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A PRODUCT CONSTRUCTION FOR HYPERBOLIC
METRIC SPACES

THOMAS FOERTSCH AND VIKTOR SCHROEDER

Abstract. For hyperbolic metric spaces X1, X2 we define and study

a one parameter family of “hyperbolic products” Y∆, ∆ ≥ 0, of X1 and
X2. In particular, we investigate the relation between the boundaries
at infinity of the factor spaces and the boundary at infinity of their
hyperbolic products.

1. Introduction

A triple (a1, a2, a3) ∈ R3 of three real numbers is called a δ-triple for δ ≥ 0
if aµ ≥ min{aµ+1, aµ+2}−δ for µ = 1, 2, 3, where the indices are taken modulo
3. Thus (a1, a2, a3) is a δ-triple, if the two smallest of the three numbers differ
by at most δ.

Let X be a metric space, and let |xy| denote the distance between points.
For x, y, z ∈ X let

(x|y)z :=
1
2

(|zx|+ |zy| − |xy|).

The space X is called δ-hyperbolic (compare [G]) if for all o, x, y, z ∈ X

((x|y)o, (y|z)o, (x|z)o) is a δ-triple.

X is called hyperbolic if it is δ-hyperbolic for some δ ≥ 0.
Given two hyperbolic metric spaces, their metric product will typically fail

to be hyperbolic itself. In [FS2] we introduced a hyperbolic product construc-
tion for proper, geodesic, hyperbolic metric spaces. Given two such spaces,
their hyperbolic product was shown to be a proper, geodesic, hyperbolic met-
ric space itself.

The purpose of this paper is to generalize this hyperbolic product construc-
tion to arbitrary hyperbolic metric spaces.
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Let X1, X2 be metric spaces and Y := X1 × X2. On Y we will always
consider the maximum metric, i.e.,

|(x1, x2)(y1, y2)| := max{|x1y1|, |x2y2|} for all xν , yν ∈ Xν , ν = 1, 2.

For a, b, c ∈ R and c ≥ 0 we define

a
.=c b :⇐⇒ |a− b| ≤ c.

Given two pointed hyperbolic metric spaces (X1, o1) and (X2, o2) and a num-
ber ∆ ≥ 0, we write o := (o1, o2) ∈ Y and define

Y∆,o :=
{

(x1, x2) ∈ Y
∣∣∣ |o1x1|

.=∆ |o2x2|
}
.

The space Y∆,o ⊂ Y is endowed with the restriction of the maximum metric
on Y .

Theorem 1.1. If X1, X2 are δ-hyperbolic, then Y∆,o is δ′-hyperbolic for
some δ′ = δ′(δ,∆).

We also discuss a version of this result where the base point lies at infinity.
For a hyperbolic metric space X one can define its boundary at infinity ∂∞X
(for details see Section 3). Let (Xν , oν), ν = 1, 2, be two pointed hyperbolic
spaces with non-empty boundaries at infinity and fix ξν ∈ ∂∞Xν , ν = 1, 2.
Let bν be the Busemann function associated to oν and ξν , ν = 1, 2 (for the
definition of the Busemann function see Section 3). Let ∆ ≥ 0. We write
ξ := (ξ1, ξ2) and define

Y∆,ξ,o :=
{

(x1, x2) ∈ Y
∣∣∣ b1(x1) .=∆ b2(x2)

}
.

Theorem 1.2. If X1, X2 are δ-hyperbolic metric spaces with non-empty
boundaries at infinity, then Y∆,ξ,o is δ′-hyperbolic for some δ′ = δ′(δ,∆).

In order to investigate the boundaries of Y∆,o and Y∆,ξ,o we need more
structure:

Let k ≥ 0. A k-rough geodesic is a map γ : I → X from an interval I ⊂ R
to a metric space X with

|γ(s)γ(t)| .=k |s− t| for all s, t ∈ I.

The space X is called k-roughly geodesic, if for every pair x, y ∈ X there exists
a k-rough geodesic γ : [0, |xy|] → X with γ(0) = x and γ(|xy|) = y. X is
called roughly geodesic if X is k-roughly geodesic for some k ≥ 0.

Theorem 1.3. If X1, X2 are δ-hyperbolic and k-roughly geodesic, then
there exists ∆0 = ∆0(δ, k) ≥ 0 such that for all ∆ ≥ ∆0 the space Y∆,o is
k′-roughly geodesic for some k′(δ, k,∆).
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Theorem 1.4. Let X1, X2 be δ-hyperbolic and k-roughly geodesic metric
spaces with non-empty boundaries at infinity. Then there exists some ∆0 =
∆0(δ, k) ≥ 0 such that Y∆,ξ,o is roughly geodesic for all ∆ ≥ ∆0.

Finally, we relate the topology of the boundary at infinity of our hyperbolic
products to those of the boundary at infinity of its factors, by proving the
following two theorems:

Theorem 1.5. Let Xν , ν = 1, 2, be δ-hyperbolic and k-roughly geodesic
metric spaces. Then there exists ∆0 = ∆0(δ, k) ≥ 0 such that for all ∆ ≥ ∆0

there is a natural homeomorphism ∂∞Y∆,o ≈ ∂∞X1 × ∂∞X2.

Theorem 1.6. Let Xν , ν = 1, 2, be δ-hyperbolic and k-roughly geodesic
metric spaces. Then there exists ∆0 = ∆0(δ, k) ≥ 0 such that for all ∆ ≥
∆0 there is a natural homeomorphism ∂∞Y∆,ξ,o ≈ (∂∞X1, ξ1) ∧ (∂∞X2, ξ2).
Here (∂∞X1, ξ1) ∧ (∂∞X2, ξ2) is the coarse smashed product of the pointed
topological spaces (∂∞X1, ξ1) and (∂∞X2, ξ2).

For the precise definition of the coarse smashed product of two pointed
topological spaces, we refer the reader to Section 7.2.

Outline of the paper. In Sections 2 and 3 we start with some prelim-
inaries and the notion of general hyperbolic metric spaces. In Section 4 we
discuss hyperbolic products and prove Theorems 1.1 and 1.2. In Section 5
we introduce the notion of roughly geodesic metric spaces and in Section 6
we prove Theorems 1.3 and 1.4. In Section 7 we investigate the boundary
structure and prove Theorems 1.5 and 1.6.

Acknowledgments. It is a pleasure to thank Mario Bonk and Sergei
Buyalo for helpful discussions. In particular, we want to thank the referee
for the many helpful comments and useful suggestions.

2. Preliminaries

For a, b, c ∈ R and c ≥ 0 we define

a
.=c b :⇐⇒ |a− b| ≤ c.

If {ai}i, {bi}i are sequences, where i ∈ N, then we define

{ai}i
.=c a :⇐⇒ lim sup |ai − a| ≤ c

and
{ai}i

.=c {bi}i :⇐⇒ lim sup |ai − bi| ≤ c.
Let δ ≥ 0. A triple (a1, a2, a3) ∈ R3 is called a δ-triple, if aµ ≥ min{aµ+1, aµ+2}
− δ for µ = 1, 2, 3, where the indices are taken modulo 3.

The following is easily proved:
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Lemma 2.1.

(1) If (a1, a2, a3) and (b1, b2, b3) are δ-triples, then

(min{a1, b1},min{a2, b2},min{a3, b3})

is a δ-triple.
(2) If {(a1i, a2i, a3i)}i are δ-triples for i ∈ N, then

(inf a1i, inf a2i, inf a3i)

and
(lim inf a1i, lim inf a2i, lim inf a3i)

are δ-triples.

We call the following result the Tetrahedron Lemma.

Lemma 2.2 (Tetrahedron Lemma). Let d12, d13, d14, d23, d24, d34 be six
numbers, such that the four triples A1 = (d23, d24, d34), A2 = (d13, d14, d34),
A3 = (d12, d14, d24) and A4 = (d12, d13, d23) are δ-triples. Then

B = (d12 + d34, d13 + d24, d14 + d23)

is a 2δ-triple.

Proof. Without loss of generality we can assume that d34 is maximal among
the listed numbers. Then d13

.=δ d14 since A2 is a δ-triple, and d23
.=δ d24

since A1 is a δ-triple. Adding these approximate equalities we obtain that
d13 +d24

.=2δ d23 +d14. Since d34 is maximal, this means, if we assume that B
is not a 2δ-triple, that d12 < min{d13, d14, d23, d24}− 2δ. But this contradicts
the assumption that A3 and A4 are δ-triples. Thus B is a 2δ-triple. �

3. Hyperbolic spaces

3.1. δ-hyperbolic spaces. Let X be a metric space. For x, y, z ∈ X let

(x|y)z :=
1
2

(|zx|+ |zy| − |xy|).

The space X is called δ-hyperbolic if for o, x, y, z ∈ X

(3.1) ((x|y)o, (y|z)o, (x|z)o) is a δ-triple.

X is called hyperbolic, if it is δ-hyperbolic for some δ ≥ 0. The relation
(3.1) is called the δ-inequality with respect to the point o ∈ X. This condition
is equivalent to the inequality

(3.2) |ox|+ |yz| ≤ max{|oy|+ |xz|, |oz|+ |xy|}+ 2δ.

The inequality (3.2) is called the 4-point inequality for the points o, x, y, z ∈
X. If X satisfies the δ-inequality for one individual base point o ∈ X, then it
satisfies the 2δ-inequality for any other base point o′ ∈ X (see, for example,
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[G]). Thus, to check hyperbolicity, one only has to check this inequality at a
single point.

Let X be a hyperbolic space and o ∈ X be a base point. A sequence {xi}
of points xi ∈ X converges to infinity, if

lim
i,j→∞

(xi|xj)o =∞.

Two sequences {xi}, {x′i} that converge to infinity are equivalent if

lim
i→∞

(xi|x′i)o =∞.

Using the δ-inequality, one easily sees that this defines an equivalence relation
for sequences in X converging to infinity. The boundary at infinity ∂∞X of X
is defined as the set of equivalence classes of sequences converging to infinity.

For points ξ, ξ′ ∈ ∂∞X we define their Gromov product by

(ξ|ξ′)o = inf lim inf
i→∞

(xi|x′i)o,

where the infimum is taken over all sequences {xi} ∈ ξ, {x′i} ∈ ξ′. Note that
(ξ|ξ′)o takes values in [0,∞] and that (ξ|ξ′)o = ∞ if and only if ξ = ξ′. In a
similar way we define for ξ ∈ ∂∞X, x ∈ X

(ξ|x)o = inf lim inf
i→∞

(xi|x)o.

From Lemma 2.1(2) we obtain:

Lemma 3.1. Let X be δ-hyperbolic.
(1) If x, y, z ∈ X := X ∪ ∂∞X, then ((x|y)o, (y|z)o, (x|z)o) is a δ-triple.
(2) If {xi} ∈ ξ and {yi} ∈ η, then

(x|ξ)o
.=δ {(x|xi)o}i and (ξ|η)o

.=2δ {(xi|yi)o}i.

We define for points x, y ∈ X
σξ,o(x, y) := (x|ξ)o + (y|ξ)o.

The following result is obvious.

Lemma 3.2.

(1) {xi} ∈ ξ iff σξ,o(xi, xj)→∞.
(2) {xi} ∈ η ∈ ∂∞X \ {ξ} iff (xi|xj)o →∞ and σξ,o(xi, xj) is bounded.

We define the Busemann function of ξ ∈ ∂∞X by

bξ(x, y) = inf lim inf
i→∞

(|xzi| − |yzi|),

where the infimum is taken over all sequences {zi} ∈ ξ. We state some
properties of this function.
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Lemma 3.3.

(1) If {zi} ∈ ξ, then bξ(x, y) .=2δ {(|xzi| − |yzi|)}i.
(2) Let {xi} ∈ η ∈ ∂∞X, o ∈ X. If η 6= ξ, then bξ(xi, o)→∞.

Proof. (1) Note that for sequences {zi}, {z′i} ∈ ξ

{(|xzi| − |yzi|)− (|xz′i| − |yz′i|)}i = 2{((y|zi)x − (y|z′i)x)}i
.=2δ 0,

since (y|zi)x, (y|z′i)x, (zi|z′i)x is a δ-triple and (zi|z′i)x →∞. This implies that

bξ(x, y) .=2δ {(|xzi| − |yzi|)}i
for any sequence {zi} ∈ ξ.

(2) Let {zi} ∈ ξ and {xi} ∈ η. If η 6= ξ, then the numbers 2(xi|zj)o are
bounded by some number D, which implies |zjxi| − |ozj | ≥ |oxi| −D. Since
bξ(xi, o)

.=2δ {|xizj | − |ozj |}j and |xio| → ∞, this yields the result. �

For o ∈ X, ξ ∈ ∂∞X and x, y ∈ X we define

(x|y)ξ,o :=
1
2

(bξ(x, o) + bξ(y, o)− |xy|).

We extend (x|y)ξ,o to points x, y ∈ X \ {ξ} by setting

(x|y)ξ,o := inf lim inf
i→∞

(xi|yi)ξ,o,

where the infimum is taken over all sequences {xi} ∈ x and {yi} ∈ y. In the
case that x ∈ X, {xi} ∈ x means any sequence {xi} converging to x.

Lemma 3.4.

(1) If x, y, z ∈ X, then ((x|y)ξ,o, (y|z)ξ,o, (z|x)ξ,o) is a 3δ-triple.
(2) If x, y ∈ X, then

(x|y)ξ,o + σξ,o(x, y) .=4δ (x|y)o.

(3) If x, y ∈ X \ {ξ}, then

(x|y)ξ,o + σξ,o(x, y) .=8δ (x|y)o.

Proof. We only prove (2) and leave (1) and (3) to the reader. Let {zi} ∈ ξ
be given. Then

(x|y)ξ,o =
1
2

(bξ(x, o) + bξ(y, o)− |xy|)

.=2δ
1
2
{(|xzi| − |ozi|+ |yzi| − |ozi| − |xy|)}i

= {(x|y)o − (x|zi)o − (y|zi)o}i
.=2δ (x|y)o − (x|ξ)o − (y|ξ)o. �
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3.2. A criterion for hyperbolicity. At the end of this section we give
a criterion for hyperbolicity. Let therefore X be an arbitrary metric space.
We define a map A : X4 → R, where A = A(x, y, z, t) is given by

A = max{(x|y)u + (z|t)u − (x|z)u − (y|t)u,
(x|y)u + (z|t)u − (x|t)u − (y|z)u},

where u ∈ X is arbitrary. An easy calculation shows that A is independent of
u. By specializing u = t we see that A = (x|y)t −min{(x|z)t, (y|z)t}. Thus it
follows that X is δ-hyperbolic iff A ≥ −δ for all x, y, z, t ∈ X.

Remark 3.5. One can write A(x, y, z, t) in an even more complicated
manner as the maximum of the two numbers

[(x|y)u − |uv|] + [(z|t)u − |uv|]− [(x|z)u − |uv|]− [(y|t)u − |uv|]

and

[(x|y)u − |uv|] + [(z|t)u − |uv|]− [(x|t)u − |uv|]− [(y|z)u} − |uv|],

where u, v ∈ X are arbitrary. This follows from a trivial computation and
will be useful later on.

4. Products

Let X1, X2 be metric spaces. Let Y = X1 × X2. On Y we will always
consider the maximum metric, i.e., for x = (x1, x2) and y = (y1, y2) let

|xy| = max{|x1y1|, |x2y2|}.

For a point o = (o1, o2) ∈ Y one easily checks that

(4.1) (x|y)o ≥ min{(x1|y1)o1 , (x2|y2)o2}.

We define

Y∆,o :=
{

(x1, x2) ∈ Y
∣∣∣ |o1x1|

.=∆ |o2x2|
}
.

It is easy to check that for points x, y ∈ Y∆,o we have

(4.2) (x|y)o
.=∆ min{(x1|y1)o1 , (x2|y2)o2}.

For later reference we restate equations (4.1) and (4.2) in the following
lemma.

Lemma 4.1. If x, y ∈ Y∆,o then

0 ≤ (x|y)o −min{(x1|y1)o1 , (x2|y2)o2} ≤ ∆.

Theorem 1.1. If X1, X2 are δ-hyperbolic, then Y∆,o is (∆+δ)-hyperbolic.
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Proof. Let δ ≥ 0 and oν ∈ Xν be such that Xν satisfies the δ-inequality
with respect to oν . Then Lemma 2.1(1) and Lemma 4.1 give (omitting base
points)

(x|z) ≥ min{(x1|z1), (x2|z2)} ≥ min{(x1|y1), (y1|z1), (x2, y2), (y2|z2)} − δ
≥ min{(x|y), (y|z)} −∆− δ. �

Consider ξν ∈ ∂∞Xν and let bν(x) := bξν (x, oν), ν = 1, 2. We define

Y∆,ξ,o :=
{

(x1, x2) ∈ Y
∣∣∣ b1(x1) .=∆ b2(x2)

}
.

We will show that Y∆,ξ,o is hyperbolic. To prove this we need the following
lemma.

Lemma 4.2. Let Xν be δ-hyperbolic spaces for ν = 1, 2. For i ∈ N let
{u1i} ∈ ξ1, {u2i} ∈ ξ2 and ui = (u1i, u2i) ∈ X1 ×X2. Then, for x, y ∈ Y∆,ξ,o,
we have

{|uix| − |uio|}i
.=∆+2δ bν(xν), ν = 1, 2,

and
{(x|y)ui − |uio|}i

.=∆+2δ min{(x1|y1)ξ1,o1 , (x2|y2)ξ2,o2}.

Proof. We have by Lemma 3.3 {|uνixν | − |uνioν |}i
.=2δ bν(xν) for ν = 1, 2

and b1(x1) .=∆ b2(x2).
Now the first inequality follows from the general fact that if rν − sν

.=δ

bν and b1
.=∆ b2 for some real numbers rν , sν , bν , then max{r1, r2}

.=δ+∆

max{s1, s2}+ bν . To prove this we may assume s1 ≤ s2. Then max{r1, r2} ≥
r2 ≥ s2 + b2 − δ ≥ max{s1, s2} + bν − ∆ − δ. Moreover, r1 ≤ s1 + b1 + δ,
r2 ≤ s2 + b2 + δ, and hence max{r1, r2} ≤ max{s1, s2}+ bν + ∆ + δ.

To obtain the second inequality we compute

{(x|y)ui − |uio|}i =
1
2
{|uix| − |uio|+ |uiy| − |uio| − |xy|}i

.=∆+2δ min
ν∈{1,2}

1
2
{bν(xν) + bν(yν)− |xνyν |}

= min{(x1|y1)ξ1,o1 , (x2|y2)ξ2,o2}. �

Theorem 1.2. If X1, X2 are δ-hyperbolic, then Y∆,ξ,o is (4∆ + 14δ)-
hyperbolic.

Proof. Consider on X1 ×X2 the function A from Section 3.2. We have to
show that A|Y 4

∆,ξ,o
≥ −(4∆ + 14δ).

Choose {u1i}i ∈ ξ1 and {u2i}i ∈ ξ2 and let ui = (u1i, u2i) ∈ X1×X2. (Note
that ui is not necessarily in Y∆,ξ,o.) We use for A the complicated expression
from Remark 3.5 with u = ui and v = (o1, o2). The typical terms in this
expression are then of the form [(x|y)ui − |uio|].
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By Lemma 4.2 we have that x, y ∈ Y∆,ξ,o implies

{[(x|y)ui − |uio|]}i
.=∆+2δ min{(x1|y1)ξ1,o1 , (x2|y2)ξ2,o2}.

Let now y1, y2, y3, y4 ∈ Y∆,ξ,o, where yj = (yj1, y
j
2), j = 1, 2, 3, 4, and consider

the expression A = A(y1, y2, y3, y4). Then

A = max{d12 + d34 − d13 − d24, d12 + d34 − d14 − d23},

where, by Lemma 4.2, djk
.=∆+2δ min{d1

jk, d
2
jk} with dνjk = (yjν |ykν )ξν ,oν . By

Lemma 3.4(1), for every ν ∈ {1, 2} the six numbers dνjk satisfy the conditions
of the Tetrahedron Lemma 2.2 with constant 3δ. Thus, by Lemma 2.1(1), the
six numbers min{d1

jk, d
2
jk} also satisfy the assumptions of the Tetrahedron

Lemma with constant 3δ. Thus the six numbers djk satisfy the assumptions
of the Tetrahedron Lemma with constant 3δ + 2(∆ + 2δ) = 2∆ + 7δ. The
Tetrahedron Lemma then shows that (d12 + d34, d13 + d24, d14 + d23) is a
4∆ + 14δ triple which implies A ≥ −(4∆ + 14δ). �

5. Roughly geodesic spaces

Let k ≥ 0. A k-rough geodesic is a map γ : I → X from an interval I ⊂ R
to a metric space X with

|γ(s)γ(t)| .=k |s− t| for all s, t ∈ I.

The space X is called k-roughly geodesic if for every pair x, y ∈ X there exists
a k-rough geodesic γ : [0, |xy|] → X with γ(0) = x and γ(|xy|) = y. X is
called roughly geodesic if X is k-roughly geodesic for some k ≥ 0. Parts of the
results of this section are contained in [BoS]; compare also [V].

In this section we consider a fixed δ-hyperbolic and k-roughly geodesic
space X with a base point o ∈ X.

To avoid notational complications, we will use in this section the following
convention: We write a .= b if a .=c b and the constant c depends only on δ
and k. We will also say that γ : I → X from an interval I ⊂ R is a rough
geodesic when |γ(s)γ(t)| .= |s− t| (where we already used the first part of the
convention).

Lemma 5.1. Let X be a δ-hyperbolic, k-roughly geodesic metric space,
ξ ∈ ∂∞X and b : X → R be the Busemann function b(x) = bξ(x, o). Then
there exists a k′ = k′(δ, k) such that

(1) for every x ∈ X there exists a k′-rough geodesic γξ,x : (−∞, b(x)]→ X
with {γξ,x(−i)}i ∈ ξ, γξ,x(b(x)) = x and b(γξ,x(t)) .= t, and

(2) for every η ∈ ∂∞X \{ξ} there exists a k′-rough geodesic γξ,η : R→ X
with {γξ,η(−i)}i ∈ ξ , {γξ,η(i)}i ∈ η such that b(γξ,η(t)) .= t.
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Proof. (1) By [BoS, Proposition 5.2(2)] we find a k′-rough geodesic α :
[0,∞)→ X from x to ξ. By Lemma 3.3(1) we have

bξ(α(t), x) .=2δ {|α(t)α(i)| − |xα(i)|}i
.=2k′ {i− t− i}i = −t.

Setting γ(t) = α(b(x)− t) we obtain a k′-rough geodesic γ : (−∞, b(x)]→ X,
and then bξ(γ(t), x) = bξ(α(b(x)−t), x) .= t−b(x). Using again Lemma 3.3(1),
we get bξ(γ(t), x) + bξ(x, o)

.= bξ(γ(t), o) = b(γ(t)), and hence b(γ(t)) .= t.
(2) By [BoS, Proposition 5.2(3)] we find a k′-rough geodesic α : R → X

from ξ to η, that is, {α(−i)}i ∈ ξ, {α(i)}i ∈ η. By Lemma 3.3(1) we get
bξ(α(t), α(0)) .= {|α(t)α(−i)| − |α(0)α(−i)|}i

.= {t + i − i}i = t, and hence
b(α(t)) .= bξ(α(t), α(0))+bξ(α(0), o) .= t+b(α(0)). The desired rough geodesic
γ is now given by γ(t) = α(t− b(α(0))). �

Lemma 5.2.

(1) Let y, x1, x2 ∈ X, let γi : [0, ri] → X, i = 1, 2, be k-rough geodesics
from y to xi, ri = |yxi|. Then |γ1(t)γ2(t)| .= 0 for t ≤ (x1|x2)y.

(2) Let x1, x2 ∈ X, ξ ∈ ∂∞X, let γi = γξ,xi : (−∞, b(xi)] → X be k′-
rough geodesics given by Lemma 5.1(1). Then |γ1(t)γ2(t)| .= 0 for
t ≤ (x1|x2)ξ,o.

Proof. (1) Let 0 ≤ t ≤ (x1|x2)y and set x′i = γi(t). Then

2(xi|x′i)y = |xiy|+ |x′iy| − |xix′i| ≥ ri + (t− k)− (ri − t+ k) = 2t− 2k,

which implies

(x′1|x′2)y ≥ min{(x′1|x1)y, (x1|x2)y, (x2x
′
2)y} − 2δ ≥ t− k − 2δ.

Since
2(x′1|x′2)y = |x′1y|+ |x′2y| − |x′1x′2| ≤ 2t+ 2k − |x′1x′2|,

we get |x′1x′2| ≤ 4k + 4δ.
(2) Let t ≤ (x1|x2)ξ,o and set x′i = γi(t). By Lemma 5.1(1) we have

b(x′i)
.= t. Hence

2(xi|x′i)ξ,o = b(xi) + b(x′i)− |xix′i|
.= b(xi) + t− (b(xi)− t) = 2t.

By Lemma 3.4(1) we obtain

(x1|x′2)ξ,o ≥ min{(x′1|x1)ξ,o, (x1|x2)ξ,o, (x2|x′2)ξ,o} − 6δ ≥ t− c(δ, k).

Since
2(x′1|x′2)ξ,o = b(x′1) + b(x′2)− |x′1x′2|

.= 2t− |x′1x′2|,
the lemma follows. �

Lemma 5.3. Let X and ξ be as in Lemma 5.1 and o, x, y ∈ X. Then:

(1) |γx(t)γy(s)| .=

{
s+ t− 2(x|y)o if s, t ≥ (x|y)o,
|s− t| otherwise.
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(2) |γξ,x(t)γξ,y(s)| .=

{
s+ t− 2(x|y)ξ,o if s, t ≥ (x|y)ξ,o,
|s− t| otherwise.

Proof. (1) For every x ∈ X let γx : [0, |ox|] → X be a k-rough geodesic
from o to x. Set x′ = γx((x|y)o) and y′ = γy((x|y)o).

We assume first s, t ≥ (x|y)o.
Since by Lemma 5.2(1) |x′y′| .= 0, we have

|γx(t)γy(s)| ≤ |γx(t)x′|+ |x′y′|+ |y′γy(s)|
.= (t− (x|y)o) + 0 + (s− (x|y)o)

= s+ t− 2(x|y)o

and

|γx(t)γy(s)| ≥ |xy| − |xγx(t)| − |yγy(s)|
.= |xy| − (|ox| − t)− (|oy| − s)
= s+ t− 2(x|y)o.

To consider the second case, let without loss of generality t ≤ (x|y)o, t ≤ s.
Then by Lemma 5.2(1)

|γx(t)γy(s)| ≤ |γx(t)γy(t)|+ |γy(t)γy(s)|
.= 0 + |t− s|
= |t− s|

and

|γx(t)γy(s)| ≥ |oγy(s)| − |oγx(t)|
.= |t− s|.

(2) We may assume that t ≤ s. Set t0 = (x|y)ξ,o.
Case 1: t ≥ t0. Set x′ = γξ,x(t0), y′ = γξ,y(t0). By Lemma 5.2(2) we have

|x′y′| .= 0. Hence

|γξ,x(t)γξ,y(s)| ≤ |γξ,x(t)x′|+ |x′y′|+ |y′γξ,y(s)|
.= t− t0 + 0 + s− t0 = s+ t− 2t0.

Moreover,

|γξ,x(t)γξ,y(s)| ≥ |xy| − |xγξ,x(t)| − |yγξ,y(s)|
≥ |xy| − (b(x)− t+ k)− (b(y)− s+ k)
= s+ t− 2t0 − 2k.

Case 2: t ≤ t0. As |γξ,x(t)γξ,y(t)| .= 0 by Lemma 5.2(2), we obtain

|γξ,x(t)γξ,y(s)| .= |γξ,y(t)γξ,y(s)| .= |t− s|. �
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Let x, y ∈ X and assume that a is a number with a ≥ |xy|. Then we define
γax,y : [0, a]→ X by

γax,y(t) =


γx(|ox| − t) for 0 ≤ t ≤ min{|ox|, 1

2 (|ox| − |oy|+ a)},
o for |ox| ≤ t ≤ a− |oy|,
γy(|oy| − a+ t) for max{a− |oy|, 1

2 (|ox| − |oy|+ a)} ≤ t ≤ a.

Thus, if a = |ox| + |oy|, then γax,y is just the concatenation of γ−1
x and γy.

If a > |ox| + |oy|, then γax,y is the concatenation of γ−1
x , a constant curve

at o and γy. If |xy| ≤ a < |ox| + |oy|, then γax,y is the concatenation of the
inverse of γx|[τ,|ox|] and γy|[τ,|oy|], where τ = 1

2 (|ox| − |oy|+ a). Note that for
a ≤ |ox| + |oy| the curve γax,y has two definitions at the parameter value τ .
However, we have

σ := |ox| − τ =
1
2

(|ox|+ |oy| − a) = |oy| − a+ τ,

and in the case |xy| ≤ a ≤ |xo|+ |yo| also 0 ≤ σ ≤ (x|y)o. Hence, by Lemma
5.1(1), we have |γx(σ)γy(σ)| .= 0, which says that γax,y is well defined up to a
uniformly bounded error. This is enough for our considerations.

Lemma 5.4. Let x, y ∈ X and |xy| ≤ a. Then:
(1) There exists a constant c depending only on δ and k such that

|γax,y(t)γax,y(s)| ≤ |s− t|+ c for all 0 ≤ s, t ≤ a.

(2) If a .= |xy|, then |γax,y(t)γax,y(s)| .= |s− t| for all 0 ≤ s, t ≤ a.
(3) |γax,y(t)o| .= max{|ox| − t, 0, |oy| − a+ t} for all 0 ≤ t ≤ a.

Proof. (1) follows from the fact that γax,y is, up to a uniformly bounded
error, the concatenation of rough geodesics and constant curves. (2) follows
from (1) and |γax,y(a)γax,y(0)| .= a. (3) follows from the definition of γax,y,
|γx(t)o| .= t and |γy(t)o| .= t. �

The above results have straightforward generalizations to the case where
we fix a “base point” at infinity. We only replace the distance to o by the
Busemann function b.

For x, y ∈ X and a ≥ |xy| we define γaξ,x,y : [0, a]→ X by

γaξ,x,y(t) =

{
γξ,x(b(x)− t) for 0 ≤ t ≤ 1

2 (b(x)− b(y) + a),
γξ,y(b(y)− a+ t) for 1

2 (b(x)− b(y) + a) ≤ t ≤ a.

Lemma 5.5. Let X and ξ be as in Lemma 5.1, x, y ∈ X and a ≥ |xy|.
Then:

(1) There exists a constant c depending only on δ and k such that

|γaξ,x,y(t)γaξ,x,y(s)| ≤ |s− t|+ c for all 0 ≤ s, t ≤ a.
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(2) If a .= |xy|, then |γaξ,x,y(t)γaξ,x,y(s)| .= |s− t| for all 0 ≤ s, t ≤ a.
(3) b(γaξ,x,y(t)) .= max{b(x)− t, b(y)− a+ t} for all 0 ≤ t ≤ a.

6. Hyperbolic products of roughly geodesic spaces

In this section we show that hyperbolic products of roughly geodesic spaces
are roughly geodesic. We assume that X1, X2 are metric spaces which are δ-
hyperbolic and k-roughly geodesic. Let oν ∈ Xν , ν = 1, 2, be base points.

Lemma 6.1. If x ∈ Y∆,o, then there exists x′ ∈ Yk,o with |xx′| ≤ ∆ + k.

Proof. We assume without loss of generality that a1 := |x1o1| ≥ |x2o2| =:
a2. By assumption a1 − a2 ≤ ∆. Let γ1 : [0, a1]→ X1 be a k-rough geodesic
with γ1(0) = o and γ1(a1) = x1, and define x′1 := γ1(a2). By construction
x′ = (x′1, x2) satisfies the required properties. �

Lemma 6.2. There exists k′ = k′(δ, k) ≥ 0 with the following property: If
x, y ∈ Yk,o, then there exists a k′-rough geodesic γ : I → X1 ×X2 from x to y
such that γ(t) ∈ Yk′,o for all t ∈ I.

Proof. Let a := max{|x1y1|, |x2y2|} and consider

γ1 := γax1,y1
: [0, a] −→ X1,

γ2 := γax2,y2
: [0, a] −→ X2,

γ := (γ1, γ2) : [0, a] −→ X1 ×X2.

It follows from Lemma 5.4(1),(2) that γ is a rough geodesic with a constant
that depends only on δ and k. From Lemma 5.4(3) we obtain that |γ1(t)o1|

.=k′

|γ2(t)o2| for a constant k′ depending only on δ and k. �

Theorem 1.3. If X1, X2 are δ-hyperbolic and k-roughly geodesic, then
there exists ∆0 ≥ 0 such that for all ∆ ≥ ∆0 the space Y∆,o is roughly geodesic.

Proof. Let k′ be the constant from Lemma 6.2. We claim that ∆0 :=
max{k, k′} satisfies the required properties. Let ∆ ≥ ∆0 and let x, y ∈ Y∆,o.
Let x′, y′ ∈ Yk,o be points according to Lemma 6.1 with |xx′| ≤ ∆ + k and
|yy′| ≤ ∆ + k. Let a′ = |x′y′| and a = |xy|. Then a

.=2∆+2k a
′. Let a =

min{a, a′}. By Lemma 6.2 there exists a k′-rough geodesic γ′ : [0, a′]→ Yk′,o
from x′ to y′. Let γ : [0, a]→ Y∆,o be defined by

γ(t) =


x for t = 0,
γ′(t) for 0 < t < a,

y for a ≤ t ≤ a.

Since |xx′| ≤ ∆ + k, |yy′| ≤ ∆ + k and a
.= a′, the curve γ is a k-rough

geodesic, where k depends only on δ, k and ∆. �

In essentially the same way one shows:
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Theorem 1.4. Let X1, X2 be δ-hyperbolic and k-roughly geodesic. Let
ξν ∈ ∂∞Xν . Then there exists ∆0 ≥ 0 such that Y∆,ξ,o is roughly geodesic for
all ∆ ≥ ∆0.

7. The boundary of hyperbolic products

In this section we study the boundary of hyperbolic products. We start
from spaces Xν , ν = 1, 2, which are hyperbolic and roughly geodesic.

7.1. The boundary of Y∆,o. We consider the product Y∆,o.

Theorem 1.5. Let Xν , ν = 1, 2, be δ-hyperbolic and k-roughly geodesic
metric spaces. Then there exists ∆0 = ∆0(δ, k) ≥ 0 such that for all ∆ ≥ ∆0

the space ∂∞Y∆,o is naturally homeomorphic to ∂∞X1 × ∂∞X2.

Proof. Let ∆0 = 2k′(δ, k), where k′ is the constant from Lemma 5.1(1).
Then for ∆ ≥ ∆0 the space Y∆,o is hyperbolic by Theorem 1.1.

We first show that by setting

ψ : ∂∞Y∆,o → ∂∞X1 × ∂∞X2

[{zi}] 7→ ([{z1i}], [{z2i}])

we obtain a well defined map. Let {zi} be a sequence converging to infin-
ity. Then (zi|zj)o → ∞. Since by Lemma 4.1 (zi|zj)o

.= min{(z1i|z1j)o1 ,
(z2i|z2j)o2}, where .= means .=c(δ,k,∆), we see that {zνi} is also converging to
infinity for ν = 1, 2. If {z′i} is equivalent to {zi}, then (zi|z′i)o → ∞, which
implies (zνi|zνi′)o →∞ for ν = 1, 2. Thus ψ is well defined.

It follows easily from Lemma 4.1 that for η, η′ ∈ ∂∞Y∆,o with ψ(η) =
(η1, η2) and ψ(η′) = (η′1, η

′
2) we have

(η|η′)o
.= min{(η1|η′1)o1 , (η2|η′2)o2}.

This implies the continuity and injectivity of ψ, and it will also show the
continuity of ψ−1 once we have proved the bijectivity of the map. That the
map ψ is also surjective can be seen as follows: Let ην ∈ ∂∞Xν and let
γν : [0,∞) → Xν be rough geodesics with γν(0) = oν and γν(i) → ην . Then
γ(t) = (γ1(t), γ2(t)) ∈ Y∆,o for ∆ large enough, since |oνγν(t)| .= t. It follows
that ψ(γ(∞)) = (η1, η2). �

7.2. Coarse smashed product. Let (Zν , ξν) be pointed topological
spaces, ν = 1, 2. We call the subset (Z1 × {ξ2}) ∪ ({ξ1} × Z2) the cross
at (ξ1, ξ2) ∈ Z1 × Z2. The smashed product (Z1, ξ1) ∧ (Z2, ξ2) is the space
Z1×Z2, where we identify (smash) the cross at (ξ1, ξ2) to one point. Formally
we define an equivalence relation ∼ on Z1 × Z2 by letting

(η1, η2) ∼ (η′1, η
′
2)
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if and only if{
η1 = η′1 ∧ η2 = η′2

}
∨
[{
η1 = ξ1 ∨ η2 = ξ2

}
∧
{
η′1 = ξ1 ∨ η′2 = ξ2

}]
.

The coarse smashed product topology is defined as follows: A basis of the
open sets are the sets U1×U2, where Uν ⊂ Xν \ {ξν}, ν = 1, 2, are open, and
the sets (W1 × Z2) ∪ (Z1 ×W2), where Wν ⊂ Zν are open neighborhoods of
ξν .

Thus a sequence [(η1i, η2i)] ∈ (Z1, ξ1) ∧ (Z2, ξ2) converges to [(ξ1, ξ2)], iff
for all open neighborhoods Wν ⊂ Zν of ξν there exists i0 = i0(W1,W2) ∈ N
such that for all i ≥ i0 one has η1i ∈W1 or η2i ∈W2.

If the spaces Zν are second countable for ν = 1, 2, then so is (Z1, ξ1) ∧
(Z2, ξ2).

Remark 7.1. Note that in the literature the smashed product of two
pointed topological spaces (Z1, ξ1) and (Z2, ξ2) is defined as the set
Z1 × Z2/ ∼ endowed with the quotient topology. In general, the coarse
smashed product is coarser than the smashed product. However, in the case
when Z1 and Z2 are compact, the two topologies are equivalent. Since in [FS2]
we considered proper geodesic spaces and the boundaries at infinity of such
spaces are compact, the smashed product topology we considered in Theorem
2 of [FS2] agrees with the coarse smashed product topology as introduced
above.

7.3. Boundary of Y∆,ξ,o. We assume that the spaces Xν are hyperbolic,
roughly geodesic spaces and that ξν ∈ ∂∞Y∆,ξ,o. By Theorem 1.2 Y∆,ξ,o is δ′-
hyperbolic for some δ′(δ,∆). Let k′(δ, k) and c′(δ, k) be the numbers given by
Lemma 5.1 such that b(γξ,x(t)) .=c′ t and b(γξ,η(t)) .=c′ t. Let ∆0(δ, k) = 2c′

and let ∆ ≥ ∆0.
We use in this section the convention that .= means .=c, where c depends

only on δ and k and ∆. Let γν : [0,∞)→ Xν be rough geodesics from oν with
{γν(i)}i ∈ ξν . Then bν(γν(t)) .= −t and hence γ(t) = (γ1(t), γ2(t)) ∈ Y∆,ξ,o for
∆ large enough. Clearly, γ(i) converges to infinity and we define ξ := [{γ(i)}].

Lemma 7.2. If x, y ∈ Y∆,ξ,o, then:
(1) (x|y)ξ,o

.= min{(x1|y1)ξ1,o1 , (x2|y2)ξ2,o2}.
(2) (x|ξ)o

.= max{(x1|ξ1)o1 , (x2|ξ2)o2}.

Proof. (1) Let {ui} ∈ ξ. Then we have

(x|y)ξ,o
.=

1
2
{|xui| − |oui|+ |yui| − |oui| − |xy|}i

= {(x|y)ui − |uio|}i
.= min{(x1|y1)ξ1,o1 , (x2|y2)ξ2,o2},

where the last step follows from Lemma 4.2.
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(2) Set ui = γ(i), uνi = γν(i). We first show that

{|oui|}i
.= {|oνuνi|}i,(7.1)

{|xui|}i
.= {|xνuνi|}i.(7.2)

As γν is a k′-geodesic, we have |oνuνi|
.= i, which implies (7.1). By Lemma

3.3(1) we have

{|o1u1i| − |x1u1i|}i
.=2δ −b1(x1) .=∆ −b2(x2) .=2δ {|o2u2i| − |x2u2i|}i.

This and (7.1) imply (7.2).
By Lemma 3.1(2) we have

2(x|ξ) .=2δ′ {2(x|ui)o}i = {max{|o1x1|, |o2x2|}+ |oui| − |xui|}i.

Now (7.1) and (7.2) imply the assertion. �

Theorem 1.6. The boundary ∂∞Y∆,ξ,o is naturally homeomorphic to the
coarse smashed product (∂∞X1, ξ1) ∧ (∂∞X2, ξ2).

Proof. The proof uses the following formulae from Lemmata 7.2 and 3.4:

(x|y)o
.= (x|y)ξ,o + (x|ξ)o + (y|ξ)o for all x, y ∈ Y∆,ξ,o,(7.3)

(x|y)ξ,o
.= min{(x1|y1)ξ1,o1 , (x2|y2)ξ2,o2} for all x, y ∈ Y∆,ξ,o,(7.4)

(x|ξ)o
.= max{(x1|ξ1)o1 , (x2|ξ2)o2} for all x ∈ Y∆,ξ,o.(7.5)

We have

xi converges to a point in ∂∞Y∆,ξ,o \ {ξ}
⇐⇒ (xi|xj)o →∞ and (xi|ξ)o bounded

⇐⇒(7.3) (xi|xj)ξ,o →∞ and (xi|ξ)o bounded

⇐⇒(7.4),(7.5) (xνi|xνj)ξν ,oν →∞ and (xνi|ξν)oν bounded for ν = 1, 2

⇐⇒ xνi converges to a point in ∂∞Xν \ {ξν} for ν = 1, 2.

This calculation shows that the map

ψ : ∂∞Y∆,ξ,o \ {ξ} → (∂∞X1 \ {ξ1})× (∂∞X2 \ {ξ2})

given by ψ(η) = ([{x1i}], [{x2i}]), where {xi} is a sequence in Y∆,ξ,o with
[{xi}] = η, is well defined.

The formulae (7.3)–(7.5) have extensions to the ideal boundary: If η, η′ ∈
∂∞Y∆,ξ,o \ {ξ}, ψ(η) = (η1, η2) and ψ(η′) = (η′1, η

′
2), then

(η|η′)o
.= (η|η′)ξ,o + (η|ξ)o + (η′|ξ)o,(7.6)

(η|η′)ξ,o
.= min{(η1|η′1)ξ1,o1 , (η2|η′2)ξ2,o2},(7.7)

(η|ξ)o
.= max{(η1|ξ1)o1 , (η2|ξ2)o2}.(7.8)
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Let ηi, η ∈ ∂∞Y∆,ξ,o \ {ξ}, i ∈ N. Then

ηi → η ⇐⇒ (ηi|η)o →∞ and (ηi|ξ)o bounded

⇐⇒(7.6) (ηi|η)ξ,o →∞ and (ηi|ξ)o bounded

⇐⇒(7.7),(7.8) (ηνi|ην)ξν ,oν →∞ and (ηνi|ξν)oν bounded for ν = 1, 2

⇐⇒(7.6ν) (ηνi|ην)oν →∞ and (ηνi|ξν)oν bounded for ν = 1, 2
⇐⇒ ηνi → ην for ν = 1, 2,

where (7.6ν) is the formula (7.6) applied to the factors. This computation
shows in particular the continuity of ψ. It will also show the continuity of
ψ−1 after we have proved the bijectivity. If η, η′ ∈ ∂∞Y∆,ξ,o \ {ξ}, then
ψ(η) = ψ(η′) implies by (7.7) that (η|η′)ξ,o = ∞, and hence η = η′. Thus ψ
is injective.

We next show that the map is also surjective. Let ην ∈ ∂∞Xν \ ξν be
given. Due to Lemma 5.1 there are rough geodesics γξν ,ην : R → Xν with
{γξν ,ην (−i)}i ∈ ξν , {γξν ,ην (i)}i ∈ ην and b(γξν ,ην (t)) .=c′ t, ν = 1, 2. By our
choice of ∆0 we obtain (γξ1,η1(t), γξ2,η2(t)) ∈ Y∆,ξ,o, from which the surjectiv-
ity of ψ immediately follows.

Finally we show that ψ can be extended continuously to a homeomorphism

ψ : ∂∞Y∆,ξ,o → (∂∞X1, ξ1) ∧ (∂∞X2, ξ2)

by defining ψ(ξ) = [(ξ1, ξ2)]. Observe

ηi → ξ ⇐⇒ (ηi|ξ)o →∞
⇐⇒(7.8) max{(η1i|ξ1)o1 , (η2i|ξ2)o2} → ∞
⇐⇒ ∀D ≥ 0 ∃i0 ∈ N such that ∀i ≥ i0

(η1i|ξ1)o1 ≥ D or (η2i|ξ2)o2 ≥ D
⇐⇒ [(η1i, η2i)]→ [(ξ1, ξ2)],

where in the last line the convergence is in (∂∞X1, ξ1) ∧ (∂∞X2, ξ2). �

8. Maximum metric versus Euclidean metric

We finally point out that when starting off with two proper geodesic metric
spaces one has to consider the length metric d induced by the maximum
metric dm on Y0,o or Y0,ξ,o, in order to obtain a proper geodesic space again.
In this case, we might as well endow Y0 with the length metric induced by
the Euclidean product metric de instead of the maximum metric dm. Since
both are geodesic spaces which are bilipschitz related, one of them is Gromov
hyperbolic if and only if the other one is (see, e.g., Theorem 1.9 in Chapter
III.1 of [BrH]).

In fact, when starting off with two Riemannian manifolds and fixing points
at infinity, the construction using the Euclidean product metric has the ad-
vantage that it once again yields a Riemannian manifold (compare [FS1]).
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However, we emphasize that in neither of the Theorems 1.1–1.6 we can re-
place the maximum metric by the Euclidean metric, as the following example
shows.

Example 8.1. Consider two copies of the real hyperbolic space H2. Fix
points o1 = o2 ∈ H2 and ξ1 = ξ2 ∈ ∂∞H2. Now consider sequences of points
{xi = (xi1, x

i
2)}, {yi = (yi1, y

i
2)}, {zi = (zi1, z

i
2)} and {wi = (wi1, w

i
2)} such

that xi1 = xi2, yi1 = yi2, zi1 = zi2, bν(ziν) = bν(yiν), |xiνyiν | = |xiνziν | = 1
2 |y

i
νz
i
ν |,

wi1 = yi1 and wi2 = zi2 for all i ∈ N, ν = 1, 2, as well as |yiνziν |
i→∞−→ ∞, ν = 1, 2.

We claim that (Y0,ξ,o, de) is not hyperbolic. Suppose to the contrary that
(Y0,ξ,o, de) is hyperbolic. Then there exists a δ ≥ 0 such that for all i ∈ N

de(yi, zi) + de(xi, wi)

≤ max{de(xi, yi) + de(zi, wi), de(yi, wi) + de(xi, zi)} + 2δ

⇐⇒ de(yi, zi) ≤ max{de(zi, wi), de(yi, wi)} + 2δ

⇐⇒
√

2 |yi1zi1| ≤ |yi1zi1| + 2δ,

which contradicts our choices of sequences.
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