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TRACES OF MONOTONE FUNCTIONS IN WEIGHTED
SOBOLEV SPACES

JUAN J. MANFREDI AND ENRIQUE VILLAMOR

Abstract. Consider monotone functions u : Bn → R in the weighted
Sobolev space W 1,p(Bn;w), where n − 1 < p ≤ n and w is a weight in

the class Aq for some 1 ≤ q < p/(n− 1) which has a certain symmetry
property with respect to ∂Bn. We prove that u has nontangential limits
at all points of ∂Bn except possibly those on a set E of weighted (p, w)-
capacity zero. The proof is based on a new weighted oscillation estimate
(Theorem 1) that may be of independent interest. In the special case

w(x) = |1 − |x||α, the weighted (p, w)-capacity of a ball can be easily
estimated to conclude that the Hausdorff dimension of the set E is
smaller than or equal to α+n−p, where 0 ≤ α < (p− (n− 1))/(n− 1).

1. Introduction

Traces of monotone Sobolev functions were considered in [MV], where a
classical theorem of Lindelöf was extended to monotone functions in the (un-
weighted) Sobolev space W 1,p(Bn). The case of weak solutions of elliptic
partial differential equations

div (A(x,∇u)) = 0,

where α|ξ|p−1 ≤ 〈A(x, ξ), ξ〉 ≤ β |ξ|p−1 for some fixed p ∈ (1,∞), ξ ∈ Rn
and 0 < α < β, was considered in [KMV], where the analog of Lindelöf’s
theorem was established by analytical methods. We refer to these two articles
for background and historical references.

Let us start by recalling the definition of monotone functions and of Muck-
enhoupt Ap weights.

Definition 1.1. Let Ω ⊂ R
n be an open set. A continuous function

u : Ω→ R is monotone, in the sense of Lebesgue, if

max
D

u(x) = max
∂D

u(x)
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and
min
D

u(x) = min
∂D

u(x)

hold whenever D is a domain with compact closure D ⊂ Ω.

Definition 1.2. Let q > 1 and w ∈ L1
loc(Rn). We say that w ∈ Aq, if

there exists a constant C such that

sup
B

(∫
B

w(y) dy
) (∫

B

w(y)
1

1−q dy

)q−1

< C,

where the supremum is taken over all balls B ⊂ Rn.

The Sobolev space W 1,p(Bn;w) (see [HKM, Chapter 1]) consists of func-
tions u : Bn → R that have first distributional derivatives ∇u such that∫

Bn

(|u(x)|p + |∇u(x)|p) w(x) dx <∞.

The weighted p-capacity, which we will be using throughout this paper, is the
relative first order variational (p, w)-capacity (see [HKM, Chapter 2]). We
will occasionally need the weighted Sobolev class

ACLpw(Bn) =
{
u ∈ ACL(Bn) such that

∫
Bn

|∇u(x)|p w(x) dx <∞
}
,

where ACL(Bn) is the class of functions that are absolutely continuous on
almost every line. The gradients of these functions are Borel functions (see, for
example, [Va, §26]). When w ∈ Ap, smooth functions are dense inW 1,p(Bn;w)
(see [K]). In particular, ACLpw(Bn) is dense in W 1,p(Bn;w).

Our first result is a weighted version of the Gehring oscillation inequality
for monotone functions.

Theorem 1. Let u be a continuous monotone function in W 1,p(Ω;w),
where w is in the class Aq for some q in the range 1 ≤ q < p/(n− 1). Suppose
that n− 1 < p ≤ n. Then we have(

osc
(
u,Bn(x, r)

))p
≤ c(n, p, q, w)

rp

w(Bn(x, 2r))

∫
Bn(x,2r)

|∇u(y)|p w(y) dy,

whenever Bn(x, 2r) ⊂ Ω.

This oscillation estimate is one the key ingredients in the proof of the
following extension of the classical Lindelöf theorem.

Theorem 2. Let u be a monotone function in the space W 1,p(Bn;w).
Suppose that n − 1 < p ≤ n and that w is Borel weight in the class Aq for
some q in the range 1 ≤ q < p/(n− 1). Then, for any ε > 0, there exists an
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open set U in Rn satisfying capp,w(U) < ε such that, for any x0 ∈ ∂Bn \ U ,
if we have a curve γ ending at x0 in Bn with

lim
x→x0, x∈γ

u(x) = α.

It follows that u(x) has nontangential limit α at x0.

Remark. We do not identify w with the equivalence class of measurable
functions which agree with w a. e., but rather work with a fixed representative
of w that we assume is a Borel function. The reason for this is that we will
need to restrict w to (n − 1)-dimensional sets to define the weighted (p, w)-
modulus relative to a hypersurface.

The limitations p > n−1 and w in Aq, for some 1 ≤ q < p/(n− 1), appear
in a module estimate on (n− 1)-dimensional spheres (see Lemma 2.3 below).
As in the classical case, one can ask if the Lindelöf type Theorem 2 is enough to
guarantee that monotone functions in W 1,p(Bn;w) have non-tangential limits
except in a subset of ∂Bn of (p, w)-capacity zero. This is indeed the case if
the weight w satisfies a symmetry condition with respect to ∂Bn.

Definition 1.3. We say that a weight w is symmetric with respect to
∂Bn if we can find a bi-Lipschitz homeomorphism

H :
{

1
2
< |x| < 2

}
7→
{

1
2
< |x| < 2

}
.

which is the identity on ∂(Bn) and sends {1 < |x| < 2} onto {1/2 < |x| < 1},
and a positive constant γ > 0 such that

(1.4) w(H(x)) ≤ γ w(x)

for all 1/2 ≤ |x| ≤ 1.

There is nothing special about the width of the crown about |x| = 1.
The important facts are that the derivatives of H and H−1 are bounded,
and that the inequality (1.4) holds. An example of a symmetric weight is
w(x) = |1 − |x||α. In this case, if we write x = tω for 1/2 < t < 2 and
ω ∈ ∂Bn we can take H(tω) = h(t)ω, where

h(t) =
{

3− 2t for 1/2 < t ≤ 1,
1
2 (3− t) for 1 ≤ t < 2.

In fact, for 1/2 ≤ |x| ≤ 1 we have

w(H(x)) = |1−H(x)|α = 2αw(x).

Our main result is the following:
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Theorem 3. Let u be a monotone function in W 1,p(Bn;w). Suppose that
n − 1 < p ≤ n and that w is a symmetric weight with respect to ∂Bn in the
class Aq for some q in the range 1 ≤ q < p/(n− 1). Let E be the subset of ∂Bn

where the nontangential limit of u does not exist. Then E has (p, w)-capacity
zero.

Note that in the conclusion of Theorem 3 the value q does not appear. This
raises the question whether the theorem holds for a larger range of q.

The plan of this paper is as follows. In Section 2 we define the weighted p-
modulus relative to a hypersurface and prove Theorem 1. Section 3 contains
some facts about weighted Sobolev spaces for which we could not find an
explicit reference. We present the proofs of Theorems 2 and 3 in Section 4.
Finally, in Section 5 we consider radial weights of the form |1− |x||α.

We are indebted to the anonymous referee for a careful reading of the origi-
nal manuscript. We have incorporated in this paper several of his suggestions
and observations.

2. Preliminaries and an oscillation estimate

The open ball centered at x0 with radius r is denoted by Bn(x0, r). Its
boundary is the (n− 1)-dimensional sphere Sn−1(x0, r). By a cap of a sphere
Sn−1(x0, r) we mean a set H ∩ Sn−1(x0, r), where H is an open half space in
R
n. The spherical distance between two points in R̄n is denoted by q(x, y).

Given a point x ∈ ∂Bn, we write C(x) for the Stolz cone at x with a given fixed
aperture. There exists a constant cn ≥ 1, depending only on the aperture and
n, such that if y ∈ C(x) then

(2.1) |y − x| ≤ cn (1− |y|).

By c(α, β, . . .) we denote a constant depending only on the parameters α, β, . . .,
not necessarily the same at each occurrence.

Let Γ be a family of curves in Rn. Denote by F(Γ) the collection of ad-
missible metrics for Γ. These are nonnegative Borel measurable functions
ρ : Rn → R ∪ {∞} such that ∫

γ

ρ ds ≥ 1

for each locally rectifiable curve γ ∈ Γ. For p ≥ 1 the weighted (p, w)-module
of Γ is defined by

Mw
p (Γ) = inf

ρ∈F(Γ)

∫
Rn

ρp w dx.

If F(Γ) = ∅, we set Mw
p (Γ) = ∞. The same definition applies to families of

curves that lie in an (n− 1)-dimensional submanifold S of Rn, replacing the
measure w dx by w dS, where dS is the surface measure in the submanifold.
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(Note that nothing prevents w from being identically equal to ∞ on the sub-
manifold.) The surface module is denoted by Mw,S

p (Γ). Upper bounds for
moduli are obtained by testing with a particular admissible metric.

Lemma 2.2. Let Ω be a domain in R
n and ω ∈ Ap, p ≥ 1, and let

u : Ω → R be a continuous function in W 1,p(Ω;w). Let −∞ < a < b < ∞,
and let A, B be nonempty subsets of a ball Bn(x0, r) ⊂ Ω such that u(x) ≤ a
for any x ∈ A and u(x) ≥ b for any x ∈ Bn(x0, r). Then we have

Mw
p

(
∆
(
A,B;Bn(x0, r)

))
≤ 1

(b− a)p

∫
Bn(x0,r)

|∇u(x)|p w(x) dx,

where ∆
(
A,B;Bn(x0, r)

)
is the family of all curves in Bn(x0, r) joining A and

B.

Proof. Let us temporarily assume that u is in the class ACLpw(Ω). We can
then adapt the proof in [Va] as follows. We start by observing that the family
of curves Γu consisting of those paths containing a subpath on which u is not
absolutely continuous satisfies Mw

p (Γu) = 0.
Set v(x) = (u(x)− a)/(b− a) and write ∆ = ∆

(
A,B;Bn(x0, r)

)
. As be-

fore, ∆u denotes the family of paths in ∆ containing a subpath on which u is
not absolutely continuous. Then we have Mw

p (∆u) = 0. Since ∇u is a Borel
function, we have

1 ≤
∫
γ

|∇v| ds for γ ∈ ∆ \∆u.

Thus |∇v| is an admissible function for ∆. Therefore we have

Mw
p (∆) ≤

∫
Bn(x0,r)

|∇v(x)|p w(x) dx =
1

(b− a)p

∫
Bn(x0,r)

|∇u(x)|p w(x) dx.

For u ∈W 1,p(Ω;w) we can assume without loss of generality that Bn(x0, 2r) ⊂
Ω (see [K, §3]), by extending u if necessary. Let uε be a smooth approximation
of u in the space W 1,p(Ω;w) (see [K, Theorem 2.5]). Select δ < (b− a)/4.
We can always find ε > 0 such that uε(x) ≤ a+ δ if x ∈ A and uε(x) ≥ b− δ
if x ∈ B. Since uε is certainly in ACLpw(Ω), we have

Mw
p

(
∆
(
A,B;Bn(x0, r)

))
≤ 1

(b− a− 2δ)p

∫
Bn(x0,r)

|∇uε(x)|p w(x) dx.

Since δ is arbitrary and∫
Bn(x0,r)

|∇uε(x)|p w(x) dx→
∫
Bn(x0,r)

|∇u(x)|p w(x) dx

as ε→ 0, the lemma follows. �

Lower bounds for modules are harder to obtain. The next lemma is a
weighted version of Väisälä’s Lemma. Note that we are not assuming that w
is an Aq weight.
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Lemma 2.3. Let n ≥ 2, and let K be a cap of the sphere S = Sn−1(x0, r).
Suppose that E and F are disjoint nonempty sets of K̄. Let ∆(E,F ;K) be the
family of all curves in K joining E and F . Suppose that n− 1 < p ≤ n, 1 <
q < p/(n− 1) and w is a Borel function such that w > 0 almost everywhere.
Set

β =
n− p− 1
q − 1

+ (n− 1).

There exists a constant c depending only on n, p and q such that

(2.4) c ≤ 1
rβ

(
Mw,S
p

(
∆(E,F ;K)

)) 1
q−1

·

(∫
S

w(y)
1

1−q dS(y)

)
.

Proof. Consider first the case n = 2. Then K is an arc of S1(x0, r). There
is a subarc γ of K such that γ ∈ ∆(E,F ;K). The length of γ is smaller than
2πr. For any admissible metric ρ and γ ∈ ∆ we have

1 ≤
∫
γ

ρ ds =
∫
γ

ρw1/p w−1/p ds.

Hölder’s inequality applied twice gives

1 ≤
(∫

γ

ρp w

) (∫
γ

w
1

1−q

)q−1

(2π r)p−q,

and taking the q − 1 root on both sides we obtain the desired inequality.
Consider now the case n ≥ 3. By the change of variables formula for

integrals we see that if f : Rn → R
n is defined by f(x) = k x, where k is a

constant, then for the family Γ = ∆(E,F ;K) we have

(2.5) Mw◦f−1,Sn−1(f(x0),kr)
p

(
f(Γ)

)
= kn−p−1 Mw,Sn−1(x0,r)

p (Γ).

Set k = 1/2r. Then Sn−1(x0, r) is mapped to Sn−1(x0, 1/2). By translating
if necessary, we may suppose that x0 = en/2 and en = (0, . . . , 0, 1) ∈ E.

Therefore, it is enough to show that

(2.6) 1 ≤ c
(
Mw,Sn−1(en/2,1/2)
p (Γ)

)1/q−1
(∫

Sn−1(en/2,1/2)

w(y)
1

1−q dS(y)

)
,

where c depends only on n, p and q.
Let ρ be an admissible metric for the module problem

Mw,Sn−1(en/2,1/2)
p (Γ).

Let h : R
n → R

n
be the inversion in the sphere Sn−1(en, 1) given by

h(x) = en +
x− en
|x− en|2

.

Then h is conformal, h ◦ h = Id, and h maps S = Sn−1(en/2, 1/2) stereo-
graphically onto R

n−1
. The image of S \K is either empty or a closed ball,
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or a closed half-space in R
n−1

. Choose a ∈ h(F ). We may assume that
a = α e1, α ≥ 0. Since h(S \K) is convex, there is an open hemisphere G of
Sn−1 such that a+ t y ∈ h(K) for every y in G, and all positive t. We define
γy : [0,∞)→ S by

γy(t) = h
(
a+ ty

)
.

Then γy ∈ Γ for any y in G. Thus,

1 ≤
∫
γy

ρ dσ =
∫ ∞

0

ρ
(
h
(
a+ ty

))(
1 + |a+ ty|2

) dt.
Integrating over y ∈ G yields

c ≤
∫
H

ρ
(
h(y)

)
(1 + |y|2) |y − a|n−2

dS(y),

where H is the half space in Rn−1 consisting of all the points a + ty, where
t > 0, and y ∈ G. By Hölder’s inequality this implies that

c ≤

(∫
H

(
ρ
(
h(y)

))p
w(h(y))

(1 + |y|2)n−1
dS(y)

)1/p

×

(∫
H

w(h(y))
1

1−p(
1 + |y|2

) p−n+1
p−1 |y − a|

(n−2)p
p−1

dS(y)

)(p−1)/p

.

Thus, we have

c ≤

(∫
S

ρp(x)w(x) dS(x)

)1/p

· II ,

where

II =

(∫
H

w(h(y))
1

1−p(
1 + |y|2

) p−n+1
p−1 |y − a|

(n−2)p
p−1

dS(y)

)(p−1)/p

.

Since this inequality holds for any admissible metric ρ, we conclude

c ≤

(
Mw, S
p (Γ)

)1/p

II .
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Applying Hölder inequality for 1 < q < p we have

II ≤

(∫
H

w(h(y))
1

1−q(
1 + |y|2

)n−1 dS(y)

) q−1
p

×

(∫
H

1(
1 + |y|2

) p−q(n−1)
p−q |y − a|

(n−2)p
p−q

dS(y)

) p−q
p

=

(∫
S

w(x)
1

1−q dS(x)

) q−1
p

×

(∫
H

1(
1 + |y|2

) p−q(n−1)
p−q |y − a|

(n−2)p
p−q

dS(y)

) p−q
p

.

If we choose p > q (n− 1) as in the statement of the lemma, the last integral
above is finite. �

We are now ready for the main oscillation estimate for monotone functions.

Proof of Theorem 1. Select a point x ∈ Ω and a positive r such that

B
n(x, 2r) ⊂ Ω.

Let y be an arbitrary point in Bn(x, r). Without loss of generality we can
assume that u(x) < u(y); the case u(x) > u(y) is handled by a symmetric
argument. Set

A = {z ∈ Bn(x, 2r) : u(z) ≤ u(x)}
and

B = {z ∈ Bn(x, 2r) : u(z) ≥ u(y)}.
Since u is monotone we know that

A ∩ Sn−1(x, t) 6= ∅

and
B ∩ Sn−1(x, t) 6= ∅

for r < t ≤ 2r. From now on let us denote

Mw,Sn−1(x,t)
p

(
∆(A ∩ Sn−1(x, t), B ∩ Sn−1(x, t);Sn−1(x, t))

)
by Mw,Sn−1(x,t)

p . Applying Lemma 2.3 with K = Sn−1(x, t), we obtain

c(n, p, q) ≤ 1

t
n−p−1
q−1 +(n−1)

(
Mw,Sn−1(x,t)
p

) 1
q−1

(∫
Sn−1(x,t)

w(y)( 1
1−q ) dS(y)

)
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for any t with r < t ≤ 2r. Using the fact that (n− p− 1)/(q − 1) + (n− 1) is
negative and that w is a positive weight, we get
(2.7)∫ 2r

r

(
1

M
w,Sn−1(x,t)
p

) 1
q−1

≤ c(n, p, q) r
p+1−n
q−1 −(n−1)

(∫
Bn(x,2r)

w(x)
1

1−q dx

)
.

By Hölder’s inequality we have

r =
∫ 2r

r

dt =
∫ 2r

r

(
Mw,Sn−1(x,t)
p

) 1
q

(
1

M
w,Sn−1(x,t)
p

) 1
q

dt

≤

(∫ 2r

r

(
1

M
w,Sn−1(x,t)
p

) 1
q−1

dt

) q−1
q
(∫ 2r

r

Mw,Sn−1(x,t)
p dt

) 1
q

.

It is immediate from the definition of the module that the second integral

above is at most Mw
p

(
∆
(
A,B;Bn(x, 2r)\Bn(x, r)

))
. Hence, taking the above

inequality to the power q/(q − 1), we obtain

r
q
q−1 ≤

(
Mw
p

(
∆
(
A,B;Bn(x, 2r) \ Bn(x, r)

))) 1
q−1

×

(∫ 2r

r

(
1

M
w,Sn−1(x,t)
p

) 1
q−1

dt

)
.

Using the above inequality and the monotonicity property of the module in
(2.7) we obtain

r
q
q−1(

Mw
p (∆(A,B;Bn(x, 2r)))

) 1
q−1
≤ c r

p+1−n
q−1 −(n−1)

(∫
Bn(x,2r)

w(x)
1

1−q dx

)
.

Since, by assumption, w ∈ Aq(Rn), using the Aq-condition we have that

r
q
q−1(

Mw
p

(
∆
(
A,B;Bn(x, 2r)

))) 1
q−1
≤ c r

p+1−n
q−1 −(n−1) r

nq
q−1(∫

Bn(x,2r)
w(x) dx

) 1
q−1

,

where c is a constant depending on n, p, q and w. Collecting the powers of r
yields

(2.8) Mw
p

(
∆
(
A,B;Bn(x, 2r)

))
≥ c r−p

∫
Bn(x,2r)

w(x) dx.

Using now Lemma 2.2, we obtain

(2.9)
1

|u(x)− u(y)|p

∫
Bn(x,2r)

|∇u(x)|p w(x) dx ≥ c r−p
∫
Bn(x,2r)

w(y) dy,
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which is the desired inequality. �

3. Pointwise behavior of weighted Sobolev functions

In this section we assume that w is a p-admissible weight as defined in
[HKM]. We will use the fact that capp,w is a Choquet capacity and that

capp,w(Br) ≈ r−p w(Br).

For functions f ∈ Lpw(Rn) = {f :
∫
fp w < ∞} consider the fractional maxi-

mal function

Mw
s,pf(y) = sup

r>0

(
r−s

w(Bn(y, r))

∫
Bn(y,r)

|f(x)|p w(x) dx
)1/p

,

where w(Bn(x, r)) =
∫
Bn(x,r)

w(x) dx. We will need the following estimate for
f = |∇u|, which is probably known, but which we have been unable to locate
in the literature. (For related estimates see [K].)

Lemma 3.1. Let f ∈ Lpw(Rn) and 1 < p ≤ n. Then we have

capp,w
({
x ∈ Rn : Mw

−p,pf(x) > t
})
≤ c(p, n, w)

tp

∫
Rn

|f(y)|p w(y) dy.

Proof. For t > 0 let

Et = {y ∈ Rn : Mw
−p,pf(y) > t}.

Note that Et is open. Let K be a compact subset of Et. We claim that

(3.2) Λ∞−p,w(K) ≤ cn
tp

∫
Rn

|f(y)|p w(y) dy,

where

Λ∞−p,w(E) = inf
{∑

r−pi w(Bn(zi, ri)) : E ⊂
⋃
B
n(zi, ri)

}
is the {−p, w}-Hausdorff content of E.

If y ∈ K, there exists a ball Bn(y, ry) such that

w(Bn(y, ry)) r−py ≤ 1
tp

∫
Bn(y,ry)

|f(x)|p w(x) dx.

The compact set K is contained in
⋃
B
n(y, ry/5). By the Besicovitch covering

lemma there exists a subfamily of balls {B1, B2, . . . , BN} such that

K ⊂
N⋃
i=1

Bi

and no point of Rn is in more than a fixed number cn of balls. We have

Λ∞−p,w(K) ≤
N∑
i=1

(ri)−p w(Bi) ≤
N∑
i=1

1
tp

∫
Bi

|f(x)|p w(x) dx.
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Since each point is in at most cn balls, we deduce (3.2).
The open set Et is capacitable. Therefore capp,w(Et) = sup capp,w(K),

where the supremum is taken over all the compact subsets K of Et. Fix one
such K and a covering K ⊂

⋃
Bi. We have

capp,w(K) ≤
∑
i

capp,w(Bi) ≤ C
∑
i

r−pi w(Bi).

Since the covering is arbitrary, we get

capp,w(K) ≤ CΛ∞−p,w(K) ≤ C

tp

∫
Rn

|f(y)|p w(y) dy. �

Lemma 3.2. Let u ∈ W 1,p(Rn;w), where 1 < p ≤ n and w is an Ap
weight. Then for every ε > 0 there exists an open set U ⊂ Rn with capp,w(U)
< ε such that

lim
r→0

rp

w(Bn(x, r))

∫
Bn(x,r)

|∇u(y)|p w(y) dy = 0

uniformly on Rn \ U .

Proof. The proof of this lemma is a straightforward adaptation of the proof
of Lemma 3.2 in [MV], using Lemma 3.1 and the fact that smooth functions
with compact support are dense in W 1,p(Rn;w) whenever the weight w is in
the class Ap (see [K]). �

4. Boundary behavior of monotone functions

We start with a lemma needed for the proof of Theorem 2.

Lemma 4.1. Let u : Bn 7→ R be a continuous monotone function in the
weighted Sobolev space W 1,p(Bn;w), where n − 1 < p ≤ n and w is an Aq
weight for some q in the range 1 < q < p/(n− 1). Then, for any ε > 0,
there exists an open set U in Rn satisfying capp,w(U) < ε, with the following
property: If x0 ∈ ∂Bn \ U and {bk}∞k=1 is a sequence contained in the Stolz
cone C(x0) such that limk→∞ bk = x0 and limk→∞ u(bk) = β, then for any
η > 0 there exists an integer k0 ≥ 1 such that the spherical distance between
u(x) and β satisfies

q(u(x), β) < η

for any x in the set

E =
⋃
k≥k0

B
n(bk,

1
4

(1− |bk|)).
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Proof. It is well known that if w ∈ Aq and q < p then w ∈ Ap. By Theorem
D in [Ch] we can extend u to a function f in W 1,p(Rn;w) such that∫

Rn

|∇f(x)|p w(x) dx ≤ c
∫
Bn(0,1)

|∇u(x)|w(x) dx,

for some constant c depending on n, p and the Ap constant of the weight w.
We continue to denote this extension by u. Fix ε > 0 and choose U according
to Lemma 3.2. For a constant δ0 to be determined later, choose r0 > 0 such
that for 0 < r < r0 and x0 ∈ B

n
(0, 1) \ U ,

(4.2)
∫
Bn(x0,r)

|∇u(y)|p w(y)dy ≤ δ0 r−p w(Bn(x0, r)).

Select a point y ∈ Bn(bk,
1−|bk|

4 ). We may assume that u(bk) < u(y); the case
u(bk) > u(y) is handled by a symmetric argument. Set

A = {z ∈ Bn(bk,
1− |bk|

2
) : u(z) ≤ u(bk)}

and

B = {z ∈ Bn(bk,
1− |bk|

2
) : u(z) ≥ u(y)}.

Since u is monotone we have

A ∩ Sn−1(bk, t) 6= ∅
and

B ∩ Sn−1(bk, t) 6= ∅
for |bk − y| < t ≤ (1− |bk|)/2. Applying Theorem 1 to this setting we obtain

1
|u(bk)− u(y)|p

∫
Bn(bk,

1−|bk|
2 )

|∇u(x)|p w(x) dx

≥ c

(1− |bk|)p

∫
Bn(bk,

1−|bk|
2 )

w(y) dy.

Since bk ∈ C(x0) one easily checks, using (2.1), that

B
n

(
bk,

1− |bk|
2

)
⊂ Bn

(
x0, dn(1− |bk|)

)
,

where dn = cn + 1/2. Therefore we have∫
Bn(x0,dn(1−|bk|))

|∇u(x)|p w(x) dx

≥ c |u(bk)− u(y)|p (1− |bk|)−p
∫
Bn(bk,

1−|bk|
2 )

w(y) dy

≥ c |u(bk)− u(y)|p (1− |bk|)−p
∫
Bn
(
bk,dn (1−|bk|)

) w(y) dy.
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Choose k1 so that for k > k1 we have dn(1− |bk|) < r0. It follows from (4.2)
that

|u(bk)− u(y)|p ≤ c δ0 dpn
for y ∈ Bn

(
bk,

1
4 (1 − |bk|)

)
. Here c denotes (different) constants depending

only on p, q, n and the Ap constant of the weight w.
Given any positive η choose k0 > k1 such that |u(bk)−β| < η/2 for k > k0,

and let δ0 be such that (c δ0 dpn)1/p < η/2. Then, for x ∈ E we have

|u(x)− β| ≤ |u(x)− u(bk′)|+ |u(bk′)− β| < η

for some k′ ≥ k0. �

Proof of Theorem 2. Given ε > 0, choose U according to Lemma 3.2. Note
that after extending u to Rn as in Theorem D of [Ch], the conclusion of
Lemma 3.2 applies in B

n
(0, 1) \U . Without loss of generality we may assume

that x0 = 1 = (1, 0, . . . , 0). The proof proceeds by contradiction. Suppose
that we have a sequence {bk} in a Stolz cone C(1) such that limk→∞ bk = 1
and

lim
k→∞

u(bk) = β 6= α.

Assume that −∞ < |α| < |β| < ∞. (The other cases are similar or easier.)
Let η = (|β| − |α|)/6 and choose k1 such that for k > k1 we have

|u(x)| < |α|+ η for x ∈ γ ∩ Bn(1, |1− bk|)

and
|u(bk)| > |β| − η.

Choose k2 according to Lemma 4.1, so that for k > k0 = max(k1, k2)

|u(x)| > |β| − 2η, for x ∈ Bn
(
bk,

1
4

(1− |bk|)
)
.

Consider now the following module problem. Set

Hk = B
n ∩

(
B
n
(
1, |1− bk|) \ B̄n(1, |1− bk| −

1
8

(1− |bk|)
))

and let E = γ ∩Hk and F = B
n
(
bk,

1
4 (1− |bk|)

)
∩Hk.

To get un upper bound for Mw
p

(
∆(E,F ;Hk)

)
, observe that for any locally

rectifiable curve l joining E and F in Hk we have∫
l

|∇u(x)| ds ≥ |β| − |α|
2

.

Thus, the metric ρ = 2/(|β| − |α|) |∇u| is admissible. From the definition of
module we obtain

(4.3) Mw
p

(
∆(E,F ;Hk)

)
≤ c(p)

(|β| − |α|)p

∫
Hk

|∇u(x)|p w(x) dx.
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On the other hand, considering the spherical caps

Kt = B
n ∩ Sn−1(1, t) for t ∈

(
|1− bk| −

1
8

(1− |bk|), |1− bk|
)
,

and the nonempty disjoint sets in Kt,

Et = Sn−1(1, t) ∩ E
and

Ft = Sn−1(1, t) ∩ F,
we have, by (2.8),

Mw
p

(
∆(E,F ;Hk)

)
≥ c (1− |bk|)−p

∫
Bn(1,|1−bk|)

w(x) d x.

Since the sequence {bk} is in the Stolz cone C(1), we have by (2.1)

(4.4) Mw
p

(
∆(E,F ;Hk)

)
≥ c (|1− bk|)−p

∫
Bn(1,|1−bk|)

w(x) dx.

Combining (4.3) and (4.4) gives

c (|1− bk|)−p
∫
Bn(1,|1−bk|)

w(x) dx ≤ c(p)
(|β| − |α|)p

∫
Hk

|∇u(x)|p w(x) dx

≤ c(p)
(|β| − |α|)p

∫
Bn(1,|1−bk|)

|∇u(x)|p w(x) dx.

Therefore we have the inequality

0 < c ≤ c(p)
(|β| − |α|)p

(|1− bk|)p∫
Bn(1,|1−bk|) w(x) dx

∫
Bn(1,|1−bk|)

|∇u(x)|p w(x) dx,

where again c denotes constants depending only on n, p, q and the constant
Ap of the weight w. Since, by assumption, 1 /∈ U , the right hand side of the
above inequality tends to zero as k goes to∞. This gives a contradiction. �

Proof of Theorem 3. An elementary argument shows that the exceptional
set E is a Borel set. Thus, to show that E has variational (p, w)-capacity
zero it is enough to show that any compact subset K of E has variational
(p, w)-capacity zero. Fix such a set K. Given an arbitrary ε >, let U be an
open set in Rn given by Theorem 2. Let γ be any rectifiable curve in Bn

ending at a point in (∂Bn \ U) ∩ K. Since the nontangential limit does not
exist at any point in K, Theorem 2 implies that the limit through γ does not
exist either. Therefore we have

(4.5)
∫
γ

|∇u(x)| ds =∞.

Let ΓBn((∂Bn \U)∩K) be the family of all the rectifiable curves in Bn ending
at (∂Bn \ U) ∩K. We claim that

(4.6) Mw
p (ΓBn((∂Bn \ U) ∩K)) = 0.
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To see this, we choose the metric in Bn as ρη(x) = η|∇u(x)|. It follows from
(4.5) that, for any positive η, the metric ρη is admissible for our module
problem. Hence we have

Mw
p

(
ΓBn

(
(∂Bn \ U) ∩K

))
≤ ηp

∫
Bn

|∇u(x)|p w(x) dx < ηp(‖u‖w,p)p.

Letting η → 0 we obtain

Mw
p

(
ΓBn

(
(∂Bn \ U) ∩K

))
= 0.

Next, we use a weighted version of a symmetrization result of Vuorinen for
weighted modules with symmetric weights (Lemma 4.7 below) to show that if

Mw
p

(
ΓBn

(
(∂Bn \ U) ∩K

))
= 0,

then, in fact,

Mw
p

(
ΓRn

(
(∂Bn \ U) ∩K

))
= 0,

where ΓRn
(
(∂Bn\U)∩K

)
is the family of rectifiable curves in Rn that intersect

(∂Bn \ U) ∩ K. By the weighted version of Ziemer’s theorem (see [HK]), it
follows that capp,w

(
(∂Bn \ U) ∩K

)
= 0. Finally, by the subadditivity of the

weighted variational capacities we have

capp,w(K) ≤ capp,w
(
(∂Bn \ U) ∩K

)
+ capp,w(U) < ε.

Letting ε→ 0, we obtain that capp,w(K) = 0. �

Next we state and prove a weighted version of the symmetrization lemmas
4.2 and 4.3 in [V]. Let E be a subset of ∂Bn. Let ΓRn be the family of
rectifiable curves in Rn which intersect E, ΓBn the family of rectifiable curves
in Bn ending in E, and Γ

B
n the family of rectifiable curves in B

n
that intersect

E.

Lemma 4.7. Let w be a symmetric weight with respect to ∂Bn in the sense
of Definition 1.3. If

Mw
p (ΓBn) = 0,

then
Mw
p (ΓRn) = 0.

Proof. We proceed in several steps.
Step 1. Mw

p (ΓBn) = 0 implies Mw
p

(
Γ
B
n

)
= 0.

The proof of this step follows the exact same argument as the proof of
Lemma 4.3 in [V], since the result of Ziemer, [Z, Lemma 2.3], also holds for
the weighted moduli of increasing path families as it can be easily seen.
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Step 2. Let R be the annulus {1 < |x| < 2} and ΓR the family of rectifiable
curves in R that intersect E. Then Mw

p (ΓR) = 0 implies Mw
p (ΓRn) = 0.

Let γ be an arbitrary curve in ΓRn and let ρ be an admissible metric for the
module problem Mw

p (ΓR). Extend the metric ρ to Rn by setting it equal to
zero in Rn \R. It is clear that γ either belongs to ΓR or contains a subcurve
γ̃ which is in ΓR. In any case, we have∫

γ

ρ ds ≥
∫
γ̃

ρ ds ≥ 1.

This shows that the metric ρ is also admissible for the module problem
Mw
p (ΓRn), and thus

Mw
p (ΓRn) ≤

∫
R

ρ(x)p w(x) dx

for any admissible ρ. Taking the infimum and using the hypothesisMw
p (ΓR) =

0, it follows that Mw
p (ΓRn) = 0.

Step 3. Mw
p

(
Γ
B
n

)
= 0 implies Mw

p

(
ΓR∩Bn

)
= 0.

As usual, we have denoted by ΓR∩Bn the family of all rectifiable curves
in R ∩ Bn which intersect E. The assertion follows immediately from the
monotonicity of the modulus since ΓR∩Bn ⊂ Γ

B
n .

Step 4. Mw
p (ΓR∩Bn) = 0 implies Mw

p (ΓR) = 0.

Let ρ be an admissible metric for the module problem Mw
p

(
ΓR∩Bn

)
. Define

ρ̃(x) =
{

ρ(x) for |x| ≤ 1,
ρ(H−1(x)) for |x| > 1,

where H is the bi-Lipschitz homeomorphism given in Definition 1.3. We will
show the existence of a constant δ depending only on the mapping H and the
constant in Definition 1.3 such that δ ρ̃ is admissible for the module problem
Mw
p (ΓR). To see this, decompose γ in ΓR as γ = γR∩Bn ∪ γR\Bn , where

γR∩Bn ∈ R ∩ B
n

and γR\Bn ∈ R \ B
n
. We have∫

γ

ρ̃ ds =
∫
γR∩Bn

ρ ds+
∫
γR\Bn

ρ̃ ds = I + II .

Changing variables in the second line integral II, we obtain

II ≥ βH
∫
H−1◦γR\Bn

ρ ds,

where βH is a positive constant depending on H. Observe that γR∩Bn ∪H−1 ◦
γR\Bn is a curve in ΓR∩Bn . Thus, we have the inequality∫

γ

ρ̃ ds ≥ min{1, βH}
∫
γR∩Bn∪H−1◦γR\Bn

ρ ds.
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Hence, by taking δ−1 = min{1, βH}, we see that the metric δρ̃ is admissible
for the module problem Mw

p (ΓR). We now compute

Mw
p (ΓR) ≤δp

∫
R

ρ̃p(x)w(x) dx

= δp
(∫

R∩Bn
ρp(x)w(x) dx+

∫
R\Bn

ρp(H−1(x))w(x) dx
)

≤ δp
(∫

R∩Bn
ρp(x)w(x) dx+ cH

∫
R∩Bn

ρp(y)w(H(y)) dy
)

≤ δp(1 + cHγ)
(∫

R∩Bn
ρp(x)w(x) dx

)
,

where we have changed variables H−1(x) = y on the second integral above.
Since the admissible metric ρ is arbitrary, we obtain

Mw
p (ΓR) ≤ δp (1 + cHγ)Mw

p

(
ΓR∩Bn

)
,

which gives the desired result. �

5. On a theorem of Carleson

In this section we consider the case of power radial weights w that vanish
on ∂Bn. These weights are interesting since w(∂Bn) = 0, but capp,w(∂Bn) > 0
for p > α+ 1.

Lemma 5.1. Let w(x) = |1 − |x||α for x ∈ Rn. Then w(x) is in Ap(Rn)
whenever p > α+ 1.

Proof. (We thank Eric Sawyer for suggesting this proof.) Since the integrals
that appear in the definition of the Ap-weights are invariant under rotations
for the weights under consideration, it is enough to show that

sup
B

(
1
|B|

∫
B

w(x) dx
) (

1
|B|

∫
B

[w(x)]
1

1−p dx

)p−1

<∞,

where B is any ball in Rn whose center lies on the positive real axis.
Using polar coordinates we have(

1
|Bn(x0, r)|

∫
Bn(x0,r)

w(x) dx
) (

1
|Bn(x0, r)|

∫
Bn(x0,r)

[w(x)]
1

1−p dx

)p−1

=
c

rnp

(∫
I

∫
Bn(x0,r)∩Sn−1

s

|1− s|α dS ds
)

×
(∫

I

∫
Bn(x0,r)∩Sn−1

s

|1− s|
α

1−p dS ds

)p−1

,
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where I is an interval of length equivalent to r and c is a constant that depends
only on n. Since ∫

Bn(x0,r)∩Sn−1
s

dS ≤ c rn−1

the problem reduces to showing that, in dimension one, |1 − s|α is in Ap(R)
for p > α + 1. This, however, is a well known fact; see, for example, [HKM,
Chapter 15]. �

The following generalization to higher dimensions of a theorem of Carleson
(see [C]) follows from Theorem 3 and Lemma 5.1.

Theorem 5.2. Let u be a monotone function in the Sobolev space

W 1,p(Bn; (1− |x|)α),

where n− 1 < p ≤ n and (p− (n− 1))/(n− 1) > α ≥ 0. Let

E = {x ∈ ∂Bn : the nontangential limit of u at x does not exist }.

Then we have that capp,w(E) = 0 and the Hausdorff dimension of the set E
is less than or equal to α+ n− p.

Remark 1. Since α+n−p < 1, the set E is quite small on the boundary
of the unit ball of Rn.

Remark 2. To obtain the existence of nontangential limits on a large part
of the boundary it would be enough to prove that the Hausdorff dimension
of E is at most n − 1. It is therefore natural to conjecture that the theorem
holds for α < p− 1. Note that, in two dimensions, this is indeed the case.

Proof of Theorem 5.2. All that remains to be done is to show that the set
E has Hausdorff dimension at most α + n − p. By a standard dimension
estimate for sets of weighted capacity zero (see [HKM, Theorem 2.23]) this
Hausdorff dimension can be shown to be smaller than one. However, we
present here a somewhat more elaborate argument that allows us to obtain
the bound α+ n− p.

We start with the weak type estimate

(5.3) Λw,∞s

(
{y ∈ Rn : Mw

s,pf(y) > t}

)
≤ c(s, w)

tp

∫
Rn

|f(x)|pw(x)dx,

which follows from the proof of Lemma 3.1. Let u be a function in
C∞0 (B(y,R)). As in [HKM, Lemma 2.30], we have

|u(y)| ≤ c
∫ ∞

0

1
rn

∫
Bn(y,r)

|∇u(x)| dx dr.
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Inserting w(x)1/p w(x)−1/p into the integral and applying Hölder’s inequality
and the Ap condition for the weight w one can easily adapt the proof of [HKM,
Lemma 2.30] to obtain

(5.4) |u(x)| ≤ cR1+s/pMw
s,p[|∇u|(x)]

for any x ∈ Rn, as long as s > −p.
Combining (5.3) and (5.4) we have

(5.5)

Λw,∞s

(
{x ∈ Bn(y,R) : |u(y)| > t}

)
≤ c R

s+p

tp

∫
Bn(y,R)

|∇u(x)|p w(x) dx.

The proof of [HKM, Theorem 2.26] can be carried out in the weighted case
by using the estimate (5.5). Thus, capp,w(E) = 0 implies that Λw,∞s (E) = 0
for all s > −p.

It follows that given any positive ε one can cover the set E ⊂
⋃
i B

n(xi, ri),
such that ∑

i

rsi w(Bn(xi, ri)) < ε.

Note that the centers of the balls xi may be taken on ∂Bn. In view of the
special nature of our weight we have w(Bn(xi, ri)) ≈ rn+α

i . Therefore,∑
i

rn+α+s
i < c ε.

Using, for example, [HKM, Lemma 2.25], we conclude that the Hausdorff
dimension of the set E is at most n+ α+ s for any s > −p. �
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