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GENERALIZATIONS OF THE THEOREMS OF CARTAN
AND GREENE–KRANTZ TO COMPLEX MANIFOLDS

DO DUC THAI AND TRAN HUE MINH

Abstract. In this article, some generalizations of the theorems of Car-
tan and Greene–Krantz for the family of biholomorphic mappings on

(not necessary bounded) domains of a complex manifold are given.
Moreover, a necessary and sufficient condition for strongly complete C-
hyperbolicity of domains in a complex manifold with compact quotients
is obtained.

1. Introduction

H. Cartan [4] proved the following theorem about compactness of families
of biholomorphic mappings (see also [13, Thm. 4, p. 78]).

Theorem. Let Ω be a bounded domain in Cn. Suppose {fi} is a sequence
of biholomorphic mappings fi : Ω → Ω which converges uniformly on com-
pact subsets of Ω to a mapping f . Then the following three conditions are
equivalent:

(i) f is a biholomorphic mapping of Ω onto Ω.
(ii) f(Ω) is not a subset of ∂Ω, the boundary of Ω in Cn.
(iii) The Jacobian determinant det[f ′(z)] is not identically zero on Ω.

Much attention has been given to generalizations of Cartan’s theorem. For
instance, under some additional hypotheses on the domains and the mappings,
S. Bell [3] and W. Klingenberg and S. Pinchuk [10] proved the above theorem
with “biholomorphic” replaced by “proper”. However, as far as we know, the
problem of generalizing Cartan’s theorem to unbounded domains in a complex
manifold remains open.

The first purpose of this paper is to give several versions of Cartan’s the-
orem for families of biholomorphic mappings on a (not necessary bounded)
domain of a complex manifold from the viewpoint of hyperbolic complex anal-
ysis. Namely, we will prove the following results:
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Theorem 2.7. Let D be a weakly taut domain in a complex manifold M
such that D has the (IM) property. Suppose {fi} is a sequence of biholomor-
phic mappings fi : D → D which converges uniformly on compact subsets of
D to a mapping f . Then the following three conditions are equivalent:

(i) f is a biholomorphic mapping of D onto D.
(ii) f(D) is not a subset of ∂D, the boundary of D in M.
(iii) There exists a point a ∈ D such that the Jacobian determinant

det
(
(df)a

)
is non-zero.

Theorem 2.10. Let D be a homogeneous domain in a complex manifold
M such that D has the (IM) property. Suppose {fi} is a sequence of biholo-
morphic mappings fi : D → D which converges uniformly on compact subsets
of D to a mapping f . Then the following three conditions are equivalent:

(i) f is a biholomorphic mapping of D onto D.
(ii) f(D) is not a subset of ∂D, the boundary of D in M.
(iii) There exists a point a ∈ D such that the Jacobian determinant

det
(
(df)a

)
is non-zero.

In [9], D. Kim claimed the following result.

Theorem. Let D be a bounded domain in Cn such that D/Aut(D) is
compact. Then D is strongly complete C-hyperbolic.

This theorem is cited in [15, Theorem 1.8, p. 71] and [11]. Unfortunately,
it seems incorrect. There are some mistakes in his proof, e.g., in the bottom
line (which is a key step in his proof) of p. 141 in [9]. The second purpose of
this paper is to give a corrected version of this theorem using the results in
the first section. Namely, we will prove the following result.

Theorem 3.2. Let D be a C-hyperbolic domain in a complex manifold
M such that Aut(D) b Hol(D,M). Suppose there is a compact subset K of
D such that for every x ∈ D there are a biholomorphic mapping f ∈ Aut(D)
and a point a ∈ K such that f(x) = a. Then the following assertions are
equivalent:

(i) D is strongly complete C-hyperbolic.
(ii) (1) For every z ∈ K there exists r > 0 such that BcD (z, r) is a

compact subset of D.
(2) For every finite boundary point q ∈ ∂D and for every ε > 0, there

exists a neighbourhood U of q in M such that cD(z, z′) < ε for
all z, z′ ∈ U ∩D.

As is well known, the scaling process introduced by Pinchuk [14] is a
very useful tool in the characterization of domains with noncompact auto-
morphisms group. The essential idea of this method is that the limit of a
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sequence of biholomorphic maps must be either again a biholomorphic map
or a map that has image contained in the boundary. More precisely, we have
the following theorem of Greene–Krantz [5, p. 161].

Theorem. Suppose {Ωi}∞i=1 and {Ai}∞i=1 are sequences of bounded do-
mains in Cn with lim Ωi = Ω0 and limAi = A0 for some (uniquely deter-
mined) bounded domains Ω0, A0 in Cn. Suppose also that {fi : Ai → Ωi}∞i=1

is a sequence of biholomorphic maps and that {fi : Ai → Cn}∞i=1 converges
uniformly on compact subsets of A0 to a limit f0 : A0 → Cn. Then one of
two mutually exclusive conditions holds: Either f0 maps A0 biholomorphically
onto Ω0 or f0 maps A0 into ∂Ω0, the boundary of Ω0.

The last purpose of this paper is to generalize the Greene–Krantz theorem
to families of biholomorphic mappings on (not necessary bounded) domains
of a complex manifold. Namely, we will prove the following result.

Theorem 4.7. Let {Ωi}∞i=1 and {Ai}∞i=1 be sequences of pseudo-taut do-
mains in a complex manifold M with lim Ωi = Ω0 and limAi = A0 for
some (uniquely determined) pseudo-taut domains Ω0, A0 in M . Suppose that
Ωi ⊂ Ω0 and Ai ⊂ A0 (i ≥ 1). Suppose also that {fi : Ai → Ωi}∞i=1 is a
sequence of biholomorphic maps. Then one of the following two assertions
holds:

(i) The sequence {fi} is compactly divergent, i.e., for each compact set
K ⊂ A0 and each compact set L ⊂ Ω0, there is an integer i0 such that
fi(K) ∩ L = ∅ for i ≥ i0.

(ii) There exists a subsequence {fij} ⊂ {fi} such that the sequence {fij}
converges uniformly on compact subsets of A0 to a biholomorphic map
f : A0 → Ω0.

In this article complex manifolds are assumed to be connected and a con-
nected open subset of a complex manifold is said to be a domain of this man-
ifold. For complex manifolds X and Y , we denote by Hol(X,Y ) the space
of all holomorphic mappings from X to Y , equipped with the open-compact
topology. For basic notions and properties of hyperbolic complex analysis we
refer to [11] and [12].

Acknowledgement. We would like to thank Professor Gerd Dethloff for
valuable discussions on this material.

2. Generalizations of Cartan’s theorem to complex manifolds

For the sake of convenience, we give the following definition.

Definition 2.1. Let D be a complex manifold and Aut(D) be the group
of all biholomorphic mappings from D onto D. We say that D has the (IM)
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property if there exists a metric ρ on D such that ρ induces the standard
topology of D and ρ is invariant under Aut(D) (i.e., ρ(x, y) = ρ(f(x), f(y))
for all x, y ∈ D and all f ∈ Aut(D)).

The class of complex manifolds having the (IM) property is large. It con-
tains the hyperbolic complex manifolds, and the complex manifolds equipped
with Bergman metric. Moreover, we have the following example.

Example 2.2. Consider C∗ := C \ {0}. It is easy to see that C∗ is not
hyperbolic and does not have a Bergman metric. We show that C∗ has the
(IM) property.

Indeed, first we determine the group Aut(C∗).
Assume that f ∈ Aut(C∗). Set ∆∗ = {z ∈ C : 0 < |z| < 1}. Then

f |∆∗ : ∆∗ → C is holomorphic and card
(
C \ f(∆∗)

)
> 2. By the Big Picard

Theorem, f extends meromorphically to C, and hence f(z) = zn · g(z), where
n ∈ Z and g is an entire function vanishing nowhere on C.

We consider two cases.
(a) n ≥ 0: Then f extends holomorphically to 0. By the Second Main

Theorem of Nevanlinna, it follows that every finite holomorphic map from C
into C is a polynomial. Hence f(z) = az, a 6= 0.

(b) n < 0: Then the function 1/f(z) = z−n/g(z) extends holomorphically
to 0. Using the above argument, we have f(z) = a/z, a 6= 0. Then Aut(C∗)
consists exactly of the functions of the forms az and a/z with a 6= 0.

We now construct an invariant metric ρ on C∗. Consider the function
h : ∆ = {z ∈ C : |z| < 1} → C∗ given by h(z) = ez for z ∈ ∆. Then h is
biholomorphic from ∆ onto h(∆). Take an arbitrary ω ∈ C∗. We put

ρ(1, ω) =

{
|z| if ω = ez ∈ h(∆),
1 if ω /∈ h(∆),

and define ρ(ω1, ω2) = ρ(1, ω2/ω1) for all ω1, ω2 ∈ C∗. It is easy to see that
ρ is a metric on C∗ induced the topology of C∗ and ρ is invariant under
Aut(C∗).

Definition 2.3. Let D be a domain in a complex manifold M .
We say that D is weakly taut if for every sequence {fn} in Aut(D), either
(a) there is a subsequence {fnk} which converges in Hol(D,M), or
(b) the sequence {fn} is compactly divergent, i.e., for each compact set

K ⊂ D and each compact set L ⊂ D there is an integer n0 such that
fn(K) ∩ L = ∅ for n > n0.

Examples 2.4. We now give some examples of classes of weakly taut
domains.

2.4.1. If D is a taut domain in a complex manifold M then D is obviously
a weakly taut domain in M . However, the converse assertion is not true in
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general. Indeed, it is easy to see that C∗ is a weakly taut domain in C, but
not hyperbolic.

2.4.2. If M is a hyperbolic complex manifold then each relatively compact
domain D of M is weakly taut. This follows immediately from Arzela-Ascoli’s
theorem.

Since every bounded domain in Cn is hyperbolic, we have the following
consequence of 2.4.2.

2.4.3. Every bounded domain in Cn is weakly taut.

2.4.4. Let D be a non-bounded hyperbolic domain in Cn such that the
following condition is satisfied: If {zk}∞k=1 ⊂ D is an arbitrary sequence such
that limk→∞‖zk‖ =∞, then limk→∞dD(z0, zk) =∞, where z0 is some point
of D, and ‖.‖ is the Euclidean norm of Cn and dD is the Kobayashi distance
of D.

Then D is a weakly taut domain in Cn. Indeed, assume that {fν} is an
arbitrary sequence in Aut(D) which does not satisfy condition (b) in Definition
2.3. Without loss of generality we may assume that, for each ν ≥ 1, there are
aν ∈ K and bν ∈ L such that fν(aν) = bν , where K and L are compact subsets
of D. By taking a subsequence we also may assume that limν→∞aν = a0 ∈ K
and limν→∞bν = b0 ∈ L.

Now we must prove that there is a subsequence {fνk} ⊂ {fν} which con-
verges in Hol(D,Cn). By Montel’s theorem, it suffices to show that, for any
compact set K̃ ⊂ D, there exists M > 0 so that ‖fν(z)‖ < M for z ∈ K̃, ν ≥ 1.

Suppose this does not hold, i.e., there exists a compact set K̃ ⊂ D such
that lim supν→∞supK̃‖fν(z)‖ = ∞. Then there exists ãν ∈ K̃ such that
lim supν→∞‖fν(ãν)‖ =∞. By taking a subsequence of the sequence {ãν}, we
may assume that limν→∞ãν = ã0 ∈ K̃ and limν→∞‖f̃ν(ãν)‖ =∞. We have

dD(fν(ãν), b0) ≤ dD(fν(ãν), fν(aν)) + dD(bν , b0)

= dD(ãν , aν) + dD(bν , b0)→ dD(ã0, a0) as ν →∞.
This is impossible.

Remark 2.5. We believe that hyperbolicity of a domain D in a complex
manifold M does not imply weak tautness of this domain. Unfortunately, we
do not know of any counterexample.

Definition 2.6. Let M,M1 be two complex manifolds of dimension n
and f : M → M1 a holomorphic mapping and a an arbitrary point of M .
Then, locally, f can be considered as a holomorphic mapping from Bn to Bn,
where Bn is the open unit ball in Cn. This allows us to compute the Jacobian
determinant det

(
(df)a

)
. Note that the non-vanishing property of det

(
(df)a

)
is defined independently of the chosen local coordinate systems of M and M1.
Thus we can say that the Jacobian determinant det

(
(df)a

)
is non-vanishing.
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In order to prove Theorem 2.7 we need the following lemmas.

Lemma 2.7.1 ([13, Prop. 5, p. 79]). Let D be a domain in a complex
manifold M . Let {ϕi} be a sequence of continuous open mappings from D
into M . Suppose that {ϕi} converges uniformly on compact subsets of D to
a mapping ϕ : D → M . Suppose that, for some a ∈ D, a is an isolated point
of ϕ−1

(
ϕ(a)

)
. Then, for any neighbourhood U of a, there is an i0 such that

ϕ(a) ∈ ϕi(U) for each i ≥ i0.

Lemma 2.7.2 ([13, Cor., p. 80]). Suppose M is a complex manifold and
{fi} is a sequence of holomorphic functions on M , converging uniformly on
compact subsets of M to a holomorphic function f . Then, if fi(z) 6= 0 for all
z, i and f is nonconstant, we have f(z) 6= 0 for all z ∈M .

The following lemma plays an essential role in the proof of Theorems 2.7
and 2.10 and can be viewed as a generalization of Cartan’s theorem to complex
manifolds.

Lemma 2.7.3. Let D be a domain in a complex manifold M such that
D has the (IM) property. Suppose {fi} ⊂ Aut(D) converges uniformly on
compact subsets of D to a mapping f . Then the following three conditions are
equivalent:

(i) f(D) is an open subset of D and f is a biholomorphic mapping of D
onto f(D).

(ii) f(D) 6⊂ ∂D.
(iii) There exists a point a ∈ D such that the Jacobian determinant

det
(
(df)a

)
is non-zero.

Proof. (i)⇒(ii): Obvious.

(ii)⇒(iii): Clearly, f(D) ⊂ D. Thus assertion (ii) implies that there is
a ∈ D such that f(a) = b ∈ D. Take a neighbourhood V of a in D such
that f(V ) ⊂ D. Without loss of generality we may assume that V is an open
subset of Cn and f(V ) ⊂ Cn.

We now show that f |V is injective. Indeed, assume that f(z1) = f(z2),
where z1, z2 ∈ V . By the hypothesis, there exists a metric ρ of D such that
ρ induces the standard topology of D and ρ is invariant under Aut(D). We
have

ρ
(
f(z1), f(z2)

)
= 0 = ρ

(
lim fi(z1), lim fi(z2)

)
= lim ρ

(
fi(z1), fi(z2)

)
= lim ρ(z1, z2) = ρ(z1, z2).

This implies that z1 = z2.
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By Osgood’s theorem [13], the image f(V ) is open in Cn and the restricted
mapping f |V : V → f(V ) is biholomorphic. Thus the Jacobian determinant
det
(
(df)a

)
is non-zero.

(iii)⇒(i): Put U = {z ∈ D : det
(
(df)z

)
6= 0}. Then a ∈ U and U is open

in D. We now show that U is closed in D.
Suppose that this is false. Then there exists a point a0 ∈ ∂U ∩ D such

that det
(
(df)a0

)
= 0. Take a small connected neighbourhood V of a0 in

D such that the holomorphic mappings fi|V and f |V can be considered as
holomorphic mappings from V ⊂ Cn into Cn.

Consider the holomorphic functions Ji : V → C and J : V → C given by
Ji(z) = det

(
(dfi)z

)
and J(z) = det

(
(df)z

)
. Then the sequence {Ji} converges

uniformly on compact subsets of V to J . Also Ji(z) 6= 0 for all i and all z
since fi ∈ Aut(D). On the other hand, since J(a0) = 0 and V ∩ U 6= ∅, it
follows that J is nonconstant. According to Lemma 2.7.2, we have J(z) 6= 0
for all z ∈ V . This is a contradiction. Thus U is closed in D, and hence
U = D. By the inverse function theorem, f : D → M is an open mapping
and any z ∈ D is isolated in f−1

(
f(z)

)
. According to Lemma 2.7.1, we have

f(D) ⊂
⋃
i≥1 fi(D) = D. By using an invariant metric ρ of D and repeating

the above argument, we see that f is injective. By the Osgood theorem it
follows that the mapping f : D → f(D) is biholomorphic. �

Proof of Theorem 2.7. By Lemma 2.7.3, it suffices to prove the implication
(iii)⇒ (i).

According to Lemma 2.7.3, f ∈ Hol(D,D) and the mapping f : D → f(D)
is biholomorphic.

Take a ∈ D and put b = f(a). Take compact neighbourhoods U, V of a, b,

respectively, such that f(U) ⊂
o

V . By Lemma 2.7.1, since the sequence {fi}
converges uniformly to f , there is an i0 such that fi(U) ⊂

o

V and b ∈ fν(U)
for each i ≥ i0. We put gi = f−1

i for i ≥ 1. Then a ∈ U = gi
(
fi(U)

)
.

Choose K =
⋃
i≥i0 fi(U) and L = {a}. It is easy to see that K,L are

compact subsets of D and gi(K) ∩ L 6= ∅ for each i ≥ i0. Then the weak
tautness of D implies that there is a subsequence of the sequence {gi} which
converges uniformly on compact subsets of D to a holomorphic mapping g :
D → M . Without loss of generality we may assume that the sequence {gi}
converges uniformly to g.

Take bi ∈ K such that gi(bi) = a. Without loss of generality we may assume
that lim bi = b0 ∈ K. Then g(b0) = a, i.e., g(D) 6⊂ ∂D. According to Lemma
2.7.3, g ∈ Hol(D,D) and the mapping g : D → g(D) is also biholomorphic.
It is easy to see that fog = gof = IdD, and hence f ∈ Aut(D). �

Corollary 2.8. Let D be a domain in a complex manifold M such that
D has the (IM) property. Let D∗ = D∪{∞} be the one-point compactification
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of D. Let C(D,D∗) denote the space of continuous maps from D into D∗

equipped with the compact-open topology and let {∞} denote the constant map
which sends D to ∞. Then D is weakly taut if and only if Aut(D) ∪ {∞} is
a compact subset of C(D,D∗).

Proof. “⇒”: Assume that {fi} ⊂ Aut(D)∪{∞}. Without loss of generality
we may assume that fi 6=∞ for each i ≥ 1. Consider two cases:

(i) The sequence {fi} satisfies condition (b) of Definition 2.3: Then {fi}
converges uniformly on compact subsets of D to the mapping∞ in C(D,D∗).

(ii) The sequence {fi} does not satisfy condition (b) of Definition 2.3: Then
there exist compact subsets K,L of D and a subsequence {fik} of the sequence
{fi} such that fik(K) ∩ L 6= ∅ for each k ≥ 1 and {fik} converges uniformly
on compact subsets of D to a mapping f ∈ Hol(D,M).

Take aik ∈ K, bik ∈ L such that fik(aik) = bik for each k ≥ 1. Without loss
of generality we may assume that limk→∞ aik = a0 ∈ K and limk→∞ bik =
b0 ∈ L. Then f(a0) = b0 ∈ D, and hence f(D) 6⊂ ∂D. By Theorem 2.7, it
follows that f ∈ Aut(D).

“⇐”: This is immediate from the definition of weak tautness. �

Corollary 2.9. Cartan’s theorem holds in the following cases:

(i) D is a taut domain of a complex manifold M.
(ii) D is a relatively compact domain of a hyperbolic complex manifold M ;

in particular, D is a bounded domain in Cn.
(iii) D is a non-bounded hyperbolic domain in Cn satisfying the follow-

ing condition: If {zk}∞k=1 ⊂ D is an arbitrary sequence such that
limk→∞ ‖zk‖ = ∞, then limk→∞ dD(z0, zk) = ∞, where z0 is some
point of D, ‖.‖ is the Euclidean norm of Cn and dD is the Kobayashi
distance of D.

Recall that a complex manifold M is said to be homogeneous if for any
pair of points x, y ∈M there is σ ∈ Aut(M) such that σ(x) = y.

In order to prove Theorem 2.10 we need the following lemma.

Lemma 2.10.1 ([11, Thm. 5.5.1, p. 268]). Let ρ be a metric on a complex
manifold D such that ρ induces the topology of D and ρ is invariant under
Aut(D). Let a be a point of D. Assume that f : D → D is a holomorphic
mapping satisfying the following conditions:

(i) f(a) = a.
(ii) |det

(
(df)a

)
| = 1.

(iii) f is an isometry for ρ, i.e., ρ(x, y) = ρ
(
f(x), f(y)

)
for x, y ∈ D.

Then f is a biholomorphic mapping.



THE THEOREMS OF CARTAN AND GREENE–KRANTZ 1375

Proof of Theorem 2.10. In view of Lemma 2.7.3 it suffices to prove the im-
plication (iii)⇒(i). Also, by Lemma 2.7.3, since ρ is invariant under Aut(D),
f is an isometry for ρ.

On the other hand, since Aut(D) acts transitively on D, we may assume
that f(a) = a. It now remains to prove |det

(
(df)a

)
| = 1.

Since our problem is local, we may assume that D is a domain in Cn.
By Lemma 2.7.3, there exists r0 > 0 such that B(a, r0) ⊂ D ∩ f(D), where
B(a, r) = {z ∈ Cn : ‖z − a‖ < r} for each r > 0. It is easy to see that
f(B(a, r)) = B(a, r) for each 0 < r ≤ r0.

Assume that |det
(
(df)a

)
| < 1. Then there exists r1 ∈ (0, r0) such that

|det
(
(df)z

)
| < α < 1 for each z ∈ B(a, r1). This implies that volB(a, r1) <

α2.volB(a, r1). This is a contradiction.
Similarly, if |det

(
(df)a

)
| > 1, we also get a contradiction. �

3. On strongly complete C-hyperbolicity of domains in a complex
manifold with compact quotients

Let X be a complex space. We denote its Caratheodory pseudodistance by
cX . Even if cX is a distance, it does not in general induce the complex space
topology of X (see [7] and also [6]).

A complex space X is said to be Caratheodory-hyperbolic or C-hyperbolic
if cX is a distance and induces the complex space topology of X. A C-
hyperbolic space X is said to be complete (resp. strongly complete) if X is
Cauchy complete with respect cX (resp. if all closed balls with respect to cX
are compact). Janicki, Pflug, and Vigué [8] exhibited a domain X in C3 such
that X is complete C-hyperbolic, but not strongly complete C-hyperbolic.

We now give the following definition.

Definition 3.1. Let D be a domain in a complex manifold M and let
q ∈ ∂D be a boundary point of D. We say that q is a finite boundary point of
D if there exist a point a ∈ D and a sequence {zn} ⊂ D such that {zn} → q
and lim infzn→q cD(a, zn) <∞.

It is easy to see that q ∈ ∂D is a finite boundary iff there exists a sequence
{zn} ⊂ D which converges to q such that lim infzn→q cD(a, zn) < ∞ for any
point a ∈ D.

In order to prove Theorem 3.2 we need the following lemma.

Lemma 3.3. Let D be a domain in a complex manifold M such that D
has the (IM) property and Aut(D) b Hol(D,M). Suppose that there exists a
compact subset K of D such that for every x ∈ D there is a biholomorphic
mapping f ∈ Aut(D) and a point a ∈ K such that f(x) = a. Then the
following assertions are equivalent:
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(i) For every z ∈ D and for every r > 0, BcD (z, r) is a compact subset
of D.

(ii) (1) For every z ∈ K there exists r > 0 such that BcD (z, r) is a
compact subset of D.

(2) For every finite boundary point q ∈ ∂D and for every ε > 0 there
exists a neighbourhood U of q in M such that cD(z, z′) < ε for
all z, z′ ∈ U ∩D.

Proof. (i)⇒(ii): It is easy to see that if BcD (z, r) is a compact subset of D
for every z ∈ D and r > 0, then there is no finite boundary point of D. Thus
the implication is proved.

(ii)⇒(i): Assume that there exist p ∈ D and r∗ > 0 such that the closed
ball BcD (p, r∗) is not a compact subset of D. Then there exists a sequence
{x̃n} ⊂ BcD (p, r∗) such that

(1) {x̃n} → q ∈ ∂D.

Let x ∈ D and y ∈ D. We define

c̃D(x, y) = lim inf
y′∈D
y′→y

cD(x, y′).

Then, from (1), we get

(2) c̃D(x, q) <∞ for every x ∈ D.
Define the function ϕ : D → [0,∞) by

ϕ(x) = sup{r ≥ 0 : BcD (x, r) b D} for each x ∈ D.
Then ϕ is continuous on D, and hence minK ϕ(x) = r̃ > 0. This implies that

(3) ∞ > inf
x∈K
y∈∂D

c̃D(x, y) = r0 ≥ r̃ > 0.

Therefore there exist a ∈ K and q0 ∈ ∂D such that r0 ≤ c̃D(a, q0) < 2r0 <∞,
i.e., q0 is a finite boundary point of D.

By hypothesis, there exists a neighbourhood U of q0 in M such that
cD(z, z′) < r0/2 for all z, z′ ∈ U ∩ D. Take a sequence {xn} ⊂ U ∩ D
such that {xn} → q0. Then cD(x1, xn) < r0/2 for all n ≥ 1.

By hypothesis, for every n ≥ 1, there exists fn ∈ Aut(D) such that
fn(xn) = an ∈ K. Without loss of generality we may assume that {an} →
a0 ∈ K. Since Aut(D) b Hol(D,M), without loss of generality we may
assume that the sequence {fn} converges locally uniformly to a mapping
f ∈ Hol(D,M). Then we have {fn(x1)} → f(x1) and r0/2 ≥ cD(x1, xn) =
cD
(
fn(x1), fn(xn)

)
= cD(fn(x1), an) for all n. Since {an} → a0 ∈ D, it

follows that
cD(fn(x1), a0) <

2r0

3
for all n ≥ n0.
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Then c̃D(a0, f(x1)) ≤ 2r0/3 < r0, and hence, by (3), we get f(x1) ∈ D, i.e.,
f(D) 6⊂ ∂D. By Theorem 2.7, it follows that f is a biholomorphism from D
onto D.

Since Aut(D) b Hol(D,M), it is easy to see that the sequence {f−1
n }

converges locally uniformly to the mapping f−1 in Aut(D). This implies that
limn→∞ f−1

n (an) = f−1(a0) ∈ D. But this is absurd since limn→∞ f−1
n (an) =

limn→∞ xn = q0 ∈ ∂D. �

Proof of Theorem 3.2. Since D is a C-hyperbolic domain in a complex
manifold M , D has the (IM) property for cM . Hence Theorem 3.2 follows
immediately from Lemma 3.3. �

From Theorem 3.2 we get the following corrected version of the above-
mentioned result of Kim [9].

Corollary 3.4. Let D be a bounded domain in Cn such that D/Aut(D)
is compact. Then D is strongly complete C-hyperbolic if and only if for every
finite boundary point q ∈ ∂D and for every ε > 0, there exists a neighbourhood
U of q in Cn such that cD(z, z′) < ε for all z, z′ ∈ U ∩D.

Corollary 3.4 is deduced from Theorem 3.2 and the following lemma.

Lemma 3.5. Let D be a bounded domain in Cn. Then for each a ∈ D,
there is r > 0 such that BcD (a, r) is compact in D.

Proof. Let a ∈ D be given.
Take a ball B(0, R) = {z ∈ Cn : ‖z‖ < R} ⊂ Cn such that D ⊂ B(0, R) =

B. Since B is C-hyperbolic, there exists r0 > 0 such that BcB (a, r0) ⊂ D.
Since B is strongly complete C-hyperbolic, it follows that BcB (a, r0) is a
compact subset of D.

Suppose that ClBBcD (a, r) ∩ ∂D 6= ∅ for any 0 < r < r0, where ClXY is
the closure of Y in X. This means that there exists a sequence {xn}∞n=n0

⊂
∂D ∩ ClBBcD (a, 1/n).

Take yn ∈ BcB (xn, 1/n) ∩ BcD (a, 1/n) for all n ≥ n0. Then cB(xn, a) ≤
cB(xn, yn) + cB(yn, a) < 1/n + cD(yn, a) < 2/n for each n ≥ n0. Since ∂D
is a compact subset of B, without loss of generality we may assume that
{xn} → x0 ∈ ∂D. Then cB(x0, a) = 0, i.e., a = x0 ∈ ∂D. This is a
contradiction. Hence there is r ∈ (0, r0) such that BcD (a, r) is a closed subset
of B. But BcD (a, r) ⊂ BcB (a, r0), i.e., BcD (a, r) is a compact subset of D. �

Remark 3.6. By Montel’s theorem, if D is a bounded domain in Cn

then Aut(D) b Hol(D,Cn). Unfortunately, this assertion does not hold for
unbounded domains, even for complete hyperbolic (unbounded) domains in
Cn. Indeed, we have the following counterexample. Put H = {z ∈ C : Im z >
0}. Then H is complete hyperbolic. Define the mapping fn : H → H given



1378 DO DUC THAI AND TRAN HUE MINH

by fn(z) = z + n for each z ∈ H. It is easy to see that {fn} ⊂ Aut(H) and
the sequence {fn} is compactly divergent. This implies that Aut(H) is not
relatively compact in Hol(H,C).

4. Generalization of the Greene–Krantz theorem to complex
manifolds

First we give the following definitions.

Definition 4.1. Let {Ωi}∞i=1 be a sequence of open sets in a complex
manifold M and let Ω0 be an open set of M . The sequence {Ωi}∞i=1 is said to
converge to Ω0, and we write lim Ωi = Ω0, iff

(a) for every compact set K ⊂ Ω0 there is a j = j(K) such that i ≥ j
implies K ⊂ Ωi, and

(b) if K is a compact set which is contained in Ωi for all sufficiently large
i, then K ⊂ Ω0.

Definition 4.2. Let Bn be the open unit ball in Cn and ρn the Bergman
distance in Bn. Let M be a complex manifold of dimension n. Denote by
F(Bn,M) the set of all mappings f : Bn →M such that f is biholomorphic
onto its image, i.e., the mapping f : Bn → f(Bn) is biholomorphic.

Given two points p, q of M , we consider a chain of holomorphic balls from
p to q, that is, a chain of points p = p0, p1, . . . , pk = q of M , points a1, . . . , ak
of Bn, and holomorphic mappings f1, . . . , fk ∈ F(Bn,M) such that f1(0) =
p, fi(ai) = fi+1(0), . . . , fk(ak) = q. Denoting this chain by α, we define its
length l(α) by

l(α) =
k∑
i=1

ρn(0, ai)

and we define the pseudodistance knM (p, q) = inf l(α), where the infimum is
taken over all chains α of holomorphic balls from p to q. The pseudodistance
knM is called the n-Kobayashi pseudodistance of M . If knM is a distance, i.e.,
if knM (p, q) > 0 for every pair p, q ∈ M with p 6= q, then M is said to be
n-hyperbolic.

Using the same argument as in [11], we have the following result.

Proposition 4.3.

(i) Let M be a complex manifold of dimension n. Then knM is inner and
continuous on M ×M .

(ii) If a complex manifold M is n-hyperbolic then knM induces the standard
topology of M .

(iii) Let M,N be two complex manifolds of dimension n. Assume that
f : M → N is a holomorphic mapping such that the mapping f :
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M → f(M) is biholomorphic. Then knM (p, q) ≥ knN (f(p), f(q)) for all
p, q ∈M . Therefore, kn is invariant under biholomorphisms.

(iv) Every hyperbolic manifold of dimension n is n-hyperbolic.

Definition 4.4. Let D be a domain in a complex manifold M of dimen-
sion n. Denote by F(Bn, D) the set of all mappings f : Bn → D such that f
is biholomorphic onto its image, i.e., the mapping f : Bn → f(Bn) is biholo-
morphic. The domain D is said to be pseudo-taut if for every sequence {fk}
in F(Bn, D), either

(i) the sequence {fk} is compactly divergent, i.e., for each compact set
K ⊂ Bn and each compact set L ⊂ D, there is an integer k0 such
that fk(K) ∩ L = ∅ for k ≥ k0, or

(ii) there are a subsequence {fkj} and a closed subset S ⊂ Bn with
Bn \ S = Bn (which may depend on {fkj}) such that the sequence
{fkj : Bn → M} converges uniformly on compact subsets of Bn to a
limit f : Bn →M with S = f−1(∂D).

Examples.

(i) Every bounded domain in Cn is pseudo-taut.
(ii) Every taut complex manifold is pseudo-taut.
(iii) Put D = ∆×∆\{(0, 0)} ⊂ C2. It is easy to see that D is pseudo-taut,

but not taut.

Proposition 4.5. Let D be a pseudo-taut domain in a complex manifold
M of dimension n. Then D is n−hyperbolic.

Proof. We start with the following lemma.

Lemma. Let U, V,W and U ′ be open subsets of D such that U ∩ U ′ = ∅
and W b V b U and U is n-hyperbolic. Assume that there exists a positive
number δ < 1 such that, for every f ∈ F(Bn, D) with f(0) ∈ V , we have
f(Bn

δ ) ⊂ U, where Bn
δ = {z ∈ Cn : ||z|| < δ}. Then knD(W,U ′) > 0.

The proof of this lemma is the same as that of [11, Lemma 5.1.4, p. 241].
We can now prove Proposition 4.5.
Assume that there are p, q ∈ D with p 6= q such that knD(p, q) = 0. Take

open neighbourhoods U, V,W of p and U ′ of q such that W b V b U and U is
n-hyperbolic and U ∩ U ′ = ∅. Then, by the above lemma, it follows that, for
each k ≥ 1, there is fk ∈ F(Bn, D) with fk(0) ∈ V such that fk(Bn

1/k) * U.

Since the sequence {fk} is not compactly divergent, it follows that there are
a subsequence {fkj} and a closed subset S ⊂ Bn with Bn \ S = Bn such
that {fkj : Bn → M} converges uniformly on compact subsets of Bn to a
holomorphic mapping f : Bn →M with S = f−1(∂D).
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Since {fk(0)} ⊂ V , it follows that 0 /∈ S, i.e., 0 ∈ Bn\S and f(0) ∈ V ⊂ U .
Take k0 large enough such that Bn

1/k0
⊂ Bn \ S and f(Bn

1/k0
) ⊂ U. Then, for

j large enough, we get fkj (B
n
1/kj

) ⊂ U. This is impossible. �

Proposition 4.6. Let D be a domain in a complex manifold M of di-
mension n. Then D is pseudo-taut if and only if, for each complex manifold
X of dimension n and for each sequence {fk} ⊂ F(X,D), either

(i) the sequence {fk} is compactly divergent, i.e., for each compact set
K ⊂ X and each compact set L ⊂ D, there is an integer k0 such that
fk(K) ∩ L = ∅ for k ≥ k0, or

(ii) there are a subsequence {fkj} and a closed subset S ⊂ X with X \ S =
X (which may depend on {fkj}) such that the sequence {fkj : X →
M} converges uniformly on compact subsets of X to a limit f : X →
M with S = f−1(∂D), where F(X,D) is the set of all mappings
f : X → D such that f is biholomorphic onto its image, i.e., the
mapping f : X → f(X) is biholomorphic.

Proof. The sufficiency of the condition is obvious, so it remains to prove
the necessity. We divide the argument into three steps.

Step 1. By Lemma 4.5, D is n-hyperbolic.
Assume that X is a complex manifold of dimension n and {fk} ⊂ F(X,D).

Assume that the sequence {fk} is not compactly divergent. Then there exist
compact subsets K ⊂ X,L ⊂ D such that fkj (K) ∩ L 6= ∅(j ≥ 1). Without
loss of generality, we may assume that fk(K)∩L 6= ∅(k ≥ 1). Then there exists
{xk} ⊂ K such that {fk(xk)} ⊂ L. Without loss of generality, we may also
assume that {xk} → p ∈ K and {fk(xk)} → z0 ∈ L. Take a neighbourhood
V of L in D. Since knD(fk(xk), fk(p)) ≤ knX(xk, p) → 0 as k → ∞, it follows
that fk(p) ∈ V for k large enough.

Let q be any point of X. We consider a chain of holomorphic balls from p
to q, that is, a chain of points p = p0, p1, . . . , pt = q of X, points a1, . . . , at
of Bn, and holomorphic mappings h1, . . . , ht ∈ F(Bn, X) such that h1(0) =
p, hi(ai) = hi+1(0) = pi, ht(at) = q. Clearly, {fk ◦ h1} ⊂ F(Bn, D) and
fk ◦ h1(0) = fk(p) ∈ V for k large enough. By the pseudo-tautness of D
there exist a sequence {a(µ)

1 } ⊂ Bn which converges to a1 and an infinite
subset N1 of N such that {(fk ◦ h1)(a(µ)

1 )}k∈N1 b D for all µ ≥ 1. We see
that {h1(a(µ)

1 )} → h1(a1) = h2(0). Thus there is µ0 large enough such that
h1(a(µ0)

1 ) ∈ h2(Bn). Take z1 ∈ Bn such that h1(a(µ0)
1 ) = h2(z1), and hence,

{(fk ◦h2)(z1)}k∈N1 b D. By the pseudo-tautness of D there exist a sequence
{a(µ)

2 } ⊂ Bn which converges to a2 and an infinite subset N2 of N1 such that
{(fk ◦ h2)(a(µ)

2 )}k∈N2 b D (µ ≥ 1).
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Continuing this process, we obtain a sequence {a(µ)
t } ⊂ Bn which converges

to at and an infinite subset Nq of N such that {(fk ◦ht)(a(µ)
t )}k∈Nq b D (µ ≥

1). Roughly speaking, for each q ∈ X, there exist a sequence {q(µ)}∞µ=1 ⊂ X

and an infinite subset Nq of N such that {fk(q(µ))}k∈Nq b D (µ ≥ 1).
By the Cantor diagonalization process, it follows that there exist an in-

finite subset N0 of N and a countable subset X1 such that X1 = X and
{fk(z)}k∈N0 b D for each z ∈ X1.

Denote by S̃ the set of all points z ∈ X such that {fk(z)}k∈N0 is not
relatively compact in D. Then X \ S̃ is open. Indeed, take z0 ∈ X \ S̃. Then
{fk(z0)}k∈N0 b D. Since knD(fk(z0), fk(z)) ≤ knX(z0, z) (z ∈ X), it follows
that {fk(z)}k∈N0 b D for each z ∈ X closed enough to z0.

On the other hand, since X1 ⊂ X \ S̃, we have X \ S̃ = X.
We cover X \ S̃ by a family {Xi}∞i=1 of open subsets of X, where each Xi

is biholomorphic to Bn.
Since D is n-hyperbolic, the family {fk|X1

}k∈N0 is equicontinuous. Since
{fk(z)}k∈N0 b D for each z ∈ X1, by the Arzela-Ascoli theorem, there exists
an infinite subset N(1)

0 of N0 such that the sequence {fk|X1
}
k∈N

(1)
0

converges
uniformly in Hol(X1, D).

Consider the family {fk|X2
}
k∈N

(1)
0
. Repeating the above argument, we ob-

tain an infinite subset N(2)
0 of N(1)

0 such that the sequence {fk|X2
}
k∈N

(2)
0

converges uniformly in Hol(X2, D). Continuing this process and using the
Cantor diagonalization process, we obtain an infinite subset Ñ0 of N0 such
that the sequence {fk|X\S̃}k∈Ñ0

converges uniformly on compact subsets of
X \ S̃ to a mapping f ∈ Hol(X \ S̃,D).

Step 2. Cover X by a family {Ui}∞i=1 of open subsets of X, where each
αi : Bn → Ui is biholomorphic.

Consider the family {fk ◦ α1}k∈Ñ0
⊂ Hol(Bn, D). Since this family is not

compactly divergent, by the pseudo-tautness of D it follows that there exists
an infinite subset Ñ(1)

0 of Ñ0 such that the sequence {fk ◦α1}k∈Ñ
(1)
0

converges
uniformly in Hol(Bn,M). This implies that the sequence {fk}k∈Ñ

(1)
0

converges
uniformly in Hol(U1,M).

Consider the family {fk ◦ α2}k∈Ñ
(1)
0
⊂ Hol(Bn, D). Repeating the above

argument, there exists an infinite subset Ñ(2)
0 of Ñ(1)

0 such that the sequence
{fk}k∈Ñ

(2)
0

converges uniformly in Hol(U2,M). Continuing this process and

using the Cantor diagonalization process, we obtain an infinite subset ˜̃N0 of
Ñ0 such that the sequence {fk}

k∈ ˜̃N0
converges uniformly on compact subsets

of X to a mapping F ∈ Hol(X,M). It is easy to see that F|X\S̃ = f .
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Step 3. Put S = F−1(∂D). Then S is closed in X and S ⊂ S̃. Hence
there exists a subsequence {fk}

k∈ ˜̃N0
of the sequence {fk} and a closed subset

S ⊂ X with X \ S = X such that the sequence {fk : X →M}
k∈ ˜̃N0

converges

uniformly on compact subsets of X to a limit F : X →M with S = F−1(∂D).
�

Proof of Theorem 4.7. Take a sequence of open subsets A1
0 b A2

0 b · · · of
A0 such that A0 =

⋃∞
j=1A

j
0. Without loss of generality we may assume that

A1
0 ⊂ Aj for each j ≥ 1. Assume that the sequence {fi} is not compactly

divergent. Then there exist compact subsets K ⊂ A0, L ⊂ Ω0 such that
fij (K) ∩ L 6= ∅ for all j ≥ 1. Without loss of generality, we may assume
that K ⊂ A1

0 and fi(K) ∩ L 6= ∅ (i ≥ 1). Then there exists {xi} ⊂ K such
that {fi(xi)} ⊂ L. Without loss of generality, we may also assume that
{xi} → p ∈ K and {fi(xi)} → q ∈ L.

Consider the sequence {fi|A1
0
}∞i=1 ⊂ Hol(A1

0,Ω0). Then this sequence is not
compactly divergent. By the pseudo-tautness of Ω0, it follows that there are
an infinite subset N1 of N and a closed subset S1 ⊂ A1

0 with A1
0 \ S1 = A1

0 such
that the sequence {fi : A1

0 →M} converges uniformly on compact subsets of
A1

0 to a limit F1 : A1
0 →M with S1 = F−1

1 (∂Ω0).
Consider the sequence {fi|A2

0
}i∈N1 ⊂ Hol(A2

0,Ω0). Repeating the above
argument, we see that there are an infinite subset N2 of N1 and a closed
subset S2 ⊂ A2

0 with A2
0 \ S2 = A2

0 such that the sequence {fi : A2
0 → M}

converges uniformly on compact subsets of A2
0 to a limit F2 : A2

0 → M with
S2 = F−1

2 (∂Ω0). It is easy to see that F2|A1
0

= F1 and S2 ∩A1
0 = S1.

Continuing this process and using the Cantor diagonalization process, we
obtain an infinite subset N0 of N and a closed subset S =

⋃∞
i=1 Si of A0 with

A0 \ S = A0 such that the sequence {fi}i∈N0 converges uniformly on compact
subsets of A0 to a mapping F ∈ Hol(A0,M) with S = F−1(∂Ω0). It is easy
to see that F (p) = q ∈ Ω0.

Put gi = f−1
i for all i ∈ N0. We now show that {gi(q) = pi}i∈N0 → p.

Indeed, take a relatively compact open neighbourhood U of q in Ω0. Then,
for all i large enough, we have

knA0
(p, pi) ≤ knAi(p, pi) = knΩi(fi(p), fi(pi))

= knΩi(fi(p), q) ≤ k
n
U (fi(p), q)→ 0 as i→∞.

Since A0 is n-hyperbolic, it follows that {pi} → p, i.e., {gi(q)}i∈N0 → p. This
implies that the sequence {gi}i∈N0 is not compactly divergent.

Repeating the above argument, we obtain an infinite subset Ñ0 of N0 and
a closed subset T ⊂ Ω0 with Ω0 \ T = Ω0 such that the sequence {gi : Ω0 →
M}i∈Ñ0

converges uniformly on compact subsets of Ω0 to a limit G : Ω0 →M

with T = G−1(∂A0).
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Take a neighbourhood V of p in A0 such that F (V ) ⊂ Ω0. Repeating the
proof of (*), we see that {gi(F (z))}i∈N0 → z for each z ∈ V . This implies
that G(F (z)) = z (z ∈ V ). Hence F|V is injective. By the Osgood theorem,
the mapping F|V : V → F (V ) is biholomorphic.

Consider the holomorphic functions Ji : Ai → C and J : A0 → C given by
Ji(z) = det

(
(dfi)z

)
and J(z) = det

(
(dF )z

)
. Then J(z) 6= 0 (z ∈ V ) and, for

each i ∈ N0, the function Ji is non-vanishing on Ai. Moreover, the sequence
{Ji}i∈N0 converges uniformly on compact subsets of A0 to J . By Hurwitz’s
theorem, it follows that J never vanishes. This implies that the mapping
F : A0 → M is open and any z ∈ A0 is isolated in F−1

(
F (z)

)
. According to

Lemma 2.7.1, we have F (A0) ⊂ Ω0.
Repeating this argument, we see that G(Ω0) ⊂ A0. But then uniform

convergence allows us to conclude that for all z ∈ A0 we have G ◦ F (z) =
limi∈Ñ0,i→∞Gi◦Fi(z) = z and likewise that for all w ∈ Ω0 we have F ◦G(w) =
limi∈Ñ0,i→∞ Fi ◦Gi(w) = w.

This proves that F and G are each one-to-one and onto, hence in particular
that F is a biholomorphic mapping. �
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