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THREE-STAR PERMUTATION GROUPS

PETER M. NEUMANN AND CHERYL E. PRAEGER

To the memory of Reinhold and Marianne Baer

ABSTRACT. A permutation group is a three-star group if it induces a
non-trivial group on each 3-element subset of points. Our main re-
sults are that a primitive three-star group is generously transitive and
that a finite primitive three-star group has rank at most 3, that is, a
stabiliser has at most 3 orbits. We also describe the structure of an
arbitrary (non-primitive) three-star group and give a collection of ex-
amples. In particular, we sketch a construction of infinite primitive
three-star groups of arbitrarily high rank.

1. Introduction

A permutation group G acting on a set 2 will be said to be a three-star
group if it has the following property: for every 3-subset © of 2 the permu-
tation group G®© induced on © by its setwise stabiliser G{ey is non-trivial.
Praeger and Schneider [5] came across this condition in a study of overgroups
of finite permutation groups that have a transitive minimal normal subgroup.

To exclude trivialities we assume throughout that || > 3. In [4] a group G
was defined to be generously k-transitive if G® = Sym(0) for all (k+1)-subsets
O of Q and almost generously k-transitive if G© > Alt(0) for all (k+1)-subsets
O of . In particular, an almost generously 2-transitive group is a three-star
group. It was shown in [4] that an almost generously 2-transitive group is (as
the terminology suggests) doubly transitive. So strong a conclusion cannot
be expected with the weaker hypothesis treated here. Nevertheless, we find
that the three-star condition is quite strong. Our main theorems are that a
primitive three-star group is generously transitive and that a finite primitive
three-star group has rank at most 3—that is to say, a stabiliser has at most 3
orbits in 2. The proofs of these facts are given in Section 2 below. In Section 3
we consider the structure of an arbitrary (non-primitive) three-star group and
describe a range of examples. In particular, we sketch a construction of infinite
primitive three-star groups of arbitrarily high rank.
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2. Primitive three-star groups

In this section we focus on primitive three-star groups. This is, of course,
a significant restriction. However, there is quite a strong sense in which the
study of arbitrary three-star groups may be reduced to the study of primitive
ones. We will return to this point in Section 3 below.

Some general theory of permutation groups is needed for the statement
and proof of our results. Recall (see, for example, [2, §3.2]) that for a group
G acting on a set {2 the orbitals are the orbits of G in Q x Q. When G is
transitive these are in one-one correspondence with the suborbits, that is to
say, the orbits of a stabiliser G, for @ € Q. An orbital I' corresponds to
the suborbit I'(«), where I'(a) := {w € Q| (a,w) € I'}; the so-called trivial
orbital {(w,w) | w € Q} corresponds to the trivial suborbit {a}. The number
of orbitals (or of suborbits) is known as the rank of G. Associated with an
orbital T' is its paired orbital I'* defined by I'* := {(w,w2) | (we2,w1) € T'}.
The orbital I is said to be self-paired if I' = I'*. This is the case if and only
if for any (w1, ws) € I there is a permutation in G that transposes wy and wo;
therefore G is generously transitive if and only if all orbitals are self-paired.
For subsets T', A of Q2 we define

FoA:={(w,w) €| FweN): (wi,w) €T and (w,ws) € A}.

If T', A are orbitals then T'o A will be a union of orbitals. Note that (ToA)* =
A*oT™ and that To (Ao ®) = (T'o A) o ®.

THEOREM 2.1.  With one exception a primitive three-star group is gener-
ously transitive. The exception is the alternating group Alt(3).

Proof. Let G be a primitive three-star group acting on the set 2, and
suppose that G is not generously transitive. Let I' be a non-self-paired orbital.
We claim that ' oT' = I'*. Choose (a,v) € T' o T'. By definition there exists
B € Q such that (o, 3) € T and (8,7) € I'. Now «a # v (T is not self-paired),
and so «, B, v are distinct. Let © := {a, 3,7} and T := G®. Since I is
not self-paired, T' contains neither of the transpositions (af3), (87). Nor
does it contain («+y) since a, v lie in different orbits of the stabiliser Gz. By
assumption, however, T # {1}, and therefore (a«3v) € T. It follows that
(v,a) €T, whence T'oT' =T'*. Then also I'* o T* =T

Now define A := I'oI'*. Then A = I'oI'o’ = I'"*oI', and so Aol = T'cA =T
As a binary relation A is reflexive and symmetric. It is also transitive because
AoA =AoTol™ =Tol™ = A. Thus A is a G-invariant equivalence relation
on ). Since G is primitive A is either the universal relation U or the trivial
relation E (equality). However, U o' = U # I, and so A # U. Therefore
A = E. Let 7,7 € T*(a). Then +" € A(7), whence v = /. Thus I'* has
subdegree 1. Similarly of course I' has subdegree 1. It follows immediately
that G = Alt(3).
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THEOREM 2.2. A finite primitive three-star group has rank at most 3.

Proof. Suppose that 2 and G are finite and that G acts as a primitive
three-star group on . Clearly we may assume that |Q] > 3, so that, by
what has just been proved, all orbitals are self-paired. An edge («, 3) of the
complete graph with vertex-set 2 will be said to be of colour I' (where T' is
an orbital) if (o, 5) € I'. Let T', A be distinct orbitals and let oo € Q. The
three-star condition implies that no triangle in © can have edges of three
different colours, and so all edges between points in I'(a) and points in A(«)
are coloured I" or A. Suppose that all such edges had the same colour, say
I. If B € I'(«) and v € A(B) then v ¢ A(a) and so the third edge (a,7) of
the triangle {«, 8, v} must have colour I'. Thus I'(a)) would be a union of
components of the graph (2, A), and this is impossible since G is primitive.
Therefore there are edges of both colours I' and A between I'(a) and A(«).
Thus for any ordered pair (I',A) of colours there are triangles with edges
coloured I, T, A. In particular, every orbital graph has diameter 2, and for
every I' there are edges of every colour, except possibly T itself, within I'(«).

We continue to focus on a point « of Q and distinct orbitals I'; A. Let ®
denote the merger of all the colours other than I' and A: that is, (2, @) is the
graph whose edge-set consists of all edges of the complete graph with colours
different from I and A. Let 71,72 € I'(«) and suppose that the edge (71, v2) is
coloured ®. For any § € A(«) the edges (71, 6) and (72, ) have colour I" or A.
Since the triangle (v1,72,d) cannot have three differently coloured edges, the
colours of (71,0) and (72,0) must be the same. It follows that if T'y, ..., I,
are the components of the ®-graph with vertex-set I'(a), and if § € A(a),
then all edges from vertices in I'; to d have the same colour. Interchanging
the roles played by ' and A, we see that if Ay, ..., Ay are the components
of the ®-graph with vertex-set A(«) then all edges between a component I';
and a component A; have the same colour.

Suppose the ®-graph with vertex-set I'(«) were connected. Then all edges
between points of I'(«) and a given point 6 € A(«) would be the same colour.
Since G, acts transitively on A(«) it would follow that all edges between
points of I'(a)) and points of A(«) would be the same colour. This is not
the case (see above) and therefore the ®-graph with vertex-set I'(«) is not
connected, that is, ¢ > 1. Similarly, the ®-graph with vertex-set A(«) is not
connected, that is, d > 1.

If there is a A-coloured edge (y1,72) with v1 € T’y and 45 € I's then we
shall say that A dominates I'. Suppose for the moment that this is the case.
If v1 € Ty and (y1,7;) € ® then the edge (y],72) must also be coloured A.
It follows that all edges from points of I'y to = are coloured A, and then
that all edges between points of I'y and points of I's are coloured A. Thus
if A dominates I' then the A-components of I'(«) are proper unions of ®-
components I';; if A does not dominate I' then of course the ®-components
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I; are (@ U A)-components in I'(«). If A dominates I' then for every other
orbital A’ the A-components of T'(«) are proper unions of A’-components,
and therefore A’ cannot dominate I' since the A’-components of I'(«) are
then not unions of A-components. Clearly therefore, for an orbital I'; at most
one orbital A can dominate T'.

Since G, acts transitively on I'(«) all the ®-components I'; of I'(«) have
the same size, say a. Similarly, all the ®-components A; of A(a) have the
same size, say b. Suppose that a < b. Let v € T'; and consider the set
A(7y). We know that A(y) C I'(a) U A(«), and A(y) N A(e) is a union of
some but not all of the ®-components A; of A(a). Let na := |A(a)|. Then
|IA(y) NA(a)] < na —band so |A(y) NT'(«)] = b. It follows that A(y) NT'(«)
cannot be contained in the ®-component I'y, and so A dominates I'. Of
course if b < a then we find that I" dominates A. Thus, of any two orbitals,
one dominates the other.

Now let 7 be the rank of G and let k := r—1. By what has just been proved
there are at least (];) ordered pairs (I'; A) of non-trivial orbitals in which A
dominates I'. On the other hand, for each I' there is at most one orbital A
that dominates I' and therefore there are at most k£ such pairs. Thus (’;) <k
and so k < 3.

Suppose that £k = 3. Let I', A, ® be the non-trivial orbitals and let ar
be the size of the ®-components in I'(a), aa the size of the I'-components in
A(a), and ag the size of the A-components in ®(«). Let ng be the valency
of the graph (Q,®), so that ng = |®(«)|. Consider ®(w), where w € T'(a).
If I'y is the ®-component of I'(a) containing w then ®(w) = (®(w) NTy) U
(®(w) N ®(a)). Now ®(w) NIy € Ty \ {w} and so [®(w) NTy| < ap — 1.
Also, ®(w) N ®(«) is a union of some but not all of the A-components in
& (), and so |P(w) N ®(a)| < ne — agp. Therefore ng < (ar — 1) + (ne — ag)
and so ap < ar — 1. Similarly, considering I'(w) for w € A(a) we find that
ar < ap — 1 and considering A(w) for w € ®(«) we find that an < ag — 1.
These inequalities imply that a¢ < ae — 3, which is absurd. It follows that
k < 2 and so the rank of GG is at most 3, as our theorem states.

3. Commentary

There is quite a strong sense in which the study of arbitrary three-star
groups may be reduced to that of primitive three-star groups. First, we have
the following:

OBSERVATION 3.1. If G is an intransitive three-star group then it has
ezactly two orbits Q1 and Qs. Moreover, G acts as a three-star group on each
of Q1, Qa, and, as G-spaces, 1, Qs are strongly orthogonal in the sense that
for wi € Qq the stabiliser G, is generously transitive on Qo and for wy € Qo
the stabiliser Gy, is generously transitive on ;.
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Proof. If there were three or more orbits then there would be a triple
consisting of points from different orbits, and its stabiliser would act trivially
on it, contrary to assumption. Thus, given that G is intransitive, there are
just two orbits 1, 9. The fact that G acts as a three-star group on each of
01, Qs is clear. Consider any point wy; € €; and any pair {«, 8} of points
from 5. Since the stabiliser of the triple {w1, o, 8} is non-trivial G contains
a permutation fixing w; and interchanging «, 3. Therefore G, is generously
transitive on 5. And of course, similarly, for we € 9, G, is generously
transitive on €.

OBSERVATION 3.2.  Suppose that G is a three-star group which is transitive
but imprimitive on Q. Let p be a non-trivial proper G-congruence on 2, let T’
be a p-class in Q, let A :=Q/p, let C := G*, the group induced on T by its
setwise stabiliser in G, and let D := G®. Then C is a three-star group on T
and D is a three-star group on A. Moreover, C is generously transitive on T.

Conversely, if C is a generously transitive three-star group on the set T,
and D is a three-star group on the set A, then the wreath product C Wr D is
a three-star group in its natural imprimitive representation on I' X A.

Since the proof is routine we leave it to the interested reader. Note that
here we should permit the possibility that |T'| = 2 and C = Sym(T") or that
|A| =2 and D = Sym(A).

We have not sought to compile a systematic catalogue of primitive three-
star groups, but we do not think that would be a very difficult project. There
are several interesting families of examples. As has already been observed,
any almost generously 2-transitive group is a three-star group. Many of the
finite 2-transitive groups are almost generously 2-transitive; the only ones
that are not are those contained in affine groups AT'L(d, q) for ¢ > 5 and the
almost simple groups whose socle is a Suzuki group Sz(q), where ¢ = 22m+!
and m > 1, or a Ree group Ree(q) where ¢ = 32"+! and m > 1. It is not
hard to see that the Suzuki and Ree groups are not three-star groups. Some
of the affine groups that are not almost generously 2-transitive are three-star
groups, however.

ExaMPLE 3.3. The affine groups AGL(d, 5) are three-star groups.

Proof. Let © be a triple of points of the affine space AG(d,5) and let
G = AGL(d,5). If © consists of non-collinear points then G® = Sym(0)
and so certainly G® # {1}. If © is a collinear triple then, as is not hard to
see, it is equivalent under affine transformations to the triple {0, 1, 4} or to
the triple {0, 2, 3} in an affine line in AG(d,5). Both of these triples admit
involutions, so G® # {1}.

There are several families of primitive three-star groups of rank 3.



450 PETER M. NEUMANN AND CHERYL E. PRAEGER

EXAMPLE 3.4. Let G := Sym(m) where m > 3, and let Q := m{2}, the
set of pairs from {1, ..., m}. In its natural action on , G is a primitive
three-star group of rank 3.

Proof. That G is primitive on €2 is well known and easy to prove. Define

01 == {{1,2}, {1,3}, {2, 3}},
0, = {{1,2}, {1,3}, {1, 4}},
03 := {{1,2}, {2,3}, {3, 4}},
04 :={{1,2}, {2,3}, {4, 5}},
05 := {{1,2}, {3,4}, {5, 6}}.

Any triple of unordered pairs is equivalent to one of these five, and for each
of these five it is easy to see that G© # {1}.

ExaMmPLE 3.5. Let H be a group acting generously 2-transitively on a set
[ of size > 3. If G := H Wr Sym(2) and Q := I'?, then G is a primitive
three-star group of rank 3.

Proof. As in the previous example, that G is primitive on € is well known
and easy to prove. Let a1, as, as be distinct points of I' and define

01 := {(a1, 1), (a2, x2), (a3, as)},
0 = { (o, 1), (az,a2), (az,a3)},
O3 1= { (o1, ), (a1,02), (a1, a3)},
04 = {(an, o), (@, @2), (a2, 01)} -

Any triple of ordered pairs is equivalent to one of these four, and for each of
these four it is easy to see that G # {1}.

ExaMPLE 3.6. Let @ be a non-degenerate quadratic form on the vector
space  of dimension 2m over the field Fy and let G := AO(2m, 2), the group
generated by translations and orthogonal transformations of €2 with respect
to Q. Then G is a primitive three-star group of rank 3.

Proof. Triples © are triangles in the affine space Q0 with side-lengths
{0, 0, 0}, {0, 0, 1}, {0, 1, 1}, or {1, 1, 1}. In each case G® # {1}.

EXAMPLE 3.7. Let @ be a non-degenerate quadratic form on the vector
space  of dimension d over the field F3 and let G := AGO(d, 3), the group
generated by translations and transformations of ) that preserve @ up to
scalar multiplication. Then G is a primitive three-star group of rank 3.
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Proof. Triples © are of the following kinds. First, there are triples {«, 3,7}
forming a line of the affine space 2. For these G® = Sym(©). Secondly, there
are triangles in the affine space 2. Triangles can have side-lengths a, b, ¢, each
of which can be 0, 1 or 2 (in F3). It is easy to see that if two side-lengths are
the same then G© # {1}. If the side-lengths are all different then the triangle
is equivalent to {0, u, w}, where Q(u) = 1, Q(w) = 2 and Q(u—w) = 0. Now
there is a linear transformation T' € GO(Q) for which Q(Tv) = 2Q(v) for all
v €  and which interchanges u and w. Thus in all cases G© # {1}.

The situation is different for infinite permutation groups. Although The-
orem 2.1 does not require finiteness of G or €2, so that an infinite primitive
three-star group is generously transitive, Theorem 2.2 fails without the finite-
ness assumption.

OBSERVATION 3.8. There are infinite primitive three-star groups of arbi-
trary rank.

Proof. We confine ourselves to a sketch of the construction. It is based
on the theory of C-relations and C-sets propounded in [1]. Let (£2,C) be the
C-set whose chains are isomorphic to (Z, <) and whose branching number
is s (the value of s is irrelevant, as it happens). The construction of such
a C-set is described on page 43 of [1]—take @)y there to be Z with a least
element adjoined. In slightly different terms, 2 may be taken to be the set
of doubly infinite sequences (g;)icz, where ¢; € {0, 1, ..., s — 1}, and which
are of finite support in the sense that there exists n € N such that ¢; = 0
when |i| > n. Let W be the wreath power Wr (Sym(s))Z defined by Philip
Hall in [3] as a subgroup of Sym(€). Let m > 1. The infinite cyclic group
Z acts by translation through m on Z, that is, with its generator acting as
i +— i+ m. This extends in a natural way to an action of Z on 2, and then
Z, as subgroup of Sym({Q2), normalises W. Let G := W.Z < Sym(Q). It is
not hard to see that the only W-invariant equivalence relations on 2 are the
relations p, (r € Z) defined by

(¢i))=(q) &= q=q, forali>r.

Since these are not Z-invariant G acts primitively on €. Also, the stabiliser

Gy of the 0-sequence is U.Z, where U := Wr (Sym(k — 1))Z. For any other
sequence (g;) define m((¢q;)) := max{i | ¢; # 0}. It is not hard to calculate
that non-zero sequences (g;), (¢;) are in the same Gop-orbit if and only if
m((¢:)) = m((¢})) (modm). Thus G has rank m+ 1. To see that G is a three-
star group consider three distinct elements a, 3, v of 2 and let © := {«, 3, 7}.
We may suppose that « is the O-sequence, 8 = (¢;) and v = (¢}). It is
not hard to calculate the following: if m((g;)) < m((q;)) then the setwise
stabiliser in G of © contains (and in fact is generated by) the transposition
(a8); if m((¢g:)) > m((¢})) then the setwise stabiliser in G of © contains the



452 PETER M. NEUMANN AND CHERYL E. PRAEGER

transposition (av); if m((¢;)) = m((¢j)) = j and g; = ¢j then the setwise
stabiliser in G of © contains the transposition (8+); if m((¢;)) = m((q})) =j
and g; # ¢; then G® = Sym(0).

To produce a primitive three-star group with infinite rank x one replaces
(Z, <) with a suitable linearly ordered set (@, <). All that is required is that
(Q, <) should admit an infinite cyclic group Z of automorphisms whose orbits
are co-initial and co-final in @ (that is, bounded neither below nor above in
Q) and that Z should have « orbits in Q.

FiNAL NOTE. The notion of three-star group has an obvious generalisa-
tion to that of k-star group for any k& > 2. It is not hard to see that the
infinite groups described in the proof of Observation 3.8 are k-star groups for
every finite k. For k£ > 3 we know little about finite primitive k-star groups
but we believe them to be rather rare. As it happens, however, Example 3.4
is a four-star group and a five-star group.
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