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MULTIPLICATIVE MONOTONIC CONVOLUTION

HARI BERCOVICI

ABSTRACT. We show that the monotonic independence introduced by
Muraki can also be used to define a multiplicative convolution. We
also find a method for the calculation of this convolution based on an
appropriate form of the Cauchy transform. Finally, we discuss infinite
divisibility in the multiplicative monotonic context.

1. Introduction

Consider an algebraic probability space, that is, a pair (2, ¢), where 2 is
a unital complex algebra, and ¢ : 2 — C is a linear functional satisfying
(1) = 1. Muraki [5] introduced the concept of monotonic independence for
elements of 2A, which we will now review. Let 2;,%s be two subalgebras
of &; it is not assumed that either of these subalgebras contains the unit.
These algebras are said to be monotonically independent if the following two
conditions are satisfied:

(1) for every x1,y1 € 2y and x2 € s, we have x129y1 = p(z2)T1Y1;
(2) for every x1 € 2y and mza,y2 € 2y, we have p(x2z1y2) =
p(z2)p(x1)e(y2), p(r221) = @(r2)p(21), and p(z1y2) = p(r1)@(y2)-
Proceeding inductively, the algebras 21,2, ...,%2, are said to be monotoni-
cally independent if 2,25, ..., 2, 1 are monotonically independent, and the
algebras 2A’,2(,, are monotonically independent, where 2’ is the (generally
nonunital) algebra generated by 201 U5 U --- U2(,_;. More generally, if I is
a totally ordered set, and (2;);cs is a family of subalgebras of 2, this family
is said to be monotonically independent if the algebras ;,,2,,...,2; are
monotonically independent for any choice of indices i < i < -+ < i,,. A
family (x;);cr of elements of 2 is said to be monotonically independent if the
(generally nonunital) subalgebras 2; generated by x; form a monotonically
independent family.
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The distribution u, of an element x of 2 (a.k.a. a random variable) is the
linear functional defined on the polynomial algebra C[X] by the formula

pa(p) = o(p(x)), p € CIX].

Clearly, u, is entirely determined by the sequence ., (X™) = ¢(z™) of mo-
ments of z. A functional p on C[X] is the distribution of some random variable
if and only if (1) = 1. The set of these functionals, endowed with the weak*
topology, will be denoted 9.

Muraki [6] observed that, given monotonically independent random vari-
ables z1 x2, the distribution of 1 + x2 only depends on fiz,, ft5,. This gives
rise to a binary operation > on 91, called monotonic convolution. It was also
shown in [6] how to calculate monotonic convolutions using moment generat-
ing functions.

It is also true that the distribution of x1x9 only depends on piy,, iy, if
1, Ty are monotonically independent, but the dependence is rather trivial.
Indeed, if n > 1, property (1) above yields

(x122)" = ()"~ o,
and then from property (2)

o((x122)") = @(w2)" (7).
In other words, the product z;z5 has the same distribution as az;, with
o = p(z2).

A more interesting result is obtained by considering z; x5 € 2 such that
the variables x1 — ¢1, 22 — co are monotonically independent, where ¢y, ¢y are
scalars. It is again easy to see that, under this condition, p;,,, depends only
on the distributions of z1,z2 and on the numbers c1,cy. This yields a new
operation O on M x C, called multiplicative monotonic convolution, such that

(Mﬂﬂlxzvclc?) = (:uzlvcl) O (:uzzaC?)

if z1 — ¢; and x2 — ¢y are monotonically independent. It is interesting to
note that, under this condition, fiz,+, = Ha,az,, but the operation O is not
commutative, since monotonic independence itself is not a symmetric relation.
While O is not an operation on 91 itself, there are two ways in which it induces
such an operation. The first one is obtained by identifying 9t with the subset
{(1, 1) : p € M}; we will use the same notation for the operation induced this
way, that is

(p1,1) O (p2,1) = (p1 O p2, 1), pa, p2 € M.

The second one is obtained by identifying 9t with the subset {(u, u(X)) : p €
M}; we will use the notation Og for this operation, so that

(11, 11 (X)) O (p2, p2(X)) = (11 Oo p2, p1 (X)p2(X)),  pa, p2 € M.
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The operation O on 91 has the advantage that it is easily extended to measures
with unbounded supports. On the other hand, Oy has the advantage that
convolution with a Dirac point mass has the natural dilation effect.

We will show that multiplicative monotonic convolution can be calculated
in terms of an appropriate moment generating series. We will deduce from this
that the multiplicative monotonic convolution of two probability measures on
the unit circle is again a probability measure on the unit circle. Analogously,
the multiplicative monotonic convolution of two compactly supported proba-
bility measures on Ry = [0, +00) is a measure of the same kind. As mentioned
above, the operation O extends to arbitrary probability measures on R,. It
is not clear whether the same is true for ©¢. In the case of probability mea-
sures on Ry and T we will give a description of one-parameter convolution
semigroups and of infinitely divisible measures, at least for compact supports.
This was done by Muraki [6] for additive monotonic convolution semigroups
of compactly supported measures on R.

Our approach in calculating multiplicative monotonic convolutions is re-
lated to the one we used in [2] to approach additive monotonic convolution,
rather than the original combinatorial approach of [6].

2. Realization of monotonically independent variables

In order to see that monotonic convolution is defined everywhere on 9 x C,
we need to show that any two random variables have monotonically indepen-
dent copies in some algebraic probability space. We will extend slightly a
construction from [6]. Fix two algebraic probability spaces (21, p1), (22, ¢2),
and denote by 1; the unit of ;. Denote by p; : ; — 2; the linear projec-
tion defined by p;(a;) = ¢j(a;)1;, a; € A;. Also, for a; € A; we denote by
myg, the left multiplication operator defined by mg,z; = a;jz;, x; € ;. The
algebra L(2l; ® As) of all linear operators on 2y ® s becomes a probability
space if we define the functional ¢ : L(2; @ ™A2) — C by

e(a)(1; ®12) = (p1 @ p2)(a(l1 ® 1)), a € L(2A; @ Aa).

We can then define monotonically independent copies B1,Bs C L(2; ®@ As)
of 1,25 as follows:

B = {mal Qp2:al € Qh}, By = {Iml ® Mg, :as € 9(2}.

The reader will have no difficulty verifying their monotonic independence.
The case which will be of interest for us in finding analytical formulas
for multiplicative convolution is more specific. Consider a Hilbert space 9,
and a unit vector e € . The algebra £()) of bounded linear operators on
£ becomes a probability space with the vector functional ¢.(x) = (ze,e),
x € £($). Consider now the Hilbert space tensor product ' = H ® § and
the unit vector ¢/ = e ® e. One considers the two monotonically independent
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copies 21, Az of £(9) in (L£($’), per) defined as follows:
W ={zep:2c ()}, Ww={1z:x2ecL(H)}

where p denotes the rank one orthogonal projection onto the space generated
by e, and 1 denotes the identity operator on $.
For every distribution p € 9t we will consider the formal power series

- Yu(2)
_ X) N — H .
wlt(z) nzz:lu( )Z I nu(z) 1 + wu(z)
If x is a random variable, we will also use the notation 9, = ¥, , 7. = 7., -
The calculation of multiplicative monotonic convolution will involve the series
. For z € £(%), the formal power series 1, (2), 7, (z) are actually convergent,
at least for |z| < 1/]|z7 Y.

Assume now that $ has an orthonormal basis (e;)52,, and e = eg. Consider
the shift s € £(9) defined by se; = ej4q for all j. We will be interested
in elements z € £(9) of the form z = (1 + s)u(s*), where v € C[X] is a
polynomial. It is easy to see that the distributions u, of these operators form
a dense subset in 9. Moreover, as shown by Haagerup (see Theorem 2.3.(a)
in [4]), the generating function ¢, is easily related to u.

LEmMA 2.1. Ifxz = (14 s)u(s*), where u is a polynomial with u(0) # 0,

then
o (o) =

for sufficiently small |z|.
We can now state the main result of this section.

THEOREM 2.2. Consider two distributions pi, pus € 9M, constants c1,co €
C and the multiplicative monotonic convolution (p,crca) = (p1,¢1) O (42, c2).
We have then

1
nu(z) = Nua <_77u2 (Clz)) )
C1
ifer 0, and

M (2) = Ty (0], (0)2),
’Lf Cc1 = 0.

Proof. The second formula above is obtained from the first by letting c;
tend to zero, and using the fact that the operation O is obviously continuous.
Continuity also shows that it will suffice to prove the theorem for p, us in a
dense family of distributions, for instance the family of distributions obtained
from the random variables (1+s)u(s*), where u is a polynomial with u(0) # 0.
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Assume then that uy, us are two polynomials which do not vanish at the origin.
We consider the variables x1, 22 in (£(9 ® 9), Yeoge,) defined by

z1=c1®(1—p)+(1+s)ui(s") @p,
2o=(14+1®s)u(l1®s*) =1 [(1+ s)uz(s)].

These variables have the required property that z; — ¢1,z2 — co belong to
monotonically independent subalgebras. Moreover, it is easy to see that x1, x5
have the same distributions as (1 + s)uq(s*), (1 + s)ua(s*), so that

oo (Tramm) =5 v (Tromm) =

for sufficiently small z.
Consider now the vectors &, = Y.~ (A", € § defined for |A| < 1; note
that £y = eg. Since

6= 6= ). (5”6 = ul)s
for 11 # 0, we can easily calculate
22696 = (19 (1+)ualo)r © 6, = 121 (604 - (64— 0) )
Then we obtain for A # 0 % 1
nas(6©6) = e e ((1+1) (6 - )
Fua(p) (1 +9) @) [ur (Ve © o)

— sy [ (1 )@M—@Hm@)
[ (1 )f,\@)fu

+ (u1(>\) 1+ i\) - <1+ i)) a®& — m)(\)\)ﬁo@fo} :

This equation can be simplified when

ur(N) (1+i> —a (1+;> =0,

in which case it becomes

r122(6N ® &) = %(Q ® &) —

ul()\)
A

(Ex—&0)® 50}

with
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This can then be rewritten as

A
1- -1 = —
so that
A
1—zz120) ™) = (1 — 2122) "1 ® &0, E0 ® =
o(( 172) ") = (( 122) " o @ o, 0 @ o) T 2 ()
The constant on the right-hand side of this equation is now easily calculated:
A Aci(1+1/p) ( 1>
= =A1+-) =241,
zug (A ua(p) u1(A) A

yielding then
wmlmQ (Z) - 9060®60((1 - lex?)il) —1=A

These calculations hold for |A| # 0 sufficiently small, because the associated
numbers p and z are also small, and p # 0. Observe now that the identity

Cliz = uy(p1) <1 + i)

means that ¥,,(c12) = p, while

uy () (1 + %) = (1 + %)

A= (m)'

Combining these identities we see that

Yoiaa (2) = Yy (ﬁ) = Vn (é%)

— 4, (1n (cm) .

The identity above shows that

1
Nz zo (Z) = Nz, <_n12 (Clz)>
C1

for uncountably many values of z. We deduce that the identity in the state-
ment holds in the generic particular case p1 = pig,, fto = g, - O

means that

The two convolutions on 9t are now easily described.

COROLLARY 2.3. Given measures ji1, o € I, we have

77/“ O/Ia (Z) = 77/11 (Wz (Z))7
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and
1
Ny Oopz (Z) = Ny (anm (a2)> ;

with o = py(X) = n,,(0). The fraction n,,(az)/a must be interpreted as
M, (0)2 in case o = 0.

3. Measures on the positive half-line

If 1 is a probability measure on R one can define

<ot Yu(2)
z) = — duf(t), 2) = —F 2
vl = [ . ) = R
for every z € Q = C\ Ry. These functions are analytic, and moreover
1, (€2) C 2. More precisely,

n.(0=) =0, 1u(Z) =nu(2), and m > argn,(z) > argz,
for z € 2,38z > 0,

where 7,,(0—) = limyo 7, (¢). Moreover, as seen in [1], these conditions char-
acterize the functions 7, among all analytic functions defined on Q. The
measure £ is compactly supported if and only if the function n, is analytic
in a neighborhood of the origin. In this case, p is entirely determined by
the Taylor coefficients of 7, and the power series of 7, at zero is precisely
the formal power series denoted by the same symbol in the preceding section,
provided that we view x as an element of 9 by setting (X™) = [ " dp(t).
We can thus identify the collection of compactly supported measures on R

with a subset of 91.

PrROPOSITION 3.1.  If py, po are compactly supported probability measures
on Ry, then both py O e and py Og¢ pe are compactly supported probability
measure on R .

Proof. If pu1 = dg is Dirac measure at zero, then clearly p; Og po = dg.
Otherwise, the number o = 7, (0) = [;° t duy(t) is different from zero, and
therefore

1
N1 Oopz (2) = Ny (afim (az)) .

This shows that 7, ), 4, (#) makes sense for every z € Q, and it is an analytic
function of the form 7, for some compactly supported probability measure
@ on Ry. Clearly then p = p3 O¢ po. The case of p; O po is treated
similarly. O

There is a different argument for the preceding result, based on the mul-
tiplication of positive random variables. Observe first that the existence of
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monotonically independent variables is, generally, incompatible with the func-
tional linear ¢ being a trace. Indeed, if 2, % are monotonically independent
in (A, ), and z1 € Ay, z2,y2 € As, then

P(r271y2) — p(T1Y272) = (71)[P(T2)P(Y2) — P(T2y2)]-

Thus, if ¢ is a trace, either ¢|2; is identically zero, or ¢|2s is multiplicative.
There is however a remnant of the trace property, for instance when 2 is
commutative.

LEMMA 3.2.  Assume that 2,,s are monotonically independent in (2, @),
and |y is a trace. Then we have p(xy) = p(yzx) for any x in the unital
algebra generated by A1, and any y in the unital algebra generated by A UAs.

Proof. Since both sides of the identity to be proved are bilinear in (z,y),
it suffices to prove it when x € 2, and y is a product of elements in 2A; Uy,
with at least one factor in 2. Thus y has the form

Y=2Z1Y1 " Tn¥YnTn+1,

where n > 1, y1,y2,...,yn € Ao, za,..., 2, € Ay, and z1, 2,41 € A3 U {1}.
Monotonic independence allows us to calculate

p(zy) — pya) = [plezizs i) — p(@rza - zopz)] [ [ o(y),
j=1

and the conclusion follows because ¢|2; is a trace. g

COROLLARY 3.3. Let x1,xz2 be two random wvariables, and ci,co € C be
such that x1—cqy and xo—co are monotonically independent. Then the variables
.’17%.%'2,3715(}2,(61, and xgx% have the same distribution.

In particular, if the probability space is (£(9), ¢¢), and z1,z2 are selfad-
joint, it follows that x2x5 has the same distribution as the selfadjoint variable
x1x9x1. If pq,pe are compactly supported measures on Ry, then we can
always find random variables y1,ys € £($) such that y;,y2 are positive oper-
ators, and P2 = 1, Py, = H2- We can then define new variables

$1=y1®p+01/2®(1—p), T2 =1Q®ys

in (£(9® 9), pewe) which have the same distributions as y1,y2, and z; —
1/2 . . S
¢;'”, g — co are monotonically independent. Considering now ¢; = c2 =1
or ¢; = uj(X), we see that w3 O pe, and respectively py O pe, is the
distribution of the positive random variable xyxox1. Moreover, the inequality
|lz12z2m1]] < ||23||||z2], and the fact that yi,y2 can be chosen so that the

spectra of 42, y2 coincide with the supports of yi1, 2, yield the following result.
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COROLLARY 3.4. Let pu1, o be probability measures on Ry such that the
support of p; is contained in the interval [a;, ;] C Ry, where o <1 < 35
for j = 1,2. Then the supports of p1 O pe and py Og e are contained in
[041062,5152]-

We will need an inclusion in the opposite direction. In the following proof
we will use the fact that the measure p can be recovered from the imagi-
nary parts of the limits of the function 1, or 7, at points on the real line.
The relevant fact is as follows: if (a,b) C Ry is an open interval such that
limg o argn,(re®) = 0 for every r € (a,b) , then u((1/b,1/a)) = 0.

We will denote by supp(p) the support of a measure p on Ry.

PROPOSITION 3.5.  For any compactly supported probability measures fi1, o
on R, we have

supp(pz) C supp(u1 O pa),
and

( /000 tdﬂl(t)> supp(p2) C supp(p1 Oo piz).

Proof. We provide the argument for g = 11 Og p2. Assume that an interval
(a,b) is disjoint from the support of p, so that the function 7, is analytic and
real-valued on the interval (1/b,1/a). Now

1
1) = (a(02))
for z ¢ Ry, with
o=, 0) = [ tdu(o),
0
We deduce that
) 1 . .
: 10y _ 13 - LAWET 0y _
lim arg )y, (are™) = limarg —n,, (are™) < limargn, (re”™) =0

for every r € (1/b,1/a). As noted before the statement of the proposition, this
implies that the support of the measure uo contains no points in (a/a, b/a).
In other words,
supp(p1 Oo p2)

fooo t dﬂl (t)
as claimed. O

supp(pa) C

It is now fairly easy to find the multiplicative monotonic convolution semi-
groups. These are simply families {1, : 7 > 0} of compactly supported
probability measures on Ry such that pg = 91, fryr = pr O po (or
frtr = pr Op prr) for 7,77 > 0, and the map 7 +— p, is continuous. The
topology on probability measures will be the one inherited from 9, but in
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this case it is precisely the topology of weak convergence of probability mea-
sures. Indeed, in the case of O-semigroups the support of p, is contained in
the support of py for 7 < 1, and it is immediate that the map 7 — p, is
continuous when we consider the weak topology on the collection of probabil-
ity measures. Similarly, in the case of )g-semigroups, observe first that the
function a(r) = [, tdu-(t) is continuous, and a(r + 7') = a(r)a(r’). We
conclude that o(7) = €7, with a = log «(1) € R. The preceding result now
shows that the support of . is uniformly bounded when 7 runs in a bounded
set. Indeed, we see that
supp\pr
supp(u-) C eaT(—uT))

for 7 € [0,T]. It is again easy to conclude that the map 7 — p, is continuous
when we consider the weak topology on the collection of probability measures.

THEOREM 3.6. Consider a Og-semigroup {i, : 7 > 0} of compactly sup-
ported probability measures on Ry, and let a € R be such that

/ tdu-(t) =¢*", 7>0.
0

There is a neighborhood V' of 0 € C such that the map T — n,, (2) is differ-
entiable at T =0 for every z € QU YV, and the derivative

A(z) dnﬂr (Z)

dr

is an analytic function of z. Moreover, we can write A(z) = z(B(z)+a), where
B is analytic in QU YV, B(0) = 0, B(Z) = B(z) and SB(z) > 0 whenever
Sz > 0.

Conversely, for any a € R, and any analytic function B defined in a set
of the form Q UV, with V a neighborhood of 0, satisfying the conditions
above, there exists a unique Og-semigroup {p, : T > 0} of compactly supported
probability measures on Ry such that

dn’zii;_(z) » =z2(B(z)+a), z€Q,
and [;° tdu-(t) = e for T > 0. Moreover, n,,(z) = u-(e*"z), where u.(z)
is the solution of the initial value problem
du,(z)
dr
This solution exists for all T > 0.

7=0

=u,(2)B(ur(2)), wup(z)=2¢€Q.

Proof. Start first with a semigroup {u, : 7 > 0}, and define functions
ur @ 8 — Q by setting u,(z) = n,, (e7%72) for z € Q. Clearly then u,(z)
depends continuously on z, and the semigroup property can be translated
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into ur4,/(2) = ur(um(2)). As shown by Berkson and Porta [3, Theorem
1.1], these conditions imply that u,(z) is a differentiable function of 7, and it
satisfies the equation
du,(z)
=C T ’
i (ur(2))
where C(z) = (dur(2)/d7)|r=0. The initial condition uy(z) = z comes from
the identity uo = 7,, = 7s,, and this last function is easily seen to be the
identity function on 2. Clearly
iy, (2)

—dr =C(z)+az, z€.

7=0
Let us observe next that 7 +— argu.,(z) is an increasing function for Sz > 0,

and therefore

C(z)  dlogu,(z)

Cx
&
z dr

2 07

=0
so that indeed C(z) = 2B(z), where B is an analytic function with positive
imaginary part in the upper half-plane C*. Moreover, the fact that u,(0) =0
yields C'(0) = 0, so that B is analytic in a neighborhood of zero. We also
have u/.(0) = 1, which shows that C also has zero derivative at z = 0, and
therefore B(0) = 0 as well.

Conversely, assume that we are given an analytic function B in QUV | with
B(0) = 0, and with positive imaginary part in CT. We show first that the

initial value problem
du,(z)
dr

has a solution defined for all positive 7. In order to do this we apply another
result of [3] (see Theorem 2.6, and the description of the class Go(H) for b = 0),
which we reformulate for the upper half-plane Ct and the left half-plane iC*:
Let C : Ct — C (resp., C : iC* — C) be an analytic function such that
C(z)/2? € C* (vesp., —C(2)/2% € iCT) for every z. Then for every z (in the
relevant domain), the initial value problem du.(z)/dr = C(u,(z)), uo(z) = 2,
has a solution defined for all positive 7. The function C(z) = zB(z) satisfies
the hypotheses of both of these results. Indeed, the fact that B has positive
imaginary part in C* allows us to write B in Nevanlinna form

B(z):ﬁ—kvz—&—/oo 14 2t

O

(3.1)

=u-(2)B(ur(2)), u-(0)=2z€Q

dp(t), ze€CT,

where 3 is a real number, v > 0, and p is a finite, positive Borel measure on
R. The fact that B is real and analytic on (—o0, ] for some € > 0 shows that
the support of p is contained in [e, +00), and the condition B(0) = 0 yields

the value
1

5:*4 ).
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We conclude that

C(z):zZ('y—&—/ooo 1 dp(t)), seq.

t(t — 2)

It is now easy to see that the integral above has positive imaginary part if
z € CT, and positive real part for z € iCt. We conclude that the equation
(3.1) has a solution defined for 7 > 0 for initial values z in C* UiC™", and by
symmetry for all z € Q. This equation will also have a solution defined for
small 7 given an initial value z > 0 sufficiently close to zero. We deduce that,
for small values of 7, the function u., is also analytic in a neighborhood of zero.
The equation %,y = u; o u,s shows that the same is true for all values of
7, and u,(0) = 0. The fact that B has positive imaginary part in C* implies
that the function 7 — argu,(z) is an increasing function of 7, and therefore
argu,(z) > argz for z € Ct. (Note that u.(Ct) C Ct by the theorem
of Berkson and Porta.) We conclude that there exist compactly supported
probability measures s on R such that n,,_(z) = u,(e*'2) for z € Q and 7 >
0. Tt is easy to verify now that these measures form a multiplicative monotone
convolution semigroup satisfying the required conditions. The uniqueness of
the semigroup is a consequence of the uniqueness of solutions of ordinary
differential equations with a locally Lipschitz right-hand side. O

The results of Berkson and Porta [3] can also be formulated, via conformal
maps, for the entire region 2. The corresponding formulation however does
not reflect the additional symmetries present in our particular case.

The representation of the function C found in the preceding proof provides
a bijection between Og-convolution semigroups and triples (v, p, @), where a is
a real number, v > 0, and p is a finite, positive Borel measure on some interval
[e,+00). The representation of the function A can be written more compactly
if we use the measure v defined on the interval [0,1/¢] by the requirements
that v({0}) = v and dv(t) = (t* + 1)dp(1/t) on (0,1/e]. We have then

A(z) = az + 2* /000 dv(t),

1—2t
with ¢ € R and v a positive, Borel, compactly supported measure on R .
The constant a is equal to zero if the measures u, have first moment equal to
one, in which case the functions 7, = wu, simply form a semigroup relative
to composition of functions on €.

It is difficult to find explicit formulas for these semigroups. One case when
this is possible is A(z) = z? for some v > 0. In this case the differential
equation is easily solved, and it yields

z z

'LZJMT(Z):m, ZGQ,

N (2) = 1_77”7
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so that
T 1

=T 5+

T+~7 1497

As in the case of additive monotone convolution [6], the preceding parame-
trization of semigroups also yields a parametrization of Og-infinitely divisible
measures. Naturally, a compactly supported probability measure p on R is
said to be Og-infinitely divisible if, for every positive integer n, there exists a
compactly supported probability measure p1,, on R such that

Hr 51+7‘r7 T 0.

= p1/n Oo p1/n Oo -+ Oo H1/n -

n times

As seen in [6] in the additive case, the measure p; /n is unique. Indeed, let v
be any compactly supported measure on R such that

VOOVOO"'OOV:M‘

n times

This relation can be written as a system of equations in the Taylor coefficients
of n,, and it suffices to show that this system has a unique solution. Let us
write

o0 o0
nzt(z) = Z anz", ny(z) = Z Bnz"
n=1 n=1

in a neighborhood of zero, with a; = u(X) and 1 = v(X). Identifying the
coeflicients of z in the equation

Ny ©OMNy O+ 01Ny = Ny,
—_— —————
n times

/

we obtain 87" = ay, which yields 8 = a} " since B, > 0. For the coefficients

of 22 we obtain the equation
n
> BT =y
j=0

which uniquely determines 3;. The general pattern is that the kth equation
contains only f31,..., 0%, and 0x appears only at first power with a positive
coefficient at least equal to 3] '.

THEOREM 3.7. Let u # &y be a Og-infinitely divisible, compactly sup-
ported, probability measure on Ry. There exists a unique Og-semigroup {ii, :
7 > 0} of compactly supported probability measures on Ry such that py = p.

Proof. Replacing the measure p by the measure du(t/b), with b = fooo tdu(t)
allows us to restrict ourselves to measures with first moment equal to one. In
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this case it is clear that the measures pi,/, satisfy the same property, and

M = My yn ©Mpayn © 70 © My, -

n times

As seen above, the measures ji1/, are uniquely determined, so that we can
further define

Hm/n = K1/n Oo Hi/n Oo -+ Oo Hi/n

m times

for arbitrary positive integers m,n. Clearly we have .1, = pr O p, for
rational 7,7’ > 0. It is then seen from Proposition 3.5 that the measures P/
have uniformly bounded supports if m/n varies in a bounded set of rational
numbers. We can now verify that ., — 1, weakly when the rational numbers
T converge to a rational 7 = m/n. Assume indeed that v is the weak limit of
a subsequence of yi,,. The continuity of multiplicative monotone convolution
implies that

vOoV O Og V= lm,

n times

and the uniqueness of roots gives then v = p,/,. On the other hand, if
T — 0 and p,, tends to v, the measure v Og p is the weak limit of pi4+,,
so that v O¢ p = p. In other words, 1, on, = n,, which shows that n, must
be the identity function, and hence v = §;. It is now easy to see that n, can
be defined for arbitrary 7 > 0 by continuity. Indeed, consider two sequences
of positive rational numbers 7, — 7,7, — 7 such that the sequences Py s Horl
tend weakly to measures v,’. By dropping to subsequences (and possibly
switching the two sequences), we may assume that 7, > 7/, for all k. Since
Pory, = Hr Q0 fry—7f , and T, —14, — 0, we deduce that v = /. The uniqueness
of the semigroup obtained this way follows immediately from the uniqueness
of p/n- O

There are analogous results for O-semigroups.

THEOREM 3.8. Consider a O-semigroup {u, : 7 > 0} of compactly sup-
ported measures on Ry.. The map T — n,, (2) is differentiable for every z € Q,
and

d
Wi Z) _ Ay, (), 720.2€0,
a

where
A(Z) — dnuf (Z)

)
dr 7=0

z € Q.

The function A can be written as A(z) = zB(z), where B is analytic in 0 and
in a neighborhood of zero, and SB(z) > 0 for z € CT.
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Conversely, if A is an analytic function in Q with the above properties, there
exists a unique O-semigroup {u, : T > 0} of compactly supported measures on
R4 such that A(z) = dny,, (2)/dT|—o for z € Q.

Proof. The differentiability of the map 7 +— 1, (z) follows from Theorem
1.1 of [3], and the fact that B has positive imaginary part follows as before
from the fact that the map 7 +— argn,, (z) is increasing when z € C*. The
uniqueness of the semigroup p, is an immediate consequence of the uniqueness
of solutions to differential equations (with locally Lipschitz right-hand side).
The only thing that requires attention is the fact that, given a function A
with the properties in the statement, the initial value problem

du

— = A(u), 0)=2€Q

= Aw), u(0) ==

has a solution defined for all 7 > 0. We will show that this is in fact true

whenever B(z) = A(z)/z has positive imaginary part in C*(without assuming

that B is analytic at zero). To do this we write B in Nevanlinna form

1+ 2t
t—z

B(z):ﬁerer/ dp(t), z€Q,

0

with 8 € R, v € Ry, and p a positive Borel measure on R . We will distin-
guish three cases, according to the behavior of the function B on the interval
(—00,0). Note that B is increasing on this interval, so that it could be neg-
ative on (—o0,0), positive on (—oo,0), or vanish at some point in (—o0,0).
The first situation, B(z) < 0 for all z € (—o0,0), amounts to B(0—) < 0,

which implies that fOOO 2 dp(t) is finite. After rewriting the above formula as

2 +1
t(t — 2)

dp(t), z€Q,

B(z)—ﬂ—k-/:o%dp(t)—kfyz—kz/ooo

we deduce that

t

It is then easy to verify that A(z)/z? € CT for z € C* and —A(z)/2? € iC*
for z € iC*t. We deduce as in the proof of Theorem 3.6 that the solution to
our initial value problem extends to all 7 > 0. Assume next that B(z) > 0

for all z € (—o0,0). Since
14zt
| a0 = ot

ﬂ+/0w1dp<t>go.

as z | —oo, this is only possible when v = 0. In this case

lim B()= - / Ldp(),
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and we conclude that [ tdp(t) < oo, and 3 > [ tdp(t). Setting a =
B— [y tdp(t), we have

A() = = (a 4 /0 h t;le dp(t)) .

Using this formula, the inequality o > 0, and the fact that
z t

t—=z t—2’
it is easy to see that A(z) € C* for z € C*, and A(z) € iC* for 2z € iC™.
The results of Berkson and Porta show again that the solution w of the initial
value problem extends to 7 > 0 for every z € C* U4iC* and, by symmetry,
for every z € . (Note that in this case the relevant Denjoy-Wolff point
is infinity, which corresponds with the family G; () in the notation of [3].)
Finally, assume that B(—a) = 0 for some a > 0. This yields the value

1 —at
= —~a— do(t
B =—na /0 o p(t),

yielding the formula

A(z) = z(z+a) (74—/000(75_:2)%@@)), z € Q.

As in the preceding case, it will suffice to show that the initial value problem
for u has a solution defined for all 7 > 0 if z € CT UiC™. Using the results of
[3] (specifically, the classes Go(CT) and G3(iC™T)), we see that A must satisfy
the following conditions:

A
(2) €Ct for zeCT,
(z+a)?
and
L € —iC*t for ze€iCT.
Gra—a)
For the first of these conditions we write
Az vz © 241 z
G- [ dolt).
(z+a) z4+a Jo t+a (t—2z)(z+a)

which allows the calculation of the imaginary part

oo 42 2
S A(z) :Sz( va +/ t*+1 ta + |z| d(t)).
0

(z+ a)? |z + al? t+a |t—z?|z+af? P

This is clearly positive for z € C*. For the second condition we have

A 241
(2) _E / + z
a 0

t+a (t—2z)(z—a) dp(t).

(z+a)(z—a) z-—
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and
AG) (P —aR)
GraG-a |-aP
<241 _ t]z]? + al|z]? — (ta + |2|*)R2
+/0 t+a (t—2)(z—a) dp(t)-

This is clearly positive when Rz < 0.

We have thus shown that the initial value problem has a solution defined
for all 7 > 0. Denote by 7n.(z) this solution. This is an analytic function of
z, and it extends analytically to a neighborhood of zero if, in addition, B is
analytic at zero; moreover, n,(0) = 0 in this case. It is shown now as in the
proof of Theorem 3.6 that 7, = 7, for some compactly supported measure
i on RY, and these measures form a ¢)-semigroup. O

As in the case of the operation O, d§y is Og-infinitely divisible. All other
O-infinitely divisible measures belong to a ()-semigroup.

THEOREM 3.9. Let pu # &g be a O-infinitely divisible measure, compactly
supported, probability measure on RY. There exists a unique O-semigroup
{pr : 7 > 0} of compactly supported probability measures on Ry such that

p1 = p.

Proof. The argument is virtually identical with that of Theorem 3.7, except
that we need not start by normalizing the measures p. The details are left to
the interested reader. (]

4. Measures on the unit circle

If 11 is a probability measure on the unit circle T = {¢ € C : |¢| = 1}, the
formal power series 1,7, converge in the unit circle D = {z € C : |z| < 1},
and their sums are given by

- %G _ %(Z)

An analytic function n : D — C is of the form 7,, for some probability
measure on T, if and only if |n(z)| < |z| for all z € D (cf., for instance,
[1]). As in the case of compactly supported measures on Ry, the collection of
probability measures on T is identified with a subset of 9. The topology of
N, restricted to this subset, is exactly the topology of weak convergence of
probability measures. One should note that an element of 91 may correspond
to a measure on T, or to a measure on R, and these two measures may be
quite different. The simplest occurrence is the equality ns, = nm = 0, where
dp is a unit mass at the origin, while m is normalized arclength (or Haar)
measure on T.
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PrOPOSITION 4.1.  If 1, po are probability measures on T, then py O pe
and 1 Og pe are also probability measures on T.

Proof. If |a| <1 is a complex number, we have

1
anuz(a’z) S ‘Z|5 z € Da

where the left-hand side must be interpreted as [n;,,(0)z| when a = 0. We

deduce that
1
Ny (a”uz (az)>

showing that the formal power series 7, ., (%) corresponds indeed with a
probability measure on T. The measure p; O pg is treated similarly. O

<lz|, ze€D,

1
< |—
— | nHz (OZZ)

The part of the preceding result concerning () can be viewed as a con-
sequence of the fact that the product of two unitary operators is again a
unitary operator. Indeed, given probability measures u1, o on T, we can find
unitary operators x1, s such that 1 — 1,22 — 1 are monotonically indepen-
dent, and the distribution of x; is p; for j = 1,2. It would be nice to also
understand the part concerning O¢ in the same manner, but it is not clear
how to construct unitary operators x1, x2, with given distributions, such that
x1 — o(x1), 22 — p(x2) are monotonically independent. Such operators are
easily seen not to exist in the standard realization used in Section 2.

Monotonic convolution semigroups of probability measures on T are defined
as in the case of the half-line, and the following result is the analogue of
Theorem 3.6 in this context.

THEOREM 4.2.  Consider a Og-semigroup {u, : T > 0} of probability mea-
sures on T. The map T — 1, (z) is differentiable for every z € D, and the
derivative dn(2)

Np, \Z

A(z) = —4——~

(2) i |,

is an analytic function of z. Moreover, we can write A(z) = zB(z), where B
is analytic in D and RB(z) <0 for z € D.

Conversely, for any analytic function B defined in D, with RB(z) < 0 for
z € D, there exists a unique Og-semigroup {p, : 7 > 0} of probability measures
on T such that J

- (2) =2zB(z), z¢€D.
dr 7=0
This semigroups satisfies [1. ¢ dpr(¢) = eBOT for + > 0. Moreover, Ny, (2) =
uT(eB(O)Tz), where uy : €PO™D — D is an analytic functions satisfying the
initial value problem
du(z)
dt

= us(2)(B(ug(2)) — B(0)), ug(z) =z € BOD.
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This solution exists and belongs to D for all t € [0, 7).

Proof. The numbers a(7) = [ ¢ du-(¢) depend continuously on 7, a7 +
') = a(t)a(r’), and |a(7)| <1 for all 7. Tt follows that a(r) = ™ for some
complex number a with Ra < 0. Define now functions u, : €D — D by
ur(2) = . (e7%7z) for z € e*”D. These functions are analytic, and they
satisfy the equation

U‘r(u‘r’(z)) = UT+T’(Z)7 kAS 6a(T+T,)D~

Moreover, the map ¢t — u;(z) is easily seen to be continuous on the interval
[0, 7], provided that z € e*"D. The argument in Theorem 1.1 of [3] applies
in this situation as well, and it implies that the map ¢ — wu;(2) is in fact
differentiable, and the function

_ du,(z)

F(z) dr

, z€D
0

is analytic. It follows that the map 7 +— 7, (2) is differentiable as well, and
the function A in the statement is analytic. In fact, we have A(z) = F(z) —az
since 1,,(z) = z. In order to show that A has the required form, let us also
consider the function v,(z) = e* u,(z) = €*"1n,_ (e~ *"2) defined in e*"D, for
which

dv-(2) :az_|_d“7_(z) — A(z), zeD.
dr |, dr |,
For this function we have |v.(z)| < |z| = |vo(z)], so that indeed
A dRlog v, dlog |vy
AG) _ Rlogu, ()| dlogle G| o op o
z dr =0 T 7=0

Let us then write A(z) = zB(z), and verify that a = —B(0). Indeed, all the
functions (u,(z) —z)/7 have a double zero at the origin, and therefore so does
their limit F'(z); therefore B(z) 4+ a must be zero for z = 0.

Conversely, assume that B is an analytic function with negative real part
in D. It will suffice to show that the initial value problem

du(z)
dt

has a solution defined on the entire interval [0, 7], and that

= u(2)(B(ue(2)) — B(0)), u(0) =z € BO™D

lur(2)] < e RBOT|2) 2 e BOD,

Indeed, once this is done, we can define the functions 7, : D — D by
n-(2) = ur(eP@72), and these functions will be of the form 7, = 1, for
some probability measures p which are easily seen to form a (Og-semigroup.
The existence of the solutions u; on the stated interval is easy to deduce
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from the general theory of ordinary differential equations. We sketch a some-
what more direct argument based on an appropriate approximation scheme.
Namely, define functions w, : D — C by

e(B(2)—B(0))

we(z) = ze zeD,e>0.

These functions satisfy |w.(z)] < e *B©)|z|. We then define ™ BOTD
D by

n) _ .
’U,S_ ) = Wr/p OWsr/n O O Wr/p;

n times

it is easy to see that u'™ is indeed defined in eB(©7D. There exists a positive

number § such that u(Tn) |0D> converge uniformly as n — oo to the solution wu, of

our initial value problem, provided that 7 < §. Now, the functions u&") are an-

alytic and uniformly bounded on eB®9D for 7 < §, and therefore lim,_. 0 u{"™

will exist (by the Vitali-Montel theorem) on the entire disk (9D for all such

7. In an analogous fashion, we deduce that u,(z) = lim, u™ (z) exists for

all z € eBO7TD if 7 < §. Observe now the equality

!
/ / T T

") oug) = u(:;?) when — = —,
n n

uf
which shows now that the convergence of u(Tn) can be extended from the
interval [0, ] to arbitrary 7 > 0, yielding a function u, defined in the common
domain of u(Tn). Clearly these functions will solve the initial value problem in
the required range. O

The preceding result yields a parametrization of all Og-semigroups on the
unit circle. In fact, every analytic function B with negative real part on D
can be written using the Herglotz formula
[ C+=

T(—2
where (3 is a real number, and p is a finite positive Borel measure on T. The
constant a = B(0) is then given by

a = Zﬂ - p(T)7

and the differential equation for u., is

duy(2) 2/ dp(<)
= 2uy(z , up(z) =z € e D.
0 (2) () — ¢ (2)
As in the case of the half-line, the solutions of this equation can seldom be
calculated explicitly. The case p = 0 corresponds with semigroups where each
W+ is a point mass. In all cases when p # 0, it is easy to see that the measures
1 converge weakly to Haar measure m as 7 — co. One semigroup which can

B(z) =1ip dp(¢), zeD,
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be calculated explicitly corresponds with B(z) = 2™ — 1, where n > 1 is an
integer. We just mention the following formula:

z
1— (n+ 1)znr)l/n’

ur(z) = ( z €e D,
where the root is chosen to be equal to one at the origin.

Infinite divisibility can also be characterized in terms of semigroups in the
case of the circle. As for the half-line (where §y is Og-infinitely divisible, but
not part of a semigroup), there is an exception, namely the Haar measure m
which satisfies m Og m = m O m = m. More generally, we have the following
result.

LEMMA 4.3. If py, po are probability measures on T, and [, {dpy(C) =
JxCdu2(¢) =0, then iy Oo pg = m.

P’FOOf. We have N1 Ope (Z) = Nuy (77:;2 (O)Z) = Ny (0) = 0 since 77;;1 (O> =
7722 (0) = 0. Alternatively, one observes that two monotonically independent
variables x1, zg such that p(z1) = ¢(x2) = 0 must satisfy o((z122)™) = 0 for
all n > 1. O

We conclude that a Og-infinitely divisible probability measure p on T with
first moment zero must in fact coincide with m. Indeed, p = p1/2 Oo fi1/2,
and the measure /11,5 must also have first moment equal to zero.

THEOREM 4.4. Let p # m be a Og-infinitely divisible probability measure
on T. There exists a Og-semigroup {p, : 7 > 0} of probability measures on T
such that py = p.

Proof. As noted before the statement, we can write [, ¢ du(¢) = pe® with
# € R and p > 0. Choose for each integer n > 1 a measure v,, such that y =
1/%)02”; these measures are no longer uniquely determined, but (possibly after
an appropriate rotation) can be assumed to satisfy [1.¢ dv,(() = pt/2"e?/2".
There exists a sequence n; < mg < --- with the property that the each
sequence {1/7%02””'7” :j > n} has a weak limit; call this limit z/9n. These
measures will then satisfy

/Cdﬂ1/2n(4) = M e =, and
T
u?/‘ﬁlm = p1/on-m form <n.

Note that the measures i1 /5» converge weakly to §; as n — oo; indeed, their
first moments converge to 1, and d; is the only probability measure on T with
first moment equal to one. We can now define

Hmjon = I’L?/OQT
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for m,n positive integers, and this is a good definition, i.e., it depends only
on the fraction m/2" and not on the value of n. With this definition, it is
still true that p, tends weakly to d; if 7 — 0 is dyadic. Let now 7 be an
arbitrary positive number, and choose numbers 73, 7/, of the form m/2" such
that limy_,o 7% = limy_. 7, = 7, and the sequences {u,,,k > 1}, {/‘T{c’k >
1} have weak limits v,7’. Dropping to subsequences we can assume that
T, < 74, for all k. The equality fr; = iz, Oo fir, yields then v =61 O
v = v. This unique limit can then be denoted p,. It is easy to verify that
the measures p, form a multiplicative monotonic convolution semigroup, and

P = ph u

The semigroup provided by the preceding theorem is never unique. Thus,
if the semigroup is generated (in the sense of Theorem 4.2) by the function
2B(z), then the function z(B(z) 4+ 2mi) will generate a new semigroup with
p1 = p. Of course, the only difference between these semigroups is a rotation
of angle 277 of the measure p,. It is fairly easy to see that this is the only
possible kind of nonuniqueness. More precisely, we have the following result.

PROPOSITION 4.5.  If p, 1, o € M are such that p1 Og p1 = po Og po =
woand py(X) = pa(X) # 0, then p1 = pa. The same result is true for the
operation O.

Proof. If p1(X) = p2(X) = 1, then we have 1, 00y, =Ny, 0Ny, =Ny In
this case the result follows from the argument of Proposition 5.4 in [6]. The
general case reduces to this particular one by considering the new distributions

vi(p(X)) = p;(p(X/a)), p € C[X], where a = u1(X) = pa(X). O

This result shows that in fact the measures v, in the proof of Theorem 4.4
are uniquely determined, and therefore there is precisely one semigroup for
every choice of the argument of [ dpu(C).

The analogue of Theorem 4.2 for O-semigroups is obtained directly from
the results of Berkson and Porta [3]. Indeed, the corresponding functions 7,
simply form a composition semigroup of analytic maps of the disk, fixing the
origin. We record the result below.

THEOREM 4.6. Consider a O-semigroup {p, : 7 > 0} of probability mea-
sures on T. The map T — 1, (z) is differentiable for every z € D, and the
derivative

dny., (2)
Alz) = Y Z)
(2) ar |,
is an analytic function of z. Moreover, we can write A(z) = zB(z), where B
is analytic in D and RB(z) < 0 for z € D.

Conversely, for any analytic function B defined in D, with RB(z) < 0 for

z € D, there exists a unique O-semigroup {u. : 7 > 0} of probability measures
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on T such that

d
i (2) =2B(z), ze€D.
dr 7=0
The functions n,, satisfy the initial value problem

dntlifr(Z) =N, (2) BN, (2)); N, (0) =2z € D.

Infinite divisibility is also characterized in terms of semigroups, and the
remarks about uniqueness made about (¢-divisible measures apply here as
well. The proofs given above are easily converted to this setting.

THEOREM 4.7. Let u # m be a O-infinitely divisible probability measure
on T. There exists a O-semigroup {i, : 7 > 0} of probability measures on T
such that p1 = p.
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