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HENSTOCK-KURZWEIL FOURIER TRANSFORMS

ERIK TALVILA

Abstract. The Fourier transform is considered as a Henstock–Kurzweil

integral. Sufficient conditions are given for the existence of the Fourier
transform and necessary and sufficient conditions are given for it to be
continuous. The Riemann–Lebesgue lemma fails: Henstock–Kurzweil

Fourier transforms can have arbitrarily large point-wise growth. Convo-
lution and inversion theorems are established. An appendix gives suffi-

cient conditions for interchanging repeated Henstock–Kurzweil integrals
and gives an estimate on the integral of a product.

1. Introduction

If f : R → R then its Fourier transform at s ∈ R is defined as f̂(s) =∫∞
−∞ e−isxf(x) dx. The inverse transform is f̌ (s) = (2π)−1

∫∞
−∞ eisxf(x) dx.

In this paper we consider Fourier transforms as Henstock–Kurzweil integrals.
This is an integral equivalent to the Denjoy and Perron integrals but with a
definition in terms of Riemann sums. We let HKA be the Henstock–Kurzweil
integrable functions over a set A ⊂ R, dropping the subscript when A = R.
(The symbol ⊂ allows set equality.) Then HK properly contains the union
of L1 and the Cauchy-Lebesgue integrable functions (i.e., improper Lebesgue
integrals). The main points of HK integration that we use can be found
in [1] and [10]. Several of our results depend on being able to reverse the
order of repeated integrals. In the Lebesgue theory this is usually justified
with Fubini’s Theorem. For HK integrals, necessary and sufficient conditions
were given in [12]. Lemma 25 in the Appendix gives sufficient conditions that
are readily applicable to the cases at hand. Also in the Appendix are some
conditions for convergence of rapidly oscillatory integrals (Lemma 23) and an
estimate of the integral of a product (Lemma 24).

There is a substantial body of theory relating to Fourier transforms when
they are considered as Lebesgue integrals. Necessary and sufficient for exis-
tence of f̂ on R is that f ∈ L1. This is because the multipliers for L1 are the
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(essentially) bounded measurable functions and |e±isx| ≤ 1. The multipliers
for HK are the functions of (essentially) bounded variation. As x 7→ e−isx is
not of bounded variation, except for s = 0, we do not have an elegant existence
theorem for HK Fourier integrals. Various existence conditions are given in
Proposition 2. Example 3(f) gives a function whose Fourier transform diverges
on a countable set. For L1 convergence, f̂ is uniformly continuous with limit
0 at infinity (the Riemann–Lebesgue lemma). We show below (Example 3(e))
that the Riemann–Lebesgue lemma fails dramatically in HK: f̂ can have ar-
bitrarily large point-wise growth. And, f̂ need not be continuous. Continuity
of f̂ is equivalent to quasi-uniform convergence (Theorem 5). Some sufficient
conditions for continuity of f̂ appear in Proposition 6. Although f̂ need not
be continuous, when it exists at the endpoints of a compact interval, it exists
almost everywhere on that interval and is integrable over that interval; see
Proposition 7. As in the L1 theory, we have linearity, symmetry, conjuga-
tion, translation, modulation, dilation, etc.; see formulas (2)–(9) in [5, p. 117]
and [2, p. 9]. We draw attention to the differentiation of Fourier transforms
(Proposition 8) and transforms of derivatives (Proposition 9). One of the most
important properties of Fourier transforms is their interaction with convolu-
tions. Propositions 10, 11, 13, 14 and 15 contain various results on existence
of convolutions; estimates using the variation, L1 norm and Alexiewicz norm;
and the transform and inverse transform of convolutions. Proposition 16 gives
a Parseval relation. An inversion theorem is obtained using a summability ker-
nel (Theorem 18). A uniqueness theorem follows as a corollary. The paper
concludes with an example of a function f for which f̂ exists on R but f̂ˇ
exists nowhere.

As Henstock–Kurzweil integrals allow conditional convergence, they make
an ideal setting for the Fourier transform. We remark that many of the Fourier
integrals appearing in tables such as [5] diverge as Lebesgue integrals but
converge as improper Riemann integrals. Thus, they exist as HK integrals.

We use the following notation. Let A ⊂ R and f be a real-valued func-
tion on A. The functions of bounded variation over A are denoted BVA and
the variation of function f over set A is VAf . We say a set is in BV if its
characteristic function is in BV. All our results are stated for real-valued
functions but the extension to complex-valued functions is immediate. Note
that for complex-valued functions, the variation of the real part and the vari-
ation of the imaginary part are added. The Alexiewicz norm of f ∈ HKA is
‖f‖A = supI⊂A |

∫
I
f |, the supremum being taken over all intervals I ⊂ A.

For each of these definitions, the label A is omitted when A = R or it is
obvious which set is A. Whereas indefinite Lebesgue integrals are absolutely
continuous (AC), indefinite Henstock–Kurzweil integrals are ACG∗; see [9]
for the definition of ACG∗ and the related space AC∗. Finally, a convergence
theorem that we use throughout is:
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Theorem 1. Let f and gn (n ∈ N) be real-valued functions on [a, b]. If
f ∈ HK, V gn ≤M for all n ∈ N, and gn → g as n→∞ then

∫ b
a
fgn →

∫ b
a
fg

as n→∞.

The theorem holds for [a, b] ⊂ R, where R = R ∪ {±∞} is the extended
real line. For a proof see [11].

2. Basic properties

We first tackle the problem of existence. If f :R → R then f̂ exists as a
Lebesgue integral on R if and only if f ∈ L1. This follows from the fact that
|e±isx| ≤ 1 for all s, x ∈ R and the multipliers for L1 are the bounded measur-
able functions. No such simple necessary and sufficient conditions are known
for existence of HK Fourier integrals. However, we do have the following
results.

Proposition 2. Let f :R→ R.

(a) In order for f̂ to exist at some s ∈ R it is necessary that f ∈ HKloc.
(b) If f ∈ HKloc then f̂ exists on R if |f | is integrable in a neighbourhood

of infinity or if f is of bounded variation in a neighbourhood of infinity
with limit 0 at infinity.

(c) Let f ∈ HK. Define F1(x) =
∫∞
x
f and F2(x) =

∫ x
−∞ f . Then f̂

exists at s ∈ R if and only if both the integrals
∫∞

0
e−isxF1(x) dx and∫ 0

−∞ e−isxF2(x) dx exist.

Proof. (a) For each s ∈ R, the function x 7→ eisx is of bounded variation
on any compact interval.

(b) This follows from the Chartier–Dirichlet convergence test; see [1].
(c) Let T > 0. Integrate by parts to obtain∫ T

0

e−isxf(x) dx = F1(0)− F1(T )e−isT − is
∫ T

0

e−isxF1(x) dx.

Since F1 is continuous with limit 0 at infinity,
∫∞

0
e−isxf(x) dx exists if and

only if
∫∞

0
e−isxF1(x) dx exists. The other part of the proof is similar. �

Although F1 is continuous with limit 0 at infinity, it need not be of bounded
variation. So, f ∈ HK does not imply the existence of f̂ ; see Example 3(c)
below. Notice that part (b) (with HKloc replaced by L1

loc) and part (c) are
false for L1 convergence of f̂ .

Titchmarsh [15] gives several sufficient conditions for existence of condi-
tionally convergent Fourier integrals (§1.10–1.12). However, these all require
that f ∈ L1

loc.
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When f ∈ L1 and s, h ∈ R, f̂(s+h) =
∫∞
−∞ e−i(s+h)xf(x) dx. By dominated

convergence this tends to f̂(s) as s→ h. So, f̂ is uniformly continuous on R.
When f̂ exists in HK in a neighbourhood of s, the function x 7→ e−isxf(x)
is in HK but the factor e−ihx is not of bounded variation on R except for
h = 0. In general we cannot take the limit h→ 0 under the integral sign and
f̂ need not be continuous. And, for f ∈ L1 and s 6= 0, the change of variables
x 7→ x + π/s gives f̂(s) = (1/2)

∫∞
−∞ e−isx [f(x)− f(x+ π/s)] dx. Writing

fy(x) = f(x+ y) for x, y ∈ R, we have |f̂(s)| ≤ (1/2)‖f − fπ/s‖1. Continuity
of f in the L1 norm now yields the Riemann–Lebesgue lemma: f̂(s) → 0 as
|s| → ∞. It is true that if f ∈ HK then f is continuous in the Alexiewicz norm
[14]. However, since the variation of x 7→ e−isx is not uniformly bounded as
|s| → ∞, existence of f̂ does not let us conclude that f̂ tends to 0 at infinity.

The following examples show some of the differences between L1 and HK
Fourier transforms.

Example 3. The transforms (a)–(d) appear in [5]. Convergence in (a) is
by Lemma 23, (b) is similar, after integrating by parts, and (c) and (f) are
Frullani integrals.

(a) If f(x) = sgn(x)|x|−1/2 then f is not in HK or in any Lp space (1 ≤
p ≤ ∞) and yet f̂(s) =

√
2π sgn(s)|s|−1/2 for s 6= 0. Notice that, even though

f is odd, f̂ does not exist at 0 since HK convergence does not allow principal
value integrals.

(b) Let g(x) = eix
2
. Then ĝ(s) =

√
π ei(π−s

2)/4. In this example, ĝ is
not of bounded variation at infinity, nor does ĝ tend to 0 at infinity, nor is ĝ
uniformly continuous on R. The same can of course be said for g.

(c) Let h(x) = sin(ax)/|x|. Then ĥ(s) = i log |(s− a)/(s+ a)| for s 6= a.
(d) Let k(x) = x/(x2 + 1). Then k̂(s) = −iπ sgn(s)e−|s| for s 6= 0. Note

that k̂ does not exist at 0, even though its principal value is 0.
(e) Fourier transforms in HK can have arbitrarily large point-wise growth.

Given any sequence {an} of positive real numbers, there is a continuous func-
tion f on R such that f̂ exists on R and f̂(n) ≥ an for all n ≥ 1 [13].

(f) Let {an} and {bn} be sequences in R. Define f(x) =
∑∞
n=1 an

sin(bnx)
|x|

for x 6= 0 and f(0) = 0. Assume that an > 0,
∑
an <∞ and

∑
an|bn| <∞.

Then f is continuous on R, except at the origin, where it has a finite jump
discontinuity. Suppose s is not in the closure of {−bn, bn}n∈N. Then

f̂(s) =
∞∑
n=1

an

∫ ∞
−∞

e−isx sin(bnx)
dx

|x|
(1)

= i
∞∑
n=1

an

∫ ∞
0

(cos [(s+ bn)x]− cos [(s− bn)x])
dx

x
(2)

= i
∞∑
n=1

an log
∣∣∣∣s− bns+ bn

∣∣∣∣ .(3)
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The reversal of summation and integration in (1) is justified using Corollary 7
in [12]. Hence, f̂ exists on R, except perhaps on the closure of {−bn, bn}n∈N.
Note that f̂(0) = 0.

We will now show f̂ diverges at each bk with akbk 6= 0. Let T1, T2 > 0 and
consider∫ T2

−T1

e−ibkx
∞∑
n=1

an sin(bnx)
dx

|x|

=
∞∑
n=1

an

∫ T2

−T1

e−ibkx sin(bnx)
dx

|x|
(4)

=
∞∑
n=1

an

∫ T2

−T1

sin [(bk + bn)x]−sin [(bk − bn)x]
2

− i sin(bkx) sin(bnx)
dx

|x|
.(5)

In (4), convergence of
∑
an|bn| permits reversal of summation and integration.

The real part of (5) converges for all k ≥ 1, uniformly for T1, T2 ≥ 0. Hence,
the real part of f̂ exists on R. The kth summand of the imaginary part of (5)
is

−ak
∫ T2

−T1

sin2(bkx)
dx

|x|
= −ak

∫ T2|bk|

−T1|bk|
sin2 x

dx

|x|
.

This diverges as T1, T2 →∞. Hence, f̂(bk) does not exist.
If {−bn, bn}n∈N has no limit points then we have an example of a function

whose Fourier transform exists everywhere except on a countable set.
Now suppose s 6∈ {−bn, bn}n∈N but s is a limit point of {−bn, bn}n∈N. As

noticed above, the real part of f̂(s) exists. And,∣∣∣∣∫ 1

−1

sin(sx) sin(bnx)
dx

|x|

∣∣∣∣ ≤ 2|s|.

So, f̂(s) exists if and only if

lim
T→∞

∞∑
n=1

an

∫ T

1

(cos [(s+ bn)x]− cos [(s− bn)x])
dx

x

exists. Suppose s 6= 0 and T > 1. If |s− bn|T > 1 and |s− bn| < 1 then∣∣∣∣∣
∫ T

1

cos(|s− bn|x)
dx

x

∣∣∣∣∣ =

∣∣∣∣∣
∫ |s−bn|T
|s−bn|

cosx
dx

x

∣∣∣∣∣(6)

=

∣∣∣∣∣
∫ 1

|s−bn|
cosx

dx

x
+
∫ |s−bn|T

1

cosx
dx

x

∣∣∣∣∣
≤ log (1/|s− bn|) + c.
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The constant c is equal to the supremum of |
∫ t

1
cosx dx/x| over t > 1. When

|s− bn|T ≤ 1, we have∣∣∣∣∣
∫ T

1

cos(|s− bn|x)
dx

x

∣∣∣∣∣ =

∣∣∣∣∣
∫ |s−bn|T
|s−bn|

cosx
dx

x

∣∣∣∣∣
≤ log T

≤ log (1/|s− bn|) .

The case for |s+ bn|T is similar. It follows that the condition

(7)
∞∑
n=1

an

∣∣∣∣log
∣∣∣∣s− bns+ bn

∣∣∣∣∣∣∣∣ <∞
is sufficient for existence of f̂(s).

If 1/T < |s− bn| < 1 then, as in (6),∫ T

1

cos(|s− bn|x)
dx

x
≥ cos(1) log (1/|s− bn|)− c.

Therefore, ∑
1/T<|s−bn|<1

an

∫ T

1

cos(|s− bn|x)
dx

x

≥
∑

1/T<|s−bn|<1

an [cos(1) log (1/|s− bn|)− c] .

Let T →∞. Then condition (7) is also necessary for existence of f̂(s). Hence,
it is possible for f̂ to exist at a finite number of limit points of {−bn, bn}n∈N.

Finally, enumerate the rational numbers in [0, 1] by b1 = 0, b2 = 1/1, b3 =
1/2, b4 = 1/3, b5 = 2/3, b6 = 3/3, b7 = 1/4, etc. Let Am > 0 be such that∑
mAm < ∞. Put a1 = 0 and define an = Am for the m consecutive values

of n such that bn = l/m for some 1 ≤ l ≤ m. Let s ∈ [−1, 1] \Q and let s̄ be
the distance to the nearest rational number. Then
∞∑
n=1

an

∣∣∣∣log
∣∣∣∣s− bns+ bn

∣∣∣∣∣∣∣∣ =
∞∑
m=1

Am

m∑
l=1

∣∣∣∣log
∣∣∣∣s− l/ms+ l/m

∣∣∣∣∣∣∣∣ ≤ log(2/s̄)
∞∑
m=1

mAm.

This furnishes an example of a function whose Fourier transform exists on R
except for the rational numbers in [−1, 1].

Examples 3(a), (c), (d) and (f) show that f̂ need not be continuous. How-
ever, continuity of f̂ is equivalent to quasi-uniform continuity.

Definition 4 (Quasi-uniform continuity). Let f : R2 → R. If F (x) :=∫∞
−∞ f(x, y) dy exists in a neighbourhood of x0 ∈ R then F is quasi-uniformly



HENSTOCK-KURZWEIL FOURIER TRANSFORMS 1213

continuous at x0 if for all ε > 0 and M > 0 there exist m = m(x0, ε,M) ≥M
and δ = δ(x0, ε,M) > 0 such that if |x− x0| < δ then |

∫
|y|>m f(x, y) dy| < ε.

This is a modification of a similar definition for series, originally introduced
by Dini; see [3, p. 140].

Theorem 5. Let f :R→ R. Then, f̂ is continuous at s0 ∈ R if and only
if f̂ is quasi-uniformly continuous at s0.

Proof. For m > 0, let Fm(s) =
∫m
−m e

−isxf(x) dx. Let h ∈ R. Then,
Fm(s+h)−Fm(s) =

∫m
−m[e−ihx−1]e−isxf(x) dx. Note that either assumption

implies x 7→ e−isxf(x) is in HKloc for each s ∈ R. And, V[−m,m][x 7→ e−ihx −
1] ≤ 4m|h|. Taking the limit h → 0 inside the above integral now shows Fm
is continuous on R for each m > 0.

Suppose f̂ is quasi-uniformly continuous at s0 ∈ R. Given ε > 0, take
M > 0 such that |

∫
|x|>t e

is0xf(x) dx| < ε for all t > M . From quasi-uniform
continuity, we have m > M and δ > 0. Then, for |s− s0| < δ,∣∣∣∣∣

∫
|x|>m

[
e−isx − e−is0x

]
f(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|x|>m

e−isxf(x) dx

∣∣∣∣∣+

∣∣∣∣∣
∫
|x|>m

e−is0xf(x) dx

∣∣∣∣∣
≤ 2ε.

It follows that f̂ is continuous at s0.
Suppose f̂ is continuous at s0 and we are given ε > 0 and M > 0. Since

f̂ exists at s0, there is N = N(s0, ε) > 0 such that |
∫
|x|>m e

−is0xf(x) dx| < ε

whenever m > N . Continuity of f̂ at s0 implies the existence of ξ = ξ(s0, ε) >
0 such that |f̂(s) − f̂(s0)| < ε when |s − s0| < ξ. And, Fm is continuous on
R. Hence, there exists η = η(s0, ε,m) > 0 such that when |s − s0| < η we
have |Fm(s)−Fm(s0)| < ε. Let m = max(M,N) and δ = min(ξ, η). Then for
|s− s0| < δ we have∣∣∣∣∣

∫
|x|>m

e−isxf(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
|x|>m

eis0xf(x) dx

∣∣∣∣∣+
∣∣∣f̂(s)− f̂(s0)

∣∣∣+ |Fm(s)− Fm(s0)|

< 3ε.

And, f̂ is quasi-uniformly continuous at s0. �



1214 ERIK TALVILA

We now present two sufficient conditions for a Fourier transform to be
continuous. The first is in the spirit of the Chartier–Dirichlet convergence test
and the second is in the spirit of the Abel convergence test. For simplicity,
the results are stated for functions on [0,∞). The general case follows easily.

Proposition 6. Let g and h be real-valued functions on [0,∞) where
g ∈ BV and h ∈ HKloc. Define f = gh.

(a) Suppose there are positive constants M , δ and K such that, if |s−s0| <
δ and M1,M2 > M then |

∫M2

M1
e−isxh(x) dx| < K. If g(x) → 0 as

x→∞ then f̂ is continuous at s0.
(b) Let Hs(x) =

∫ x
0
e−istf(t) dt. If ĥ is continuous at s0 and there are

δ,K > 0 such that for all x > 0 and |s− s0| < δ we have |Hs(x)| ≤ K
then f̂ is continuous at s0.

Proof. Write φs(x) = e−isxh(x). With no loss of generality, g(∞) = 0.
For (a), let |s− s0| < δ and M1,M2 > M . Using Lemma 24,∣∣∣∣∣
∫ M2

M1

e−isxf(x) dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ M2

M1

φs(x) dx

∣∣∣∣∣ inf
[M1,M2]

|g|+ ‖φs‖[M1,M2]V[M1,M2]g

≤ K
[

inf
[M1,M2]

|g|+ V[M,∞]g

]
(8)

→ 0 as M →∞.

Therefore, f̂ exists in a neighbourhood of s0. Taking the limit M2 → ∞ in
(8) shows that f̂ is quasi-uniformly continuous and hence continuous.

For (b), since g ∈ BV we have limx→∞ g(x) = c ∈ R. Writing f = h(g −
c) + ch we need only consider |

∫∞
M
φs(g − c)| ≤ ‖φs‖[M,∞)V[M,∞)(g − c). By

our assumption, ‖φs‖[M,∞) ≤ 2K for |s− s0| < δ. And, V[M,∞)(g− c)→ 0 as
M →∞. �

Although f̂ need not be continuous, when it exists at the endpoints of a
compact interval it is integrable over the interval.

Proposition 7. Let [a, b] be a compact interval. If f̂ exists at a and
b then f̂ exists almost everywhere on (a, b), f̂ is integrable over (a, b) and∫ b
a
f̂ = i

∫∞
−∞ f(x)[e−ibx − e−iax] dx/x.

Proof. The integral I := i
∫∞
−∞ f(x)

[
e−ibx − e−iax

]
dx
x exists since x 7→

f(x)e−ibx/x and x 7→ f(x)e−iax/x are integrable over R \ (−1, 1) and x 7→[
e−ibx − e−iax

]
/x is of bounded variation on [−1, 1]. And,

I =
∫ ∞
−∞

f(x)e−ibx
∫ b

a

e−i(s−b)xds dx =
∫ b

a

∫ ∞
−∞

f(x)e−isxdx ds =
∫ b

a

f̂ .
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Hence, f̂ exists almost everywhere on (a, b) and is integrable over (a, b).
Lemma 25(a) justifies the reversal of x and s integration. �

The usual algebraic properties of linearity, symmetry, conjugation, transla-
tion, modulation, dilation, etc., familiar from the L1 theory, continue to hold
for HK Fourier transforms; see formulas (2)–(9) in [5, p. 117] and [2, p. 9].
The proofs are elementary. There are also differentiation results analogous to
the L1 case (pages 117 and 17, respectively, of the previous references).

Proposition 8 (Frequency differentiation). Suppose f̂ exists on the com-
pact interval [α, β]. Define g(x) = xf(x) and suppose g ∈ HK. Then
f̂ ′ = −iĝ almost everywhere on (α, β). In particular, f̂ ′(s) = −iĝ(s) for
all s ∈ (α, β) such that d

ds

∫ s
α
ĝ = ĝ(s).

Proof. The necessary and sufficient condition that allows differentiation
under the integral, f̂ ′(s) = −i

∫∞
−∞ e−isxxf(x) dx, for almost all s ∈ (α, β) is

that

(9)
∫ ∞
−∞

∫ b

a

e−isxxf(x) ds dx =
∫ b

a

∫ ∞
−∞

e−isxxf(x) dx ds

for all [a, b] ⊂ [α, β]; see [12, Theorem 4]. We have g ∈ HK, |e−isx| ≤ 1 and
VI [x 7→ e−isx] ≤ 2|I||s| for a compact interval I ⊂ R. The left member of (9)
is i[f̂(b) − f̂(a)]. Hence, by Lemma 25(a), (9) holds, and f̂ ′(s) = −iĝ(s) for
almost all s ∈ (α, β). Examining the proof of [12, Theorem 4], we see that we
get equality f̂ ′(s) = −iĝ(s) when d

ds

∫ s
α
ĝ = ĝ(s). �

There are similar results for n-fold differentiation when the function x 7→
xnf(x) is in HK for a positive integer n.

Proposition 9 (Time differentiation).
(a) If f ∈ ACG∗(R) and f(x)→ 0 as |x| → ∞ then for each s 6= 0, both

f̂(s) and f̂ ′(s) fail to exist or f̂ ′(s) = isf̂(s).
(b) Suppose f ∈ ACG∗(R) and f, f ′ ∈ HK. Then for each s 6= 0, either

both f̂(s) and f̂ ′(s) fail to exist or f̂ ′(s) = isf̂(s).

Proof. (a) Let M1,M2 > 0. Integrate by parts to get∫ M2

−M1

e−isxf ′(x) dx = e−isM2f(M2)− eisM1f(−M1) + is

∫ M2

−M1

e−isxf(x) dx.

Now take the limits M1,M2 →∞.
(b) Consider

∫∞
x
f ′ =

∫∞
M
f ′ + f(M)− f(x) for x,M ∈ R. Since f ′ ∈ HK,

the limits as |x| → ∞ exist. Hence, f has a limit at infinity. But, f ∈ HK so
this limit must be 0 and we have reduction to case (a). �
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3. Convolution

If f and g are real-valued functions on R then their convolution is f ∗g(x) =∫∞
−∞ f(x − t)g(t) dt. The following proposition gives the basic properties of

convolution.

Proposition 10. Let f and g be real-valued functions on R. Define fx :
R→ R by fx(y) = f(x+ y) for x, y ∈ R. For an interval I = [α, β] ⊂ R and
y ∈ R, define I − y = [α− y, β − y].

(a) If f ∗ g exists at x ∈ R then f ∗ g(x) = g ∗ f(x).
(b) If f ∈ HK, g ∈ BV and h ∈ L1 then (f ∗ g) ∗ h = f ∗ (g ∗ h) on R.
(c) Let f ∈ HK. Suppose that for each compact interval I ⊂ R there are

constants KI and MI such that |g| ∗ |h|(z) ≤ KI for all z ∈ I and the
function y 7→ h(y)VI−yg is in L1. If f ∗ (g ∗ h) exists at x ∈ R then
(f ∗ g) ∗ h(x) = f ∗ (g ∗ h)(x).

(d) (f ∗g)x = fx∗g = f ∗gx wherever any one of these convolutions exists.
(e) supp(f ∗ g) ⊂ {x+ y : x ∈ supp(f), y ∈ supp(g)}.

Proof. For (a), (d) and (e), the L1 proofs hold without change; see [6,
Proposition 8.6]. To prove (b), write

(f ∗ g) ∗ h(x) =
∫ ∞
−∞

f ∗ g(x− y)h(y) dy

=
∫ ∞
−∞

∫ ∞
−∞

f(x− y − z)g(z) dz h(y) dy

=
∫ ∞
−∞

∫ ∞
−∞

f(x− z)g(z − y)h(y) dy dz

= f ∗ (g ∗ h)(x).

Lemma 25(b) allows us to change the order of y and z integration. The proof
of (c) is similar but now we use Lemma 25(a). �

The next proposition gives some sufficient conditions for existence of the
convolution and some point-wise estimates.

Proposition 11.

(a) Let f ∈ HK and g ∈ BV. Then f ∗ g exists on R and |f ∗ g(x)| ≤
‖f‖[inf |g|+ V g] for all x ∈ R.

(b) Let f ∈ HKloc and g ∈ BV with the support of g in the compact inter-
val [a, b]. Then f ∗ g exists on R and |f ∗ g(x)| ≤ |

∫ x−a
x−b f | inf [a,b] |g|+

‖f‖[x−a,x−b]V[a,b]g.
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Proof. (a) Using Lemma 24,

|f ∗ g(x)| =
∣∣∣∣∫ ∞
−∞

f(x− t)g(t) dt
∣∣∣∣

≤
∣∣∣∣∫ ∞
−∞

f

∣∣∣∣ inf |g|+ ‖f‖V g

≤ ‖f‖ [inf |g|+ V g] .

(b) Now,

|f ∗ g(x)| =

∣∣∣∣∣
∫ b

a

f(x− t)g(t) dt

∣∣∣∣∣
≤
∣∣∣∣∫ x−a

x−b
f

∣∣∣∣ inf
[a,b]
|g|+ ‖f‖[x−b,x−a]V[a,b]g. �

These conditions are sufficient but not necessary for existence of the con-
volution. Also, if f, g ∈ HK then f ∗ g need not exist at any point.

Example 12.

(a) Let f(x) = log |x| sin(x) and g(x) = |x|−α, where 0 < α < 1. Then
f and g do not have compact support and are not in HK, BV or Lp

(1 ≤ p ≤ ∞). And yet f ∗ g exists on R.
(b) Let f(x) = sin(x)/|x|1/2 and g(x) = (sin(x) + cos(x))/|x|1/2. Then

f, g ∈ HK but f ∗ g exists nowhere.

When f ∈ HK and g ∈ L1∩BV then f ∗ g exists on R and we can estimate
it in the Alexiewicz norm.

Proposition 13. Let f ∈ HK and g ∈ L1 ∩ BV. Then f ∗ g exists on R
and ‖f ∗ g‖ ≤ ‖f‖‖g‖1.

Proof. Existence comes from Proposition 11. Let −∞ ≤ a < b ≤ ∞. Using
Lemma 25(a), we can interchange the repeated integrals,

∫ b

a

f ∗ g dx =
∫ b

a

∫ ∞
−∞

f(x− t)g(t) dt dx(10)

=
∫ ∞
−∞

g(t)
∫ b

a

f(x− t) dx dt.(11)
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And, ∣∣∣∣∣
∫ b

a

f ∗ g dx

∣∣∣∣∣ ≤ ‖g‖1 sup
t∈R

∣∣∣∣∣
∫ b

a

f(x− t) dx

∣∣∣∣∣
= ‖g‖1 sup

t∈R

∣∣∣∣∣
∫ b−t

a−t
f

∣∣∣∣∣
≤ ‖f‖‖g‖1. �

Under suitable conditions on f and g, we have the usual interactions be-
tween convolution and Fourier transformation and inversion.

Proposition 14. If f̂ exists at s ∈ R and g ∈ L1 ∩ BV then f̂ ∗ g(s) =
f̂(s) ĝ(s).

Proof. We have

f̂ ∗ g(s) =
∫ ∞
−∞

e−isx
∫ ∞
−∞

[
e−istf(t)

] [
eistg(x− t)

]
dt dx

=
∫ ∞
−∞

e−istf(t)
∫ ∞
−∞

e−is(x−t)g(x− t) dx dt

= f̂(s) ĝ(s).

The interchange of integrals is validated by Lemma 25(a), since∫ ∞
−∞

V[a,b]

[
t 7→ e−is(x−t)g(x− t)

]
dx =

∫ ∞
−∞

V[x−b,x−a]

[
t 7→ e−istg(t)

]
dx

≤ 2|s|(b− a)‖g‖1 + 2(b− a)V g. �

Proposition 15. If f and g are in HKloc such that f̂ exists almost ev-
erywhere, ĝ ∈ L1, s 7→ s ĝ(s) is in L1 and ĝ̌ = g almost everywhere then
f ∗ g = (f̂ ĝ)̌ wherever f ∗ g exists.

Proof. Let x ∈ R. Then ĝ(x− t) exists for almost all t ∈ R. And,

f ∗ g(x) =
1

2π

∫ ∞
−∞

f(t)
∫ ∞
−∞

eis(x−t)ĝ(s) ds dt

=
1

2π

∫ ∞
−∞

eisx ĝ(s)
∫ ∞
−∞

e−istf(t) dt ds

= (f̂ ĝ)̌(x).

Suppose f̂ exists at s0. Then VI [t 7→ eis(x−t)eis0t ĝ(s)] ≤ 2|ĝ(s)||s− s0||I| and
the reversal of s and t integration order is by Lemma 25(a). �
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4. Inversion

A well-known inversion theorem states that if f̂ and f̂ˇ are in L1 then
f = f̂ˇ almost everywhere. These are rather restrictive conditions as both
f and f̂ must be continuous (almost everywhere) and vanish at infinity. In
Example 3(a) and (b), f̂ is a multiple of f and ĝ is a multiple of g so we
certainly have f = f̂ˇ and g = ĝ̌ almost everywhere and yet none of these
integrals exists in L1. However, they do exist in HK. And, we have a similar
inversion theorem in HK. First we need the following Parseval relation.

Proposition 16. Let ψ and φ be real-valued functions on R. Suppose ψ̂
exists at some s0 ∈ R. Suppose φ ∈ L1 and the function s 7→ sφ(s) is also
in L1. If

∫∞
−∞ ψ φ̂ exists, then ψ̂ exists almost everywhere and

∫∞
−∞ ψ φ̂ =∫∞

−∞ ψ̂ φ.

Proof. Let f(x) = ψ(x)e−is0x and g(x, y) = ei(s0−y)xφ(y). A simple com-
putation shows V[a,b]g(·, y) = O((b− a)yφ(y)) as |y| → ∞. The conditions of
Lemma 25(a) are satisfied. �

Now we have the inversion theorem. The proof uses the method of summa-
bility kernels. Using Proposition 16, one inserts a summability kernel in the
inversion integral. There is a parameter z = x+ iy that is sent to x0, yielding
inversion at x0. We can actually let z → x0 in the upper complex plane, pro-
vided the approach is non-tangential. This is analogous to the Fatou theorem
for boundary values of harmonic functions. Define the upper half plane by
Π+ = {z = x+ iy : x ∈ R, y > 0}. We identify ∂Π+ with R. For x0 ∈ ∂Π+,
we say z → x0 non-tangentially in Π+ if z ∈ Π+ and z → x0 such that
|x− x0|/y ≤ C for some C > 0.

Definition 17 (Summability kernel). A summability kernel is a function
Θ:R→ R such that Θ ∈ L1∩AC, Θ(0) = 1, s 7→ sΘ(s) is in L1, Θ̂ ∈ L1∩BV,∫∞
−∞ Θ̂ = 2π, s 7→ sΘ̂ ′(s) is in L1, and x 7→ V[x,∞)Θ̂ and x 7→ V(−∞,−x]Θ̂ are
O(1/x) as x→∞.

Theorem 18 (Inversion). Let f : R → R such that f̂ exists almost ev-
erywhere. Define F (x) =

∫ x
x0
f for x0 ∈ R. If F ′(x0) = f(x0) and f = f̂ˇ

exists at x0 then f(x0) = f̂ (̌x0). If f̂ˇ exists almost everywhere then f = f̂ˇ
almost everywhere.

Proof. Let z = x + iy for x ∈ R and y > 0. Define φz :R → R by φz(s) =
Θ(ys)eisx, where Θ is a summability kernel. Then φ̂z(t) = Θ̂((t − x)/y)/y.
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And,

1
2π

∫ ∞
−∞

φz(s)f̂(s) ds =
1

2π

∫ ∞
−∞

φ̂z(t)f(t) dt(12)

=
1

2πy

∫ ∞
−∞

Θ̂((t− x)/y)f(t) dt.(13)

The inversion theorem now follows, provided we can prove the following:

(I) The conditions of Proposition 16 are satisfied so that (12) is valid.
(II) As z → x0 non-tangentially in Π+, the left side of (12) becomes

f̂ (̌x0).
(III) As z → x0 non-tangentially in Π+, (13) becomes f(x0).

(I) In Proposition 16, let ψ = f and φ = φz. We have existence of f̂ at some
s0 ∈ R. And, φz and s 7→ sφz(s) are in L1 if and only if Θ and s 7→ sΘ(s)
are in L1. Since Θ ∈ L1, φ̂z is continuous with limit 0 at infinity. So, if φ̂z is
of bounded variation at infinity, the integral

∫∞
−∞ fφ̂z will exist. It suffices to

have Θ̂ of bounded variation at infinity. Proposition 16 now applies.
(II) Write the left side of (12) as (2π)−1

∫∞
−∞

[
Θ(ys)eis(x−x0)

] [
eisx0 f̂(s)

]
ds.

The function s 7→ eisx0 f̂(s) is in HK. And, we have V [s 7→ Θ(ys)eis(x−x0)] ≤
2VΘ + 2‖Θ‖1|x − x0|/y. So, for non-tangential approach, this function is of
bounded variation, uniformly as z → x0. This allows us to take the limit
inside the integral on the left side of (12), yielding f̂ (̌x0).

(III) Let δ > 0. Write

1
y

∫ ∞
−∞

Θ̂
(
t− x
y

)
f(t) dt(14)

=
1
y

∫
|t−x|<δ

Θ̂
(
t− x
y

)
f(t) dt+

1
y

∫
|t−x|>δ

Θ̂
(
t− x
y

)
f(t) dt.

Consider the last integral in (14). There is s0 ∈ R such that t 7→ e−is0tf(t) is
in HK. Now,

V[x+δ,∞)

[
t 7→ 1

y
Θ̂
(
t− x
y

)
eis0t

]
≤ 2
y
V[δ/y,∞)Θ̂ + 2|s0|‖Θ̂‖1.

With our assumptions on Θ̂, this last expression is bounded as z → x0. And,
when Θ ∈ L1, Θ ∈ ACloc and Θ′ ∈ L1 then Θ̂(t) = o(1/t) as t → ∞ [2,
page 20]. The same applies on the interval (−∞, x − δ]. Hence, taking the
limit z → x0 inside the integral yields 0 for each fixed δ > 0.

Treat the first integral on the right side of (14) as follows. Because

1
2πy

∫ x+δ

x−δ
Θ̂((t− x)/y) dt =

1
2π

∫ δ/y

−δ/y
Θ̂(t) dt→ 1
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as y → 0+, we can assume f(x0) = 0 (otherwise replace f(·) with f(·)−f(x0)).
Let F (t) =

∫ t
x0
f . We have F ′(x0) = f(x0) = 0. And, Θ̂(s) = o(1/s) as

|s| → ∞. Given ε > 0, we can take 0 < δ < 1 small enough such that
|F (x0 + t)| ≤ ε|t| and |Θ̂(1/t)| ≤ ε|t| for all 0 < |t| ≤ 2δ. Without loss of
generality, assume x ≥ x0. Take |z − x0| ≤ δ with |x − x0|/y ≤ C for some
constant C > 0. Integrate by parts,

1
y

∫ x+δ

x−δ
Θ̂
(
t− x
y

)
f(t) dt(15)

=
1
y

[
Θ̂
(
δ

y

)
F (x+ δ)− Θ̂

(
− δ
y

)
F (x− δ)

]
− J1 − J2 − J3,

where J1 = y−2
∫ x0

x−δ Θ̂′((t − x)/y)F (t) dt, J2 = y−2
∫ x
x0

Θ̂′((t − x)/y)F (t) dt,

J3 = y−2
∫ x+δ

x
Θ̂′((t−x)/y)F (t) dt. Note that if 0 < y ≤ δ2 then y/δ ≤ δ and

|x± δ − x0| < 2δ so |Θ̂(±δ/y)F (x± δ)|/y ≤ 2ε2.
Estimate J1 by writing

|J1| ≤
1
y2

∫ x0

x−δ
(x0 − t)

∣∣∣∣Θ̂′( t− xy
)∣∣∣∣ ∣∣∣∣ F (t)

x0 − t

∣∣∣∣ dt(16)

≤ ε

y

∫ (x0−x)/y

−δ/y
(x0 − x− yt)

∣∣∣Θ̂′(t)∣∣∣ dt
≤ εC V Θ̂ + ε

∫ 0

−∞
|t|
∣∣∣Θ̂′(t)∣∣∣ dt.

Similarly,

(17) |J3| ≤ εC V Θ̂ + ε

∫ ∞
0

t
∣∣∣Θ̂′(t)∣∣∣ dt.

For J2 we have

|J2| ≤
1
y

sup
x0≤t≤x

|F (t)|
∫ 0

(x0−x)/y

∣∣∣Θ̂′(t)∣∣∣ dt(18)

≤ εC V Θ̂.

Putting (16), (18) and (17) into (15) now shows that the first integral on the
right side of (14) goes to 0 as z → x0 non-tangentially. This completes the
proof of part (III). Since F ′ = f almost everywhere, the proof of the theorem
is now complete. �

Remark 19. In place of the condition t 7→ t Θ̂ ′(t) is in L1 we can demand
that Θ̂ is increasing on (−∞, 0) and decreasing on (0,∞). The proof of (III)
then follows with minor changes. The condition that Θ ∈ AC can also be
weakened.
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Remark 20. The most commonly used summability kernels are:

Θ1(x) = (1− |x|)χ[−1,1](x) Θ̂1(s) =
[

sin(s/2)
s/2

]2
Cesàro–Fejér

Θ2(x) = e−|x| Θ̂2(s) = 2
1+s2 Abel–Poisson

Θ3(x) = e−x
2

Θ̂3(s) =
√
π e−(s/2)2

Gauss–Weierstrass.

The Abel and Gauss kernels are summability kernels according to Defini-
tion 17, while the Cesàro kernel does not satisfy this definition.

Corollary 21. Let f : R → R. Then f = 0 almost everywhere if and
only if f̂ = 0 almost everywhere.

Proof. If f = 0 almost everywhere then f̂ = 0 on R. If f̂ = 0 almost
everywhere then f̂ exists almost everywhere and f̂ˇ exists almost everywhere.
Therefore, by the Theorem, f̂ˇ = f = 0, almost everywhere. �

Note that the inversion theorem applies to Example 3(a)-(d). The condition
that f̂ˇ exists almost everywhere cannot be dropped. The following example
shows that existence of f̂ on R does not guarantee existence of f̂ˇ at any
point in R.

Example 22. Let f(x) = xαeix
ν

for x ≥ 0 and f(x) = 0 for x < 0. Using
the method of Lemma 23 we see that f̂ exists on R for −1 < α < ν − 1. And,

f̂(s) =
∫ ∞

0

xαei[x
ν−sx] dx(19)

= s
α+1
ν−1

∫ ∞
0

xαeip[x
ν−x] dx

(
p = sν/(ν−1)

)
.

Write φ(x) = xν −x. If ν > 1 then φ has a minimum at x0 := ν−1/(ν−1). The
method of stationary phase [7] shows that

f̂(s) ∼
√

2π
ν(ν−1) e

iπ/4x
α−(ν−2)/2
0 eiφ(x0)sν/(ν−1)

s
2α+2−ν
2(ν−1)

as s → ∞. Let ν > 2. It now follows from Lemma 23 that when ν/2 ≤ α <

ν − 1, f̂ exists on R and f̂ˇ diverges at each point of R. Note that f ∈ HK
but neither f nor f̂ is in any Lp space (1 ≤ p ≤ ∞).

5. Appendix

Lemma 23. If γ > 0 and δ ∈ R then:

(a)
∫ 1

0
eix
−γ
xδdx exists in HK if and only if γ + δ + 1 > 0. The integral

exists in L1 if and only if δ > −1.
(b)

∫∞
1
eix

γ

xδdx exists in HK if and only if γ > δ+1. The integral exists
in L1 if and only if δ < −1.
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Proof. In (a), integrate by parts to get∫ 1

0

eix
−γ
xδdx =

i

γ

[
ei − lim

x→0+
eix
−γ
xγ+δ+1

]
− i(γ + δ + 1)

γ

∫ 1

0

eix
−γ
xγ+δdx.

The limit exists if and only if γ + δ + 1 > 0, the last integral then converging
absolutely. Case (b) is similar. For L1 convergence, we simply take the
absolute value of each integrand. �

Lemma 24. Let [a, b] ⊂ R and let f ∈ HK[a,b] and g ∈ BV [a,b]. Then∣∣∣∣∣
∫ b

a

fg

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣ inf
[a,b]
|g|+ ‖f‖[a,b]V[a,b]g.

Proof. Given ε > 0, take c ∈ [a, b] such that |g(c)| ≤ ε+inf [a,b] |g|. Integrate
by parts:∫ b

a

fg =
∫ c

a

fg +
∫ b

c

fg

= g(c)
∫ b

a

f −
∫ c

a

(∫ x

a

f

)
dg(x) +

∫ b

c

(∫ b

x

f

)
dg(x).

And, ∣∣∣∣∣
∫ b

a

fg

∣∣∣∣∣ ≤
[
ε+ inf

[a,b]
|g|
] ∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣+ sup
a≤x≤c

∣∣∣∣∫ x

a

f

∣∣∣∣V[a,c]g

+ sup
c≤x≤b

∣∣∣∣∣
∫ b

x

f

∣∣∣∣∣V[c,b]g

≤
[
ε+ inf

[a,b]
|g|
] ∣∣∣∣∣
∫ b

a

f

∣∣∣∣∣+ ‖f‖[a,b]V[a,b]g. �

This lemma is an extension of inequalities proved in [8] and [4] (Theorem 45,
page 36). Changing g on a set of measure 0, such as a singleton, does not affect
the integral of fg but can make the infimum of |g| equal to zero. However,
this reduction in inf |g| is reflected by a corresponding increase in V g. This
redundancy can be eliminated by replacing g with its normalised version, i.e.,
for each x ∈ [a, b) replace g(x) with limt→x+ g(t) and redefine g(b) = 0. Then
the inequality becomes

∣∣∣∫ ba fg∣∣∣ ≤ ‖f‖[a,b]V[a,b]g.
The following lemma on interchange of iterated integrals is an extension of

Theorem 57 on page 58 of [4].
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Lemma 25. Let f ∈ HK and let g :R2 → R. LetM denote the measurable
subsets of R. For each (A,B) ∈ BV ×M, define the iterated integrals

I1(A,B) =
∫
x∈A

∫
y∈B

f(x)g(x, y) dy dx,

I2(A,B) =
∫
y∈B

∫
x∈A

f(x)g(x, y) dx dy.

(a) Assume that for each compact interval I ⊂ R there are constants
MI > 0 and KI > 0 such that

∫
R
VIg(·, y) dy ≤MI and, for all x ∈ I,

‖g(x, ·)‖1 ≤ KI . If I1 exists on R×R then I2 exists on BV ×M and
I1 = I2 on BV ×M.

(b) Assume there exist M,G ∈ L1 such that, for almost all y ∈ R,
V g(·, y) ≤ M(y) and, for all x ∈ R, |g(x, y)| ≤ G(y). Then I1 = I2
on BV ×M.

Proof. (a) Let I be the open intervals in R. First prove I1 = I2 on I × I.
Fix (a, b) and (α, β) in I. For −∞ < a < t <∞, define

(20) Ha(t) = I2((a, t), (α, β)) =
∫ β

α

∫ t

a

f(x)g(x, y) dx dy.

We will establish the equality of I1 and I2 by appealing to the necessary and
sufficient conditions for interchanging repeated integrals [12, Corollary 6]. For
this, we need to show that Ha is in ACG∗ and that we can differentiate under
the integral sign in (20). Let F (x) =

∫ x
−∞ f . Integrate by parts:

(21) Ha(t) = [F (t)− F (a)]
∫ β

α

g(t, y) dy−
∫ β

α

∫ t

a

[F (x)− F (a)] d1g(x, y)dy.

The integrator of the Riemann–Stieltjes integral over x ∈ [a, t] is denoted by
d1g(x, y). Now, by Lemma 24, |Ha(t)| ≤ ‖f‖[K[a,b] + M[a,b]], and I2(A,B)
exists for all A,B ∈ I with A bounded.

We have F ∈ ACG∗(R). So, there are En ⊂ R such that R = ∪En and F
is AC∗ on each En, i.e., for each n ≥ 1, given ε > 0, there is δ > 0 such that if
(si, ti) are disjoint with si, ti ∈ En and

∑
|si − ti| < δ then

∑
‖f‖(si,ti) < ε.

Fix n ≥ 1 with En, ε and δ as above. Suppose (σi, τi) are disjoint with
σi, τi ∈ En and

∑
|σi − τi| < δ. With no loss of generality, we may assume

En is a subset of a compact interval [c, d]. Then

sup
[p,q]⊂[σi,τi]

|Ha(p)−Ha(q)| ≤ ‖f‖[σi,τi]
[
K[c,d] +M[c,d]

]
.

It follows that Ha ∈ ACG∗(R).
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We now show that we can differentiate under the integral sign to compute
H ′a(t). Let 0 < |h| < 1 and t ∈ R such that F ′(t) = f(t). Then∣∣∣∣∣ 1h

∫ t+h

t

f(x)g(x, y) dx

∣∣∣∣∣ ≤ sup
0<|h|<1

∣∣∣∣F (t+ h)− F (t)
h

∣∣∣∣ |g(t, y)|

+ sup
0<|h|<1

∣∣∣∣ 1h
∣∣∣∣ ‖f‖[t−|h|,t+|h|]V[t−1,t+1]g(·, y).

It now follows from dominated convergence that H ′a(t) = f(t)
∫ β
α
g(t, y) dy

for almost all t ∈ R. And, by [12, Corollary 6], I1(A,B) = I2(A,B) for all
A,B ∈ I with A bounded.

By assumption, I1(R,R) exists. For a ∈ R,∫ ∞
a

f(x)
∫ β

α

g(x, y) dy dx = lim
t→∞

∫ t

a

f(x)
∫ β

α

g(x, y) dy dx

= lim
t→∞

∫ β

α

∫ t

a

f(x)g(x, y) dx dy

= lim
t→∞

Ha(t).

Similarly, lim
t→−∞

Ha(t) exists. Therefore, H−∞ is continuous on R and hence

in ACG∗(R). It follows from [12, Corollary 6] that I1(A,B) = I2(A,B) for
all A,B ∈ I.

We have equality of I1 and I2 on BV ×M upon replacing f with fχA and
g(x, ·) with g(x, ·)χB where A ∈ BV and B ∈M.

(b) This is similar to part (a), but now the conditions on g ensure the
existence of I2 on R × R. As in (a), Ha ∈ ACG∗(R). To show Ha is con-
tinuous on R, note that |

∫ β
α

∫ t
a
f(x)g(x, y) dx dy| ≤ ‖f‖(‖G‖1 + ‖M‖1) and

limt→∞
∫ t
a
f(x)g(x, y) dx exists for almost all y ∈ R. Whence, limt→∞Ha(t)

exists and H−∞ is continuous on R. Using [12, Corollary 6], we now have
equality of I1 and I2 on R× R and hence on BV ×M. �
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[5] A. Erdélyi, Tables of integral transforms, vol. I, McGraw-Hill, New York, 1954.
[6] G.B. Folland, Real analysis, Wiley, New York, 1999.
[7] F.W.J. Olver, Asymptotics and special functions, Academic Press, San Diego, 1974.
[8] M. Riesz and A.E. Livingston, A short proof of a classical theorem in the theory of

Fourier integrals, Amer. Math. Monthly 62 (1955), 434–437.



1226 ERIK TALVILA

[9] S. Saks, Theory of the integral, Monografie Matematyczne, Warsaw, 1937.
[10] C. Swartz, Introduction to gauge integrals, World Scientific, Singapore, 2001.

[11] E. Talvila, Limits and Henstock integrals of products, Real Anal. Exchange 25
(1999/00), 907–918.

[12] , Necessary and sufficient conditions for differentiating under the integral sign,

Amer. Math. Monthly 108 (2001), 544–548.
[13] , Rapidly growing Fourier integrals, Amer. Math. Monthly 108 (2001), 636–641.

[14] , Continuity in the Alexiewicz norm, to appear.
[15] E.C. Titchmarsh, Introduction to the theory of Fourier integrals, Chelsea, New York,

1986.

Department of Mathematical and Statistical Sciences, University of Alberta,

Edmonton AB, Canada T6G 2E2

E-mail address: etalvila@math.ualberta.ca


