by a finite number of almost split exchanges.

Proof. Let Σ be an LA-slice and P1, . . . , Pn be the vertices of ΣP . Assume
that ΣP has a source Pi which is not in Σ. Then replacing in ΣP the module Pi

by τ −1Pi, and all arrows Pi Pj by their corresponding arrows Pj τ −1Pi

yields a new LA-slice Σ′
P . By iterating this procedure and invoking that LA is

finite by Proposition 5.2, we get after finitely many steps the LA-slice Σ. �

Clearly, by using the above procedure, the number of needed almost split
exchanges to reach the LA-slice Σ is uniquely determined. Indeed, if Σ =
{M1, . . . ,Mn} with Mi = τ −tiPi for each i, then the number of required ex-
changes is given by tΣ =

∑n
i=1 ti. In particular, when Σ = E (see Section 4.3),

then tΣ = | LA| − n, where n denotes the number of indecomposable projective
modules in LA.

We can now prove Theorem 3.

Theorem 3. Let CH be a cluster category, T be a tilting object in CH and
A be the cluster-tilted algebra EndCH

(T )op. Assume that A is not hereditary
and let Σ be an LA-slice. Also, let F =

⊕m
i=1 Pi denote the direct sum of all

indecomposable projective modules not in LA. Then

(a) TΣ = Σ ⊕ F is a tilting A-module;
(b) The algebra AΣ = EndA(TΣ)op is isomorphic to EndCH

(H −1
T (TΣ))op, in

particular AΣ is cluster-tilted;
(c) The quiver of AΣ is obtained from that of A with a finite number of

reflections at sinks.

Proof. (a) We prove a more general fact. Let n be the number of in-
decomposable projective modules in LA and M1, . . . ,Mn be A-modules in
LA(⊆ modAλ) such that HomAλ

(Mi, τMj) = 0 for all i, j. Since LA is closed
under predecessors, we get 0 = HomA(Mi, τMj) = Ext1A(Mj ,Mi) for all i, j.
Let Σ =

⊕n
i=1 Mi and TΣ = M ⊕ F . Then Ext1A(Σ, F ) ∼= D HomA(F, τΣ) = 0,

and since pdA TΣ ≤ 1 by construction, TΣ is a tilting A-module.
(b) By Theorem 1, H −1

T (TΣ) is a tilting object in CH . So EndCH
(H −1

T (TΣ))op

is cluster-tilted. In view of the equivalence HT : CH/addT [1] modA , it
then suffices to show that no morphisms between two direct summands of
H −1

T (TΣ) in CH factors through addT [1]. We prove this by induction on
number tΣ of necessary almost split exchanges to reach Σ from the LA-slice
ΣP generated by the set of indecomposable projective modules in LA (see
Lemma 5.14).
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Let Σ = {M1, . . . ,Mn}. Also, let S1, . . . , Sn be the indecomposable objects
in CH such that HT (Si) = Mi for all i, and let T1, . . . , Tm be the indecom-
posable direct summands of T corresponding to the indecomposable direct
summands P1, . . . , Pm of F , that is HT (Tj) = Pj for all j. In other words,

H −1
T (TΣ) =

(
n⊕

i=1

Si

)
⊕

(
m⊕

j=1

Tj

)
.

If tΣ = 0, then Σ = ΣP and H −1
T (TΣ) = T . The claim then follows from

HomCH
(T,T [1]) = 0. Assume that tΣ > 0. Since each connected component

of Σ is acyclic, Σ contains some sinks. Also, since Aλ is hereditary, some of
these sinks are not projective. Assume that M1 is a nonprojective sink in Σ
and consider the LA-slice Σ′ obtained by replacing in Σ the module M1 by
τM1 and all arrows Mi M1 by their corresponding arrows τM1 Mi .
So Σ′ = {τM1,M2, . . . ,Mn}. We have tΣ′ < tΣ, and thus, by induction, no
morphisms between two direct summands of

H −1
T (TΣ′ ) = H −1

T (Σ′) ⊕ H −1
T (F ) = (τS1 ⊕ S2 ⊕ · · · ⊕ Sn) ⊕

(
m⊕

j=1

Tj

)

in CH factors through addT [1].
To prove our claim, we then have to show that no morphisms in one of the

Hom-spaces: (i) HomCH
(S1, Si), (ii) HomCH

(Si, S1), (iii) HomCH
(S1, Tj), and

(iv) HomCH
(Tj , S1), for 1 ≤ i ≤ n and 1 ≤ j ≤ m, factors through addT [1].

(i) For each i = 2, . . . , n, we have HomCH
(S1, Si) ∼= HomCH

(τS1, τSi) = 0 be-
cause H −1

T (TΣ′ ) is a tilting object in CH . This is sufficient. The case
i = 1 is proven in (ii).

(ii) Let i ∈ {1,2, . . . , n} and f : Si S1 be a nonzero morphism. If f is an
isomorphism, then i = 1 and f does not factor through addT [1] since
HT (S1) = M1 �= 0. Assume now that f is not an isomorphism and let

τCH
S1

g
q⊕

k=1

S1,k
h

S1 τCH
S1[1]

be the almost split triangle ending at S1. Observe that since M1 is a
sink in Σ, it follows from the construction of Σ by ΣP (see Lemma 5.14)
that S1,k is a vertex in H −1

T (Σ) ∩ H −1
T (Σ′) for each k. Since f is not

an isomorphism, it factors through h, namely there exists a nonzero
morphism f ′ : Si

⊕q
k=1 S1,k such that f = hf ′. Now, assume that

f factors through addT [1]. Then so does f ′. Let

f ′ ′ =

{
f ′h, if i = 1,

f ′, if i ∈ {2, . . . , n}.
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In any case, f ′ ′ is a nonzero morphism in add H −1
T (TΣ′ ) factoring through

addT [1], a contradiction to the induction hypothesis. Hence, f does not
factor through addT [1].

(iii) For j = 1, . . . ,m, we have HomCH
(S1, Tj) ∼= HomCH

(τS1, τTj) = 0 because
TΣ′ is a tilting object in CH . This is sufficient.

(iv) Finally, since HomCH
(T,T [1]) = 0, no morphisms from some Tj to S1

factors through addT [1].
Consequently, EndA(TΣ)op ∼= EndCH

(H −1
T (TΣ))op is cluster-tilted.

(c) We first recall a general fact: let A = EndCH
(T )op be a cluster-tilted

algebra. Also, let T = T ⊕ M , with M indecomposable, and M ∗ be the other
complement for T . Finally, let T ∗ = T ⊕ M ∗ and A∗ = EndCH

(T ∗)op. By a
result of Buan, Marsh and Reiten [BMR08] the quivers QA of A and QA∗

of A∗ are related by the quiver mutation formula of Fomin and Zelevinsky.
In particular, when M corresponds to a sink in QA, then QA∗ is obtained
from QA by performing a reflection at this sink.

In our case, because Aλ is hereditary, each almost split exchange performed
in the proof of Lemma 5.14 (in order to reach Σ from ΣP ) coincides in CH with
an almost split exchange of an indecomposable direct summand M of a certain
tilting object, say TΣ′ = TΣ′ ⊕ M , by the other complement M ∗ = τ −1M of
TΣ′ (see Remark 1.2). Moreover, M corresponds to a sink in the quiver
associated with EndA(TΣ′ )op ∼= EndCH

(H −1
T (TΣ′ ))op. Therefore, by [BMR08],

this almost split exchange coincides with a reflection at a sink in the quiver
of EndA(TΣ′ )op. Now, since, in the notations of (b), AΣP

= A and Σ can be
reached from ΣP with tΣ almost split exchanges, this means that the quiver of
AΣ can be obtained from that of A by performing tΣ reflections at sinks. �

Recall from Theorem 4.3 that A is left supported if and only if the A-
modules L = E ⊕ F and U = E1 ⊕ E2 ⊕ F are tilting modules. Since L is
induced by the Ext-injective modules in add LA, it follows from the above
theorem that EndA(L)op is cluster-tilted. We now show that the same holds
for EndA(U)op although U does not arise from an LA-slice. At this point, we
stress that since E1 = 0 by Corollary 5.7, we have U = τ −1E2 ⊕ F = τ −1E ⊕ F .

We need the following lemma (compare with Example 5.4).

Lemma 5.15. Let A be an algebra and E be the set of all indecomposable
Ext-injective modules in add LA. If M is a source in E and f : M N is an
irreducible morphism, with N indecomposable, then N ∈ E or N is projective.

Proof. Indeed, if N /∈ E and N is not projective, then τN exists and belongs
to LA (since it is a predecessor of M ). Moreover, N /∈ E implies N /∈ LA since
E is closed under successors in LA by [ACT04, (3.4)]. So τN ∈ E . But this
contradicts the fact that M is a source in E . So N ∈ E or N is projective. �

Proposition 5.16. Let A be a cluster-tilted algebra which is not hereditary
and U = τ −1E ⊕ F be as above. Then,
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(a) U is a tilting A-module;
(b) The algebra AU = EndA(U)op is isomorphic to EndCH

(H −1
T (U))op, in par-

ticular AU is cluster-tilted;
(c) The quiver of AU is obtained from that of A with | LA| reflections at sinks.

Proof. (a) This follows from Theorem 4.3.
(b) and (c) By Theorem 1, H −1

T (U) is a tilting object in CH . Also, by con-
tinuing the procedure in the proof of Lemma 5.14, τ −1E is obtained from E by
performing n almost split exchanges in modA, where n denotes the number of
projective modules in LA. By Lemma 5.15 and Remark 1.2, these exchanges
correspond in CH to (almost split) exchanges of tilting object. So, the quiver
of EndCH

(H −1
T (U))op is obtained from that of EndCH

(H −1
T (L))op with n re-

flections at sinks. Since, by Theorem 3, the quiver of EndCH
(H −1

T (L))op is ob-
tained from that of A with | LA| − n reflections at sinks, this proves (c). Also,
as in the proof of Theorem 3, one can show by induction that EndA(U)op ∼=
EndCH

(H −1
T (U))op, proving (b). �

Example 5.17. Let A be the cluster-tilted not hereditary algebra of Exam-
ple 5.4. Let E be the direct sum of the indecomposable Ext-injective modules
in add LA (those identified with black diamonds) and F be the direct sum of
the three indecomposable projective modules not lying in LA. As usual, let
L = E ⊕ F and U = τ −1E ⊕ F .
(a) The algebra EndA(L)op is the cluster-tilted algebra given by the quiver

•
β

• • • • •
α

•
γ

• •

with the relations αβ = 0, βγ = 0 and γα = 0.
(b) The algebra EndA(U)op is the cluster-tilted algebra given by the quiver

•
β

• • • • •
α

•
γ

• •

with the relations αβ = 0, βγ = 0 and γα = 0.

In the above example, one can observe that the quiver of the algebra AU =
EndA(U)op has no sinks, meaning that LAU

= ∅.
This phenomenon is explained by the following results, whose straightfor-

ward, but tedious proofs are left to the reader. Here, the notation LT refers to
the subcategory of CH introduced in Lemma 5.9 and RT refers to its analogue
for the right part.

Proposition 5.18. Let CH be a cluster category, T be a tilting object in
CH and A = EndCH

(T )op be cluster-tilted not hereditary. Assume that Σ =
{M1, . . . ,Mn} is an LA-slice having a source M1 such that τ −1M1 ∈ LA. Let
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Σ′ = {τ −1M1,M2, . . . ,Mn} be the LA-slice obtained from Σ by performing
an almost split exchange at M1. Let TΣ = Σ ⊕ F and TΣ′ = Σ′ ⊕ F . Then,
in CH :
(a) L H−1

T (TΣ′ ) = L H−1
T (TΣ) \ { H −1

T (M1)}.
(b) RH−1

T (TΣ′ ) = R H−1
T (TΣ) ∪ { H −1

T (τM1)}.

In particular, | L H−1
T (TΣ′ )| + | R H−1

T (TΣ′ )| = | L H−1
T (TΣ)| + | R H−1

T (TΣ)|.

Corollary 5.19. Let CH be a cluster category, T be a tilting object in
CH and A = EndCH

(T )op. Assume that A is not hereditary and let ΣP =
{P1, . . . , Pn} be the LA-slice generated by the indecomposable projective mod-
ules in LA. Also, let Σ be an LA-slice or τ −1E, and assume that Σ can be
reached from ΣP with tΣ almost split exchanges (as in Lemma 5.14). Finally,
let TΣ = Σ ⊕ F .
(a) | L H−1

T (TΣ)| = | LT | − tΣ.
(b) | RH−1

T (TΣ)| = | RT | + tΣ.

In particular, for U = τ −1E ⊕ F , we get | L H−1
T (U)| = 0 and | RH−1

T (U)| = | RT | +
| LT |.
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