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MULTIPLICATIVE MONOTONIC CONVOLUTION

HARI BERCOVICI

Abstract. We show that the monotonic independence introduced by

Muraki can also be used to define a multiplicative convolution. We
also find a method for the calculation of this convolution based on an
appropriate form of the Cauchy transform. Finally, we discuss infinite

divisibility in the multiplicative monotonic context.

1. Introduction

Consider an algebraic probability space, that is, a pair (A, ϕ), where A is
a unital complex algebra, and ϕ : A → C is a linear functional satisfying
ϕ(1) = 1. Muraki [5] introduced the concept of monotonic independence for
elements of A, which we will now review. Let A1,A2 be two subalgebras
of A; it is not assumed that either of these subalgebras contains the unit.
These algebras are said to be monotonically independent if the following two
conditions are satisfied:

(1) for every x1, y1 ∈ A1 and x2 ∈ A2, we have x1x2y1 = ϕ(x2)x1y1;
(2) for every x1 ∈ A1 and x2, y2 ∈ A2, we have ϕ(x2x1y2) =

ϕ(x2)ϕ(x1)ϕ(y2), ϕ(x2x1) = ϕ(x2)ϕ(x1), and ϕ(x1y2) = ϕ(x1)ϕ(y2).

Proceeding inductively, the algebras A1,A2, . . . ,An are said to be monotoni-
cally independent if A1,A2, . . . ,An−1 are monotonically independent, and the
algebras A′,An are monotonically independent, where A′ is the (generally
nonunital) algebra generated by A1 ∪ A2 ∪ · · · ∪ An−1. More generally, if I is
a totally ordered set, and (Ai)i∈I is a family of subalgebras of A, this family
is said to be monotonically independent if the algebras Ai1 ,Ai2 , . . . ,Ain are
monotonically independent for any choice of indices i1 < i2 < · · · < in. A
family (xi)i∈I of elements of A is said to be monotonically independent if the
(generally nonunital) subalgebras Ai generated by xi form a monotonically
independent family.
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The distribution µx of an element x of A (a.k.a. a random variable) is the
linear functional defined on the polynomial algebra C[X] by the formula

µx(p) = ϕ(p(x)), p ∈ C[X].

Clearly, µx is entirely determined by the sequence µx(Xn) = ϕ(xn) of mo-
ments of x. A functional µ on C[X] is the distribution of some random variable
if and only if µ(1) = 1. The set of these functionals, endowed with the weak*
topology, will be denoted M.

Muraki [6] observed that, given monotonically independent random vari-
ables x1,x2, the distribution of x1 + x2 only depends on µx1 , µx2 . This gives
rise to a binary operation . on M, called monotonic convolution. It was also
shown in [6] how to calculate monotonic convolutions using moment generat-
ing functions.

It is also true that the distribution of x1x2 only depends on µx1 , µx2 if
x1, x2 are monotonically independent, but the dependence is rather trivial.
Indeed, if n ≥ 1, property (1) above yields

(x1x2)n = ϕ(x2)n−1xn1x2,

and then from property (2)

ϕ((x1x2)n) = ϕ(x2)nϕ(xn1 ).

In other words, the product x1x2 has the same distribution as αx1, with
α = ϕ(x2).

A more interesting result is obtained by considering x1,x2 ∈ A such that
the variables x1 − c1, x2 − c2 are monotonically independent, where c1, c2 are
scalars. It is again easy to see that, under this condition, µx1x2 depends only
on the distributions of x1, x2 and on the numbers c1, c2. This yields a new
operation � on M×C, called multiplicative monotonic convolution, such that

(µx1x2 , c1c2) = (µx1 , c1) � (µx2 , c2)

if x1 − c1 and x2 − c2 are monotonically independent. It is interesting to
note that, under this condition, µx1x2 = µx2x1 , but the operation � is not
commutative, since monotonic independence itself is not a symmetric relation.
While � is not an operation on M itself, there are two ways in which it induces
such an operation. The first one is obtained by identifying M with the subset
{(µ, 1) : µ ∈M}; we will use the same notation for the operation induced this
way, that is

(µ1, 1) � (µ2, 1) = (µ1 � µ2, 1), µ1, µ2 ∈M.

The second one is obtained by identifying M with the subset {(µ, µ(X)) : µ ∈
M}; we will use the notation �0 for this operation, so that

(µ1, µ1(X)) � (µ2, µ2(X)) = (µ1 �0 µ2, µ1(X)µ2(X)), µ1, µ2 ∈M.
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The operation� on M has the advantage that it is easily extended to measures
with unbounded supports. On the other hand, �0 has the advantage that
convolution with a Dirac point mass has the natural dilation effect.

We will show that multiplicative monotonic convolution can be calculated
in terms of an appropriate moment generating series. We will deduce from this
that the multiplicative monotonic convolution of two probability measures on
the unit circle is again a probability measure on the unit circle. Analogously,
the multiplicative monotonic convolution of two compactly supported proba-
bility measures on R+ = [0,+∞) is a measure of the same kind. As mentioned
above, the operation � extends to arbitrary probability measures on R+. It
is not clear whether the same is true for �0. In the case of probability mea-
sures on R+ and T we will give a description of one-parameter convolution
semigroups and of infinitely divisible measures, at least for compact supports.
This was done by Muraki [6] for additive monotonic convolution semigroups
of compactly supported measures on R.

Our approach in calculating multiplicative monotonic convolutions is re-
lated to the one we used in [2] to approach additive monotonic convolution,
rather than the original combinatorial approach of [6].

2. Realization of monotonically independent variables

In order to see that monotonic convolution is defined everywhere on M×C,
we need to show that any two random variables have monotonically indepen-
dent copies in some algebraic probability space. We will extend slightly a
construction from [6]. Fix two algebraic probability spaces (A1, ϕ1), (A2, ϕ2),
and denote by 1j the unit of Aj . Denote by pj : Aj → Aj the linear projec-
tion defined by pj(aj) = ϕj(aj)1j , aj ∈ Aj . Also, for aj ∈ Aj we denote by
maj the left multiplication operator defined by majxj = ajxj , xj ∈ Aj . The
algebra L(A1 ⊗ A2) of all linear operators on A1 ⊗ A2 becomes a probability
space if we define the functional ϕ : L(A1 ⊗ A2)→ C by

ϕ(a)(11 ⊗ 12) = (p1 ⊗ p2)(a(11 ⊗ 12)), a ∈ L(A1 ⊗ A2).

We can then define monotonically independent copies B1,B2 ⊂ L(A1 ⊗ A2)
of A1,A2 as follows:

B1 = {ma1 ⊗ p2 : a1 ∈ A1}, B2 = {IA1 ⊗ma2 : a2 ∈ A2}.

The reader will have no difficulty verifying their monotonic independence.
The case which will be of interest for us in finding analytical formulas

for multiplicative convolution is more specific. Consider a Hilbert space H,
and a unit vector e ∈ H. The algebra L(H) of bounded linear operators on
H becomes a probability space with the vector functional ϕe(x) = (xe, e),
x ∈ L(H). Consider now the Hilbert space tensor product H′ = H ⊗ H and
the unit vector e′ = e⊗ e. One considers the two monotonically independent
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copies A1,A2 of L(H) in (L(H′), ϕe′) defined as follows:

A1 = {x⊗ p : x ∈ L(H)}, A2 = {1⊗ x : x ∈ L(H)},

where p denotes the rank one orthogonal projection onto the space generated
by e, and 1 denotes the identity operator on H.

For every distribution µ ∈M we will consider the formal power series

ψµ(z) =
∞∑
n=1

µ(Xn)zn, ηµ(z) =
ψµ(z)

1 + ψµ(z)
.

If x is a random variable, we will also use the notation ψx = ψµx , ηx = ηµx .
The calculation of multiplicative monotonic convolution will involve the series
ηµ. For x ∈ L(H), the formal power series ψx(z), ηx(z) are actually convergent,
at least for |z| < 1/‖x−1‖.

Assume now that H has an orthonormal basis (ej)∞j=1, and e = e0. Consider
the shift s ∈ L(H) defined by sej = ej+1 for all j. We will be interested
in elements x ∈ L(H) of the form x = (1 + s)u(s∗), where u ∈ C[X] is a
polynomial. It is easy to see that the distributions µx of these operators form
a dense subset in M. Moreover, as shown by Haagerup (see Theorem 2.3.(a)
in [4]), the generating function ψx is easily related to u.

Lemma 2.1. If x = (1 + s)u(s∗), where u is a polynomial with u(0) 6= 0,
then

ψx

(
z

(1 + z)u(z)

)
= z

for sufficiently small |z|.

We can now state the main result of this section.

Theorem 2.2. Consider two distributions µ1, µ2 ∈M, constants c1, c2 ∈
C and the multiplicative monotonic convolution (µ, c1c2) = (µ1, c1) � (µ2, c2).
We have then

ηµ(z) = ηµ1

(
1
c1
ηµ2(c1z)

)
,

if c1 6= 0, and
ηµ(z) = ηµ1(η′µ2

(0)z),

if c1 = 0.

Proof. The second formula above is obtained from the first by letting c1
tend to zero, and using the fact that the operation � is obviously continuous.
Continuity also shows that it will suffice to prove the theorem for µ1, µ2 in a
dense family of distributions, for instance the family of distributions obtained
from the random variables (1+s)u(s∗), where u is a polynomial with u(0) 6= 0.
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Assume then that u1, u2 are two polynomials which do not vanish at the origin.
We consider the variables x1, x2 in (L(H⊗ H), ϕe0⊗e0) defined by

x1 = c1 ⊗ (1− p) + (1 + s)u1(s∗)⊗ p,
x2 = (1 + 1⊗ s)u2(1⊗ s∗) = 1⊗ [(1 + s)u2(s∗)].

These variables have the required property that x1 − c1, x2 − c2 belong to
monotonically independent subalgebras. Moreover, it is easy to see that x1, x2

have the same distributions as (1 + s)u1(s∗), (1 + s)u2(s∗), so that

ψx1

(
z

(1 + z)u1(z)

)
= z, ψx2

(
z

(1 + z)u2(z)

)
= z

for sufficiently small z.
Consider now the vectors ξλ =

∑∞
n=0 λ

nen ∈ H defined for |λ| < 1; note
that ξ0 = e0. Since

sξµ =
1
µ

(ξµ − ξ0), u(s∗)ξµ = u(µ)ξµ

for µ 6= 0, we can easily calculate

x2(ξλ ⊗ ξµ) = (1⊗ (1 + s))u2(µ)ξλ ⊗ ξµ = u2(µ)ξλ ⊗
(
ξµ +

1
µ

(ξµ − ξ0)
)
.

Then we obtain for λ 6= 0 6= µ

x1x2(ξλ ⊗ ξµ) = c1u2(µ)ξλ ⊗
((

1 +
1
µ

)
(ξµ − ξ0)

)
+ u2(µ)((1 + s)⊗ p) [u1(λ)ξλ ⊗ ξ0]

= u2(µ)
[
c1

(
1 +

1
µ

)
ξλ ⊗ (ξµ − ξ0) + u1(λ)ξλ ⊗ ξ0 +

u1(λ)
λ

(ξλ − ξ0)⊗ ξ0
]

= u2(µ)
[
c1

(
1 +

1
µ

)
ξλ ⊗ ξµ

+
(
u1(λ)

(
1 +

1
λ

)
− c1

(
1 +

1
µ

))
ξλ ⊗ ξ0 −

u1(λ)
λ

ξ0 ⊗ ξ0
]
.

This equation can be simplified when

u1(λ)
(

1 +
1
λ

)
− c1

(
1 +

1
µ

)
= 0,

in which case it becomes

x1x2(ξλ ⊗ ξµ) =
1
z

(ξλ ⊗ ξµ)− u1(λ)u2(µ)
λ

ξ0 ⊗ ξ0,

with
1
z

= c1u2(µ)
(

1 +
1
µ

)
.
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This can then be rewritten as

(1− zx1x2)−1ξ0 ⊗ ξ0 =
λ

zu1(λ)u2(µ)
ξλ ⊗ ξµ,

so that

ϕ((1− zx1x2)−1) = ((1− zx1x2)−1ξ0 ⊗ ξ0, ξ0 ⊗ ξ0) =
λ

zu1(λ)u2(µ)
.

The constant on the right-hand side of this equation is now easily calculated:

λ

zu1(λ)u2(µ)
=
λc1(1 + 1/µ)

u1(λ)
= λ

(
1 +

1
λ

)
= λ+ 1,

yielding then

ψx1x2(z) = ϕe0⊗e0((1− zx1x2)−1)− 1 = λ.

These calculations hold for |λ| 6= 0 sufficiently small, because the associated
numbers µ and z are also small, and µ 6= 0. Observe now that the identity

1
c1z

= u2(µ)
(

1 +
1
µ

)
means that ψx2(c1z) = µ, while

u1(λ)
(

1 +
1
λ

)
= c1

(
1 +

1
µ

)
means that

λ = ψx1

(
1

c1(1 + 1/µ)

)
.

Combining these identities we see that

ψx1x2(z) = ψx1

(
1

c1(1 + 1/µ)

)
= ψx1

(
1
c1

ψx2(c1z)
1 + ψx2(c1z)

)
= ψx1

(
1
c1
ηx2(c1z)

)
.

The identity above shows that

ηx1x2(z) = ηx1

(
1
c1
ηx2(c1z)

)
for uncountably many values of z. We deduce that the identity in the state-
ment holds in the generic particular case µ1 = µx1 , µ2 = µx2 . �

The two convolutions on M are now easily described.

Corollary 2.3. Given measures µ1, µ2 ∈M, we have

ηµ1�µ2(z) = ηµ1(ηµ2(z)),
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and

ηµ1�0µ2(z) = ηµ1

(
1
α
ηµ2(αz)

)
,

with α = µ1(X) = η′µ1
(0). The fraction ηµ2(αz)/α must be interpreted as

η′µ2
(0)z in case α = 0.

3. Measures on the positive half-line

If µ is a probability measure on R+ one can define

ψµ(z) =
∫ ∞

0

zt

1− zt
dµ(t), ηµ(z) =

ψµ(z)
1 + ψµ(z)

for every z ∈ Ω = C \ R+. These functions are analytic, and moreover
ηµ(Ω) ⊂ Ω. More precisely,

ηµ(0−) = 0, ηµ(z) = ηµ(z), and π ≥ arg ηµ(z) ≥ arg z,
for z ∈ Ω,=z > 0,

where ηµ(0−) = limt↑0 ηµ(t). Moreover, as seen in [1], these conditions char-
acterize the functions ηµ among all analytic functions defined on Ω. The
measure µ is compactly supported if and only if the function ηµ is analytic
in a neighborhood of the origin. In this case, µ is entirely determined by
the Taylor coefficients of ηµ, and the power series of ηµ at zero is precisely
the formal power series denoted by the same symbol in the preceding section,
provided that we view µ as an element of M by setting µ(Xn) =

∫∞
0
tn dµ(t).

We can thus identify the collection of compactly supported measures on R+

with a subset of M.

Proposition 3.1. If µ1, µ2 are compactly supported probability measures
on R+, then both µ1 � µ2 and µ1 �0 µ2 are compactly supported probability
measure on R+.

Proof. If µ1 = δ0 is Dirac measure at zero, then clearly µ1 �0 µ2 = δ0.
Otherwise, the number α = η′µ1

(0) =
∫∞

0
t dµ1(t) is different from zero, and

therefore

ηµ1�0µ2(z) = ηµ1

(
1
α
ηµ2(αz)

)
.

This shows that ηµ1�0µ2(z) makes sense for every z ∈ Ω, and it is an analytic
function of the form ηµ for some compactly supported probability measure
µ on R+. Clearly then µ = µ1 �0 µ2. The case of µ1 � µ2 is treated
similarly. �

There is a different argument for the preceding result, based on the mul-
tiplication of positive random variables. Observe first that the existence of
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monotonically independent variables is, generally, incompatible with the func-
tional linear ϕ being a trace. Indeed, if A1,A2 are monotonically independent
in (A, ϕ), and x1 ∈ A1, x2, y2 ∈ A2, then

ϕ(x2x1y2)− ϕ(x1y2x2) = ϕ(x1)[ϕ(x2)ϕ(y2)− ϕ(x2y2)].

Thus, if ϕ is a trace, either ϕ|A1 is identically zero, or ϕ|A2 is multiplicative.
There is however a remnant of the trace property, for instance when A1 is
commutative.

Lemma 3.2. Assume that A1,A2 are monotonically independent in (A, ϕ),
and ϕ|A1 is a trace. Then we have ϕ(xy) = ϕ(yx) for any x in the unital
algebra generated by A1, and any y in the unital algebra generated by A1∪A2.

Proof. Since both sides of the identity to be proved are bilinear in (x, y),
it suffices to prove it when x ∈ A1, and y is a product of elements in A1 ∪A2,
with at least one factor in A2. Thus y has the form

y = x1y1 · · ·xnynxn+1,

where n ≥ 1, y1, y2, . . . , yn ∈ A2, x2, . . . , xn ∈ A1, and x1, xn+1 ∈ A1 ∪ {1}.
Monotonic independence allows us to calculate

ϕ(xy)− ϕ(yx) = [ϕ(xx1x2 · · ·xn+1)− ϕ(x1x2 · · ·xn+1x)]
n∏
j=1

ϕ(yj),

and the conclusion follows because ϕ|A1 is a trace. �

Corollary 3.3. Let x1, x2 be two random variables, and c1, c2 ∈ C be
such that x1−c1 and x2−c2 are monotonically independent. Then the variables
x2

1x2, x1x2x1, and x2x
2
1 have the same distribution.

In particular, if the probability space is (L(H), ϕξ), and x1, x2 are selfad-
joint, it follows that x2

1x2 has the same distribution as the selfadjoint variable
x1x2x1. If µ1, µ2 are compactly supported measures on R+, then we can
always find random variables y1, y2 ∈ L(H) such that y1, y2 are positive oper-
ators, and µy2

1
= µ1, µy2 = µ2. We can then define new variables

x1 = y1 ⊗ p+ c
1/2
1 ⊗ (1− p), x2 = 1⊗ y2

in (L(H ⊗ H), ϕξ⊗ξ) which have the same distributions as y1, y2, and x1 −
c
1/2
1 , x2 − c2 are monotonically independent. Considering now c1 = c2 = 1

or cj = µj(X), we see that µ1 � µ2, and respectively µ1 �0 µ2, is the
distribution of the positive random variable x1x2x1. Moreover, the inequality
‖x1x2x1‖ ≤ ‖x2

1‖‖x2‖, and the fact that y1, y2 can be chosen so that the
spectra of y2

1 , y2 coincide with the supports of µ1, µ2, yield the following result.
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Corollary 3.4. Let µ1, µ2 be probability measures on R+ such that the
support of µj is contained in the interval [αj , βj ] ⊂ R+, where αj ≤ 1 ≤ βj
for j = 1, 2. Then the supports of µ1 � µ2 and µ1 �0 µ2 are contained in
[α1α2, β1β2].

We will need an inclusion in the opposite direction. In the following proof
we will use the fact that the measure µ can be recovered from the imagi-
nary parts of the limits of the function ψµ or ηµ at points on the real line.
The relevant fact is as follows: if (a, b) ⊂ R+ is an open interval such that
limθ↓0 arg ηµ(reiθ) = 0 for every r ∈ (a, b) , then µ((1/b, 1/a)) = 0.

We will denote by supp(µ) the support of a measure µ on R+.

Proposition 3.5. For any compactly supported probability measures µ1, µ2

on R+, we have
supp(µ2) ⊂ supp(µ1 � µ2),

and (∫ ∞
0

t dµ1(t)
)

supp(µ2) ⊂ supp(µ1 �0 µ2).

Proof. We provide the argument for µ = µ1 �0 µ2. Assume that an interval
(a, b) is disjoint from the support of µ, so that the function ηµ is analytic and
real-valued on the interval (1/b, 1/a). Now

ηµ(z) = ηµ1

(
1
α
ηµ2(αz)

)
for z /∈ R+, with

α = η′µ1
(0) =

∫ ∞
0

t dµ1(t).

We deduce that

lim
θ↓0

arg ηµ2(αreiθ) = lim
θ↓0

arg
1
α
ηµ2(αreiθ) ≤ lim

θ↓0
arg ηµ(reiθ) = 0

for every r ∈ (1/b, 1/a). As noted before the statement of the proposition, this
implies that the support of the measure µ2 contains no points in (a/α, b/α).
In other words,

supp(µ2) ⊂ supp(µ1 �0 µ2)∫∞
0
t dµ1(t)

,

as claimed. �

It is now fairly easy to find the multiplicative monotonic convolution semi-
groups. These are simply families {µτ : τ ≥ 0} of compactly supported
probability measures on R+ such that µ0 = δ1, µτ+τ ′ = µτ � µτ ′ (or
µτ+τ ′ = µτ �0 µτ ′) for τ, τ ′ ≥ 0, and the map τ 7→ µτ is continuous. The
topology on probability measures will be the one inherited from M, but in
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this case it is precisely the topology of weak convergence of probability mea-
sures. Indeed, in the case of �-semigroups the support of µτ is contained in
the support of µ1 for τ ≤ 1, and it is immediate that the map τ 7→ µτ is
continuous when we consider the weak topology on the collection of probabil-
ity measures. Similarly, in the case of �0-semigroups, observe first that the
function α(τ) =

∫∞
0
t dµτ (t) is continuous, and α(τ + τ ′) = α(τ)α(τ ′). We

conclude that α(τ) = eaτ , with a = logα(1) ∈ R. The preceding result now
shows that the support of µτ is uniformly bounded when τ runs in a bounded
set. Indeed, we see that

supp(µτ ) ⊂ supp(µT )
ea(T−τ)

for τ ∈ [0, T ]. It is again easy to conclude that the map τ 7→ µτ is continuous
when we consider the weak topology on the collection of probability measures.

Theorem 3.6. Consider a �0-semigroup {µτ : τ ≥ 0} of compactly sup-
ported probability measures on R+, and let a ∈ R be such that∫ ∞

0

t dµτ (t) = eaτ , τ ≥ 0.

There is a neighborhood V of 0 ∈ C such that the map τ 7→ ηµτ (z) is differ-
entiable at τ = 0 for every z ∈ Ω ∪ V , and the derivative

A(z) =
dηµτ (z)
dτ

∣∣∣∣
τ=0

is an analytic function of z. Moreover, we can write A(z) = z(B(z)+a), where
B is analytic in Ω ∪ V , B(0) = 0, B(z) = B(z) and =B(z) ≥ 0 whenever
=z > 0.

Conversely, for any a ∈ R, and any analytic function B defined in a set
of the form Ω ∪ V , with V a neighborhood of 0, satisfying the conditions
above, there exists a unique �0-semigroup {µτ : τ ≥ 0} of compactly supported
probability measures on R+ such that

dηµτ (z)
dτ

∣∣∣∣
τ=0

= z(B(z) + a), z ∈ Ω,

and
∫∞

0
t dµτ (t) = eaτ for τ ≥ 0. Moreover, ηµt(z) = uτ (eaτz), where uτ (z)

is the solution of the initial value problem

duτ (z)
dτ

= uτ (z)B(uτ (z)), u0(z) = z ∈ Ω.

This solution exists for all τ ≥ 0.

Proof. Start first with a semigroup {µτ : τ ≥ 0}, and define functions
uτ : Ω → Ω by setting uτ (z) = ηµτ (e−aτz) for z ∈ Ω. Clearly then uτ (z)
depends continuously on z, and the semigroup property can be translated
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into uτ+τ ′(z) = uτ (uτ ′(z)). As shown by Berkson and Porta [3, Theorem
1.1], these conditions imply that uτ (z) is a differentiable function of τ , and it
satisfies the equation

duτ (z)
dτ

= C(uτ (z)),

where C(z) = (duτ (z)/dτ)|τ=0. The initial condition u0(z) = z comes from
the identity u0 = ηµ0 = ηδ1 , and this last function is easily seen to be the
identity function on Ω. Clearly

dηµτ (z)
dτ

∣∣∣∣
τ=0

= C(z) + az, z ∈ Ω.

Let us observe next that τ 7→ arg uτ (z) is an increasing function for =z > 0,
and therefore

=C(z)
z

=
d log uτ (z)

dτ

∣∣∣∣
τ=0

≥ 0,

so that indeed C(z) = zB(z), where B is an analytic function with positive
imaginary part in the upper half-plane C+. Moreover, the fact that uτ (0) = 0
yields C(0) = 0, so that B is analytic in a neighborhood of zero. We also
have u′τ (0) = 1, which shows that C also has zero derivative at z = 0, and
therefore B(0) = 0 as well.

Conversely, assume that we are given an analytic function B in Ω∪V , with
B(0) = 0, and with positive imaginary part in C+. We show first that the
initial value problem

(3.1)
duτ (z)
dτ

= uτ (z)B(uτ (z)), uτ (0) = z ∈ Ω

has a solution defined for all positive τ . In order to do this we apply another
result of [3] (see Theorem 2.6, and the description of the class G2(H) for b = 0),
which we reformulate for the upper half-plane C+ and the left half-plane iC+:
Let C : C+ → C (resp., C : iC+ → C) be an analytic function such that
C(z)/z2 ∈ C+ (resp., −C(z)/z2 ∈ iC+) for every z. Then for every z (in the
relevant domain), the initial value problem duτ (z)/dτ = C(uτ (z)), u0(z) = z,
has a solution defined for all positive τ . The function C(z) = zB(z) satisfies
the hypotheses of both of these results. Indeed, the fact that B has positive
imaginary part in C+ allows us to write B in Nevanlinna form

B(z) = β + γz +
∫ ∞
−∞

1 + zt

t− z
dρ(t), z ∈ C+,

where β is a real number, γ ≥ 0, and ρ is a finite, positive Borel measure on
R. The fact that B is real and analytic on (−∞, ε] for some ε > 0 shows that
the support of ρ is contained in [ε,+∞), and the condition B(0) = 0 yields
the value

β = −
∫ ∞

0

1
t
dρ(t).
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We conclude that

C(z) = z2

(
γ +

∫ ∞
0

t2 + 1
t(t− z)

dρ(t)
)
, z ∈ Ω.

It is now easy to see that the integral above has positive imaginary part if
z ∈ C+, and positive real part for z ∈ iC+. We conclude that the equation
(3.1) has a solution defined for τ ≥ 0 for initial values z in C+ ∪ iC+, and by
symmetry for all z ∈ Ω. This equation will also have a solution defined for
small τ given an initial value z > 0 sufficiently close to zero. We deduce that,
for small values of τ, the function uτ is also analytic in a neighborhood of zero.
The equation uτ+τ ′ = uτ ◦ uτ ′ shows that the same is true for all values of
τ , and uτ (0) = 0. The fact that B has positive imaginary part in C+ implies
that the function τ 7→ arg uτ (z) is an increasing function of τ , and therefore
arg uτ (z) ≥ arg z for z ∈ C+. (Note that uτ (C+) ⊂ C

+ by the theorem
of Berkson and Porta.) We conclude that there exist compactly supported
probability measures µτ on R+ such that ηµτ (z) = uτ (eatz) for z ∈ Ω and τ ≥
0. It is easy to verify now that these measures form a multiplicative monotone
convolution semigroup satisfying the required conditions. The uniqueness of
the semigroup is a consequence of the uniqueness of solutions of ordinary
differential equations with a locally Lipschitz right-hand side. �

The results of Berkson and Porta [3] can also be formulated, via conformal
maps, for the entire region Ω. The corresponding formulation however does
not reflect the additional symmetries present in our particular case.

The representation of the function C found in the preceding proof provides
a bijection between �0-convolution semigroups and triples (γ, ρ, a), where a is
a real number, γ ≥ 0, and ρ is a finite, positive Borel measure on some interval
[ε,+∞). The representation of the function A can be written more compactly
if we use the measure ν defined on the interval [0, 1/ε] by the requirements
that ν({0}) = γ and dν(t) = (t2 + 1)dρ(1/t) on (0, 1/ε]. We have then

A(z) = az + z2

∫ ∞
0

1
1− zt

dν(t),

with a ∈ R and ν a positive, Borel, compactly supported measure on R+.
The constant a is equal to zero if the measures µτ have first moment equal to
one, in which case the functions ηµτ = uτ simply form a semigroup relative
to composition of functions on Ω.

It is difficult to find explicit formulas for these semigroups. One case when
this is possible is A(z) = γz2 for some γ > 0. In this case the differential
equation is easily solved, and it yields

ηµτ (z) =
z

1− γτz
, ψµτ (z) =

z

1− (1 + γτ)z
, z ∈ Ω,
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so that

µτ =
γτ

1 + γτ
δ0 +

1
1 + γτ

δ1+γτ , τ ≥ 0.

As in the case of additive monotone convolution [6], the preceding parame-
trization of semigroups also yields a parametrization of �0-infinitely divisible
measures. Naturally, a compactly supported probability measure µ on R+ is
said to be �0-infinitely divisible if, for every positive integer n, there exists a
compactly supported probability measure µ1/n on R+ such that

µ = µ1/n �0 µ1/n �0 · · · �0 µ1/n︸ ︷︷ ︸
n times

.

As seen in [6] in the additive case, the measure µ1/n is unique. Indeed, let ν
be any compactly supported measure on R+ such that

ν �0 ν �0 · · · �0 ν = µ︸ ︷︷ ︸
n times

.

This relation can be written as a system of equations in the Taylor coefficients
of ην , and it suffices to show that this system has a unique solution. Let us
write

ηµ(z) =
∞∑
n=1

αnz
n, ην(z) =

∞∑
n=1

βnz
n

in a neighborhood of zero, with α1 = µ(X) and β1 = ν(X). Identifying the
coefficients of z in the equation

ην ◦ ην ◦ · · · ◦ ην︸ ︷︷ ︸
n times

= ηµ,

we obtain βn1 = α1, which yields β1 = α
1/n
1 since β1 > 0. For the coefficients

of z2 we obtain the equation
n∑
j=0

βn−1+j
1 β2 = α2

which uniquely determines β2. The general pattern is that the kth equation
contains only β1, . . . , βk, and βk appears only at first power with a positive
coefficient at least equal to βn−1

1 .

Theorem 3.7. Let µ 6= δ0 be a �0-infinitely divisible, compactly sup-
ported, probability measure on R+. There exists a unique �0-semigroup {µτ :
τ ≥ 0} of compactly supported probability measures on R+ such that µ1 = µ.

Proof. Replacing the measure µ by the measure dµ(t/b), with b =
∫∞

0
tdµ(t)

allows us to restrict ourselves to measures with first moment equal to one. In
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this case it is clear that the measures µ1/n satisfy the same property, and

ηµ = ηµ1/n ◦ ηµ1/n ◦ · · · ◦ ηµ1/n︸ ︷︷ ︸
n times

.

As seen above, the measures µ1/n are uniquely determined, so that we can
further define

µm/n = µ1/n �0 µ1/n �0 · · · �0 µ1/n︸ ︷︷ ︸
m times

for arbitrary positive integers m,n. Clearly we have µτ+τ ′ = µτ �0 µτ ′ for
rational τ, τ ′ > 0. It is then seen from Proposition 3.5 that the measures µm/n
have uniformly bounded supports if m/n varies in a bounded set of rational
numbers. We can now verify that µτk → µτ weakly when the rational numbers
τk converge to a rational τ = m/n. Assume indeed that ν is the weak limit of
a subsequence of µτk . The continuity of multiplicative monotone convolution
implies that

ν �0 ν �0 · · · �0 ν︸ ︷︷ ︸
n times

= µm,

and the uniqueness of roots gives then ν = µm/n. On the other hand, if
τk → 0 and µτk tends to ν, the measure ν �0 µ is the weak limit of µ1+τk ,
so that ν �0 µ = µ. In other words, ην ◦ ηµ = ηµ, which shows that ην must
be the identity function, and hence ν = δ1. It is now easy to see that ητ can
be defined for arbitrary τ > 0 by continuity. Indeed, consider two sequences
of positive rational numbers τk → τ, τ ′k → τ such that the sequences µτk , µτ ′k
tend weakly to measures ν, ν′. By dropping to subsequences (and possibly
switching the two sequences), we may assume that τk > τ ′k for all k. Since
µτk = µτ ′k �0 µτk−τ ′k , and τk−τ ′k → 0, we deduce that ν = ν′. The uniqueness
of the semigroup obtained this way follows immediately from the uniqueness
of µ1/n. �

There are analogous results for �-semigroups.

Theorem 3.8. Consider a �-semigroup {µτ : τ ≥ 0} of compactly sup-
ported measures on R+. The map τ 7→ ηµτ (z) is differentiable for every z ∈ Ω,
and

dηµτ (z)
dτ

= A(ηµτ (z)), τ ≥ 0, z ∈ Ω,

where

A(z) =
dηµτ (z)
dτ

∣∣∣∣
τ=0

, z ∈ Ω.

The function A can be written as A(z) = zB(z), where B is analytic in Ω and
in a neighborhood of zero, and =B(z) ≥ 0 for z ∈ C+.
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Conversely, if A is an analytic function in Ω with the above properties, there
exists a unique �-semigroup {µτ : τ ≥ 0} of compactly supported measures on
R+ such that A(z) = dηµτ (z)/dτ |τ=0 for z ∈ Ω.

Proof. The differentiability of the map τ 7→ ηµτ (z) follows from Theorem
1.1 of [3], and the fact that B has positive imaginary part follows as before
from the fact that the map τ 7→ arg ηµτ (z) is increasing when z ∈ C+. The
uniqueness of the semigroup µτ is an immediate consequence of the uniqueness
of solutions to differential equations (with locally Lipschitz right-hand side).
The only thing that requires attention is the fact that, given a function A
with the properties in the statement, the initial value problem

du

dτ
= A(u), u(0) = z ∈ Ω

has a solution defined for all τ ≥ 0. We will show that this is in fact true
whenever B(z) = A(z)/z has positive imaginary part in C+(without assuming
that B is analytic at zero). To do this we write B in Nevanlinna form

B(z) = β + γz +
∫ ∞

0

1 + zt

t− z
dρ(t), z ∈ Ω,

with β ∈ R, γ ∈ R+, and ρ a positive Borel measure on R+. We will distin-
guish three cases, according to the behavior of the function B on the interval
(−∞, 0). Note that B is increasing on this interval, so that it could be neg-
ative on (−∞, 0), positive on (−∞, 0), or vanish at some point in (−∞, 0).
The first situation, B(z) ≤ 0 for all z ∈ (−∞, 0), amounts to B(0−) ≤ 0,
which implies that

∫∞
0

1
t dρ(t) is finite. After rewriting the above formula as

B(z) = β +
∫ ∞

0

1
t
dρ(t) + γz + z

∫ ∞
0

t2 + 1
t(t− z)

dρ(t), z ∈ Ω,

we deduce that

β +
∫ ∞

0

1
t
dρ(t) ≤ 0.

It is then easy to verify that A(z)/z2 ∈ C+ for z ∈ C+ and −A(z)/z2 ∈ iC+

for z ∈ iC+. We deduce as in the proof of Theorem 3.6 that the solution to
our initial value problem extends to all τ ≥ 0. Assume next that B(z) ≥ 0
for all z ∈ (−∞, 0). Since ∫ ∞

0

1 + zt

t− z
dρ(t) = o(z)

as z ↓ −∞, this is only possible when γ = 0. In this case

lim
z↓−∞

B(z) = β −
∫ ∞

0

t dρ(t),
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and we conclude that
∫∞

0
t dρ(t) < ∞, and β ≥

∫∞
0
t dρ(t). Setting α =

β −
∫∞

0
t dρ(t), we have

A(z) = z

(
α+

∫ ∞
0

t2 + 1
t− z

dρ(t)
)
.

Using this formula, the inequality α ≥ 0, and the fact that
z

t− z
= −1 +

t

t− z
,

it is easy to see that A(z) ∈ C+ for z ∈ C+, and A(z) ∈ iC+ for z ∈ iC+.
The results of Berkson and Porta show again that the solution u of the initial
value problem extends to τ ≥ 0 for every z ∈ C+ ∪ iC+ and, by symmetry,
for every z ∈ Ω. (Note that in this case the relevant Denjoy-Wolff point
is infinity, which corresponds with the family G1(H) in the notation of [3].)
Finally, assume that B(−a) = 0 for some a > 0. This yields the value

β = −γa−
∫ ∞

0

1− at
t+ a

dρ(t),

yielding the formula

A(z) = z(z + a)
(
γ +

∫ ∞
0

t2 + 1
(t+ a)(t− z)

dρ(t)
)
, z ∈ Ω.

As in the preceding case, it will suffice to show that the initial value problem
for u has a solution defined for all τ ≥ 0 if z ∈ C+ ∪ iC+. Using the results of
[3] (specifically, the classes G2(C+) and G3(iC+)), we see that A must satisfy
the following conditions:

A(z)
(z + a)2

∈ C+ for z ∈ C+,

and
A(z)

(z + a)(z − a)
∈ −iC+ for z ∈ iC+.

For the first of these conditions we write

A(z)
(z + a)2

=
γz

z + a
+
∫ ∞

0

t2 + 1
t+ a

· z

(t− z)(z + a)
dρ(t),

which allows the calculation of the imaginary part

= A(z)
(z + a)2

= =z
(

γa

|z + a|2
+
∫ ∞

0

t2 + 1
t+ a

· ta+ |z|2

|t− z|2|z + a|2
dρ(t)

)
.

This is clearly positive for z ∈ C+. For the second condition we have

A(z)
(z + a)(z − a)

=
γz

z − a
+
∫ ∞

0

t2 + 1
t+ a

· z

(t− z)(z − a)
dρ(t),
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and

< A(z)
(z + a)(z − a)

=
γ(|z|2 − a<z)
|z − a|2

+
∫ ∞

0

t2 + 1
t+ a

· t|z|
2 + a|z|2 − (ta+ |z|2)<z

(t− z)(z − a)
dρ(t).

This is clearly positive when <z < 0.
We have thus shown that the initial value problem has a solution defined

for all τ ≥ 0. Denote by ητ (z) this solution. This is an analytic function of
z, and it extends analytically to a neighborhood of zero if, in addition, B is
analytic at zero; moreover, ητ (0) = 0 in this case. It is shown now as in the
proof of Theorem 3.6 that ηt = ηµτ for some compactly supported measure
µτ on R+, and these measures form a �-semigroup. �

As in the case of the operation �, δ0 is �0-infinitely divisible. All other
�-infinitely divisible measures belong to a �-semigroup.

Theorem 3.9. Let µ 6= δ0 be a �-infinitely divisible measure, compactly
supported, probability measure on R

+. There exists a unique �-semigroup
{µτ : τ ≥ 0} of compactly supported probability measures on R+ such that
µ1 = µ.

Proof. The argument is virtually identical with that of Theorem 3.7, except
that we need not start by normalizing the measures µ. The details are left to
the interested reader. �

4. Measures on the unit circle

If µ is a probability measure on the unit circle T = {ζ ∈ C : |ζ| = 1}, the
formal power series ψµ, ηµ converge in the unit circle D = {z ∈ C : |z| < 1},
and their sums are given by

ψµ(z) =
∫
T

zζ

1− zζ
dµ(ζ), ηµ(z) =

ψµ(z)
1 + ψµ(z)

, z ∈ D.

An analytic function η : D → C is of the form ηµ, for some probability
measure on T, if and only if |η(z)| ≤ |z| for all z ∈ D (cf., for instance,
[1]). As in the case of compactly supported measures on R+, the collection of
probability measures on T is identified with a subset of M. The topology of
M, restricted to this subset, is exactly the topology of weak convergence of
probability measures. One should note that an element of M may correspond
to a measure on T, or to a measure on R+, and these two measures may be
quite different. The simplest occurrence is the equality ηδ0 = ηm = 0, where
δ0 is a unit mass at the origin, while m is normalized arclength (or Haar)
measure on T.



946 HARI BERCOVICI

Proposition 4.1. If µ1, µ2 are probability measures on T, then µ1 � µ2

and µ1 �0 µ2 are also probability measures on T.

Proof. If |α| ≤ 1 is a complex number, we have∣∣∣∣ 1αηµ2(αz)
∣∣∣∣ ≤ |z|, z ∈ D,

where the left-hand side must be interpreted as |η′µ2
(0)z| when α = 0. We

deduce that ∣∣∣∣ηµ1

(
1
α
ηµ2(αz)

)∣∣∣∣ ≤ ∣∣∣∣ 1αηµ2(αz)
∣∣∣∣ ≤ |z|, z ∈ D,

showing that the formal power series ηµ1�0µ2(z) corresponds indeed with a
probability measure on T. The measure µ1 � µ2 is treated similarly. �

The part of the preceding result concerning � can be viewed as a con-
sequence of the fact that the product of two unitary operators is again a
unitary operator. Indeed, given probability measures µ1, µ2 on T, we can find
unitary operators x1, x2 such that x1 − 1, x2 − 1 are monotonically indepen-
dent, and the distribution of xj is µj for j = 1, 2. It would be nice to also
understand the part concerning �0 in the same manner, but it is not clear
how to construct unitary operators x1, x2, with given distributions, such that
x1 − ϕ(x1), x2 − ϕ(x2) are monotonically independent. Such operators are
easily seen not to exist in the standard realization used in Section 2.

Monotonic convolution semigroups of probability measures on T are defined
as in the case of the half-line, and the following result is the analogue of
Theorem 3.6 in this context.

Theorem 4.2. Consider a �0-semigroup {µτ : τ ≥ 0} of probability mea-
sures on T. The map τ 7→ ηµτ (z) is differentiable for every z ∈ D, and the
derivative

A(z) =
dηµτ (z)
dτ

∣∣∣∣
τ=0

is an analytic function of z. Moreover, we can write A(z) = zB(z), where B
is analytic in D and <B(z) ≤ 0 for z ∈ D.

Conversely, for any analytic function B defined in D, with <B(z) ≤ 0 for
z ∈ D, there exists a unique �0-semigroup {µτ : τ ≥ 0} of probability measures
on T such that

dηµτ (z)
dτ

∣∣∣∣
τ=0

= zB(z), z ∈ D.

This semigroups satisfies
∫
T
ζ dµτ (ζ) = eB(0)τ for τ ≥ 0. Moreover, ηµt(z) =

uτ (eB(0)τz), where uτ : eB(0)τ
D → D is an analytic functions satisfying the

initial value problem
dut(z)
dt

= ut(z)(B(ut(z))−B(0)), u0(z) = z ∈ eB(0)τ
D.
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This solution exists and belongs to D for all t ∈ [0, τ ].

Proof. The numbers α(τ) =
∫
T
ζ dµτ (ζ) depend continuously on τ , α(τ +

τ ′) = α(τ)α(τ ′), and |α(τ)| ≤ 1 for all τ . It follows that α(τ) = eaτ for some
complex number a with <a ≤ 0. Define now functions uτ : eaτD → D by
uτ (z) = ηµτ (e−aτz) for z ∈ eaτD. These functions are analytic, and they
satisfy the equation

uτ (uτ ′(z)) = uτ+τ ′(z), z ∈ ea(τ+τ ′)
D.

Moreover, the map t 7→ ut(z) is easily seen to be continuous on the interval
[0, τ ], provided that z ∈ eaτD. The argument in Theorem 1.1 of [3] applies
in this situation as well, and it implies that the map t 7→ ut(z) is in fact
differentiable, and the function

F (z) =
duτ (z)
dτ

∣∣∣∣
0

, z ∈ D

is analytic. It follows that the map τ 7→ ηµτ (z) is differentiable as well, and
the function A in the statement is analytic. In fact, we have A(z) = F (z)−az
since ηµ0(z) = z. In order to show that A has the required form, let us also
consider the function vτ (z) = eaτuτ (z) = eaτηµτ (e−aτz) defined in eaτD, for
which

dvτ (z)
dτ

∣∣∣∣
0

= az +
duτ (z)
dτ

∣∣∣∣
0

= A(z), z ∈ D.

For this function we have |vτ (z)| ≤ |z| = |v0(z)|, so that indeed

<A(z)
z

=
d< log vτ (z)

dτ

∣∣∣∣
τ=0

=
d log |vτ (z)|

τ

∣∣∣∣
τ=0

≤ 0, z ∈ D \ {0}.

Let us then write A(z) = zB(z), and verify that a = −B(0). Indeed, all the
functions (uτ (z)−z)/τ have a double zero at the origin, and therefore so does
their limit F (z); therefore B(z) + a must be zero for z = 0.

Conversely, assume that B is an analytic function with negative real part
in D. It will suffice to show that the initial value problem

dut(z)
dt

= ut(z)(B(ut(z))−B(0)), ut(0) = z ∈ eB(0)τ
D

has a solution defined on the entire interval [0, τ ], and that

|uτ (z)| ≤ e−<B(0)τ |z|, z ∈ eB(0)τ
D.

Indeed, once this is done, we can define the functions ητ : D → D by
ητ (z) = uτ (eB(0)τz), and these functions will be of the form ητ = ηµτ for
some probability measures µτ which are easily seen to form a �0-semigroup.
The existence of the solutions ut on the stated interval is easy to deduce
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from the general theory of ordinary differential equations. We sketch a some-
what more direct argument based on an appropriate approximation scheme.
Namely, define functions wε : D→ C by

wε(z) = zeε(B(z)−B(0)) z ∈ D, ε > 0.

These functions satisfy |wε(z)| ≤ e−εB(0)|z|. We then define u(n)
τ : eB(0)τ

D→
D by

u(n)
τ = wτ/n ◦ wτ/n ◦ · · · ◦ wτ/n︸ ︷︷ ︸

n times

;

it is easy to see that u(n)
τ is indeed defined in eB(0)τ

D. There exists a positive
number δ such that u(n)

τ |δD converge uniformly as n→∞ to the solution uτ of
our initial value problem, provided that τ ≤ δ. Now, the functions u(n)

τ are an-
alytic and uniformly bounded on eB(0)δ

D for τ ≤ δ, and therefore limn→∞ u
(n)
τ

will exist (by the Vitali-Montel theorem) on the entire disk eB(0)δ
D for all such

τ . In an analogous fashion, we deduce that uτ (z) = limn→∞ u
(n)
τ (z) exists for

all z ∈ eB(0)τ
D if τ ≤ δ. Observe now the equality

u(n)
τ ◦ u(n′)

τ ′ = u
(n+n′)
τ+τ ′ when

τ

n
=
τ ′

n′
,

which shows now that the convergence of u(n)
τ can be extended from the

interval [0, δ] to arbitrary τ > 0, yielding a function uτ defined in the common
domain of u(n)

τ . Clearly these functions will solve the initial value problem in
the required range. �

The preceding result yields a parametrization of all �0-semigroups on the
unit circle. In fact, every analytic function B with negative real part on D
can be written using the Herglotz formula

B(z) = iβ −
∫
T

ζ + z

ζ − z
dρ(ζ), z ∈ D,

where β is a real number, and ρ is a finite positive Borel measure on T. The
constant a = B(0) is then given by

a = iβ − ρ(T),

and the differential equation for uτ is

dut(z)
dt

= 2ut(z)2

∫
T

dρ(ζ)
ut(z)− ζ

, u0(z) = z ∈ eaτD.

As in the case of the half-line, the solutions of this equation can seldom be
calculated explicitly. The case ρ = 0 corresponds with semigroups where each
µτ is a point mass. In all cases when ρ 6= 0, it is easy to see that the measures
µτ converge weakly to Haar measure m as τ →∞. One semigroup which can
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be calculated explicitly corresponds with B(z) = zn − 1, where n ≥ 1 is an
integer. We just mention the following formula:

uτ (z) =
z

(1− (n+ 1)znτ)1/n
, z ∈ e−τD,

where the root is chosen to be equal to one at the origin.
Infinite divisibility can also be characterized in terms of semigroups in the

case of the circle. As for the half-line (where δ0 is �0-infinitely divisible, but
not part of a semigroup), there is an exception, namely the Haar measure m
which satisfies m �0 m = m � m = m. More generally, we have the following
result.

Lemma 4.3. If µ1, µ2 are probability measures on T, and
∫
T
ζ dµ1(ζ) =∫

T
ζ dµ2(ζ) = 0, then µ1 �0 µ2 = m.

Proof. We have ηµ1�µ2(z) = ηµ1(η′µ2
(0)z) = ηµ1(0) = 0 since η′µ1

(0) =
η′µ2

(0) = 0. Alternatively, one observes that two monotonically independent
variables x1, x2 such that ϕ(x1) = ϕ(x2) = 0 must satisfy ϕ((x1x2)n) = 0 for
all n ≥ 1. �

We conclude that a �0-infinitely divisible probability measure µ on T with
first moment zero must in fact coincide with m. Indeed, µ = µ1/2 �0 µ1/2,
and the measure µ1/2 must also have first moment equal to zero.

Theorem 4.4. Let µ 6= m be a �0-infinitely divisible probability measure
on T. There exists a �0-semigroup {µτ : τ ≥ 0} of probability measures on T
such that µ1 = µ.

Proof. As noted before the statement, we can write
∫
T
ζ dµ(ζ) = ρeiθ with

θ ∈ R and ρ > 0. Choose for each integer n ≥ 1 a measure νn such that µ =
ν�02n

n ; these measures are no longer uniquely determined, but (possibly after
an appropriate rotation) can be assumed to satisfy

∫
T
ζ dνn(ζ) = ρ1/2neiθ/2

n

.
There exists a sequence n1 < n2 < · · · with the property that the each
sequence {ν�02nj−n

nj : j ≥ n} has a weak limit; call this limit µ1/2n . These
measures will then satisfy∫

T

ζ dµ1/2n(ζ) = ρ1/2neiθ/2
n

, µ�02n

1/2n = µ, and

µ�02m

1/2n = µ1/2n−m for m < n.

Note that the measures µ1/2n converge weakly to δ1 as n→∞; indeed, their
first moments converge to 1, and δ1 is the only probability measure on T with
first moment equal to one. We can now define

µm/2n = µ�0m
1/2n
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for m,n positive integers, and this is a good definition, i.e., it depends only
on the fraction m/2n and not on the value of n. With this definition, it is
still true that µτ tends weakly to δ1 if τ → 0 is dyadic. Let now τ be an
arbitrary positive number, and choose numbers τk, τ ′k of the form m/2n such
that limk→∞ τk = limk→∞ τ ′k = τ , and the sequences {µτk , k ≥ 1}, {µτ ′k , k ≥
1} have weak limits ν, ν′. Dropping to subsequences we can assume that
τk < τ ′k for all k. The equality µτ ′k = µτ ′k−τk �0 µτk yields then ν′ = δ1 �0

ν = ν. This unique limit can then be denoted µτ . It is easy to verify that
the measures µτ form a multiplicative monotonic convolution semigroup, and
µ1 = µ. �

The semigroup provided by the preceding theorem is never unique. Thus,
if the semigroup is generated (in the sense of Theorem 4.2) by the function
zB(z), then the function z(B(z) + 2πi) will generate a new semigroup with
µ1 = µ. Of course, the only difference between these semigroups is a rotation
of angle 2πτ of the measure µτ . It is fairly easy to see that this is the only
possible kind of nonuniqueness. More precisely, we have the following result.

Proposition 4.5. If µ, µ1, µ2 ∈M are such that µ1 �0 µ1 = µ2 �0 µ2 =
µ and µ1(X) = µ2(X) 6= 0, then µ1 = µ2. The same result is true for the
operation �.

Proof. If µ1(X) = µ2(X) = 1, then we have ηµ1 ◦ ηµ1 = ηµ2 ◦ ηµ2 = ηµ. In
this case the result follows from the argument of Proposition 5.4 in [6]. The
general case reduces to this particular one by considering the new distributions
νj(p(X)) = µj(p(X/α)), p ∈ C[X], where α = µ1(X) = µ2(X). �

This result shows that in fact the measures νn in the proof of Theorem 4.4
are uniquely determined, and therefore there is precisely one semigroup for
every choice of the argument of

∫
T
ζ dµ(ζ).

The analogue of Theorem 4.2 for �-semigroups is obtained directly from
the results of Berkson and Porta [3]. Indeed, the corresponding functions ηµτ
simply form a composition semigroup of analytic maps of the disk, fixing the
origin. We record the result below.

Theorem 4.6. Consider a �-semigroup {µτ : τ ≥ 0} of probability mea-
sures on T. The map τ 7→ ηµτ (z) is differentiable for every z ∈ D, and the
derivative

A(z) =
dηµτ (z)
dτ

∣∣∣∣
τ=0

is an analytic function of z. Moreover, we can write A(z) = zB(z), where B
is analytic in D and <B(z) ≤ 0 for z ∈ D.

Conversely, for any analytic function B defined in D, with <B(z) ≤ 0 for
z ∈ D, there exists a unique �-semigroup {µτ : τ ≥ 0} of probability measures
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on T such that
dηµτ (z)
dτ

∣∣∣∣
τ=0

= zB(z), z ∈ D.

The functions ηµτ satisfy the initial value problem

dηµτ (z)
dτ

= ηµτ (z)B(ηµτ (z)), ηµτ (0) = z ∈ D.

Infinite divisibility is also characterized in terms of semigroups, and the
remarks about uniqueness made about �0-divisible measures apply here as
well. The proofs given above are easily converted to this setting.

Theorem 4.7. Let µ 6= m be a �-infinitely divisible probability measure
on T. There exists a �-semigroup {µτ : τ ≥ 0} of probability measures on T
such that µ1 = µ.
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