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DE RHAM INTERSECTION COHOMOLOGY FOR
GENERAL PERVERSITIES

MARTINTXO SARALEGI-ARANGUREN

Abstract. For a stratified pseudomanifold X, we have the de Rham

Theorem H
∗

p
(X) = H

t−p
∗ (X), for a perversity p verifying 0 ≤ p ≤ t,

where t denotes the top perversity. We extend this result to any per-

versity p. In the direction cohomology 7→ homology, we obtain the
isomorphism

H
∗

p
(X) = H

t−p

∗

(
X,Xp

)
,

where
Xp =

⋃
S�S1
p(S1)<0

S =
⋃

p(S)<0

S.

In the direction homology 7→ cohomology, we obtain the isomorphism

H
p

∗ (X) = H
∗

max(0,t−p)
(X).

In our paper stratified pseudomanifolds with one-codimensional strata
are allowed.

Roughly speaking, a stratified pseudomanifold X is a family SX of smooth
manifolds (strata) assembled in a conical way. A (general) perversity p asso-
ciates an integer to each of the strata of X (see [15]). The classical perversities
(see [12], [14], [11], . . . ) are filtration-preserving, that is, they verify:

S1, S2 ∈ SX with dimS1 = dimS2 ⇒ p(S1) = p(S2).

The zero-perversity, defined by 0(S) = 0, and the top perversity, defined by
t(S) = codimX S − 2, are classical perversities.

The singular intersection homology H
p

∗
(X) was introduced by Goresky-

MacPherson in [13] (see also [14]). It is a topological invariant of the stratified
pseudomanifold when the perversity satisfies some monotonicity conditions
(see [12], [14], . . . ). In particular, we need 0 ≤ t and therefore X does not
possess any one-codimensional strata. Recently, a more general result has
been obtained in [11], where one-codimensional strata are allowed. In all
these cases, the perversities are classical.
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The de Rham intersection cohomology H
∗

p
(X) was also introduced by

Goresky-MacPherson (see [7]). It requires the existence of a Thom-Mather
neighborhood system. Other versions exist, but in each case an additional
notion is needed in order to define this cohomology: a Thom-Mather neigh-
borhood system ([7], [4] . . . , ) a Riemannian metric ([10], [17], [3], . . . ), a
PL-structure ([1], [9], . . . ), a blow-up ([2], . . . ), etc.

The perverse de Rham Theorem

(1) H

∗

p
(X) = H

t−p

∗
(X),

relates the intersection homology with the intersection cohomology. It was
first proved by Brylinski in [7]; later proofs have been given in the above
references. The involved perversities are classical perversities verifying some
monotonicity conditions. Moreover, the perversity p must lie between 0 and
t; this excludes the existence of one-codimensional strata on X.

The first proof of the de Rham Theorem for the general perversities has
been given by the author in [18] using the integration

∫
of differential forms on

simplices. Unfortunately, there is a mistake in the statement of Proposition
2.1.4 and Proposition 2.2.5: the hypothesis p ≤ t must be added. As a
consequence, the main result1 of [18] (de Rham Theorem 4.1.5) is valid for a
general perversity p verifying the condition 0 ≤ p ≤ t. In particular, we have
(1) for a general perversity p with 0 ≤ p ≤ t. Notice that one-codimensional
strata are not allowed.

In this work we prove a de Rham Theorem for any general perversity p2.
The formula (1) changes! We obtain that, in the direction cohomology 7→
homology, the integration

∫
induces the isomorphism

H

∗

p
(X) = H

t−p

∗

(
X,Xp

)
,

where
X
p

=
⋃
S�S1
p(S1)<0

S =
⋃

p(S)<0

S

(cf. Theorem 3.2.2). In the direction homology 7→ cohomology, we have the
isomorphism

H

p

∗
(X) = H

∗

max(0,t−p)
(X)

(cf. Corollary 3.2.5).
We end the work by noticing that the Poincaré duality of [7] and [18] is

still valid in our context.

1The statement of the second main result (the Poincaré duality, Theorem 4.2.7) does
not need any modification since Propositions 2.1.4 and 2.2.5 are not used for its proof.

2The one codimensional strata are finally allowed!
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1. Stratified spaces and unfoldings

We present the geometrical framework of this work, that is, the stratified
pseudomanifolds and the unfoldings. For a more complete study of these
notions, we refer the reader to, for example, [13] and [18].

In the sequel, any manifold is connected, second countable, Hausdorff, with-
out boundary, and smooth (of class C∞).

1.1. Stratifications. A stratification of a paracompact space X is a lo-
cally finite partition SX of X into disjoint smooth manifolds, called strata,
such that

S ∩ S′ 6= ∅ ⇐⇒ S ⊂ S′;
it is denoted by S � S′. Notice that (SX ,�) is a partially ordered set. A
subset of X is saturated when it is an union of a family of strata.

We say that X is a stratified space. The depth of X, denoted by depthX, is
the length of the maximal chain contained in X. It is always finite because of
the locally finiteness of SX . The minimal (resp. maximal) strata are the closed
(resp. open) strata. The open strata are the regular strata and the others are
the singular strata. We shall denote by Ssing

X the family of singular strata. The
union ΣX of singular strata is the singular part, which is a saturated closed
subset. The regular part X−ΣX is a saturated open dense subset. We require
the regular strata to have the same dimension, denoted by dimX.

For each i ∈ {−1, 0, . . . ,dimX} we consider the saturated subset

X
i

=
⋃
{S ∈ SX | dimS ≤ i}.

This gives the filtration FX
(2) XdimX

⊃ XdimX−1 ⊃ X1 ⊃ X0 ⊃ X−1 = ∅.
The main example of a stratified space is given by the following conical

construction. Consider a compact stratified space L and let cL be the cone
of L, that is, cL = L× [0, 1[

/
L× {0}. The points of cL are denoted by [x, t].

The vertex of the cone is the point ϑ = [x, 0]. This cone is naturally endowed
with the following stratification:

ScL = {{ϑ}} ∪ {S×]0, 1[ | S ∈ SL} .
For the filtration FcL we have

(cL)i =
{
{ϑ} if i = 0,
cLi−1 if i > 0.

Notice that depth cL = depthL+ 1.
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The canonical stratification of a manifold X is the family SX formed by
the connected components of X. The filtration contains just one non-empty
element: XdimX .

A continuous map (resp. homeomorphism) f : Y → X between two strati-
fied spaces is a stratified morphism (resp. isomorphism) if it sends the strata
of Y to the strata of X smoothly (resp. diffeomorphically).

1.2. Stratified pseudomanifolds. A stratified space X is a stratified
pseudomanifold when it possesses a conical local structure, that is, when for
each point x of a singular stratum S of X there exists a stratified isomorphism
ϕ : U −→ R

n × cLS , where

(a) U ⊂ X is an open neighborhood of x endowed with the induced strati-
fication,

(b) LS is a compact stratified space, called link of S,

(c) Rn × cLS is endowed with the stratification

{Rn × {ϑ}} ∪ {Rn × S′×]0, 1[| S′ ∈ SLS} ,

(d) ϕ(x) = (0, ϑ).
The pair (U,ϕ) is a chart of X containing x. An atlas A is a family

of charts covering X. A stratified pseudomanifold is normal when all the
links are connected. Notice that in this case each link is a connected normal
stratified pseudomanifold.

1.3. Unfoldings. Consider a stratified pseudomanifold X. A continuous
map L : X̃ → X, where X̃ is a (not necessarily connected) manifold, is an
unfolding if the two following conditions hold:

1. The restriction LX : L−1
X (X − ΣX) −→ X − ΣX is a local diffeomor-

phism.
2. There exist a family of unfoldings {LLS : L̃S → LS}S∈Ssing

X
and an

atlas A of X such that for each chart (U,ϕ) ∈ A there exists a com-
mutative diagram

R
n × L̃S×]− 1, 1[

ϕ̃
−−−−→ L−1

X (U)

Q

y LX
y

R
n × cLS

ϕ
−−−−→ U

where

(a) ϕ̃ is a diffeomorphism,

(b) Q(x, ζ̃, t) = (x,
[
LLS (ζ̃), |t|

]
).
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We say that X is an unfoldable pseudomanifold. This definition makes
sense because it is made by induction on depthX. When depthX = 0,
then LX is just a local diffeomorphism. For any singular stratum S the
restriction LX : L−1

X (S) → S is a fibration with fiber L̃S . The canonical
unfolding of the cone cLS is the map LcLS : c̃LS = L̃S×]−1, 1[→ cLS defined
by LcLS (ζ̃, t) =

[
LLS (ζ̃), |t|

]
.

From now on, (X,SX) is a stratified pseudomanifold endowed with an
unfolding LX : X̃ → X.

1.4. Bredon’s trick. The typical result we prove in this work looks like
the following statement:

“The differential operator f : A
∗
(X) → B

∗
(X), defined be-

tween two differential complexes on X, induces an isomor-
phism in cohomology.”

First, we prove this assertion for charts. The passage from local to global
can be accomplished using different tools, such as the following:

• Axiomatic presentation of the intersection homology (the most em-
ployed are given in [12], [7], [2], . . . ).
• Uniqueness of the minimal stratification (used in [14]).
• The generalized Mayer-Vietoris principle of [5, Chapter II] (used in

[18]).
• Bredon’s trick of [6, p. 289].

In this work we choose the last one, which may be the least technical. The
exact statement is the following:

1.4.1. Lemma. Let Y be a paracompact topological space and let U be
an open covering, closed under finite intersections. Suppose that Q(U) is a
statement about open subsets of Y , satisfying the following three properties:
(BT1) Q(U) is true for each U ∈ U ;
(BT2) Q(U), Q(V ) and Q(U ∩ V ) =⇒ Q(U ∪ V ), where U and V are open

subsets of Y ;
(BT3) Q(Ui) =⇒ Q (

⋃
iUi), where {Ui} is a disjoint family of open subsets

of Y .
Then Q(Y ) is true.

This lemma enables us to prove several analogs of 1.4. They will be “two
pass” proofs (see [6, p. 291]):

1. The topological space Y is an open subset of a conical chart of the
pseudomanifold X and the open covering U is an adapted one (see
(4)).

2. The topological space Y is the pseudomanifold X and the covering U
is {open subsets of a chart of X}.
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2. Intersection homology

The intersection homology was introduced by Goresky-MacPherson in [12],
[13]. Here we use the singular intersection homology of [14].

2.1. Perversity. Intersection cohomology requires the definition of a per-
versity parameter p. It associates an integer to each singular stratum of X,
in other words, a perversity is a map p : Ssing

X → Z. The zero perversity 0 is
defined by 0(S) = 0. The top perversity t is defined by t(S) = codimX S − 2.
Notice that the condition 0 ≤ t implies codimX S ≥ 2 for each singular stra-
tum S, and therefore the one-codimensional strata are not allowed.

The classical perversities (cf. [12], [13], . . . ), the loose perversities (cf. [14]),
and the superperversities (cf. [8], [11], . . . ), . . . are filtration-preserving maps,
that is, p(S) = p(S′) if dimS = dimS′. They also verify a monotonicity
condition and, for some of them, the one-codimensional strata are avoided.
For such perversities the associated intersection cohomology is a topological
invariant.

In our case, the perversities are stratum-preserving without any constraint.
Of course, the topological invariance is lost. But we prove that we have a
de Rham duality (between the intersection homology and the intersection
cohomology) and the Poincaré duality.

We fix a perversity p. The homologies and the cohomologies we use in this
work are with coefficients in R.

2.2. Intersection homology. First approach. A singular simplex σ : ∆
→ X is a p-allowable simplex if

(All) σ−1(S) ⊂ (dim ∆− 2− t(S) + p(S))–skeleton of ∆, for each singular
stratum S.

A singular chain ξ =
∑m
j=1rjσj ∈ S∗(X) is p-allowable if each singular

simplex σj is p-allowable. The family of p-allowable chains is a graded vector
space, denoted by AC

p

∗
(X). The associated differential complex is the complex

of p-intersection chains, that is, SC
p

∗
(X) = AC

p

∗
(X) ∩ ∂−1AC

p

∗−1
(X). Its

homology H
p

∗
(X) = H∗

(
SC

p

·
(X)

)
is the p-intersection homology of X. This

is the approach of [14]. The barycentric subdivision of an p-intersection chain
is an p-intersection chain; so, the intersection homology verifies the Mayer-
Vietoris property. It also verifies the product formula H

p

∗
(R×X) = H

p

∗
(X)

(see [12], [13], [18], . . . ).
The usual local calculation is the following (cf. [13], see also [14]), which

corrects Proposition 2.1.4 of [18].
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2.2.1. Proposition. If L is a compact stratified pseudomanifold, then

H

p

i
(cL) =


H
p

i
(L) if i ≤ t(ϑ)− p(ϑ),

0 if 0 6= i ≥ 1 + t(ϑ)− p(ϑ),

R if 0 = i ≥ 1 + t(ϑ)− p(ϑ).

Proof. For i ≤ 1 + t(ϑ) − p(ϑ) we have SC
p

i
(cL) = SC

p

i
(L×]0, 1[), which

gives H
p

i
(cL) = H

p

i
(L) if i ≤ t(ϑ)− p(ϑ).

For a singular simplex σ : ∆i → cL we define the cone cσ : ∆i+1 → cL by

cσ(x0, . . . , xi+1) = (1− xi+1) · σ
(

x0

1− xi+1
, . . . ,

xi
1− xi+1

)
.

Here, we have written r · [x, s] = [x, rs] for a point [x, s] ∈ cL and a number
r ∈ [0, 1]. In the same way, we define the cone cξ of a singular chain ξ. It
defines the linear operator

(3) c : AC
p

≥1+t(ϑ)−p(ϑ)
(cL) −→ AC

p

≥2+t(ϑ)−p(ϑ)
(cL).

Let us prove this property. We take σ ∈ AC
p

≥1+t(ϑ)−p(ϑ)
(cL) and prove that

cσ ∈ AC
p

≥2+t(ϑ)−p(ϑ)
(cL). Notice first that, for xi+1 6= 1, we have that(
x0

1− xi+1
, . . . ,

xi
1− xi+1

)
︸ ︷︷ ︸

τ(x0,...,xi+1)

∈ j − skeleton of ∆i

implies that (x0, . . . , xi+1) ∈ (j+1)–skeleton of ∆i+1. So, the subset (cσ)−1(ϑ)
is the union of {(0, . . . , 0, 1)} with the subset{

(x0, . . . , xi+1) ∈ ∆i+1 | τ(x0, . . . , xi+1) ∈ σ−1(ϑ) and xi+1 6= 1
}
,

which is included in the {(0, . . . , 0, 1)} ∪ (i− 2− t(ϑ) + p(ϑ) + 1)–skeleton of
∆i+1 and therefore in the (i+ 1− 2− t(ϑ) + p(ϑ))–skeleton of ∆i+1, since i ≥
1+t(ϑ)−p(ϑ). For each singular stratum S of L we have that (cσ)−1(S×]0, 1[)
is the subset{

(x0, . . . , xi+1) ∈ ∆i+1 | τ(x0, . . . , xi+1) ∈ σ−1(S×]0, 1[) and xi+1 6= 1
}

which is included in the (i+1−2−t(ϑ)+p(ϑ))–skeleton of ∆i+1. We conclude
that cσ ∈ AC

p

≥2+t(ϑ)−p(ϑ)
(cL). Notice that any singular simplex verifies the

formula ∂cσ = c∂σ + (−1)i+1σ, if i > 0, and ∂cσ = ϑ− σ, if i = 0.
Consider now a cycle ξ ∈ SC

p

i
(cL) with i ≥ 1 + t(ϑ) − p(ϑ) and i 6= 0.

Since ξ = (−1)i+1∂cξ, we have cξ ∈ SC
p

i+1
(cL) and therefore H

p

i
(cL) = 0.

For i = 0 ≥ 1 + t(ϑ) − p(ϑ) we get that for any point σ of cL − {ϑ} the
cone cσ is a p-allowable chain with ∂cσ = σ − ϑ. This gives H

p

0
(cL) = R. �
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In some cases, the intersection homology can be expressed in terms of the
usual homology H∗(−) (see [12]).

2.2.2. Proposition. Let X be a stratified pseudomanifold. Then:

• Hp

∗
(X) = H∗(X − ΣX) if p < 0;

• Hq

∗
(X) = H∗(X) if q ≥ t and X is normal.

Proof. We prove, by induction on the depth, that the natural inclusions
IX : S∗(X − ΣX) ↪→ SC

p

∗
(X) and JX : SC

q

∗
(X) ↪→ S∗(X) are quasi-isomor-

phisms (i.e., isomorphisms in cohomology). When the depth of X is 0, then
the above inclusions are, in fact, two identities. In the general case, we suppose
that the result is true for each link LS of X and we proceed in two steps.

First step. The operators IV and JV are quasi-isomorphisms when V is
an open subset of a chart (U,ϕ) of X.

First of all, we identify the open subset U with the product Rn × cLS
through ϕ. We define a cube as a product ]a1, b1[× · · ·×]an, bn[⊂ Rn. The
truncated cone ctLS is the quotient ctLS = LS× [0, t[/LS×{0}. Consider the
open covering

(4) V =

{
C × ctLS ⊂ V | C cube, t ∈]0, 1[

}
∪{

C × Ls×]a, b[⊂ V | C cube, a, b ∈]0, 1[
}

of V . Notice that this family is closed under finite intersections.
We apply Bredon’s trick to the covering V and the statement

Q(W ) = “ The operators IW and JW are quasi-isomorphisms”

(cf. Lemma 1.4.1). Let us verify the properties (BT1), (BT2) and (BT3).

(BT1) From the product formula and the induction hypothesis, it suffices to
prove that the operators IcLS and JcLS are quasi-isomorphisms. This
follows from the following relations:

• Hp

∗
(cLS) 2.2.1= H

p

≤t(ϑ)−p(ϑ)
(LS)

p(ϑ)<0
=== H

p

∗
(LS)

ind= H∗(LS − ΣLS )
prod
== H∗(cLS − ΣcLS ).

• For q(ϑ) = t(ϑ) we have H
q

∗
(cLS) 2.2.1= H

q

0
(LS) ind= H0(LS) norm=

R = H∗(cLS).
• For q(ϑ) > t(ϑ) we have H

q

∗
(cLS) 2.2.1= R = H∗(cLS).

(BT2) Mayer-Vietoris.
(BT3) Straightforward.

Second Step. The operators IX and JX are quasi-isomorphisms.



DE RHAM INTERSECTION COHOMOLOGY FOR GENERAL PERVERSITIES 745

Consider the open covering

V =
{
V open subset of a chart (U,ϕ) of X

}
of X. Notice that this family is closed under finite intersections. We apply
Bredon’s trick to the covering V and the statement

Q(W ) = “The operators IW and JW are quasi-isomorphisms”

(cf. Lemma 1.4.1). Let us verify the properties (BT1), (BT2) and (BT3).
(BT1) First Step.
(BT2) Mayer-Vietoris.
(BT3) Straightforward. �

2.2.3. Remark. Notice that we can replace the normality of X by the
connectedness of the links {LS | q(S) = t(S)}.

The following result will be needed in the last section.

2.2.4. Corollary. Let X be a connected normal stratified pseudomani-
fold. Then, for any perversity p, we have H

p

0
(X) = R.

Proof. We prove this result by induction on the depth. When the depth of
X is 0, then H

0

p
(X)

ΣX=∅=== H0(X) = R. Consider now the general case. Notice

that any point σ ∈ X − ΣX is a p-intersection cycle. So H
p

0
(X) 6= 0. We

prove that [σ1] = [σ2] in H
p

0
(X) for two p-allowable points. This is the case

when σ1, σ2 ∈ X − ΣX , since we know from [16] that X − ΣX is connected.
Consider now a p-intersection cycle σ1 ∈ ΣX and a chart ϕ : U → R

n × cLS
of X containing σ1. Since

H

p

0
(U) = H

p

0
(Rn × cLS)

prod
== H

p

0
(cLS)

2.2.1, ind
===== R,

we have [σ1] = [σ2] in H
p

0
(X) for some p-intersection point σ2 ∈ X − ΣX .

Therefore H
p

0
(X) = R. �

2.2.5. Relative case. The conical formula given by Proposition 2.2.1 for
the intersection homology differs from that of Proposition 3.1.1 for the in-
tersection cohomology, since we do not have H

∗

p
(cL) = H

t−p

∗
(cL) when the

perversity p is not positive. It is natural to think that the closed saturated
subset

Xp =
⋃
S�S1
p(S1)<0

S =
⋃

p(S)<0

S
loc finit
=====

⋃
p(S)<0

S

plays a key role in the de Rham Theorem. This is indeed the case.
The subset X

p
is a stratified pseudomanifold, where the maximal strata

may have different dimensions. For any perversity q (on X) we have the
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notion of a q-allowable chain as in 2.2. We denote by AC
q

∗

(
Xp

)
the complex

of these q-allowable chains. Equivalently,

AC
q

∗

(
X
p

)
= S∗

(
X
p

)
∩AC

q

∗
(X).

In order to recover the de Rham Theorem we introduce the following notion
of relative intersection homology. We denote by SC

q̄

∗

(
X,Xp

)
the differential

complex(
AC

q

∗
(X) +AC

q+1

∗

(
Xp

))
∩ ∂−1

(
AC

q

∗−1
(X) +AC

q+1

∗−1

(
Xp

))
AC

q+1

∗

(
Xp

)
∩ ∂−1

(
AC

q+1

∗−1

(
Xp

))
and by H

q

∗

(
X,X

p

)
its cohomology. Of course, we have H

q

∗

(
X,X

p

)
= H

q

∗
(X)

when X
p

= ∅, and H
q

∗

(
X,X

p

)
= H∗

(
X,X

p

)
when q ≥ t+ 2 (see also (16)).

Since the complexes defining SC
q

∗

(
X,X

p

)
verify the Mayer-Vietoris prop-

erty (they are preserved by the barycentric subdivision), the relative coho-
mology H

p

∗

(
X,X

p

)
also verifies the Mayer-Vietoris property. For the same

reason we have the product formula

H

p

∗

(
R×X,R×Xp

)
= H

p

∗

(
X,Xp

)
.

For the typical local calculation we have the following result.

2.2.6. Corollary. Let L be a compact stratified pseudomanifold. Then,
for any perversity p, we have

(5) H

t−p

i

(
cL, (cL)

p

)
=

{
H
t−p

i

(
L,L

p

)
if i ≤ p(ϑ),

0 if i ≥ 1 + p(ϑ).

Proof. When p ≥ 0, then (cL)
p

= L
p

= ∅ and (5) follows directly from
Lemma 2.2.1. Let us suppose p 6≥ 0, which gives (cL)

p
= c

(
L
p

)
6= ∅, with

c∅ = {ϑ}. We also use the following equalities:

(6) AC
t−p

j
(cL) = AC

t−p

j
(L×]0, 1[) for j ≤ p(ϑ) + 1,

and

(7) AC
t−p+1

j

(
(cL)

p

)
= AC

t−p+1

j

(
Lp×]0, 1[

)
for j ≤ p(ϑ),

We proceed in four steps according to the value of i ∈ N.

First Step. i ≤ p(ϑ)− 1.
We have

SC
t−p

j

(
cL, (cL)

p

)
= SC

t−p

j

(
L×]0, 1[, Lp×]0, 1[

)
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for each j ≤ p(ϑ) (cf. (6) and (7)) and therefore

H

t−p

i

(
cL, (cL)

p

)
= H

t−p

i

(
L,L

p

)
.

Second Step. i = p(ϑ).
The inclusion

SC
t−p

∗

(
L×]0, 1[, L

p
×]0, 1[

)
↪→ SC

t−p

∗

(
cL, (cL)

p

)
induces the epimorphism

I : H
t−p

p(ϑ)

(
L×]0, 1[, L

p
×]0, 1[

)
−→ H

t−p

p(ϑ)

(
cL, (cL)

p

)
(cf. (6) and (7)). It remains to prove that I is a monomorphism. Consider[

α+ β
]
∈ H

t−p

p(ϑ)

(
L×]0, 1[, Lp×]0, 1[

)
with I

([
α+ β

])
= 0. So we have

(a) α ∈ AC
t−p

p(ϑ)
(L×]0, 1[) ⊂ AC

t−p+1

p(ϑ)
(L×]0, 1[),

(b) β ∈ AC
t−p+1

p(ϑ)

(
Lp×]0, 1[

)
,

and there exist

(c) A ∈ AC
t−p

p(ϑ)+1
(cL)

(6)
= AC

t−p

p(ϑ)+1
(L×]0, 1[),

(d) B ∈ AC
t−p+1

p(ϑ)+1

(
(cL)

p

)
,

(e) C ∈ AC
t−p+1

p(ϑ)

(
(cL)

p

)
∩ ∂−1

(
AC

t−p+1

p(ϑ)−1

(
(cL)

p

))
(7)
=

AC
t−p+1

p(ϑ)

(
L
p
×]0, 1[

)
∩ ∂−1

(
AC

t−p+1

p(ϑ)−1

(
L
p
×]0, 1[

))
with

(f) α+ β = ∂A+ ∂B + C.

Since ∂A ∈ AC
t−p+1

p(ϑ)
(L×]0, 1[) (cf. (c)), the conditions (a), (b), (d), (e)

and (f) give

(g) ∂B ∈ AC
t−p+1

p(ϑ)

(
L
p
×]0, 1[

)
.

We conclude that

∂A = α+ (β − ∂B − C) ∈ AC
t−p

p(ϑ)
(L×]0, 1[) +AC

t−p+1

p(ϑ)

(
L
p
×]0, 1[

)
,

which defines the element

A ∈ SC
t−p

p(ϑ)+1

(
L×]0, 1[, L

p
×]0, 1[

)
.
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If we denote by ∂ the derivative of SC
t−p

∗

(
L×]0, 1[, L

p
×]0, 1[

)
, we have[

α+ β
]

=
[
∂A+ ∂B + C

]
=
[
∂ A+ ∂B + C

]
(e),(g)
===

[
∂ A

]
= 0.

Therefore the operator I is a monomorphism.

Third step. i ≥ 1 + p(ϑ) and i 6= 0.
Consider a cycle ξ on the complex SC

t−p

i

(
cL, (cL)

p

)
. Let

ξ = ξ1 + ξ2 ∈ AC
t−p

i
(cL) +AC

t−p+1

i

(
(cL)

p

)
with ∂ξ ∈ AC

t−p+1

i−1

(
(cL)

p

)
. Then we have

cξ = cξ1 + cξ2 ∈ AC
t−p

i+1
(cL) +AC

t−p+1

i+1

(
(cL)

p

)
and c∂ξ ∈ AC

t−p+1

i

(
(cL)

p

)
(cf. (3)). Since

(8) ∂ cξ = (−1)i+1ξ + c∂ξ

is an element of AC
t−p

i
(cL) + AC

t−p+1

i

(
(cL)

p

)
, the cone cξ belongs to

SC
t−p

i+1

(
cL, (cL)

p

)
. This formula gives ∂c∂ξ = (−1)i∂ξ and therefore

c∂ξ ∈ AC
t−p+1

i

(
(cL)

p

)
∩ ∂−1

(
AC

t−p+1

i−1

(
(cL)

p

))
.

Applying (8) we obtain that the class
[
ξ
]

vanishes on H
t−p

i

(
cL, (cL)

p

)
.

Fourth Step. i = 0 ≥ 1 + p(ϑ).
For any point σ ∈ AC

t−p

0
(cL) the cone cσ is a (t− p)-allowable chain with

∂cσ = σ− ϑ. Since the point ϑ belongs to the complex AC
t−p+1

0

(
(cL)

p

)
, one

gets that H
t−p

0

(
cL, (cL)

p

)
= 0. �

2.3. Intersection homology. Second approach (see [18]). In order
to integrate differential forms on allowable simplices, we need to introduce
some amount of smoothness on these simplices. Since X is not a manifold, we
work in the manifold X̃. In fact, we consider those allowable simplices which
are liftable to smooth simplices in X̃.

2.3.1. Linear unfolding. The unfolding of the standard simplex ∆, rel-
ative to the decomposition ∆ = ∆0 ∗ · · · ∗∆j , is the map

µ∆ : ∆̃ = c̄∆0 × · · · × c̄∆j−1 ×∆j −→ ∆



DE RHAM INTERSECTION COHOMOLOGY FOR GENERAL PERVERSITIES 749

defined by

µ∆([x0, t0], . . . , [xj−1, tj−1], xj)

= t0x0 + (1− t0)t1x1 + · · ·+ (1− t0) · · · (1− tj−2)tj−1xj−1

+ (1− t0) · · · (1− tj−1)xj ,

where c̄∆i denotes the closed cone ∆i × [0, 1]
/

∆i × {0} and [xi, ti] a point
of it. This map is smooth and its restriction µ∆ : int(∆̃) −→ int(∆) is a
diffeomorphism (int(P ) = P − ∂P is the interior of the polyhedron P ). It
sends a face U of ∆̃ to a face V of ∆ and the restriction µ∆ : int(U)→ int(V )
is a submersion.

On the boundary ∂∆̃ we find not only the blow-up ∂̃∆ of the boundary
∂∆ of ∆, but also the faces

F = c̄∆0 × · · · × c̄∆i−1 × (∆i × {1})× c̄∆i+1 × · · · × c̄∆j−1 ×∆j

with i ∈ {0, . . . , j − 2} or i = j − 1 and dim ∆j > 0, which we call bad faces.
This gives the decomposition

(9) ∂∆̃ = ∂̃∆ + δ∆̃.

Notice that

(10) dimµ∆(F ) = dim(∆0 ∗ · · · ∗∆i) < dim ∆− 1 = dimF.

2.3.2. Liftable simplices. A liftable simplex is a singular simplex σ : ∆→
X verifying the following two conditions:

(Lif1) Each pull back σ−1(Xi) is a face of ∆.
(Lif2) There exists a decomposition ∆ = ∆0 ∗ · · · ∗ ∆j and a smooth map

(called lifting) σ̃ : ∆̃→ X̃ with LX◦σ̃ = σ◦µ∆.

A singular chain ξ =
∑m
j=1rjσj is liftable if each singular simplex σj is

liftable. Since a face of a liftable simplex is again a liftable simplex, the
family L∗(X) of liftable chains is a differential complex. We denote by
LC

p

∗
(X) = AC

p

∗
(X)∩L∗(X) the graded vector space of the p-allowable liftable

chains and by RC
p

∗
(X) = LC

p

∗
(X)∩ ∂−1LC

p

∗−1
(X) the associated differential

complex.
The barycentric subdivision of an liftable chain is an liftable chain (cf. [3]);

so, the homology H∗

(
RC

p

·
(X)

)
verifies the Mayer-Vietoris property. It also

verifies the product formula H∗
(
RC

p

·
(R×X)

)
= H∗

(
RC

p

·
(X)

)
. For the typ-

ical local calculation we have the following result, which corrects Proposition
2.2.5 of [18].
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2.3.3. Proposition. Let L be a compact unfoldable pseudomanifold. Con-
sider on cL the canonical induced unfolding. Then

Hi

(
RC

∗

p̄
(cL)

)
=


H
i

(
RC

∗

p̄
(L)
)

if i ≤ t(ϑ)− p(ϑ),

0 if 0 6= i ≥ 1 + t(ϑ)− p(ϑ),

R if 0 = i ≥ 1 + t(ϑ)− p(ϑ).

Proof. We proceed as in Proposition 2.2.1. In fact, it suffices to prove
that the cone cσ : c∆ → cL of a p-allowable liftable simplex σ : ∆ → cL,
with dim ∆ ≥ 1 + t(ϑ)− p(ϑ), is a p-allowable liftable simplex. Let us verify
properties (All)cσ, (Lif1)cσ and (Lif2)cσ.

Put c∆ = ∆ ∗ {Q} with cσ(tP + (1− t)Q) = t · σ(P ). We have

(cσ)−1 (cL)i =

{
{Q} if σ−1(cL)i = ∅,

c(σ−1(cL)i) if σ−1(cL)i 6= ∅,
for i ≥ 0.

We obtain (Lif1)cσ from (Lif1)σ. To prove the property (All)cσ we consider
a stratum S ∈ ScL. We have

(cσ)−1(S) =



{Q} if S = {ϑ};σ−1(ϑ) = ∅

c
(
σ−1(ϑ)

)
if S = {ϑ};σ−1(ϑ) 6= ∅

∅ if S 6= {ϑ};σ−1(S) = ∅

c
(
σ−1(ϑ)

)
− {Q} if S 6= {ϑ};σ−1(S) 6= ∅

(All)σ⊂



0− skeleton of c∆

(1+(dim ∆−2−t(ϑ)+p(ϑ)))−skeleton of c∆

∅

(1+(dim ∆−2−t(S) + p(S)))−skeleton of c∆

⊂ (dim c∆− 2− t(ϑ) + p(ϑ)))− skeleton of c∆,

since dim ∆ ≥ 1+ t(ϑ)−p(ϑ). Now we prove (Lif2)cσ. Consider the decompo-
sition ∆ = ∆0 ∗ · · · ∗∆j given by σ, and the smooth map σ̃ = (σ̃1, σ̃2) : ∆̃→
L̃×]−1, 1[ given by (Lif2)σ. We have the decomposition c∆ = {Q}∗∆0∗· · ·∗∆j

whose lifting
µc∆ : c̃∆ = c{Q} × ∆̃ −→ c∆

is defined by
µc∆([Q, t], x) = tQ+ (1− t)µ∆(x).

Let c̃σ : c{Q} × ∆̃ −→ L̃×]− 1, 1[ be the smooth map defined by

c̃σ([Q, t], x) = (σ̃1(x), (1− t) · σ̃2(x)).
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Finally, for each ([Q, t], x) ∈ c{Q} × ∆̃ we have

cσµc∆([Q, t], x) = cσ(tQ+ (1− t)µ∆(x)) = (1− t) · σµ∆(x)

= (1− t) · LcLσ̃(x) = (1− t) [LLσ̃1(x), |σ̃2(x)|]

= LcLc̃σ([Q, t], x).

This gives (Lif2)cσ. �

2.3.4. Relative case. Following 2.2.5 we consider

LC
q

∗

(
X
p

)
= S∗

(
X
p

)
∩ LC

q

∗
(X).

and we define the relative complex RC
q̄

∗

(
X,X

p

)
by(

LC
q

∗
(X) + LC

q+1

∗

(
X
p

))
∩ ∂−1

(
LC

q

∗−1
(X) + LC

q+1

∗−1

(
X
p

))
LC

q+1

∗

(
Xp

)
∩ ∂−1

(
LC

q+1

∗−1

(
Xp

)) .

We have LC
q

∗

(
X,Xp

)
= LC

q

∗
(X) when Xp = ∅.

Since the complexes defining RC
p̄

∗
(X,Z) verify the Mayer-Vietoris property

(they are preserved by the barycentric subdivision), the relative cohomology
H∗

(
RC

p

·
(X,Z)

)
verifies the Mayer-Vietoris property. For the same reason

we have the product formula

H∗

(
RC

p

·
(R×X,R× Z)

)
= H∗

(
RC

p

·
(X,Z)

)
.

For the typical local calculation we have (see [18]):

2.3.5. Corollary. Let L be a compact unfoldable pseudomanifold. Con-
sider on cL the canonical induced unfolding. Then

H
i

(
RC

t−p

∗

(
cL, (cL)

p

))
=

{
H
i

(
RC

t−p

∗

(
L,L

p

))
if i ≤ p(ϑ),

0 if i ≥ 1 + p(ϑ).

Proof. The proof is the same as that of Corollary 2.2.6. �

2.4. Comparing the two approaches. When the perversity p lies be-
tween 0 and t, then we have the isomorphism H

p

∗
(X) = H∗

(
RC

p

·
(X)

)
(cf.

[18]). We are going to check that this property extends to any perversity for
the absolute case and the relative case.

2.4.1. Proposition. For any perversity p, the inclusion RC
p

∗
(X) ↪→

SC
p

∗
(X) induces the isomorphism H∗

(
RC

p

·
(X)

)
= H

p

∗
(X).
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Proof. We proceed by induction on the depth. When depthX = 0, then
SC

p

∗
(X) = RC

p

∗
(X) = S∗(X). In the general case, we use Bredon’s trick

(see the proof of Proposition 2.2.2) and we reduce the problem to a chart
X = R

n × cLS . Here, we apply the product formula and we reduce the
problem to X = cLS . We end the proof by applying Propositions 2.2.1, 2.3.3
and the induction hypothesis. �

2.4.2. Proposition. For any perversity p, the inclusion

RC
t−p

∗

(
X,X

p

)
↪→ SC

t−p

∗

(
X,X

p

)
induces the isomorphism

H∗

(
RC

t−p

·

(
X,X

p

))
= H

t−p

∗

(
X,X

p

)
.

Proof. We proceed by induction on the depth. If depthX = 0, then
SC

t−p

∗

(
X,X

p

)
= RC

t−p

∗

(
X,X

p

)
= S∗(X). In the general case, we use Bre-

don’s trick (see the proof of Proposition 2.2.2) and we reduce the problem to
a chart X = R

n × cLS with X
p

= R
n × (cLS)

p
. Here, we apply the product

formula and we reduce the problem to (X,X
p
) =

(
cLS , (cLS)

p

)
. We end the

proof by applying Corollaries 2.2.6, 2.3.5 and the induction hypothesis. �

3. Intersection cohomology

The de Rham intersection cohomology was introduced by Brylinski in [7].
In our paper we use the presentation of [18].

3.1. Perverse forms. A liftable form is a differential form ω ∈
Ω
∗
(X − ΣX) possessing a lifting, that is, a differential form ω̃ ∈ Ω

∗
(
X̃
)

verifying ω̃ = L∗Xω on L−1
X (X − ΣX).

Given two liftable differential forms ω, η, we have the equalities

(11) ω̃ + η = ω̃ + η̃, ω̃ ∧ η = ω̃ ∧ η̃, d̃ω = dω̃.

We denote by Π
∗
(X) the differential complex of liftable forms.

Recall that, for each singular stratum S ∈ Ssing

X , the restriction LS : L−1
S (S)

−→ S is a fiber bundle. For a differential form η ∈ Ω
∗(L−1

S (S)
)

we define its
vertical degree as

vS(η) = min

j ∈ N
∣∣∣∣∣

iξ0 · · · iξjη = 0
for each family of vector fields
ξ0, . . . ξj tangent to fibers of

LS : L−1
S (S) −→ S


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(cf. [7], [18]). The perverse degree ‖ω‖S of ω relative to S is the vertical
degree of the restriction ω̃ relative to LS : L−1

S (S) −→ S, that is,

‖ω‖S = vS

(
ω̃|L−1

S (S)

)
.

The differential complex of p-intersection differential forms is

Ω
∗

p
(X) = {ω ∈ Π

∗
(X) | max (||ω||S , ||dω||S) ≤ p(S) ∀S ∈ S

sing

X }.

The cohomology H
∗

p
(X) of this complex is the p-intersection cohomology of X.

The intersection cohomology verifies two important computational properties:
the Mayer-Vietoris property and the product formula H

∗

p
(R×X) = H

∗

p
(X).

The usual local calculations (see [7], [18]) give:

3.1.1. Proposition. If L is a compact stratified pseudomanifold, then

H

i

p
(cL) =

{
H
i

p
(L) if i ≤ p(ϑ),

0 if i > p(ϑ).

3.2. Integration. The relationship between intersection homology and
cohomology is established by using integration of differential forms on sim-
plices. Since X is not a manifold, we work on the blow-up X̃.

Consider a liftable simplex ϕ : ∆→ X. We know that there exists a stratum
S containing σ(int(∆)). Since µ∆ : int(∆̃) → int(∆) is a diffeomorphism,
σ = LX◦σ̃◦µ−1

∆ : int(∆) −→ S is a smooth map.
Consider now a liftable differential form ω ∈ Π

∗
(X) and define the integra-

tion as

(12)
∫
σ

ω =


∫

int(∆)
σ∗ω if S a regular stratum (i.e., σ(∆) 6⊂ ΣX),

0 if S a singular stratum (i.e., σ(∆) ⊂ ΣX).

This definition makes sense, since

(13)
∫

int(∆)

σ∗ω =
∫

int(∆̃)

σ̃∗ω̃ =
∫

∆̃

σ̃∗ω̃.

By linearity, we have the linear pairing∫
: Π

∗
(X) −→ Hom (L∗(X),R) .

This operator commutes with the differential d in some cases.

3.2.1. Lemma. If p is a perversity, then the integration operator∫
: Ω
∗

p
(X)→ Hom

(
RC

t−p

∗
(X),R

)
is differential pairing.
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Proof. Consider a liftable p-allowable simplex σ : ∆i → X with σ(∆) 6⊂ ΣX
and ω ∈ Ω

i−1

q
(X). It suffices to prove

(14)
∫
σ

dω =
∫
∂σ

ω.

The boundary of ∆ can be written as ∂∆ = ∂1∆ + ∂2∆, where ∂1∆ (resp.
∂2∆) is composed of the faces F of ∆ with σ(F ) 6⊂ ΣX (resp. σ(F ) ⊂ ΣX).
This gives the decomposition (see (9))

∂∆̃ = ∂̃1∆ + ∂̃2∆ + δ∆̃.

We have the equalities∫
σ

dω
(13)
==

∫
∆̃

σ̃∗d̃ω
(11)
==

∫
∆̃

dσ̃∗ω̃
Stokes====

∫
∂∆̃

σ̃∗ω̃

and ∫
∂σ

ω
(12),(13)
===

∫
∂̃1∆

σ̃∗ω̃.

So the equality (14) becomes∫
δ∆̃

σ̃∗ω̃ +
∫
∂̃2∆

σ̃∗ω̃ = 0.

The proof will be complete once we show that σ̃∗ω̃ = 0 on F , where the face F
• is a bad face, or
• verifies σ(F ) ⊂ ΣX .

Let C be the face µ∆(F ) of ∆ and S the stratum of X containing the
subset σ(int(C)). Notice that the condition (All) implies

(15) dimC ≤ dimF + 1− 2− t(S) + (t(S)− p(S)) = dimF − 1− p(S).

We have the following commutative diagram:

int(F ) σ̃−−−−→ L−1
X (S)

µ∆

y LX
y

int(C) σ−−−−→ S

It suffices to prove that the vertical degree of σ̃∗ω̃ relative to µ∆ is strictly
lower than the dimension of the fibers of µ∆, that is,

vS (σ̃∗ω̃) < dimF − dimC.

We distinguish two cases:
• When S is a regular stratum, the differential form ω is defined on S,

and we have
σ̃∗ω̃ = σ̃∗L∗Xω = µ∗∆σ

∗ω,
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which is a basic form relative to µ∆. So, since F is a bad face,

vS (σ̃∗ω̃) ≤ 0
(10)
< dimF − dimC.

• When S is a singular stratum, we have

vS (σ̃∗ω̃) ≤ ||ω||S ≤ p(S)
(15)

≤ dimF − dimC − 1 < dimF − dimC.

This ends the proof. �

The above pairing induces the pairing∫
: H

∗

p
(X) −→ Hom

(
H

t−p

∗
(X),R

)
(cf. Proposition 2.4.1) which is not an isomorphism: For a cone cL we have
Proposition 2.2.1 and Proposition 3.1.1. The problem appears when negative
perversities are involved. For this reason we consider the relative intersection
homology. Since the integration

∫
vanishes on ΣX ,∫

: Ω
∗

p
(X) −→ Hom

(
RC

t−p

∗

(
X,Xp

)
,R
)
.

is a well defined differential operator. We obtain the de Rham duality (in the
direction cohomology 7→ homology):

3.2.2. Theorem. Let X be an unfoldable pseudomanifold. If p is a per-
versity, then the integration induces the isomorphism

H

∗

p
(X) = Hom

(
H

t−p

∗

(
X,X

p

)
;R
)
.

Proof. Following Proposition 2.4.2 it suffices to prove that the pairing∫
: Ω
∗

p
(X) −→ Hom

(
RC

t−p

∗

(
X,Xp

)
,R
)
.

induces an isomorphism in cohomology. We proceed by induction on the
depth. If depthX = 0, then X

p
= ∅ and we have the usual de Rham theorem.

In the general case, we use Bredon’s trick (see the proof of Proposition 2.2.2)
and reduce the problem to a chart X = R

n × cLS with Xp = R
n × (cLS)

p
.

Then we apply the product formula and we reduce the problem to (X,X
p
) =(

cLS , (cLS)
p

)
. We end the proof by applying Corollary 2.2.6, Proposition

3.1.1 and the induction hypothesis. �

In particular, we have the deRham isomorphism H
∗

p
(X) =H

t−p

∗
(X) when

p ≥ 0.
The intersection cohomology can be expressed in terms of the usual coho-

mology H
∗
(−) in some cases (see [7]).
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3.2.3. Proposition. Let X be an unfoldable pseudomanifold. Then we
have:

• H∗
p
(X) = H

∗
(X − ΣX) if p > t.

• H∗
q
(X) = H

∗(
X,X

q

)
if q ≤ 0 and X is normal.

Proof. By the above theorem it suffices to prove that

H

t−p

∗
(X) = H∗(X − ΣX)

and

(16) H

t−q

∗

(
X,Xq

)
= H∗

(
X,Xq

)
.

The first assertion follows directly from Proposition 2.2.2. For the second one,
we consider the differential morphism A defined between(

AC
t−q

∗
(X) +AC

t−q+1

∗

(
Xq

))
∩ ∂−1

(
AC

t−q

∗−1
(X) +AC

t−q+1

∗−1

(
Xq

))
AC

t−q+1

∗

(
Xq

)
∩ ∂−1

(
AC

t−q+1

∗−1

(
Xq

))
and S∗(X)/S∗

(
X
q

)
by A{ξ} = {ξ}. We prove, by induction on the depth,

that the morphism A is a quasi-isomorphism. When the depth of X is 0, then
A is the identity. In the general case, we use Bredon’s trick (see the proof of
Proposition 2.2.2) and we reduce the problem to a chart X = R

n × cLS with
Xq = R

n × (cLS)
q
. Then we apply the product formula and we reduce the

problem to
(
cLS , (cLS)

q

)
. We have three cases:

• q(ϑ) < 0 . Then (cLS)
q

= c(LS)
q
6= ∅ and we have

H

t−q

∗

(
cLS , (cLS)

q

)
2.2.6= 0=H∗

(
cLS , c(LS)

q

)
=H∗

(
cLS , (cLS)

q

)
.

• q(ϑ) = 0 and q 6= 0 on LS . Then (cLS)
q

= c(LS)
q
6= ∅ and we have

H

t−q

∗

(
cLS , (cLS)

q

)
2.2.6= H

t−q

0

(
LS , (LS)

q

)
ind= H0

(
LS , (LS)

q

)
norm= 0 = H∗

(
cLS , (cLS)

q

)
.

• q = 0. Then (cLS)
q

= (LS)
q

= ∅ and we have

H

t−q

∗

(
cLS , (cLS)

q

)
2.2.6= H

t−q

0

(
LS , (LS)

q

)
ind= H0

(
LS , (LS)

q

)
norm= R = H∗

(
cLS , (cLS)

q

)
.

This ends the proof. �

3.2.4. Remark. Notice that we can replace the normality of X by the
connectedness of the links {LS | q(S) = 0}. In particular, we have H

∗

q
(X) =

H
∗
(X,ΣX) when q < 0 without the normality condition.
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In the direction homology 7→ cohomology we have the following de Rham
theorem:

3.2.5. Corollary. Let X be a normal unfoldable pseudomanifold. If p
is a perversity, then we have the isomorphism

H

p

∗
(X) = H

∗

max(0,t−p)
(X),

Proof. Since X
max(0,t−p)

= ∅, the cohomology H
∗

max(0,t−p)
(X) is isomorphic

to
H

t−max(0,t−p)

∗
(X) = H

min(p,t)

∗
(X)

(cf. Theorem 3.2.2). It suffices to prove that the inclusion SC
min(p,t)

∗
(X) ↪→

SC
p

∗
(X) induces an isomorphism in cohomology. We proceed by induction on

the depth. When the depth of X is 0, then SC
min(p,t)

∗
(X) = SC

p

∗
(X) = S∗(X).

In the general case, we use Bredon’s trick (see the proof of Proposition 2.2.2)
and we reduce the problem to a chart X = R

n × cLS . We apply the product
formula and we reduce the problem to X = cLS . Now, we have two cases:

• t(ϑ) < p(ϑ). Then

H

min(p,t)

∗
(cLS) 2.2.1= H

min(p,t)

0
(LS) ind= H

p

0
(LS)

2.2.1,2.2.4
===== H

p

∗
(cLS).

• t(ϑ) ≥ p(ϑ). Then

H

min(p,t)

∗
(cLS) 2.2.1= H

min(p,t)

≤t(ϑ)−p(ϑ)
(LS) ind= H

p

≤t(ϑ)−p(ϑ)
(LS)

2.2.1= H

p

∗
(cLS).

This ends the proof. �

3.2.6. Remark. Notice that we can replace the normality of X by the
connectedness of the links {LS | p(S) > t(S)}.

3.3. Poincaré duality. The intersection homology was introduced for
the purpose of extending the Poincaré duality to singular manifolds (see [12]).
The pairing is given by the intersection of cycles. For manifolds the Poincaré
duality also derives from the integration of the wedge product of differential
forms. This is also the case for stratified pseudomanifolds.

Let consider a compact and orientable stratified pseudomanifold X, that
is, the manifold X−ΣX is an orientable manifold. Let m be the dimension of
X. It was proved in [7] (see also [18]) that, for a perversity p, with 0 ≤ p ≤ t,
the pairing P : Ω

i

p
(X)× Ω

m−i

t−p
(X) −→ R, defined by P (α, β) =

∫
X−ΣX

α ∧ β,
induces the isomorphism H

∗

p
(X) = H

m−∗

t−p
(X). The same proof works for any

perversity. For example, if p < 0 or p > t, we obtain the Lefschetz duality
H
∗
(X,ΣX) = H

m−∗
(X − ΣX) (cf. Proposition 3.2.3 and Remark 3.2.4).
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