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ABSOLUTE CONTINUITY OF PERIODIC SCHRODINGER
OPERATORS WITH POTENTIALS IN THE KATO CLASS

ZHONGWEI SHEN

ABSTRACT. We consider the Schrédinger operator —A + V in RY with
periodic potential V' in the Kato class. We show that, if d =2 or d = 3,
the spectrum of —A + V' is purely absolutely continuous.

1. Introduction

Let V be a real valued measurable function on R?, d > 2. V is said to
belong to the Kato class K if

(1.1) lim sup / L)lgf; =0, ford?>3,
70 xeRrd ly—x|<r |y - X|

(1.2) lim sup / V(y)|In{ly—x|"'} dy =0, ford=2.
"0 xeRrd Jly—x|<r

It is well known that, if V' € K, then the quadratic form associated with
—A+V defines a unique self-adjoint operator which we also denote by —A+V
[7]. We refer the reader to [18] for the naturalness of the Kato class in the
study of LP properties of the semigroup e *(=2+V)_ The purpose of this paper
is to show that, if d =2 or d = 3 and V € K, is a real periodic function on
R?, then the spectrum of —A + V is purely absolutely continuous.

MAIN THEOREM. Let A = (ajr)axa be a symmetric, positive-definite ma-
trix with real constant entries. Let V € Ky be a real periodic function on
R, Ifd = 2 or d = 3, then the spectrum of operator DADT 4+ V is purely
absolutely continuous where D = —iV and DADT = Zj,k Dja;iDy,.

A few remarks are in order.

REMARK 1.3. For a Schréodinger operator —A + V' with periodic po-
tential V', the absolute continuity of the spectrum was first established by
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L. Thomas [21] in R® under the assumption V € L2 (R3). Thomas’ result
was subsequently extended to R? by M. Reed and B. Simon [13] under the
assumption V € LI (R?), where r > d—1ifd >4 and r =2 if d = 2 or
d = 3. In [4] L. Danilov applied the approach of Thomas to the Dirac operator
with a periodic potential. Recently, the absolute continuity of the magnetic
Schrédinger operator (—iV — A(x))? 4V (x) with periodic potentials A and V
was investigated by R. Hempel and I. Herbst [5], [6], M. Birman and T. Suslina
[1], [2], [3], A. Morame [12], and A. Sobolev [19]. In particular, the results in
[2] and [3], pertaining to the case —A + V, give the absolute continuity for
VeLl (RY), wherep>1ifd=2,p=d/2ifd=3ord=4,andp=d—2

if d > 5. In [16], the author established the absolute continuity of —A + V'

under the condition V' € L;io/ C2 (R4), d > 3. This is best possible in the context

of the LP spaces, in the sense that, under the periodicity condition, L{io/ C2 is
the largest space for which the self-adjoint operator —A + V' may be defined

by a quadratic form. The case V € weak-L%/? was also studied in [16].

REMARK 1.4. In [17] the author investigated the periodic Schrédinger
operator —A 4+ V' with potential V' in the Morrey—Campanato class. The
author showed that, if d > 3, p € ((d — 1)/2,d/2], and

1/p
(1.5) lim sup sup 72 {id / [V (y)|P dy} < e(p,d,Q),
r—0  xeQ ™ Jly—x|<r

where £(p,d, Q) > 0 and 2 is a periodic cell for V', then —A + V has purely
absolutely continuous spectrum. This improves the L%? and weak-L%? re-
sults in [16]. We point out that the Kato class considered in this paper is not
comparable with the Morrey—Campanato class for d > 3 and p > 1. Indeed,
one can construct a periodic potential V in R? such that

1
(1.6) V@)~ —5———3
[x'|* [In(|x])]
where x’ = (zg,23). Then V € K3 if § > 2, but V does not satisfy (1.5) since
V ¢ LY (R?) for any p > 1. On the other hand, if

loc
1
[x[?[In(|x])[°
then V satisfies (1.5) for 1 < p < 3/2, if § > 0. However, V € K3 if and

only if § > 1. Clearly, in the two-dimensional case, our result improves the
LP (p > 1) result in [2].

x| =0,

(1.7) |V (x)] as |x| —0,

REMARK 1.8. By a change of coordinates, we may assume that V is pe-
riodic with respect to the lattice (27Z)<.

Our main theorem is proved by using the approach of L. Thomas [21] and
a new pointwise estimate on the kernel function of a certain integral operator.
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To be more precise, let Q = [0,27)¢ ~ R?/(277Z)? = T?. We consider a family
of operators

(1.9) Hy(za+b) = (D +za+b)A(D + za+b)T +V, z € C,

defined on L?(T9) with a, b € R? fixed. Using the Floquet decomposition
and Thomas’ argument, we may reduce the main theorem to the problem of
showing that the family of operators {Hy (za + b): z € C} has no common
eigenvalues. To this end, we will show that, for some appropriately chosen
aeRY,

(1.10) H{Hv(za+b)}‘1)

as  p — 00,
L1(T4)—L1(Td)

where (b,a) =0, 2 = § +ip, and J is some fixed number depending on a and
b.
To prove (1.10), the key step is to show that

1.11 H H b *’
(1.11) VAHo(za+b)} ol

Coup [ VDY
x€QJQ |y—X|

Csup/{1+‘1n\x—y|’}|V(y)\dy, ifd=2,
xeQ JO

if d = 3,

where Hy(za +b) = (D + za + b)A(D + za + b)T. This will be done by
establishing the following pointwise estimate on the kernel function G,(x,y)
of the operator {Hy(za + b)}~!:
¢
(1.12) Go(x,y) < ¢ x=yI
C{l+|nx—-yl|}, ifd=2.

if d =3,

This paper is organized as follows. In Sections 2 and 3 we prove the kernel
function estimate (1.12), and in Section 4 we prove the Main Theorem.

Throughout the rest of this paper we assume that d = 2 or d = 3, and that
V € K, is periodic with respect to the lattice (27Z)%. We use || - ||, to denote
the norm in LP(T?). Finally we use C and c¢ to denote positive constants,
which may depend on the matrix A, and which are not necessarily the same
at each occurrence.

2. Some preliminaries
We begin by choosing a = (a1, ...,aq) € R? such that
(2.1) laj=1, ad=(sg,0,---,0), s9>0.
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For b = (by, -+ ,bs) € R? with (b,a) = 0 and |b| < V/d, let

1 /1
2.2 b=—|=—0b1]).
22) ~(5-n)
Note that a; > 0 since ada” = sga; > 0. We consider the operator
(2.3) Ho(k) = (D + k)A(D + k)T

defined on L?(T?), where
(2.4) k=(0+ip)a+b and p>1.
For ¢ € L1(), let

N 1 —i(n,y
(2.5) (n) = W/Qe "p(y) dy.
We may write
h(m)ei(nx)
(2.6) {Ho(1)} (%) = > (n Jrpi))A(n +K)T

nezd
for ¢ € C>°(T9). Using (2.4) and (2.1), it is easy to see that
(2.7) (m+k)Amn+k)" = (n+da+b)A(n+da+b)"
— p*spay + 2ipso(ny + day + by).
By (2.2) we have
|(n+k)An + k)T’ > 2pso |n1 + day + by

1
= 2psp |n1 + 3

> P30,

since ni is an integer.
We now choose n € C°°(R,) such that n(r) = 1 if r > s, and n(r) = 0 if
0 <r < s%/2. Then,
|+ k) Am+ k)|
7 e

>:1 for any n € Z%.

It follows that

)y (| 1) A 107 /02)
(n+k)A(n+ k)T

(28)  {Ho(l)} "w(x) = )

nezd

=, Gp(x —y)(y)dy,
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where
! e @ (| + K) A+ K)T[* /0?)
(2m)d (n+k)A(n + k)T

(29) Gyl =
nezd

Note that, by the Plancherel theorem, we have G, € L?(Q)ifd=2ord=3.
Let

(2.10)  @(&,p) = EAET — pPsoar + 2ipsobr, where £ = (&1,...,&a) € R
Then,

n (1t 0 /o)

2.11 h,(€) = € L*(R%).
(2.11) p(€) ) (RY)
We denote its inverse Fourier transform by F,(x), i.e.,
(2.12) Fylx) = (1)) = [ ().

Using the fact that (—x)”?F,(x) is the inverse Fourier transform of D”h,(¢),
one sees that

1
Fy(x)=0 (W) as |x| — oo
for any NV > 1. It follows that

n(l(n+k)A(n+k)T\2/p2) _n(le(m+dsa+b,p)l?/p?)

= =h da+b

B AT KT o(n+ 62t b p) oo+ oatb)

1 —i(n+da X

1 / —i(n+da+b,x+27wm)
= e M\NTOATLXTEIM | (% + 27rm) dx

(QW)d m%d Q ’

1 . .
— (2 )d / efz(n,x) Z 671(6a+b,x+27rm)Fp(x+2ﬂ,m) dx.

)" Ja

meZd

In view of (2.9), this implies that
1

(2m)

(2.13) G,(x) = D emiOathxtamm B (x4 2rm),

meZd

which is a form of Poisson summation formula [20]. In particular,
1

(2.14) G0l < g7 3 1o+ 2mm).

nezd

To estimate the function F,(x), we first note that

o(&,p) = PP (&/p,1)
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and

" (p2 |80(§/P»1)|2>

T pPe(E/e])
It follows that
Fy(x) = (hy)" (x) = p** (%) (px).
Let
(2.15) fo(x) = (M) (x).
e(1)
Then,
(2.16) Fy(x) = p?72 f,(px).
Note that
(2.17) P&, 1) =Y aéién — som + 2isok,
ik

2
(&, D)I” = ‘Zajkfjﬁk - Soal‘ +4s3et.
Jik

A direct computation yields the estimates

af{ 1 }<Cz(1+|§)z
g Le(& 1) J| = le(& 1))t

;); {77 (02 =3 1)|2)}
J
for{>0and j=1,...,d.

(2.18)

(2.19) < Cyp’

LEMMA 2.20. Let f,(x) be defined by (2.15). Then, for any x € R%,

3

(2.21) 1,0 < lff ifd=3,
C 4

(2.22) [fo(x)] < ﬁ if d=2.

Proof. Since x? fo(x) is the inverse Fourier transform of

ot {n(pZIW(&l)IQ)}

¢t p(&1)
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we have
4,0 |_/ 654{ e
84@
R £ agf{ 51}| oEr- 7 {n (P*le(& V) }| de

(1+ )
<C d
- /lga(amzc/p EGE

3

(1+ €D’

i C/eo(s,1>~1/p (&, 1|1 L
4
=¢ lp(e. 1) =c/p %(%%DP “
< L enir i
Note that
(2.23) (&, DI ~ [€1] +]64¢T — ada”|

= |&] + {|¢B| + [aB|} ||€B] —

where B = v/A > 0. Using this it is not hard to see that

(14 [¢)* 4y
I = de < C de < C.
' /£B|>2|aB| {lo(&, 1) +1/p} ‘= /5|>c €11 ¢=

Also,
(1+1eph*
Iy = d
’ /|sBs2|aB Tele Dl + 1o
<c| s :
eBI<2laB| {|&1] +||¢B| - aBl| +1/p}

< C/ s 5
g1<2la| {|(EB~1)1| + ||¢] — [aB|| + 1/p}

d
_C/ : 5
lel<2laB| {|&] + |[€] — [aB|| + 1/p}

where the last inequality follows by a rotation.

879
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Now suppose d = 3. Then, using spherical coordinates with & = rcos#,
we have

I, < C’/QaBl 2 /Tr/2 sin 6 df dr
=7 0 {rcos@+|r—\aB|‘+1/p}5
C/QaBl d?"
<
oo {|r—laB|| +1/p}"

laB|
< C/ Lél
o {r+1/p}

< Cp’.
Similarly, if d = 2,

2|aB| 7/2 do
I §C/ r / = dr
0 o {rcos6+|r—|aB||+1/p}
2|aB]|
SC/ dr i
0 {|r = |aB|| +1/p}

laB|
e / S
o A{r+1/p}

< Cpt.

Thus we have proved that, for j =1,--- ,d,

Cp3, ifd=3,

Cp*, ifd=2.

The estimates (2.21) and (2.22) then follow. O

’x?fp(xﬂ <C{L+ I} < {

It follows from (2.16) and Lemma 2.20 that, for any x € R?,

(2.24) |F,(x)| < = for d =2 or 3.

This will be used to estimate the terms on the right hand side of (2.14), where
|x + 27| > 1/2.

3. Pointwise estimate of the kernel function G,(x)
In this section we will show that, if |x| < 1/2, then
<
x|’

C'lni ifd=2.

x|’

if d =3,
(3.1) |F,(x)| <

p >
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Together with (2.24) and (2.14), this implies that

1

1 —_ if d =
c +‘ +2Z<1/2 i+ 27| [ i 3,
32)  [G,(x)]< -
1
Ci{1+ > Wm——— ¢, ifd=2
|x+2mn|<1/2 |X+ 27'('11‘

To prove (3.1), we recall that F,(x) = p?=2f,(px) and write

(3.3) 1) = {ﬁ} (X)+{n(p o(-, 1)) )—1} ).

K 90("1)

LEMMA 3.4. We have
n (p?e(€,1))?) — 1

/]Rd e 1)

Proof. Recall that n(r) = 1 for 7 > s3. Thus, as in the proof of Lemma
2.20, we have

/ n(PPle(€ 1) —1
R4 w(fal)

g < &
p

dg
e(enI<e/p [P(E,1)]

¢ < C

dg
<C
B /|51|+|£||aB|!<c/p & ]+ [1€] - [aBl|

dg _ /
T ’|§/| — |aB|| where £ = (£1,¢)

<C / _ dadr
|r—laBl|<e/p Jics1<esp [61] + |7 = |aB|

§ g/ / d¢ydr
T p Jocr<e Jigyj<e 161l +

< C/ lExl<c/p
€|~ laBl|<e/p

< 0
p
It follows from Lemma 3.4 that
n(p*le( D?) — l}v c
3.5 x)| < —.
(35) e () <5

w

To estimate the first term on the right hand side of (
by several changes of variables, we have

L " _ Bl 1 v L
(30 {90(" 1)} () = det(B) {|§|2 —1+ 2if1} (laBxB~t07),

.3), we first note that,
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where O is a d x d orthogonal matrix such that aBO~! = (|aB|,0,--- ,0).

LEMMA 3.7. Let u(x) denote the inverse Fourier transform of {|¢|> — 1+
2i§1}_1 inRY d=2ord=3. Let x = (v1,x') € R%. Then,

(3.8) u(x) = 277/ Jo(|X'| r)v(r,z1)rdr, ifd=3,
0
(3.9) u(x) = 2/ cos(|xa|r)v(r,x1)dr, if d=2,
0
where
) el161 d
(3.10) v(r,z1) _/]1@7'24'5% 1o &1,
and
1 27 .
(3.11) Jo(t) = —/ et sy
2 0

is the Bessel function of the first kind of order 0.

Proof. One may verify that, for R > 0,
-1
{leP —1+2i6} " xeert: j1<my € L' (RY)

where & = (&,¢'). Since {[¢[? —1 —&—21’51}71 € L* (RY) for 3/2 < p < 2, we
have, by the Hausdorff-Young inequality [20],

i(x,£)

e

— i )
U(X) Rgnoo/éeRd’ ‘€|27 1+2i£1 67
|€'I<R

where the limit is taken in the L?'-space. From this, (3.8) and (3.9) follow by
using Fubini’s theorem and polar coordinates. We omit the details. O

LEMMA 3.12.  Let v(r,z1) be the function defined by (3.10). Then,

™ _ .
—e"t T‘x1|7 ifr>1,
r

v(r,zy) =
T {e’“_rlxll — e(l_r)“} , fo<r<l.
r

Proof. First we write
" eir1(§1+1)
v(r,z) =e 1/Rmd§1.
Applying Cauchy’s integral theorem to the function
eiT12 0iT1%

W)= o = GG
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we obtain

. elr1y )
e | ——=dy, ifr>1,
(3.13) v(r,m) = RTHY

1T1Y
el / % dy — ﬁe(l_r)f“, ifo<r<1.
RT+Y r
By a routine application of the residue theorem, one may show that
etey T

3.14 - dy = — —rlz1].

(314) | =T

see, e.g., [14, pp. 389-390]. This, together with (3.13), yields the lemma. O

LEMMA 3.15. Let v(r,z1) be the function defined by (3.10). Then,

Ze(:l”)"g’ll, ifr>1,
o(r,z)| <"
C {e(r_l)‘””‘ + |21 e"wlw}, ifo<r<l,
and
v 92(1 +7r \xl\)e(l’”‘m, ifr>1,
‘ar(ﬁxl) < "

C {|x1|2 e”l®l/2 (14 |x1|)e(r_1)‘””1‘} , ifo<r<1.

Proof. We will only prove the second estimate, using Lemma 3.12. The
proof of the first estimate is easier.

Ifr>1,
ov T T
vy N xi—rlz N xr—rle|_
o — 2ty (= lz1]).
Hence,
| _mtria) o —ray o TA+TI21]) 1rjjay)
or 72 - 72

Next suppose 0 < 7 < 1. We may assume 7 < Osince v(r,z1) =0if0 <r <1
and z1 > 0. Note that, in this case, we have

% — _:_2 {e(1+r)m1 _ 6(1—r)m1} + E {e(1+7’)m1 + e(l—r)ml} )

T
If 1/2 <r < 1, it is easy to see that
ov

or

S C ’6(1+r)ml _ 6(177“)11

+C || {e(”’”)“ + e“*”“}

< C{1+ |z1]} e(r=Dle|
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Also, if 0 <7 < 1/2 and |rz1]| > 1, then |x1| > 1/r. It follows that
ov

o < C|$ ‘ {e(l-i-r)xl +e(1—r)a:1}

<C |a:1\ e~ lz1l/2,

Finally, if 0 < r < 1/2 and |rz1| < 1, we use e’ = 1+t + O(t?) for [t| < 1 to
obtain

20 = e {or +0((ren) ) + e {24 0((rm)?) )
= —e”“O((msl) )+ %e’“O((m:lf).

It follows that
ov

P <o{mP e trimfPen} <Clnffetnl
T

The proof is now complete. O

LEMMA 3.16. Let u(x) be the inverse Fourier transform of {|£]* — 1 +
2i¢,} "1 in RY. Then, if d = 3,

C

lu(x)[ < —,

x|

and, if d =2,

1 1
Cln—, if|x] <=,
ul <4 o .
-1 C 1
H7 Zf‘X| 5

Proof. We first consider the case d = 3. It follows from (3.8) that

oo

/x|
u(x) = 27/ Jo(|x'| m)v(r,z1)r dr + 27r/ Jo(|x| r)v(r,z1)r dr
0 1/]x'|
=0+ Is.
By Lemma 3.15, |v(r, z1)| r<C. This, together with the observation |Jo(t)| <
1, gives

1/ c
m<er [ peialrar < T

To estimate I we first assume that |x’| < 1. Since

(317 Po(r) = S {rA ()}
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where J, (r) denotes the Bessel function of the first kind of order v (see [11]),
we may use integration by parts to obtain

2 [ r
Iy = —5 — d
2 |x’|2 /1 rdo(r)v (X/|,x1) r
27 1 2r [ ov ([ r
=T W =) - [ () (L ay ) d
x| 1( )v<|x/|,x1> |x’|3/1 r 1(r)8r <|X,|,x1> r
It then follows from the estimate (see [11])

(3.18) ()] < ﬁ/ for r > 1

and Lemma 3.15 that

C C ov
L < — —/ r/2 | = ( )’ dr
| | ‘X| |X/‘3 | /|
C C [ |0
< = 121 = d
- ‘X/| + |X/‘3/2 /1/|x/|r a’l" (r7x1) "

C C o 1
<—+ / P2 4|y} Y I g
x| |x’\3/2 1/]x’| r? { )

C
Si

If |x'| > 1, we write

or (¥ r 2 [ r
I, = / TJ07‘1)< )dr—i— / TJorv<—,x)dr
Wb PO e o St e

= Io1 + I29.

Note that, using (3.17), integration by parts, and (3.18), we have

C c [l v
i<+ o [ 2|5 ()| o

|X/‘3/2 |X,|3

C C /1 12 | O
S —s T r 7(T5I1) dT
P2 PR e O
C 1
v ._C (r=1)]a1|
< e + |x’|3/2/0 |z1|e dr
c _c¢
Ix 72 7 T

Cx
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Similarly,
2 * d r
Inp| = =X Ay e d
= /| ar 1(”}“(|x'|’“) '
C C 172 v ( )‘
< +— /
PIRENPT |x’|
o C C 1/2 'U
= W + |X/|3/2 /1 T E(T .’L']) dr

C C

< —)F= < —.
TP T
Thus we have proved that, for any x € R3,

(3.19) lu(x)] < %

To finish the case d = 3, we still need to show that

(3.20) lu(x)] < |C|, for any x € R3.
Ty

Clearly, (3.19) and (3.20) imply that |u(x)| < C/|x]| for any x € R?.
To see (3.20), we use Lemma 3.15 to obtain

lu(x)| < 271'/ |v(r,x1)|rdr
0

1 [e%e)

C/ {e<r—1>|x1| +\x1\e—‘xll/2} dr+c/ LAzl gy
0 1

L%

21|

We now consider the case d = 2. By Lemmas 3.7 and 3.5,

IN

IN

x)| =2 ‘/ cos(|za| r)v(r,z1) dr
0
< 2/ lv(r, z1)| dr
0

1 oo dr
gc/ e(M)m\ +|x1|e*|w1\/2} dr+C/ RSP

r

dr

<C|$1‘6 \11\/2+C/ r|r1\d,’,_~_c/ _r‘zl‘r+1
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From this it is not hard to see that

Ol it ] < o,
(3.21) upol < o X
m7 if |.’L'1| > 5

Finally, we will show that

1 1
Cln ﬁ, if |$2| S 5,
(3.22) lu(x)| < 2
C if || > 1
— 1 —=.
|$2|7 Z2 2

The desired estimate for |u(x)| follows easily from (3.21) and (3.22).
To see (3.22) we write

[ee)

1/]az|
u(x) = 2/ cos(|xa| r)v(r, 1) dr + 2/ cos(|xa| r)v(r, 1) dr
0 1/]z2]

= I3+I47

as in the case of d = 3. If |z3| > 1/2, by Lemma 3.15, we have

1oz 1ol c
|Ig\§C/ |v(r,x1)\dr§0/ dr < —.
0 0

|22

Similarly, if |zo| < 1/2,

1 1/|z2|
\I3|§2/ o(r, 21)| dr+2/ o, x1)|dr<C—|—C/ Tcom
0 1

To estimate I, we use integration by parts. Suppose |z3| < 1/2. Then

2 o0
hl= / - Gsnaz| 1)} o0, ) dr
(22| | )1 /{aa) OF
/ (r,xz1)| dr
\x2| 1/lzs
<C+— {1+r\x1\}e(1 Dl gy
|22 1/|wa| T
1
<C<Cln—
|z2]
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If |z2] > 1/2, then

1
0
< o //| gy Gnlaal )} ()
T2
|m | )/ o {sinlazl 1)} - o(r, 1) dr
C Lo 0
< — U(rxl) dr + — / ‘ Urxl) dr
|z2] |902| 1/]zs| 1 OT |za|
<
e
This proves (3.22) and completes the proof of Lemma 3.16. O
It follows from Lemma 3.16 and (3.6) that
AN |C| it d =3,
x
oL 01n<1+—>, if d =2,
x|
This, together with (3.3) and (3.5), implies that
1 1
{; n —} if d =3,
G2 Ies] 1
c{—+1n< )} ifd=2.
p |
Thus, by (2.16), for any x € R%,
1
C {1 + = if d =3,
x|

(3.25)  |F,(x)| = p?72 |, (px)]

C{ —|—1n 1)}, if d=2.
plx|

The estimate (3.1) now follows from (3.25), and the proof of (3.2) is complete.

4. Proof of the Main Theorem

Suppose V' € K;. It is well known that, for any € > 0, there exists a
constant C, y > 0 such that

(4.1) / \g|2|V|dx§5/ |vg|2dx+05,v/ g2 dx
R4 Rd Rd

for any g € H'(R?); see [7], [18]. It follows from (4.1) that the quadratic
form associated with DAD” + V generates a unique self-adjoint operator on
L?(R4), which we also denote by DADT + V.
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Let ¢ € H(T?), where

HYT) = ¢ ¢ € LH(TY): p(x) = Y ane’™™ and Y n|*|aa|* <

nezd nezd
Extending ¢ by periodicity to R? and then applying (4.1) to 17, where 7 is a
C cut-off function such that 7 =1 on 2, we obtain

(4.2) /Q|w|2|V|dxgs/ﬂ|vw|2dx+a,v/ﬂ|¢|2dx

for any € > 0. This implies that, for any k € C¢, the quadratic form associated
with (D+k)A(D+k)T +V on T? defines a unique closed operator on L?(T%),
which we denote by Hy (k). Moreover,
(4.3)

Domain (Hy (k)) = {¢ € H'(T%): Hy(0)¢ = (DAD” + V)¢ € L*(T%) } .

Let a € R? be a vector satisfying (2.1) and
(4.4) L:{beRd:<b,a>:0and |b|g\/&}.
PROPOSITION 4.5. If, for every b € L, the family of operators {Hy (za+

b): z € C} has no common eigenvalue, then the spectrum of the operator
DADT +V on L%(RY) is purely absolutely continuous.

Proof. See [13] and [16]. O

Fix b € L and let
- 1(1)
aq 2

as in (2.2). We will show that the family of operators {Hy ((d + ip)a + b):
p > 1} has no common eigenvalue under the assumption of our main theorem.

We need the following estimate on the norm of {Hoy((6 +ip)a+b)}~! on
LY(T%).

THEOREM 4.6. There exists a constant C' > 0 such that

Cl 1
H : - ‘
[{Eo(@+ipast o)L e =Y e |
m, Zfd = 2.
Proof. In view of (2.8), it suffices to show that
1 1
gﬂ%;ljﬁd:&
(47) [iGelax<y f
@ if d = 2.

pl/2’
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To this end, note that, by Holder’s inequality, (2.9), and the Plancherel the-
orem, we have

/Q|GP(X)| pes ot {/Q G, () dx}1/2

1
AP I(n+k)A(n + k)T|?

nezd

1/2

1/2
1

S {lm+Db) A+ b)T — p2ays| + plna + 3|}

<C

The desired estimate (4.7) follows from the proof of Lemma 3.2 in [16] (see
the estimate (3.11) in [16]). We omit the details. O

The next theorem is a consequence of the pointwise estimate (3.2) of the
kernel function G,.

THEOREM 4.8. There exists a constant C' > 0 such that
|V {Ho (6 + ip)a+b)} |

L1(T4)—L1(Td)

Csup/ V)l dy, if d =3,
x€EQJQ |y—X|

Coup [ WL+ tnly —xll}dy. ifd=2.
xeENQ JQ

<

Proof. Recall that, if » € C*°(T%), then

{Ho((6+ip)a+b)} " p(x) = /QGP(X —y)¥(y)dy.
It follows that

v (eta(5 4 iva+ 0} o < [ wGoI{ [ 16,x - vl lotwldy fax

<sup [ VG9! Go(x 3] dx ]
yeEQJQ
The desired estimate now follows easily from (3.2). O

Proof of Main Theorem. We give the proof for the case d = 3. The case
d = 2 can be handled in the same manner.

To show that {Hy ((6 +ip)a+b): p > 1} has no common eigenvalue, we
argue by contradiction. Suppose that there exists £ € R such that, for every
p > 1, there exists 1), € Domain(Hy ((0 4 ip)a+ b)) such that [|¢p,[|, = 1 and

Hy (6 +ip)a + b)d, = .
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Since ¢, € H'(T?), by the Cauchy inequality and (4.2), we have

1/2 1/2
/Q|wp||V|dxs{/wa} {/Q|wp|2|V|dx} “ .

It follows that (D +k)A(D + k)Twp =By, -V, € LY(T%).
Let

V(x), if [V(x)[>N,
Vn(x) = .

0, if |[V(x)| < N.
Then,
(4.9 [[D+XK)AD + 1), <{[E]+ N}vplly + Vil -
By Theorem 4.8,

VN (y)l T
(4.10) VNl < Cf:gg/ﬂ [ dy - [[(D + k)AD + k)", ||, -

Note that

sup/ L/N(y”dygsup/ ‘V( d + - /|V )| dy.
xeNJQ |y_X| xeQ J|y—x|<r ‘y—Xl

It follows that

Vi v
lim sup M dy < lim sup/ m dy =0
N—coxen o [y — x| r=0xeQ Jly—x|<r [¥ — X|

This implies that, if N is sufficiently large,

1
(4.11) [Vivlly < 5 (D +K)AD + 1) 70, ), -

In view of (4.9) and (4.11), we obtain

|(D+K)AD +k)" 4, |, <2(E[+N)lv,

(" -

This, together with Theorem 4.6, gives
Cp1/2
—_— <2(|E|+ N
ey ol < 2081+ M)l )y

or
1/2

Cp <

In(p+1) —

for any p > 1. This is impossible if we let p — oco. O

2(|El+ N),
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