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MAXIMAL HEIGHT OF DIVISORS OF xn − 1

CARL POMERANCE AND NATHAN C. RYAN

Abstract. The size of the coefficients of cyclotomic polynomials is a
problem that has been well-studied. This paper investigates the fol-
lowing generalization: suppose f(x) ∈ Z[x] is a divisor of xn − 1, so
that f(x) is the product of the cyclotomic polynomials corresponding
to some of the divisors of n. We ask about the largest coefficient in
absolute value over all such divisors f(x) of xn − 1, obtaining a fairly
tight estimate for the maximal order of this function.

1. Introduction

We denote the nth cyclotomic polynomial by Φn, so that

(1.1) Φn(x) =
∏
d|n

(xd − 1)µ(n/d),

where µ(n) is the Möbius function. Note that Φn has integer coefficients, it is
irreducible, and its roots are the primitive nth roots of 1. The degree of Φn

is φ(n), where φ is the Euler totient function. Inverting (1.1), we have

xn − 1 =
∏
d|n

Φd(x).

For a nonzero polynomial f ∈ C[x], we define its height H(f) to be the
largest coefficient of f in absolute value.

In the middle of the last century, Bateman [3] obtained in a simple way an
upper bound for A(n) := H(Φn); in particular, he showed that

(1.2) A(n) ≤ n2k−1

if n has exactly k distinct odd prime factors. Using the inequality k ≤ (1 +
o(1)) log n/ log log n as n →∞, one then obtains the estimate

(1.3) log A(n) ≤ n(1+o(1)) log 2/ log log n.
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This last result was first stated by Erdős [6], but he held back its proof because
of how complicated it was. Vaughan [13] showed that the inequality (1.3)
could be reversed for infinitely many n, so that, with (1.3), we have

(1.4) lim sup
n→∞

log log A(n)
log n/ log log n

= log 2.

This result gives then the maximal order of log log A(n).
In [4], Bateman, Pomerance, and Vaughan obtain a small improvement on

(1.2), and show that it is nearly best possible. These results give then another
proof of (1.4).

There have been many other papers dealing with coefficients of cyclotomic
polynomials. We mention a few. In [7], the authors study the rth coefficient
of the nth cyclotomic polynomial, while in [1], the author studies the maximal
order of this statistic for a fixed value of r. In [8], the author studies A(n) for
“most” numbers n.

For a polynomial f ∈ Z[x], define

H∗(f) = max {H(g) : g | f and g ∈ Z[x]} .

This paper investigates the following problem: we define the function

B(n) = H∗(xn − 1)

and ask about its maximal order. In contrast to (1.4), we show that

(1.5) lim sup
n→∞

log log B(n)
log n/ log log n

= log 3.

The proof, which is not deep, uses (1.2) and a result from [4].
The second section of this paper presents explicit formulas for B(n) when n

is a prime power or a product of two distinct primes. The next three sections
are devoted to a proof of (1.5). In the last section we conclude with some
unsolved problems.

The second author first heard of the problem of finding explicit formulas
for B(n) when n is of a particular form while attending an MSRI Summer
Graduate Program hosted by P. Borwein and M. Filaseta.

2. Explicit formulas

We always have p, q as primes. Note that if p | n, then Φpn(x) = Φn(xp),
so that A(pn) = A(n). Thus, if one studies coefficients for cyclotomic poly-
nomials, it is sufficient to consider the case that n is squarefree. It is trivial
that A(p) = 1, while in 1883 Migotti [9] showed that A(pq) = 1. We start our
investigation of B(n) by showing similar results for n of the same form.

Lemma 2.1. Let p < q be primes. Then B(pq) = p.
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Proof. The irreducible divisors of xpq − 1 are Φ1(x), Φp(x), Φq(x), and
Φpq(x), so there are 16 possibilities for a divisor f of xpq−1. Obviously we have
H(f) = 1 for f with 0 or 4 irreducible factors. By Migotti’s theorem, H(f) = 1
if f has just one irreducible factor. We have Φp(x)Φpq(x) = (xpq−1)/(xq−1),
so that ΦpΦpq has all coefficients 0 or 1, and similarly for ΦqΦpq, and ΦpΦqΦpq,
which at x is (xpq−1)/(x−1). This leaves the cases where Φ1 | f and the case
f = ΦpΦq. In general, if H(f) = 1, then H((xk−1)f(x)) ≤ 2 for any positive
integer k. (In fact, if f has all coefficients 0 or 1, then H((xk − 1)f(x)) = 1.)
This then handles all of the cases with Φ1 | f except f = Φ1ΦpΦq. But
this polynomial at x is (xp − 1)Φq(x), so H(f) ≤ 2 here as well. Finally we
consider f = ΦpΦq and note that its height is p. �

Note that in general, if n = uv where (u, v) = 1 and u < v, then B(n) ≥
H((xu − 1)/(x− 1) · (xv − 1)/(x− 1)) = u.

Now we characterize when B(n) = 1.

Proposition 2.2. B(n) = 1 if and only if n = pk.

Proof. Assume that pq | n for primes p < q. Then by Lemma 2.1, we see
that B(n) ≥ p > 1.

Conversely, assume that n = pk. Let f = Φpj1 · · ·Φpjr where 0 < j1 <
· · · < jr ≤ k. Then

f(x) =
r∏

i=1

p−1∑
a=0

xapji =
r∑

i=1

∑
0≤ai≤p−1

xa1pj1+···arpjr
.

We see that these exponents all have different base-p expansions, so that they
are all distinct. Thus, f has all coefficients being 0 or 1, so that H(f) =
H(Φ1f) = 1 for each such f . This handles all divisors of xpk − 1 and so
completes the proof. �

3. Preliminary estimates

Let ci(f) be the coefficient of xi in the polynomial f(x). Note that for
f, g ∈ Z[x] with deg f ≤ deg g, it is straightforward to see that

(3.1) H(fg) ≤ (1 + deg f)H(f)H(g).

Indeed, for each integer j,

cj(fg) =
∑

i

ci(f)cj−i(g).

The number of nonzero terms in this sum is at most the number of choices
for i with ci(f) 6= 0. But, the number of nonzero terms of a polynomial is at
most one more than the degree, so that the number of nonzero terms in the
sum is at most 1 + deg f . Thus, we have (3.1).

This observation is used in the proof of the following:
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Lemma 3.1. Let f1, . . . , fk ∈ Z[x], with deg f1 ≤ · · · ≤ deg fk. Then

H (f1 · · · fk) ≤
k−1∏
i=1

(1 + deg fi)
k∏

i=1

H(fi).

Proof. The proof is by induction. The inequality is trivial when k = 1, and
it is (3.1) when k = 2. Assume it holds for some k ≥ 2. Writing f1 . . . fk+1 as
f1 times f2 · · · fk+1, we have by the case for k and the case for 2 that

H(f1 · · · fk+1) ≤ (1 + deg f1)H(f1)H(f2 · · · fk+1)

≤ (1 + deg f1)H(f1)
k∏

i=2

(1 + deg fi)
k+1∏
i=2

H(fi).

Thus, the result at k + 1 follows. �

Let n > 1 and let f(x) | xn−1 be such that f(x) ∈ Z[x] and H(f) = B(n).
In other words, fix f to be a divisor of xn−1 of maximal height. Set notation
by writing f = Φd1 · · ·Φdk

, where φ(d1) ≤ · · · ≤ φ(dk). Then

B(n) = H(Φd1 · · ·Φdk
) ≤

k−1∏
i=1

(1 + φ(di))
k∏

i=1

A(di).

For d > 1 we have that 1 + φ(d) ≤ d, and 1 + φ(1) = 2. Since d ≤ n/2 for
d | n and d < n, we may assume that each di ≤ n/2 for i < k. Thus,

k−1∏
i=1

(1 + φ(di)) ≤ 2
k−1∏
i=1

n/2 ≤ nτ(n),

where τ(n) denotes the number of positive divisors of n.
Noting that the case n = 1 is trivial, we deduce the following proposition.

Proposition 3.2. For each n, we have B(n) ≤ nτ(n)
∏

d|n A(d).

We realize our estimate is rather crude (in fact, the factor nτ(n) may be
replaced with 2nτ(n)/2−1 and further improvements are possible), but Propo-
sition 3.2 will suffice for our purposes.

4. Upper bound

Let τk(n) denote the number of ordered solutions in positive integers of
x1 · · ·xk = n. Known as the Piltz divisor function of order k, we have∑

n τk(n)/ns = ζ(s)k, where ζ is the Riemann zeta function. Note that
τ2(n) = τ(n), the ordinary divisor function. From the definition, we have

τk(n) =
∑
d|n

τk−1(d).
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Let ω(n) denote the number of distinct prime factors of n. We have τk(n) ≥
kω(n) for all n, with equality when n is squarefree.

We first show that

(4.1) B(n) ≤ nτ(n)+τ3(n)/2.

Indeed, by (1.2) and Proposition 3.2, we have

log B(n) ≤ τ(n) log n +
∑
d|n

2ω(d)−1 log d

≤ τ(n) log n +
1
2

log n
∑
d|n

τ(d)

= τ(n) log n +
1
2
τ3(n) log n.

This then gives (4.1).
It is known that for each fixed integer k,

(4.2) τk(n) ≤ n(log k+o(1))/ log log n, n →∞.

This estimate for the ordinary divisor function, namely k = 2, was first proved
by Wigert [14] in 1907, and Ramanujan [12] gave a more elementary proof
of this case in 1915. The general estimate (4.2) was stated in Oppenheim
[10], with the author claiming that it follows in the same way as Ramanujan’s
proof in the case k = 2. A proof of a somewhat more general result was given
in Drozdova and Frĕıman [5]; also see Postnikov [11], Section 4.1.

In light of (4.1), and (4.2) for k = 2 and 3, we have proved the upper bound
in our main theorem:

Theorem 4.1. As n →∞, we have log B(n) ≤ n(log 3+o(1))/ log log n.

5. Lower bound

It is now convenient to consider another polynomial norm, defined by |f | =
max|z|=1 |f(z)| (where z runs over the unit circle in C). Note that the triangle
inequality implies that |f | ≤ H(f)(deg f + 1), so that a lower bound for |f |
also gives one for H(f).

In [4], the authors prove a useful trigonometric lemma: Suppose that r, k
are integers with r ≥ 2, k ≥ 1, and n is the product of k distinct primes, each
congruent to 2r ± 1 (mod 4r). Then

(5.1)
∣∣∣Φn

(
(−1)k−1eπi/(2r)

)∣∣∣ =
(
cot

π

4r

)2k−1

.

If n is as above, it is clear that every divisor d of n is also a product of
distinct primes congruent to 2r ± 1 (mod 4r). Define

D = Dn = {d | n : ω(d) ≡ 1 (mod 2)}
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and let
f = fn =

∏
d∈D

Φd.

Thus, by (5.1) we have

(5.2)
∣∣∣f (

eπi/(2r)
)∣∣∣ =

∏
d∈D

(
cot

π

4r

)2ω(d)−1

=
(
cot

π

4r

) 1
2

P
d∈D 2ω(d)

.

Now we analyze the expression
∑

d∈D 2ω(d) in (5.2). Since n is squarefree,
we have that

(5.3) 3ω(n) =
∑
d|n

2ω(d) =
∑
d∈D

2ω(d) +
∑
d6∈D
d|n

2ω(d).

We argue that the two sums on the right side of (5.3) are about the same size.

Lemma 5.1. With notation as above,∑
d6∈D
d|n

2ω(d) −
∑
d∈D

2ω(d) = (−1)ω(n).

Proof. As above, let k = ω(n). We have

S1 :=
∑
d∈D

2ω(d) =
∑

i≡1 (mod 2)

(
k

i

)
2i

and

S0 :=
∑
d6∈D
d|n

2ω(d) =
∑

i≡0 (mod 2)

(
k

i

)
2i.

Then, by the binomial theorem, we have that

S0 − S1 =
∑

i

(
k

i

)
(−2)i = (1− 2)k = (−1)k,

so the lemma is proved. �

In light of Lemma 5.1, (5.3), and (5.2), we have

(5.4)
∣∣∣f (

eπi/(2r)
)∣∣∣ =

(
cot

π

4r

) 1
4 (3k−(−1)k)

.

Since deg f ≤ n − 1 for k ≥ 1, we have B(n) ≥ H(f) ≥ |f |/n, so that from
(5.4) we have that

(5.5) log B(n) ≥ 1
4

(
3k − 1

)
log

(
cot

π

4r

)
− log n.

Now, as in [4], we have
cot

π

4r
> r
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for r ≥ 2. Summarizing, we have the following result.

Theorem 5.2. If r ≥ 2, k ≥ 1 are integers and n is the product of k
distinct primes that are congruent to 2r ± 1 (mod 4r), then

log B(n) >
log r

4
(
3k − 1

)
− log n.

We apply Theorem 5.2 in the case r = 2 and n the product of all of the
primes congruent to 3 or 5 (mod 8) up to x. Then, as x → ∞, we have by
the prime number theorem for arithmetic progressions, that x ∼ 2 log n and
k = ω(n) ∼ log n/ log log n. Thus we have proved the following result.

Theorem 5.3. There is an infinite set S of squarefree numbers n such
that as n →∞, n ∈ S, we have

log B(n) ≥ n(log 3+o(1))/ log log n.

With Theorem 4.1, we have now proved our main result (1.5).

6. Further problems

Since Erdős first considered the maximal coefficient of the cyclotomic poly-
nomial, many variations on this theme have been studied. We feel that the
problem studied herein will admit the same variety of study.

If f(x) | xn − 1 is such that H(f) = B(n), how big are the remaining
coefficients of f (compare to [7])? Define the co-height B̃(n) to be the height
of (xn − 1)/f(x). Is it the case that B(n) and B̃(n) are of approximately the
same size?

What can be said about the normal or average order of B(n)?
From our limited numerical data, it seems that B(p2q) = min{p2, q} for

different primes p, q. Does this always hold? It may be tempting to guess
that B(paqb) = min{pa, qb}. But we found, for example, that B(48) = 6,
B(135) = 8, B(441) = 11, and B(675) = 35, suggesting something subtler is
occurring. As in [2], what if n is the product of three distinct primes?
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