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ON THE CONVERGENCE OF MEASURABLE PROCESSES
AND PREDICTION PROCESSES

HIDEATSU TSUKAHARA

Dedicated to the memory of Catherine Doléans-Dade and Frank Knight

ABSTRACT. We study and characterize laws of measurable processes and
their convergence with general state space and parameter set. Using
those results, it is shown that convergence of the prediction processes
implies that of the given processes. We also give a simple condition for
convergence of the prediction processes when the given processes are
Markovian.

1. Introduction

We consider E-valued measurable processes on a o-finite measure space
(T, 7,v), where E is a metrizable Lusin space. They induce the laws on the
space Mg(T) of E-valued measurable functions on (T,.7,v). In Section 2,
we first study properties of probability measures on Mg(T) and characterize
them in terms of their finite-dimensional distributions. The notions of pseudo-
path and pseudo-law (Dellacherie and Meyer [4]) are closely related, and it is
proved that two measurable processes are almost equivalent if they induce the
same law on Mg(T). Furthermore, we remark that for measurable processes,
only the finite-dimensional convergence on a set of full measure is sufficient
for weak convergence in Mg (T) and that its converse in a sense also holds.
These are rather straightforward extensions of well-known results and detailed
proofs of the unproved results in Section 2 may be found in Tsukahara [14].

In Section 3, we apply the results obtained in Section 2 to the prediction
process (see Knight (1981, 1992)). The prediction process Z* of a given
measurable process X with law z on Mg(R ) is the process consisting of the
conditional distributions of the future of X given the past at each time t € R.
Our interest is in their convergence in law; specifically, we give an alternative
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proof of the fact that the convergence of the prediction processes is stronger
than that of the given processes. In the special case when the given processes
are all homogeneous Markov processes, we provide a simple condition on the
resolvents sufficient for the convergence of the associated prediction processes.

2. Laws of measurable processes

Let (T, 7, v) be a o-finite measure space and (E, d) a metric space. We set
& = B4(E), the Borel o-field on E generated by the d-open sets. Furthermore,
we denote by Mg(T, 7) the space of all .7 /& measurable E-valued functions
on T. We write z ~ y for x, y € Mg(T,.7) if v(t : z(t) # y(t)) = 0. Let
Mg(T,.7) = Mg(T,.7)/~ be the space of all equivalence classes of 7 /&
measurable functions.

Since (T, 7, v) is o-finite, there exists a finite measure A such that v < A
and A\(B) < v(B) for all B € .7. Suppose now that E is separable. A sequence
(wy,) converges in A-measure to w if and only if for every € > 0 and every
A € F with v(A) < co we have lim,, o v({d(wy,(t),w(t)) > e} N A) =0. For
v,w € Mg(T, ),

() 2 [ Tnd((o.w(e) A

defines a pseudo-metric on Mg(T,.7) and py-convergence is convergence in
A-measure. We write Mg(\) = (Mg(T,.7), pa) (pseudo-metric space). The
corresponding metric space ME(A) is defined in an obvious way. Denote by 7y
the topology induced by py. Dellacherie [3] showed that w,, converges to w in
A-measure if and only if [, f(wn(t)) A(dt) — [, f(w(t)) A(dt) for every f €
Cy(E) and every A € . Thus the topology 7 does not depend on the metric
d on E. Tt is well known that if (E,d) is a separable metric space and if .7 is
countably generated up to null sets, then Mg()) is separable. If in addition
(E,d) is complete, then Mg(A) is complete and separable (see, e.g., Kurtz [8]).
When we discuss weak convergence of probability measures on ME(A), it is
important, because of the Prohorov theorem, to find a compactness criterion
in Mg()). For this type of result, see Kurtz [8] for the case (T, 7,v) =
(Ry, B, m), where m is the Lebesgue measure, and Tsukahara [14] for the
case where T has group structure.

In the special case where (T, 7, v) = (R4, Z4+, m), where m is the Lebesgue
measure, let us write Ml = Mg (R4, £+, \), where Z, = (R ) and \(dt) =
e~tdt. It is shown in Knight [7] that if F is a metrizable Lusin space, M is
also a metrizable Lusin space. The following lemma, due to Knight [7] and
Kurtz [8], gives us a way of picking a function from each equivalence class in
a measurable fashion.

LEMMA 2.1. There ezists a B(Mg) ® B(R.)/&E measurable mapping G
from Mg x Ry into E such that G(w,e) € w for all w € M.
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Next, we discuss probability measures on M. Let X = (Xy)ieT be a
measurable process on (€2, .%, P) with values in (E,&). We assume until the
end of this section, unless otherwise stated, that [E is a metrizable Lusin
space. Since X is measurable, the paths Xo(w) belong to Mg(\) for each
w € Q. Let us denote by X (w) the equivalence class containing X, (w). If 7
is countably generated up to v-null sets, then it is easy to see that the mapping
w i X (w) is .Z/%(Mg()\)) measurable. Thus the mapping w — X (w) induces
a probability law on I\NAIE()\). Conversely, we have the following lemma, whose
proof is inspired by Skorokhod [12].

LEMMA 2.2.  Suppose that T s countably generated up to v-null sets.
Then for any Mg(\)-valued random variable X, there is a measurable process

X such that Xe(w) € X (w).

Proof. First let us assume E = [0, 1] and consider Mg 1; = Mg 1j(A) as a
subset of L2(T, .7, \). Since .7 is countably generated, L2(T, .7, \) is separa-
ble. Thus there exists a countable orthonormal basis (gj)jeN for L2(T, 7, \).
Pick a representative ¢; for each (Ej and fix these. If w € Mg 1}, then we have

a representation
o0
Z w, $j)¢;(t)

where the limit is in L2(T, 3,)\), the equality holds A-a.e. and (w,¢;) =
Jpw( A(dt). Note that the value of (w, ¢;) is the same for any w’ € w,
S0 we may erte (w, ;). Put
(@) £ D (@, 6;)65(t)-
j=1
Clearly the mapping (w,t) — vn(w,t) is Z(Mjo,1)) ® 7 measurable. Define
ng(w) to be the smallest positive integer n for Wthh

1 1

sup A<t € T: |y, (w,t m(w,t)| > < =

sup A {1 € T (@) — (@) > 35} <

holds. Then one can easily see that the mapping w +— ny(w) is (Mg 1)
measurable. Set

hm Supkﬂoo "Ynk (w) (’lU t) lf hm SupkﬂOO 7’!’% (7’17) ({"‘77 t) G [Oﬂ 1]7
glw.t) £ :
0, otherwise.

It is evident from the construction that g(w,e) € w and (w,t) — g(w,t) is
% (Mp,1)) ® 7 measurable.

As a measurable space, (E, &) is of course a measurable Lusin space. Thus,
by Kuratowski’s theorem (see Dellacherie and Meyer [4], II1.20), there exists
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an isomorphism A on (E, &) into [0,1] with h(E) € #[0,1]. Let ¢y € E be
arbitrary but fixed. Define

Gl 2 {h—l(g(m,t», if g(how,t) € h(E),

€0, otherwise.

Clearly one has G(w,e) € w and (w,t) — G(w,t) is BZMg()\)) ® J mea-
surable. It then follows that for any Mg-valued random variable X, X;(w) £
G(X(w),t) defines a measurable process and X,(w) € X (w). O

The notion of probability law on M]E()\) induced by X may not be easily
understood, but the following theorem clarifies its meaning in terms of the
finite-dimensional distributions of the process. For processes X and Y and

S C T, we write X )y i (Xty,...,Xy,,) and (Y, ..., Y, ) have the same
law in E* for allt; € §,1<i <k, k € N.

THEOREM 2.3. Let X and Y be E-valued measurable processes, and sup-
pose that T is countably generated up to v-null sets. Then X and Y induce

the same laws on ME(A) if and only if there exists an S € T with )\(SC) =0
£d(S)

such that X ="Y.

Proof. First we prove the if part. Let ¥ = {g € (T @ &): {g(t,): t €
T} is uniformly equicontinuous on E} and

By (w) 2 /Bg(t,w(t)) Mdt), we Mg, B 7 and g€ 4.

We have @5 ,(w) € C’b(I\NAIE)). One can easily prove that the subalgebra o7
in Cb(M]E) generated by 1 and the ®p 4, B € 7, g € ¢, separates measures
on Mg. Then by Fubini’s theorem, for each ® € o7, we have [®(X)dP =
[®(Y)dP.

To show the only if part, we will use the function G constructed in the proof
of Lemma 2.2. Denote as carlier by X (w) and Y (w) the equivalence classes
containing X,(w) and Y, (w), respectively. Then for each w, G(X(w),e) =
Xe(w), A-a.e., so by an application of Fubini’s theorem there is an S; € J
with A(S%) = 0 such that X,(w) = G(X (w), ), w-a.s. for all t € S;. Similarly
we can find such a set Sy for Y. Put S = 51 NS5, so we have )\(SB) =0. And
for all t € S, X;(w) = G(X(w), 1), w-a.s. and V;(w) = G(Y (w), ), w-a.s. By

the assumption, X and Y have the same law on M, so for any t1,...,t, € .5,

(G()?(w),tl),...,G(f((w),tm)) Z (G(Y(w),tl),...,G(f/(w),tm)).

It therefore follows that (X,,..., X, ) and (Yz,,...,Y:, ) have the same law
on E™ for any ty,...,t;, € S. O
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The above theorem connects the notion of probability measure on Mg(\)
with that of almost equivalence. Let X and Y be two E-valued measurable
processes defined on possibly different probability spaces. Then X and Y
are said to be v-almost equivalent if for every finite system of pairs (¢, g;),
1 < i < n, where ¢; is a positive and integrable function on T and g; is a
bounded &/%(R) measurable function on E, the random vectors

(/Tgl(Xt)éf’l(t) V(dt),-«-,/Tgn(Xt)%(t) u(dt))
and
([ oot ... [ a.006.0va)

have the same law on R". It is then easy to see from the proof of Theorem
2.3 that X and Y induce the same law on Mg()) if and only if X and YV are
v-almost equivalent.

The concepts of pseudo-path and pseudo-law have been introduced in Del-
lacherie and Meyer [4], IV.35-45 for the case T = R, and they are closely
related to the notions of equivalence classes and probability laws on Mg(\).
They could be extended to a general parameter set T with a o-field . and a
o-finite measure v, although the choice of v, which should play the canonical
role, may not be evident.

Now we turn to the convergence in law of measurable processes. Let X =
(Xt)ter and X" = (X{)ter, n € N, be measurable processes on (€2, .#, P)
with state space (E, &) and parameter space (T, Z,v). It appears that we

would need to show X %) X for some S € 7 with A(SC) = 0 and the

tightness of (X™),en in order to get X™ Z X in Mg (). But the next theorem

shows that in fact it suffices to prove X" ) X for some S € 7 with A(SC) =

0. That is, tightness is unnecessary, although we must know that the limiting
process X is measurable. One can prove the following theorem in a fashion
similar to Cremers and Kadelka [2].

THEOREM 2.4. Let E be a separable metrizable space and 7 be countably

generated. Suppose that (X™)pen and X are E-valued measurable processes

on (0,7, P). IF X» "% X for some S € 7 with A(S%) = 0, then X* Z X

The converse of the above theorem in a sense also holds; the following
results are straightforward extensions of Meyer and Zheng [9] and Sadi [11].

THEOREM 2.5. Suppose that 7 is countably generated up to v-null sets
and that E is a metrizable Lusin space. Let (X™)pen and X be E-valued

measurable processes with parameter set T on some (Q, %, P). If X™ Z X in
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Mg, then there exist an S € T with A\(S®) = 0 and a subsequence (n') such

that X 95 x.

COROLLARY 2.6. Let (X™)pen and X be E-valued measurable processes

with parameter set T on some (0, #, P). For X™ Z X in Mg, it is necessary

and sufficient that for any subsequence (n'), there exist a further subsequence

(n") and an S € T with A\(S®) = 0 such that X" ) x,

3. Convergence of the prediction processes

Let X = (Xt)t€R+ be a measurable process with values in E. We as-
sume that E is a metrizable Lusin space with & = Z(E), and let Mg =
Mg (R4, B4, m), where B, = B(R,) and m is the Lebesgue measure. Set-
ting A(dt) = e~tdt, we give Mg the topology of convergence in A-measure.

We define the pseudo-path filtration %/ by

9{0</Osf(w(u))du;s<t, febé”‘),

and set F' £ F! = \/,.,F/. It is obvious that .#' = Z(Mg). Moreover,
the shift operator 6; on Mg is defined by 6,w(s) = w(t + s) for s,t € Ry
and is #/, /.. measurable. For the state space of the prediction process,
let IT £ #(Mg), the set of probability measures on (Mg,.#’) endowed with
the topology of weak convergence. This topology is called the prediction
topology in Knight [7], with which II becomes a metrizable Lusin space. We
set ¥ = HAB(I). A generic element of II is usually denoted by z, and we
sometimes write P* for z; it is actually redundant but intuitively helpful.
According to Corollary 2.5 of Knight [7], the prediction process Z* =

(Z7)ter, for z € I is the process with values in (IL, ¢) that is P*-a.s. uniquely
determined by the following two requirements:

(1) ZZ(A) =P*(0;'A| F).), reQ4, Ae 7,

(2) Zf is cadlag for the prediction topology on II defined above.
Thus the prediction process is defined for the law z € II induced by X rather
than for the process X itself. In terms of the generalized coordinate process X
on Mg, defined by X, (w) £ G(@, t), where @ is the equivalence class containing
w and G is the function in Lemma 2.1, (i) may then be written as

Z:(A) = P*(Reya € A| FL).

3.1. Convergence of the given processes. We shall now show that the
convergence of the prediction processes implies that of the given processes.
Let X", n € N, and X be measurable processes with values in E and with
laws z, and z, and let Z™ and Z be the prediction processes of X™ and
X, respectively. Since My is a metrizable Lusin space, so is II (Dellacherie
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and Meyer [4], II1.60). Then the path space My = Mp(R4, %4, ) of the
prediction process is also a metrizable Lusin space.

THEOREM 3.1. If (Z™)nen converges in law to Z in My, then (X™)nen
converges in law to X in Mg.

Proof. By Corollary 2.6, for any subsequence (n'), there is a further sub-

sequence (n'") and an S C Ry with A\(S®) = 0 such that 2" ) 7 Also for

any ¢ € C,(Mg), the mapping p — p(¢) = [ ¢ du from II into R is continuous.
It thus follows that for any ¢t € S and any ¢ € C,(Mg),

B [6(Xera) | L] 5 B [0(Xupe) | FL ] in R

The sequence (E*n [ ¢(Xi1s) | Z{, ]) is bounded, so it is uniformly integrable.
Hence we get B [$(Xiye)] — E?[¢p(Xiys)] for any t € S and any ¢ €

’

Cy(Mg). In other words, Xt"+/, =4 Xi1e in Mg for each ¢ € S. Using the

translation operator #;, we may write this as 6; X n" 2 0; X in Mg for each
tes.

It is clear that 6; is continuous since if w,, — w in A-measure, then w, (t +
o) — w(t + @) in A-measure. Set o7 = {#; 'G: G open in Mg, t € S}. Then
it is straightforward to verify that <7 is a base for the topology for Mg and
that o is closed under finite unions. It hence follows that the family {0;}:cs
satisfies the conditions of Pollard’s theorem (Pollard(1977)). Consequently we

obtain X' % X in M. We have shown that for any subsequence (n'), there

exists a further subsequence (n’) for which X 7" Z X in Mg, which obviously
implies that the sequence (X™) of the given processes converges in law to X
in ME O

REMARK 3.2. The assertion of Theorem 3.1 is in fact equivalent to that
of Lemma 2.21 (1) of Knight [7]. Our proof here is different from his, and the
point of our proof is that the result can be shown without using the Markov
property of the prediction process; only the defining property of the prediction
process is necessary.

3.2. Markovian case. In this subsection, we assume that E is Polish.
Let p(t,z,B), t € Ry, x € E, B € &, be a Markov transition function which
satisfies

(3.1) (t,z) — p(t,z, B) is £(0,00) ® & measurable for each B € &;
(3.2) {z — p(t,x,B): t >0, B € &} separates points of E.

From Lemma 2.8 in Knight [7], for each = € E, there is a measurable Markov
process X = (X;)ier, with finite-dimensional distributions determined by
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p(t,z, B). Namely, for 0 < t; < --- < tg, we have
(33) Pm(th EBl,...,th EBk)
=/ / p(ty, z,dxy) - p(tp—1 — th—2, Tp—2,dTp_1) -
By—1 B,

- p(tk — ty—1,Tx—1, Bi).

Note that we do not assume p(0,z, ) = d,(e). Thus the process X may not
start at x under P*. We call the above process X the measurable Markov
process having the P*-law with transition function p(¢,x, B). This process
induces a law on Mg, which we denote by ¢(x). This is uniquely determined
by p(t, x, B) (see Knight [7], p. 53). We look at ¢ as a mapping from E into II.
Lemma 2.9 of Knight [7] shows that ¢ is &/9%(I1) measurable. Furthermore,
Theorem 2.36 of Knight [7] states that o(z — p(t,x,B):t >0, B € &) =
o(x— Raf(x): A >0, f€b&), where Ry is the resolvent defined by

Ruf@) 2 [N f ) di

0
and Tif(z) £ [p(t,z,dy)f(y) is the semigroup associated with p(t,z, B).
Thus (3.2) amounts to assuming that {x — Ry f(z): A > 0, f € b&} separates
points of E. It is clear that ¢ is 1-1. The key result is Theorem 2.10 of Knight
[7], which says that for each x € E, we have

pe@) {(p()}t) = Zf(a:) for a.e. t} =1;

that is, the process ¢(X) = (p(X;))ter, and Z#® induce the same law on
M.

Now consider a sequence of Markov transition functions (p,(t, x, B))nen
and p(t,z, B) satisfying (3.1) and (3.2) above, and denote by X", n € N,
and X the measurable Markov processes having the P*-law with p, (¢, z, B),
n € N, and p(t, z, B), respectively. Let ¢™(z) and ¢(z) be the laws on Mg
induced by X™ and X with (3.3), as defined above, and put Z" = Z¥"(*) and
Z = Z#®)_ Our problem is to find under which conditions on (p,(t,z, B)),

X" % X in Mg implies Z" % Z in My (note that the dependence on z is

suppressed here). More precisely, if X" Z X in Mg for each = € E, then
what additional conditions are necessary for Z" to converge in law to Z in
My for each 7 The assumption amounts to ¢"(x) — p(z) for each z € E.
From the above observation, we know that ¢™(X™) and Z" induce the same

distribution on My, so what we need is @™ (X™) =4 ©(X) in My for each x € E.
Thus the problem is reduced to a familiar one of preservation of convergence
in law under mappings. This is discussed in Section 5 of Billingsley [1] and
a necessary and sufficient condition was obtained in Topsge [13]. Here we
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use a simple condition, which is an easy consequence of H. Rubin’s theorem
(Billingsley [1], Theorem 5.5).

PROPOSITION 3.3. Let X™ and X be S-valued random variables with S a
separable metric space, and let h,, and h be measurable mappings from S into
a metric space S’. If h is continuous and if h, converges to h uniformly on

compact sets, then X" = X implies ha(X™) =4 hX).

To apply this proposition to our problem, let us define ®: My — My
by ®(w)(t) = @(w(t)), w € Mg, and similarly define ®”. The processes
(" (XP))ter,, n € N, are then written as ®"(X™), n € N. It is clear that if
© is continuous, so is ®. Denote the metrics on II and M by d’ and p’ so
that we have

p (@ (z), B(z)) = /Ooo LAd (" (w(t)), p(w(t))) A(dL).

Let I' be a compact subset on Mg and let € > 0 be given. Choose T' > 0
satisfying A(T,00) < e. It follows from Kurtz [8], Theorem 4.1 (this is the
only place where the Polish assumption is used), that we can find a compact
K C E such that sup,cr A(t < T: w(t) ¢ K) < e. Now assume for the
moment that ¢ — ¢ uniformly on compact sets. Then

P (w), ®(w)) < /[O Tt (t)eK}lAd’ (@™ (w(?)), p(w(t))) Adt)

+ / LA (" (w(®)), o(w(t)) Mde) +
[0, TIN{w(t)¢ K}

<

/ TAd (@™ (w(t)), pw(t))) A(dt) + 2.
[0, 71N{w(t)eK}

The integral converges to 0 uniformly in w € I'" by the bounded convergence
theorem. Hence, as n — oo,

sup p (2" (w), ®(w)) — 0.

In view of Proposition 3.2, Z™ Z 7 will follow.

We would like to express the assumed compact convergence of ¢" to ¢ in
terms of resolvents R} and Ry of X™ and X, respectively. First, by Lemma
2.15 of Knight [7], ¢ is continuous if and only if Ry f is continuous on E for
f € Cp(E). Compact convergence of ¢™ to ¢ means

sup |[E#"")(g) — E#™)(g)| — 0
reK
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for each compact K C E and each g € C,(Mg). We may replace g by a
member of a convergence determining class. We use the following class:

{H/OooeAksfjk(w(s))ds: meN, \y€Qy, fj, €{fi}, 1<k< m},
k=1

where (f;) is dense in CE)N{f: E — [0,1]}. So we need to find a condition
for

) Ee" (@) 1/~ =kt . X’t d T [~ — Akt £ th d
(3.4) Ll]/ e f (Rt kr_[/ e ( >t]

uniformly in « € K for a compact K and m € N, A\, € Q1 and f;, € (fj)-
Let us look at the case m = 1. The left-hand side is

5@ [ / Ty, u?»dt] — RYf;(a).

Hence we need the uniform convergence on compact sets of the resolvents,
that is,

(3.5) Yf(x) — Ryf(x) uniformly in z € K

— @)

for each A and f € C (E) For a general m, we use the argument given in the
proof of Lemma 2.15 of Knight [7]. Write the left-hand side of (3.4) as

pe" (@) [/0 /0 e—EL"1Ak3kfjl()~(81)...fjm()}sm)dsl...dsm] .

Express this multiple integral as a sum of m! integrals corresponding to the

m! possible orderings of sq,...,s,,. Then it is enough to look at, for instance,
the case s1 < -+ < st
(3.6)

pe (@) [/0 / / e k=1 AkSkfjl ()}Sl)...fjm()?sm)dsl...dsm] )
S1 Sm—1

Using the Markov property, this is equal to

[ e [fh (Ko B ( [
0 S1

oo (o) .
/ .. / e—)\msm fj"L (XS"L) dSm . d82 yél‘i’) dS]
S2 Sm—1
o0

[ee]
:/ e~ st pe(x) [fjl(Xsl)E‘P (x) (/ 6_>\2(t2+81)fj2(Xt2+51)
0

0
ysll+>‘|d81

ta

tm—1
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“f e [fﬁ<5<51>e-“2+"'+*m>51
0

Ewrrz()?sl) </ e—>\2t2 sz ()’Z'h) / .
0 to

(o)
/ 6—kmtmfjm (Xtm) dtm . dt2>‘| d81

tmfl
:Ewn(aj) l/ 67X51fj1 ()?Sl)gn(jzsl) d81‘| )
0
where A 2 X\; + -+ + \,,, and
9" (x)

2 pe"@) l/ e_hhsz(f(tz)/ / e_A’”t’"fm()?tm)dtm"'dt2]-
0 t2

tm—1

Note that g™ is of the form (3.6) with m — 1 in place of m. Thus if we assume
that (3.4) holds for m — 1 as the induction hypothesis, g™ (s) will converge to
g(z), defined similarly, uniformly in « € K. Writing h"*(z) = f;, (x)g" (x), the
above expectation is equal to R%h”(x). Assuming the induction hypothesis,
h™(x) converges to h(z) = fj,(z)g(z) uniformly in 2 € K. So the condition
we need is the following:
RYR™(x) — Rxh(x) uniformly in x € K for each A > 0,
whenever h™ — h uniformly on compact sets.
As is seen by the above argument, the sequence (h™) may be restricted to be
uniformly bounded and we may assume that & is continuous and bounded.
We have therefore obtained the following theorem.

THEOREM 3.4. In the setting of this subsection, suppose that RYh"™ con-
verges to Ryh uniformly on compact sets for each A > 0 whenever a uniformly
bounded sequence (™) converges to a continuous bounded h uniformly on com-
pact sets, and that Ry f is continuous for f € Cy(E). Then Z™ converges in
law to Z in My for each x € E.
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