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LINEAR RESOLVENT GROWTH OF A WEAK
CONTRACTION DOES NOT IMPLY

ITS SIMILARITY TO A NORMAL OPERATOR

S. KUPIN AND S. TREIL

Abstract. It was shown in [1] that if T is a contraction in a Hilbert
space with finite defect (i.e., ‖T‖ ≤ 1 and rank(I − T ∗T ) < ∞), and if

the spectrum σ(T ) does not coincide with the closed unit disk D, then
the Linear Resolvent Growth condition

‖(λI − T )−1‖ ≤
C

dist(λ, σ(T ))
, λ ∈ C\σ(T )

implies that T is similar to a normal operator.
The condition rank(I − T ∗T ) < ∞ measures how close T is to a

unitary operator. A natural question is whether this condition can be
relaxed. For example, it was conjectured in [1] that this condition can
be replaced by the condition I−T ∗T ∈ S1, where S1 denotes the trace
class. In this note we show that this conjecture is not true, and that,

in fact, one cannot replace the condition rank(I − T ∗T ) < ∞ by any
reasonable condition of closeness to a unitary operator.

Notation

We denote by D the unit disk {z ∈ C : |z| < 1} in the complex plane C.
We write sn(A) for the singular number of the operator A, defined by

sn(A) = inf{‖A−K‖ : rankK ≤ n}, s0(A) = ‖A‖.

For a compact operator A, the sequence sk(A)2, k = 0, 1, 2, . . ., is exactly
the system of eigenvalues of A∗A (counting multiplicities) taken in decreasing
order.

For p > 0, we denote by Sp the Schatten–von-Neumann class of com-
pact operators A such that

∑∞
k=1 sk(A)p < ∞, and we write ‖A‖

Sp
:=

(
∑∞

0 sn(A)p)1/p for the norm in Sp.
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0. Introduction and main results

In this note we are concerned with the question of similarity of an operator
to a normal operator. We recall that two operators A and B are similar if there
exists a (bounded) invertible operator R such that A = RBR−1. Similarity
of an operator T to a normal operator means that the operator T admits a
rich functional calculus, so that, for example, f(T ) is well defined for any
continuous function f on the complex plane C.

We first give a brief overview of the history of this question. Probably the
first criterion for the similarity of a contraction to a unitary operator was given
in a paper by B. Sz.-Nagy and C. Foias [10]. (Recall that an operator T is
called a contraction if ‖T‖ ≤ 1.) This result was transformed into a resolvent
test by I. Gohberg and M. Krein [5]. Further progress on the subject was
made by N. Nikolski and S. Khruschev [8] who obtained a counterpart of
the Gohberg–Klein result for contractions with spectra inside the unit disk
D and defect operators of rank one. In [1], N.E. Benarama and N. Nikolski
generalized this test to contractions of arbitrary finite defects.

Since for a normal operator N the norm of the resolvent can be computed
as

‖(N − λI)−1‖ =
1

dist(λ, σ(N))
,

the condition

(0.1) ‖(T − λI)−1‖ ≤ C

dist(λ, σ(T ))
,

which we will call the Linear Resolvent Growth (LRG) condition, is necessary
for the operator T to be similar to a normal operator. However, this condition
is clearly not sufficient for similarity to a normal operator: multiplication by
the independent variable z on the Hardy space H2 clearly satisfies (0.1), but
the similarity property does not hold.

However, if the spectrum of an operator is “thin” and the operator is close
to a “good” operator, one can expect that the LRG condition (0.1) is sufficient
for similarity to a normal operator.

In [1] it was shown that, if a contraction T is close to a unitary operator
in the sense that it has a finite rank defect I − T ∗T , and its spectrum does
not coincide with the closed unit disk D, then LRG implies similarity to a
normal operator. It was also shown that for a contraction T the condition
I − T ∗T ∈ Sp, p > 1, where Sp stands for the Schatten–von-Neumann class,
is not sufficient, and it was conjectured that the condition I − T ∗T ∈ S1

(together with the assumption that the spectrum is not the whole closed
unit disk D) guarantees the equivalence of LRG and similarity to a normal
operator.

We will show in this note that this is not the case, i.e., that one can find a
contraction T , with simple countable spectrum and such that I − T ∗T ∈ S1
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(or even I − T ∗T ∈ ∩p>0Sp), which satisfies LRG, but is not similar to a
normal operator. Furthermore, we will show that no reasonable condition of
closeness to a unitary operator (except for the finite rank defect of I − T ∗T )
implies that LRG is equivalent to similarity to a normal operator.

Let us explain what we mean by a “reasonable” condition. Suppose we
have a function Φ (that measures how small an operator (defect) is) with
values in R+ ∪ {∞}, which is defined on the set of non-negative operators in
a Hilbert space H, satisfies Φ(0) = 0 and has the following properties:

(1) Φ is increasing, i.e., Φ(A) ≤ Φ(B) if A ≤ B;
(2) Φ(A) <∞ if rankA <∞;
(3) Φ is upper semicontinuous, i.e., if An ↗ A (that is, An ≤ A and
‖An −A‖ → 0), then Φ(A) ≤ limn Φ(An);

(4) Φ is lower semicontinuous in the following weak sense: if rankA <
∞, and rankAn ≤ N for some N < ∞, and limn ‖An‖ = 0, then
limn Φ(A⊕An) = Φ(A) (where A⊕B means that rangeA ⊥ rangeB
and (KerA)⊥ ⊥ (KerB)⊥).

We extend Φ to non-selfadjoint operators by putting Φ(A) := Φ((A∗A)1/2).
The following are examples of functions Φ of this type:

(1) Φ(A) = ‖A‖
Sp

=
(∑

sn(A)p
)1/p

, where sn(A) is nth singular value
of the operator A. In this case Φ(A) <∞ means exactly A ∈ Sp;

(2) Φ(A) :=
∑∞
n=1 2−n‖A‖

S1/n
/(1 + ‖A‖

S1/n
); in this case, Φ(A) <∞ if

and only if A ∈
⋂
p>0 Sp;

(3) Any weighted sum of singular numbers, such as

Φ(A) =
∞∑
1

22nsn(A);

(4) The function

Φψ(A) :=
∞∑
0

ψ(sn(A)),

where ψ : R+ → R+ is increasing, continuous at 0, and satisfies
ψ(0) = 0. The condition Φψ(A) < ∞ characterizes the class Sψ,
introduced in [1], i.e., we have A ∈ Sψ if and only if Φψ(A) < ∞.
Note that if we allow ψ(0) to be positive, then for any ψ satisfying
ψ(0) > 0 the class Sψ is just the ideal of finite rank operators.

Our main result is the following theorem.

Theorem 0.1. Let Φ be a function satisfying the conditions (1)–(4) above.
Given ε > 0, there exists a contraction T on a Hilbert space H with the
following properties.

(1) The spectrum σ(T ) is a countable subset of the closed unit disk D;
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(2) T = I +K, where Φ(K) ≤ ε and Φ(K∗) ≤ ε;
(3) Φ(I − T ∗T ) ≤ ε and Φ(I − TT ∗) ≤ ε;
(4) T satisfies the Linear Resolvent Growth condition

‖(T − λI)−1‖ ≤ C

dist(λ, σ(T ))
;

(5) T is not similar to a normal operator.

The authors are thankful to Professor N. Nikolski for turning their attention
to this problem and for stimulating discussions on the subject.

1. Proof of the main result

1.1. Preliminaries about bases. Before proceeding to the proof, we
recall some well-known facts about bases in a Hilbert space. An exhaustive
treatment of the subject can be found on pages 131–133 and 135–142 of the
monograph [7]. (See also the papers [12, 13, 14].)

Let {fn}∞1 be a complete system of vectors in a Hilbert space H. The
system is called a basis if any vector f ∈ H admits a unique decomposition

f =
∞∑
1

cnfn,

where the series converges (in the norm of H), and the system is called an
unconditional basis if it is a basis and the series converges unconditionally
(i.e., converges for any reordering).

A complete system is called a Riesz basis if it is equivalent to the orthonor-
mal basis, i.e., if there exists a bounded invertible operator R (the so-called
orthogonalizer) such that Rfn = en for all n, where {en : n = 1, 2, . . .} is some
orthonormal basis. Clearly, an orthogonalizer is unique up to a unitary factor
on the left. The quantity r({fn}) := ‖R‖ · ‖R−1‖ is therefore well defined and
could serve as a measure of non-orthonormality of the Riesz basis {fn}.

Clearly, a Riesz basis is an unconditional basis. Although we do not need
this in this paper, we note that the converse is also true: a theorem due to
Köthe and Töplitz states that a normalized unconditional basis (with 0 <
inf ‖fn‖ ≤ sup ‖fn‖ <∞) is a Riesz basis.

We also mention the connection between Riesz bases and similarity to nor-
mal operators. It is a trivial observation that if T is an operator with simple
eigenvalues and with a complete system of eigenvectors fn, n = 1, 2, . . ., then
T is similar to a normal operator if and only if the system of eigenvectors
is a Riesz basis. In this case the similarity transformation is given by an
orthogonalizer R, and RTR−1 is a normal operator.
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1.2. Global construction. Suppose we have constructed a sequence of
finite rank operators An : Cn → C

n, with simple spectrum, and let {fnk }nk=1

be the system of normalized (i.e., ‖fnk ‖ = 1) eigenvectors of An. Suppose,
moreover, that the operators An (which we do not require to be contractions)
have the following properties:

(1) The operators An satisfy LRG uniformly, i.e., we have

‖(An − λI)−1‖ ≤ C

dist(λ, σ(An))
,

where the constant C does not depend on n.
(2) We have limn r(Fn) =∞, where r(Fn) = ‖RFn‖ · ‖R−1

Fn‖ is the mea-
sure of non-orthogonality of the system Fn = {fnk }

Nn
k=1 of the eigen-

vectors of An. (Recall that RFn is the orthogonalizer of the system
Fn.)

We now show that this implies the assertion of Theorem 0.1.
We construct an operator T = ⊕∞n=1

(
anAn+bnI

)
, where |bn| < 1, limn bn =

1 and limn an = 0. We choose the numbers an and bn such that the spectra
of the summands anAn + bnI do not intersect, so that the resulting operator
has a simple spectrum.

Since the linear transformation A 7→ aA + bI does not change the LRG
condition, and, moreover, does not change the constant in this condition (we
leave the proof of this fact as a simple exercise for the reader), the operator
T satisfies ‖(T − λI)−1‖ ≤ C/ dist(λ, σ(T )).

Furthermore, since the same linear transformation does not change the
system of eigenvectors, we can conclude that the system F of eigenvectors of
T is the direct sum of eigenvectors of all An, i.e., F := ⊕∞n=1Fn.

Since r(Fn) → ∞ by Property (2) of An, the system F of eigenvectors of
T is not a Riesz basis, and therefore (since T has simple spectrum) T is not
similar to a normal operator.

It remains to show that one can choose numbers an and bn such that the
operator T is close to a unitary operator, in the sense that Φ(I − T ) ≤ ε,
Φ(I − T )∗ ≤ ε, Φ(I − T ∗T ) ≤ ε, and Φ(I − TT ∗) ≤ ε.

We will construct the numbers an, bn by induction. We will always take
an to satisfy |an| · ‖An‖ < 1− |bn|. Under this assumption we have

‖I − Tn‖ < 1− |bn|+ |1− bn| ≤ 2 · |1− bn|.

The simple identity (I−∆)∗(I−∆) = I−∆−∆∗−∆∗∆ (applied to ∆ = I−Tn,
∆ = I − T ∗n) implies that in this case

‖I − T ∗T‖, ‖I − TT ∗‖ < 6 · |1− bn|,

if |1− bn| ≤ 1/2.
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Therefore, by taking bn sufficiently close to 1 (and an so that |an| · ‖An‖ <
1 − |bn| holds) we can make the norms of the finite rank operators I − Tn,
I − T ∗nTn, and I − TnT ∗n , where Tn = anAn + bnI, as small as we want.

Since Φ(0) = 0, Property (4) of Φ implies that we can choose a contraction
T1 = a1A1 + b1I such that

Φ(I − T1) ≤ ε/2, Φ(I − T1)∗ ≤ ε/2,
Φ(I − T ∗1 T1) ≤ ε/2, Φ(I − T1T

∗
1 ) ≤ ε/2.

Assume we have constructed the finite rank contractions Tk = akAk + bkI,
k = 1, 2, . . . , n − 1, such that the operator T (n−1) = T1 ⊕ T2 ⊕ . . . ⊕ Tn−1

satisfies ‖T (n−1)‖ < 1, has simple spectrum, and satisfies

Φ(I − T (n−1)) ≤ (1− 2−(n−1))ε,

Φ(I − T (n−1)∗) ≤ (1− 2−(n−1))ε,

Φ(I − T (n−1)∗T (n−1)) ≤ (1− 2−(n−1))ε,

Φ(I − T (n−1)T (n−1)∗) ≤ (1− 2−(n−1))ε.

By making the norm ‖I − Tn‖ sufficiently small we can guarantee that the
operator T (n) = T1⊕T2⊕. . .⊕Tn has simple spectrum and satisfies ‖T (n)‖ < 1.
Moreover, Property (4) of Φ implies that one can choose T (n) so that, in
addition,

Φ(I − T (n)) ≤ (1− 2−n)ε,

Φ(I − T (n)∗) ≤ (1− 2−n)ε,

Φ(I − T (n)∗T (n)) ≤ (1− 2−n)ε,

Φ(I − T (n)T (n)∗) ≤ (1− 2−n)ε.

Property (3) of Φ implies that the operator T = ⊕∞n=1Tn satisfies

Φ(I − T ) ≤ ε, Φ(I − T ∗) ≤ ε
Φ(I − T ∗T ) ≤ ε, Φ(I − TT ∗) ≤ ε.

This completes the proof of Theorem 0.1, modulo the constructing of An.

1.3. More preliminaries about bases. We will need more information
about bases. Let fn, n = 1, 2, . . . , be a linearly independent sequence of
vectors. Let Pn denote the projection onto the first n vectors of the system,
defined by Pn

∑
ckfk =

∑n
1 ckfk. (The operators Pn are well defined on

finite linear combinations of fk.) The following characterization of bases is
well-known; see, for example, [11, pp. 46–47], or [15, pp. 37–39].

Theorem 1.1 (Banach Basis Theorem). A complete system of vectors fk,
k = 1, 2, . . . , is a basis if and only if supn ‖Pn‖ =: K <∞.
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If one a priori assumes that the projections Pn are bounded, then the
theorem is just the Banach–Steinhaus Theorem.

We will need the following corollary characterizing the bases in terms of
so-called multipliers. For a numerical sequence α := {αn}∞1 , let Mα be a
multiplier, defined by

Mαfn = αnfn, n = 1, 2, . . .

(A priori, Mα is defined only on finite linear combinations
∑
ckfk.) For a

sequence α its variation var(α) is defined by

varα :=
∞∑
1

|ak − ak+1|.

Clearly, if varα <∞, the limit limn αn =: α∞ exists and is finite.

Corollary 1.2. Let a system of vectors fn, n = 1, 2, . . . , be a basis. If
for a numerical sequence α = {αn}∞1 we have varα <∞, then

‖Mα‖ ≤ K varα+ |α∞|,

where K is the constant from the Banach Basis Theorem (Theorem 1.1), and
α∞ := limn αn.

Proof. The result follows immediately from the formula

Mα =
∞∑
n=1

(αn − αn+1)Pn + α∞I,

where the operators Pn are the projections in the Banach Basis Theorem. �

Remark 1.3. The above corollary holds for bases in finite-dimensional
spaces as well: one simply has to extend the finite sequence α to an infinite
sequence, by adding zeroes.

Remark 1.4. Although we do not need this fact here, we mention that
the converse of Corollary 1.2 is also true. Namely, a system of vectors fn,
n = 1, 2, . . . , is a basis if and only if for any numerical sequence α of bounded
variation the corresponding multiplier Mα is bounded. The proof is quite
easy; see [7, 11].

1.4. Construction of the operators An. To construct the operators An
described in Section 1.2, consider a normalized (‖fn‖ = 1) system of vectors
F := {fn}∞1 , which is a basis but not a Riesz basis. Such systems do exist;
an example is given in Section 2 below. The measure of non-orthogonality of
this system is

r(F) := ‖RF ‖ · ‖R
−1

F
‖ =∞.
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Therefore, for finite truncations Fn = {fk}nk=1 we have

r(Fn) := ‖RFn‖ · ‖R
−1

Fn
‖ → ∞ as n→∞.

We define operators An as follows. Let {λn}∞1 be a strictly increasing
sequence of real numbers. Define an operator An on L{fk : k = 1, . . . Nn}
by Anfk = λkfk. It is easy to see that the operator An has simple spectrum,
and that Property (2) of An is satisfied.

We have to show that Property (1) holds, i.e., that

‖(An − λI)−1‖ ≤ C

dist(λ, σ(An))
.

To estimate the norm ‖(An−λI)−1‖ we will use Corollary 1.2. Namely, if we
put α := {αk}∞1 with

αk =
{

(λk − λ)−1, k ≤ n,
0, k > n ,

then
‖(An − λI)−1‖ ≤ ‖Mα‖ ≤ K · varα.

Thus, we need to show that

varα ≤ C

dist(λ, σ(An))
.

Suppose first that λm ≤ Reλ < λm+1 for some m ∈ {1, 2, . . . , n−1}. Then

varα =
m−1∑
k=1

|αk − αk+1|+
n−1∑

k=m+1

|αk − αk+1| + |αm − αm+1|+ |αn|.

The last two terms are easy to estimate:

|αm − αm+1|+ |αn| ≤ |αm|+ |αm+1|+ |αn| ≤
3

dist(λ, σ(An))
.

For the first term, we use the estimate
m−1∑
k=1

|αk − αk+1| ≤
m−1∑
k=1

∣∣∣∣ 1
λk − λ

− 1
λk+1 − λ

∣∣∣∣
=
m−1∑
k=1

∣∣∣∣∣
∫ λk+1

λk

dz

(z − λ)2

∣∣∣∣∣ ≤
∫ λm

λ1

dz

|z − λ|2
≤ C

|λ− λm|
.

Similarly, we have
n−1∑

k=m+1

|αk − αk+1| ≤
C

|λ− λm|
,

and the desired estimate follows.
In the cases when Reλ < λ1 or Reλ ≥ λn, the same argument applies,

with only one sum. Hence we are done. �
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Remark 1.5. The fact that the operators An satisfy LRG follows imme-
diately from a more general result about operators with spectrum on Ahlfors
curves, proved in [1]. We gave the proof here only for the reader’s convenience.

Note that the above argument would also work if we consider different
monotone sequences {λnk}nk=1, n = 1, 2, . . ., and put Anfk := λnkfn.

2. Nontrivial conditional bases

Let us consider the space L2(w), where w(t) is a nonnegative measurable
function on the unit circle T = ∂D and

‖f‖2
L2(w)

:=
∫ π

−π
|f(eit)|2w(eit)

dt

2π
.

We will study properties of the system of exponents {zn}∞n=0. We have the
following result.

Proposition 2.1 ([14]). Consider the system of exponents {zn}∞n=0 in the
closed linear span in L2(w) that it generates.

(1) {zn} is a basis if and only if the weight w satisfies the Muckenhoupt
(A2) condition

sup
I

(
1
|I|

∫
I

w

)
·
(

1
|I|

∫
I

w−1

)
<∞.

(2) {zn} is an unconditional (Riesz) basis if and only if w ∈ L∞(T) and
1/w ∈ L∞(T).

Direct computations show that a weight with power singularity, say w(z) =
|z − 1|α satisfies the Muckenhoupt (A2)-condition if and only if −1 < α < 1.
By choosing any non-zero α in this interval we get an example of a basis which
is not an unconditional (Riesz) basis.

Proof of Proposition 2.1. The statement is probably well-known, and we
present the proof only for the reader’s convenience.

By the Banach Basis Theorem (Theorem 1.1 above) the system {zn}∞n=0 is
a basis if and only if the projections Pn defined by Pn(

∑
ckz

k) =
∑n
k=0 ckz

k

are uniformly bounded.
Consider the so-called Riesz projection P+, defined by P+(

∑
ckz

k) =∑∞
k=0 ckz

k. Since for f ∈ L(zn : n ≥ 0)

Pnf = f − zn+1P+(zn+1f),

and multiplication by the independent variable z is a unitary operator on
L2(w), it is easy to show that the operators Pn are uniformly bounded (on
the closed linear span of {zn}∞n=0 in L2(w)) if and only if the operator P+ is
bounded on L2(w). The latter condition is equivalent to the boundedness of
the Hilbert Transform T given by T := −iP+i(I − P+), and it is well known
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(see [6] or [3, p. 254]) that T is bounded on L2(w) if and only if the weight w
satisfies the Muckenhoupt (A2)-condition. This proves part (1) of Proposition
2.1.

To prove part (2), note that the system of exponents is a Riesz basis if, for
any analytic polynomial f =

∑N
k=0 ckz

k,

c‖f‖2
L2(w)

≤
∑
|ck|2 = ‖f‖2

L2
≤ C‖f‖2

L2(w)
.

Since the multiplication by z is a unitary operator on L2(w), the last estimate
should hold for any trigonometric polynomial f =

∑N
−N ckz

k. This is possible
if and only if w and 1/w belong to L∞. �

3. Linear fractional transformations and the
Linear Resolvent Growth condition

The main reason why Theorem 0.1 holds is that LRG and similarity to
a normal operator are both “Möbius invariant”, while the conditions like
I − T ∗T ∈ Sp are not, if one pays attention to constants.

Let us clarify this statement. First, note that if T = RNR−1, then ϕ(T ) =
Rϕ(N)R−1 for any function ϕ that is analytic in a neighborhood of σ(T ).
Thus, similarity to a normal operator is preserved for ϕ(T ).

We next show that LRG is preserved under linear fractional transformations
ϕ(T ) = (aT + bI)(cT + dI)−1.

Lemma 3.1. Let ϕ(z) = (az + b)/(cz + d) be a linear fractional trans-
formation (which may be degenerate, i.e., a = 0 or c = 0). If an operator
T (which does not have to be a contraction) satisfies the Linear Resolvent
Growth condition

(3.1) ‖(T − λI)−1‖ ≤ C

dist(λ, σ(T ))
,

then
‖ϕ(T )‖ ≤ 10C sup

z∈σ(T )

|ϕ(z)|.

Corollary 3.2. Let ϕ(z) = (az+b)/(cz+d) be a linear fractional trans-
formation. If an operator T satisfies the Linear Resolvent Growth condition
(3.1), then the operator ϕ(T ) satisfies the same condition with constant 10C,
i.e.,

‖(ϕ(T )− λI)−1‖ ≤ 10C
dist{λ, σ(ϕ(T ))}

.

Proof. Consider the function τ(z) := 1/(z−λ). The composition ϕ1 := τ◦ϕ
is a linear fractional transformation (as can be seen, for example, by noting
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that it is a conformal automorphism of the Riemann sphere Ĉ := C ∪ ∞).
Therefore Lemma 3.1 implies

‖(ϕ(T )− λI)−1‖ = ‖τ(ϕ(T ))‖ = ‖ϕ1(T )‖
≤ 10C sup

z∈σ(T )

|τ(ϕ(z))|

= 10C sup
w∈ϕ(σ(T ))

|τ(w)| = 10C
dist{λ, ϕ(σ(T ))}

.

To complete the proof it suffices to note that, by the Spectral Mapping Theo-
rem (see [2, Theorem VII.3.11]), we have σ(ϕ(T )) = ϕ(σ(T )) for any function
ϕ that is analytic in a neighborhood of σ(T ). �

Proof of Lemma 3.1. We first observe that a linear transformation T 7→
aT + b preserves LRG and, moreover, preserves the constant implicit in the
LRG condition. This is indeed trivial for the shift T 7→ T + bI, and for the
transformation T 7→ aT it follows from the following chain of estimates:

‖(aT − λI)−1‖ = |a|−1
∥∥∥(T − λ

a I
)−1
∥∥∥

≤ 1
|a|
· C

dist(λa , σ(T ))
=

C

dist(λ, σ(aT ))
.

We now prove the lemma. Consider first the case when ϕ is a linear func-
tion. Since the LRG condition is preserved under linear transformations, we
can assume, without loss of generality, that ϕ(z) = z. By the Riesz–Dunford
formula we have

T =
1

2πi

∫
γ

z · (zI − T )−1dz,

where γ is a contour surrounding σ(T ) in positive direction.
Take γ to be the circle with center at 0 of radius R > ρ(T ), where ρ(T ) =

supz∈σ(T ) |z| is the spectral radius of T . Then

‖T‖ ≤ 1
2π
· 2πR · ρ(T ) · C

R− ρ(T )
= ρ(T ) · CR

R− ρ(T )
.

Taking the limit as R→∞ we get

‖T‖ ≤ Cρ(T ) = C sup
z∈σ(T )

|z|.

Next, consider the case when ϕ is a proper rational function, i.e., ϕ =
a/(bz+c). In this case the conclusion of the lemma is just the LRG condition,
so the conclusion trivially holds with the same constant C.

Finally consider the general case

ϕ =
az + b

cz + d
, a 6= 0, c 6= 0.
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Let τ be a linear transformation of C which maps −1 to −b/a and 0 to −d/c.
Then ϕ◦τ = α · (z−1)/z, where α ∈ C. Since linear transformations preserve
the LRG property, it is enough to prove the result for the case ϕ = (z− 1)/z.

Let

δ := sup
z∈σ(T )

|ϕ(z)| = sup
z∈σ(T )

∣∣∣∣z − 1
z

∣∣∣∣
and consider first the case when δ ≥ 1/2. We write

ϕ(T ) =
1

2πi

∫
Γ

ϕ(z)(zI − T )−1dz

with Γ = γr ∪ γR , where γr and γ
R

denote the circles |z| = r and |z| = R in
negative and positive directions, respectively. Letting r → 0 and R→∞, we
have

lim
R→∞

∥∥∥∫
γ
R

. . .
∥∥∥ ≤ lim

R→∞

1
2π
· 2πR · C

R
= C

and

lim
r→0

∥∥∥∫
γr

. . .
∥∥∥ ≤ lim

r→0

1
2π
· 2πr · 1

r
· C

dist(0, σ(T ))
=

C

dist(0, σ(T ))
.

One can easily see (by explicitly computing the level sets of |ϕ|) that the
set {z : |ϕ(z)| ≤ δ} lies outside the disk {z : |z| = 1/(1 + δ)}, so that
dist(0, σ(T )) ≥ 1/(1 + δ). Therefore,

lim
r→0

∥∥∥∫
γr

. . .
∥∥∥ ≤ C · (1 + δ),

and so
‖ϕ(T )‖ ≤ C · (2 + δ) ≤ 5Cδ = 5C sup

z∈σ(T )

|ϕ(z)|

if δ ≥ 1/2.
Now consider the case δ ≤ 1/2. It is easy to check that for δ < 1 the level

set {z : |ϕ(z)| ≤ δ} is the closed disk centered at c = 1/(1− δ2) and of radius
r = δ/(1− δ2). By the definition of δ, the spectrum σ(T ) is contained in this
level set. As before, we can write

ϕ(T ) =
1

2πi

∫
Γ

ϕ(z)(zI − T )−1dz,

where Γ is now the circle of radius 3
2r centered at c = 1/(1− δ2). We have

‖ϕ(T )‖ ≤ lim
r→0

1
2π
· 2π 3

2
r · C

r/2
· sup
z∈Γ
|ϕ(z)| = 3C sup

z∈Γ
|(z − 1)/z|.

Note that the supremum supz∈Γ |ϕ(z)| is attained at the point x = c− 3
2r =

1−3δ/2
1−δ2 . Therefore

sup
z∈Γ
|ϕ(z)| = 1− x

x
= δ · 3/2− δ

1− 3δ/2
≤ δ · 3/2

1− 3/4
= 6δ.
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Hence ‖ϕ(T )‖ ≤ 6Cδ, and we are done. �

4. Conjectures and open questions

To conclude this paper, let us state some conjectures. Let T be a contrac-
tion, and let σ(T ) 6= D. Denote by Tµ the “Möbius transformation” of T ,
i.e.,

Tµ := (T − µI)(I − µT )−1, µ ∈ D.
Note that if ‖T‖ ≤ 1, then ‖Tµ‖ ≤ 1 for all µ ∈ D. Recall that ‖A‖

Sp
stands

for the Schatten–von-Neumann norm of the operator A,

‖A‖
Sp

=
( ∞∑

0

sn(A)p
)1/p

.

In Section 3 we showed that LRG, as well as similarity to a normal operator,
are invariant with respect to linear fractional transformations, and hence, in
particular, with respect to the above “Möbius transformations”. Since the
“Möbius transformation” maps a contraction to a contraction, the following
conjecture seems plausible.

Conjecture 4.1. If ‖T‖ ≤ 1, σ(T ) 6= D, and

(4.1) sup
µ∈D
‖I − T ∗µTµ‖S1

<∞,

then the LRG condition (0.1) implies that T is similar to a normal operator.

We believe that the trace class S1 plays a critical role here.

Conjecture 4.2. The condition (4.1) is sharp, i.e., given p > 1 one can
find an operator T with ‖T‖ ≤ 1 and σ(T ) 6= D, which satisfies LRG and

sup
µ∈D
‖I − T ∗µTµ‖Sp

<∞,

but which is not similar to a normal operator.
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