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DUALIZING COMPLEX OF THE INCIDENCE ALGEBRA
OF A FINITE REGULAR CELL COMPLEX

KOHJI YANAGAWA

Abstract. Let Σ be a finite regular cell complex with ∅ ∈ Σ, and
regard it as a poset (i.e., partially ordered set) by inclusion. Let R be

the incidence algebra of the poset Σ over a field k. Corresponding to
the Verdier duality for constructible sheaves on Σ, we have a dualizing

complex ω• ∈ Db(modR⊗kR) giving a duality functor from Db(modR)
to itself. This duality is somewhat analogous to the Serre duality for
a projective scheme (∅ ∈ Σ plays a role similar to that of “irrelevant

ideals”). If Hi(ω•) 6= 0 for exactly one i, then the underlying topological
space of Σ is Cohen-Macaulay (in the sense of the Stanley-Reisner ring

theory). The converse also holds if Σ is a simplicial complex. R is always

a Koszul ring with R! ∼= Rop. The relation between the Koszul duality
for R and the Verdier duality is discussed.

1. Introduction

Let Σ be a finite regular cell complex, and X :=
⋃
σ∈Σ σ its underlying

topological space. The order given by σ > τ
def⇐⇒ σ̄ ⊃ τ makes Σ a finite

partially ordered set (poset, for short). Here σ̄ is the closure of σ in X.
Let R be the incidence algebra of the poset Σ over a field k. For a ring
A, modA denotes the category of finitely generated left A-modules. In this
paper, we study the bounded derived category Db(modR) using the theory of
constructible sheaves (e.g., Poincaré-Verdier duality). For the sheaf theory,
consult [6], [7], [14]. We basically use the same notation as [6].

Let Shc(X) be the category of k-constructible sheaves on X with respect to
the cell decomposition Σ. We have an exact functor (−)† : modR → Shc(X).
For M ∈ modR, we have a natural decomposition M =

⊕
σ∈ΣMσ as a k-

vector space. If p ∈ σ ⊂ X, the stalk (M†)p of M† at the point p is isomorphic
to Mσ.

Let Σ′ := Σ\∅ be an induced subposet of Σ, and T the incidence algebra of
Σ′ over k. Then we have a category equivalence modT ∼= Shc(X), which is well
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known to specialists (see, for example, [8], [11], [14]). However, in this paper,
∅ ∈ Σ plays a role. Although modR 6∼= Shc(X), modR has several interesting
properties which modT does not possess. In some sense, ∅ is analogous to the
“irrelevant ideal” of a commutative Noetherian homogeneous k-algebra (i.e.,
the homogeneous coordinate ring of a projective scheme over k).

We have a left exact functor Γ∅ : modR → vectk defined by Γ∅(M) = {x ∈
M∅ | Rx ⊂ M∅ }. We denote its ith right derived functor by Hi

∅(−). For
M ∈ modR, Theorem 2.2 states that

Hi(X,M†) ∼= Hi+1
∅ (M) for all i ≥ 1,

0→ H0
∅ (M)→M∅ → H0(X,M†)→ H1

∅ (M)→ 0 (exact).

Here H•(X,M†) stands for the sheaf cohomology (cf. [7], [6]).
The above fact is clearly analogous to the relation between graded mod-

ules over a commutative Noetherian homogeneous k-algebra A and the quasi-
coherent sheaves on the projective scheme Proj(A). There are other resem-
blances between these topics. In the final section of this paper, we give a list
of the similarities.

Let A and B be k-algebras. Recently, several authors studied a dualizing
complex C• ∈ Db(modA⊗kB) giving duality functors between Db(modA) and
Db(modB). (Note that if M ∈ modA and N ∈ modA⊗kB , then HomA(M,N)
has a left B-module structure.) In typical cases, it is assumed that B = Aop.
But, in this paper, from Verdier’s dualizing complex D•X ∈ Db(Shc(X)) on X,
we construct a dualizing complex ω• ∈ Db(modR⊗R) which gives the duality
functor R HomR(−, ω•) from Db(modR) to itself. Theorem 3.2 states that

R HomR(M•, ω•)† ∼= RHom((M•)†,D•X)

in Db(Shc(X)) for all M• ∈ Db(modR). The dualizing complex ω• satisfies
the Auslander condition in the sense of [19].

Corollary 3.5 states that

ExtiR(M•, ω•)∅ ∼= H−i+1
∅ (M•)∨.

This corresponds to the (global) Verdier duality on X. But, since Hi
∅(−) can

be seen as an analog of a local cohomology over a commutative Noetherian
homogeneous k-algebra, the above isomorphism can be seen as an imitation
of the Serre duality. In Theorem 5.3 (1), ∅ ∈ Σ is also essential. It states
that, for a simplicial complex Σ, Hi(ω•) = 0 for all i 6= −dimX if and only
if X is Cohen-Macaulay in the sense of the Stanley-Reisner ring theory. If we
use the convention that ∅ 6∈ Σ, then the Cohen-Macaulay property cannot be
characterized in this way.

Under the assumption that a subset Ψ of Σ gives the open subset UΨ :=⋃
σ∈Ψ σ of X, Theorem 5.3 describes the cohomology Hi(UΨ,M

†|UΨ) using
the duality functor R HomR(−, ω•). Note that the cohomology with compact



INCIDENCE ALGEBRAS OF FINITE REGULAR CELL COMPLEXES 1223

support Hi
c(UΨ,M

†|UΨ) is much easier to treat in our context, as shown in
Lemma 5.1.

We can regard R as a graded ring in a natural way. Then R is always
Koszul, and the quadratic dual ring R! is isomorphic to the opposite ring Rop

(Proposition 7.1). Koszul duality (cf. [1]) gives an equivalence Db(modR) ∼=
Db(modRop) of triangulated categories. The functors giving this equivalence
coincide with the compositions of the duality functors R HomR(−, ω•) and
Homk(−, k). This result is an “augmented” version of Vybornov [14].

It is well known that the Möbius function of a finite poset is a very im-
portant tool in combinatorics. In Proposition 6.1, generalizing [13, Proposi-
tion 3.8.9], we describes the Möbius function µ(σ, 1̂) of the poset Σ̂ := Σq{1̂}
in terms of cohomology with compact support. As shown in [2], some finite
posets arising from purely combinatorial/algebraic topics (e.g., Bruhat order)
are isomorphic to the posets of finite regular cell complexes. So the author
expects that the results in the present paper will play a role in a combinatorial
study of these posets.

2. Preparation

A finite regular cell complex (cf. [3, §6.2] and [4]) is a non-empty topological
space X together with a finite set Σ of subsets of X such that the following
conditions are satisfied:

(i) ∅ ∈ Σ and X =
⋃
σ∈Σ σ;

(ii) the subsets σ ∈ Σ are pairwise disjoint;
(iii) for each σ ∈ Σ, σ 6= ∅, there exists a homeomorphism from an i-

dimensional disc Bi = {x ∈ Ri | ||x|| ≤ 1} onto the closure σ̄ of σ
which maps the open disc U i = {x ∈ Ri | ||x|| < 1} onto σ.

(iv) For any σ ∈ Σ, the closure σ̄ can be written as the union of some cells
in Σ.

Note that X is compact in this case. An element σ ∈ Σ is called a cell. We
regard Σ as a poset with the order given by σ > τ

def⇐⇒ σ̄ ⊃ τ . The combi-
natorics of posets of this type is discussed in [2]. If σ ∈ Σ is homeomorphic
to U i, we write dimσ = i and call σ an i-cell. We define dim ∅ = −1 and set
d := dimX = max{dimσ | σ ∈ Σ }.

A finite simplicial complex is a primary example of a finite regular cell
complex. When Σ is a finite simplicial complex, we sometimes identify Σ
with the corresponding abstract simplicial complex. That is, we identify a
cell σ ∈ Σ with the set { τ | τ is a 0-cell with τ ≤ σ }. In this case, Σ is a
subset of the power set 2V , where V is the set of the vertices (i.e., 0-cells) of
Σ. Under this identification, for σ ∈ Σ, we let stΣ σ := { τ ∈ Σ | τ ∪ σ ∈ Σ }
and lkΣ σ := { τ ∈ stΣ σ | τ ∩ σ = ∅ } be subcomplexes of Σ.

Let σ, σ′ ∈ Σ. If dimσ = i + 1, dimσ′ = i − 1 and σ′ < σ, then there are
exactly two cells σ1, σ2 ∈ Σ between σ′ and σ. (Here dimσ1 = dimσ2 = i.) A
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remarkable property of a regular cell complex is the existence of an incidence
function ε (cf. [4, II. Definition 1.8]). The definition of an incidence function
is the following.

(i) To each pair (σ, σ′) of cells, ε assigns a number ε(σ, σ′) ∈ {0,±1}.
(ii) ε(σ, σ′) 6= 0 if and only if dimσ′ = dimσ − 1 and σ′ < σ.
(iii) If dimσ = 0, then ε(σ, ∅) = 1.
(iv) If dimσ = i + 1, dimσ′ = i − 1 and σ′ < σ1, σ2 < σ, σ1 6= σ2, then

we have ε(σ, σ1) ε(σ1, σ
′) + ε(σ, σ2) ε(σ2, σ

′) = 0.
We can compute the (co)homology groups of X using the cell decomposition
Σ and an incidence function ε.

Let P be a finite poset. The incidence algebra R of P over a field k is
the k-vector space with a basis {ex, y | x, y ∈ P with x ≥ y}. The k-bilinear
multiplication defined by ex, y ez, w = δy, z ex,w makes R a finite dimensional
associative k-algebra. Set ex := ex, x. Then 1 =

∑
x∈P ex and ex ey = δx,y ex.

We have R ∼=
⊕

x∈P Rex as a left R-module, and each Rex is indecomposable.
Denote the category of finitely generated left R-modules by modR. If N ∈

modR, we have N =
⊕

x∈P Nx as a k-vector space, where Nx := exN . Note
that ex, y Ny ⊂ Nx and ex, y Nz = 0 for y 6= z. If f : N → N ′ is a morphism
in modR, then f(Nx) ⊂ N ′x.

For each x ∈ P , we can construct an indecomposable injective module
ER(x) ∈ modR. (When there is no possibility of confusion, we simply denote
it by E(x).) Let E(x) be the k-vector space with a basis {e(x)y | y ≤ x}.
Then we can regard E(x) as a left R-module by

(2.1) ez, w e(x)y =

{
e(x)z if y = w and z ≤ x,
0 otherwise.

Note that E(x)y = k e(x)y if y ≤ x, and E(x)y = 0 otherwise. An inde-
composable injective in modR is of the form E(x) for some x ∈ P . Since
dimk R < ∞, modR has enough projectives and injectives. It is well known
that R has finite global dimension.

Let Σ be a finite regular cell complex, and X its underlying topological
space. We make Σ a poset as above. In the rest of this paper, R is the
incidence algebra of Σ over k. For M ∈ modR, we have M =

⊕
σ∈ΣMσ as a

k-vector space, where Mσ := eσM .
Let Sh(X) be the category of sheaves of finite dimensional k-vector spaces

on X. We say F ∈ Sh(X) is a constructible sheaf with respect to the cell
decomposition Σ, if F|σ is a constant sheaf for all ∅ 6= σ ∈ Σ. Here, F|σ de-
notes the inverse image j∗F of F under the embedding map j : σ → X. Let
Shc(X) be the full subcategory of Sh(X) consisting of constructible sheaves
with respect to Σ. It is well known that Db(Shc(X)) ∼= Db

Shc(X)(Sh(X)). (See
[7, Theorem 8.1.11]. There, it is assumed that Σ is a simplicial complex. How-
ever, this assumption is irrelevant. In fact, the key lemma [7, Corollay 8.1.5]
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also holds for regular cell complexes. See also [11, Lemma 5.2.1].) So we will
freely identify these categories.

There is a functor (−)† : modR → Shc(X), which is well known to special-
ists (see, for example, [14, Theorem A]), but for the reader’s convenience we
give a precise construction here. See [14], [17] for details.

For M ∈ modR, set

Spé(M) :=
⋃
∅6=σ∈Σ

σ ×Mσ.

Let π : Spé(M) → X be the projection map which sends (p,m) ∈ σ ×Mσ ⊂
Spé(M) to p ∈ σ ⊂ X. For an open subset U ⊂ X and a map s : U → Spé(M),
we will consider the following conditions:

(∗) π ◦ s = IdU and sq = eτ, σ · sp for all p ∈ σ, q ∈ τ with τ ≥ σ. Here sp
(resp. sq) is the element of Mσ (resp. Mτ ) with s(p) = (p, sp) (resp.
s(q) = (q, sq)).

(∗∗) There is an open covering U =
⋃
λ∈Λ Uλ such that the restriction of

s to Uλ satisfies (∗) for all λ ∈ Λ.
Now we define a sheaf M† ∈ Shc(X) from M as follows. For an open set

U ⊂ X, set

M†(U) := { s | s : U → Spé(M) is a map satisfying (∗∗) }
and the restriction map M†(U) → M†(V ) is the natural one. It is easy to
see that M† is a constructible sheaf. For σ ∈ Σ, let Uσ :=

⋃
τ≥σ τ be an

open set of X. Then we have M†(Uσ) ∼= Mσ. Moreover, if σ ≤ τ , then we
have Uσ ⊃ Uτ and the restriction map M†(Uσ) → M†(Uτ ) corresponds to
the multiplication map Mσ 3 x 7→ eτ, σx ∈ Mτ . For a point p ∈ σ, the stalk
(M†)p of M† at p is isomorphic to Mσ. This construction gives the functor
(−)† : modR → Shc(X). Let 0 → M ′ → M → M ′′ → 0 be a complex in
modR. The complex 0 → (M ′)† → M† → (M ′′)† → 0 is exact if and only if
0→M ′σ →Mσ →M ′′σ → 0 is exact for all ∅ 6= σ ∈ Σ. Hence (−)† is an exact
functor. We also remark that M∅ is irrelevant to M†.

For example, we have E(σ)† ∼= j∗kσ̄, where j is the embedding map from
the closure σ̄ of σ to X and kσ̄ is the constant sheaf on σ̄. We also have
that E(σ)† ∼= j∗kσ̄

∼= i∗kσ, where i : σ → X is the embedding map and kσ is
the constant sheaf on σ. Similarly, we have (Reσ)† ∼= h!kUσ , where h is the
embedding map from the open subset Uσ =

⋃
τ≥σ τ to X.

Remark 2.1. Let Σ′ := Σ \ ∅ be an induced subposet of Σ, and T its
incidence algebra over k. Then we have a functor modT → Shc(X) defined
in a similar way as (−)†, and it gives an equivalence modT ∼= Shc(X) (cf.
[14, Theorem A]). On the other hand, by virtue of ∅ ∈ Σ, our functor (−)† :
modR → Shc(X) is neither full nor faithful, but we will see that modR has
several interesting properties which modT does not possess.
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For M ∈ modR, set Γ∅(M) := {x ∈M∅ | Rx ⊂M∅ }. It is easy to see that
Γ∅(M) ∼= HomR(k,M). Here we regard k as a left R-module by eσ, τ k = 0
for all eσ, τ 6= e∅. Clearly, Γ∅ gives a left exact functor from modR to itself (or
vectk). We denote the ith right derived functor of Γ∅(−) by Hi

∅(−). In other
words, Hi

∅(−) = ExtiR(k,−).

Theorem 2.2 (cf. [17, Theorem 3.3]). For M ∈ modR, we have an
isomorphism

Hi(X,M†) ∼= Hi+1
∅ (M) for all i ≥ 1,

and an exact sequence

0→ H0
∅ (M)→M∅ → H0(X,M†)→ H1

∅ (M)→ 0.

Here H•(X,M†) stands for the cohomology with coefficients in the sheaf M†.

Proof. Let I• be an injective resolution of M , and consider the exact se-
quence

(2.2) 0→ Γ∅(I•)→ I• → I•/Γ∅(I•)→ 0

of cochain complexes. Put J• := I•/Γ∅(I•). Each component of J• is a direct
sum of copies of E(σ) for various ∅ 6= σ ∈ Σ. Since E(σ)† is the constant
sheaf on σ̄ which is homeomorphic to a closed disc, we have Hi(X,E(σ)†) =
Hi(σ̄; k) = 0 for all i ≥ 1. Hence (J•)† (∼= (I•)† ) gives a Γ(X,−)-acyclic
resolution of M†. It is easy to see that [J•]∅ ∼= Γ(X, (J•)†). So the assertions
follow from (2.2), since H0(I•) ∼= M and Hi(I•) = 0 for all i ≥ 1. �

Remark 2.3. (1) If M∅ = 0, then we have Hi(X,M†) ∼= Hi+1
∅ (M) for all

i.
(2) Let A be a commutative Noetherian homogeneous k-algebra (i.e., A =⊕
i≥0Ai is a graded commutative ring satisfying: (1) A0 = k, (2) dimk A1 <

∞, (3) A is generated by A1 as a k-algebra). For a graded A-module M ,
we have the algebraic quasi-coherent sheaf M̃ on the projective scheme Y :=
ProjA. It is well known that Hi(Y, M̃) ∼= [Hi+1

m (M)]0 for all i ≥ 1, and

0→ [H0
m(M)]0 →M0 → H0(Y, M̃)→ [H1

m(M)]0 → 0 (exact).

Here Hi
m(M) stands for the local cohomology module with support in the ir-

relevant ideal m =
⊕

i≥1Ai, and [Hi
m(M)]0 is its degree 0 component (Hi

m(M)
has a natural Z-grading). See also Remark 4.6 (2) below and the list given in
§8.

(3) Assume that Σ is a simplicial complex with n vertices. The Stanley-
Reisner ring k[Σ] of Σ is the quotient ring of the polynomial ring k[x1, . . . , xn]
by the squarefree monomial ideal IΣ corresponding to Σ (see [3], [12] for
details). In [16], we defined squarefree k[Σ]-modules which are certain Nn-
graded k[Σ]-modules. For example, k[Σ] itself is squarefree. The category
Sq(Σ) of squarefree k[Σ]-modules is equivalent to modR of the present paper
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(see [18]). Let Φ : modR → Sq(Σ) be the functor giving this equivalence. In
[17], we defined a functor (−)+ : Sq(Σ)→ Shc(X). For example, k[Σ]+ ∼= kX .
The functor (−)+ is essentially same as the functor (−)† : modR → Shc(X)
of the present paper. More precisely, (−)† ∼= (−)+ ◦ Φ. For M ∈ modR, we
have Hi

∅(M) ∼= [Hi
m(Φ(M))]0. So the above theorem is a variation of [17,

Theorem 3.3].

3. Dualizing complexes

Let Db(modR) be the bounded derived category of modR. For M• ∈
Db(modR) and i ∈ Z, M•[i] denotes the ith translation of M•, that is, M•[i]
is the complex with M•[i]j = M i+j . So, if M ∈ modR, M [i] is the cochain
complex · · · → 0→M → 0→ · · · , where M sits in the (−i)th position.

In this section, from Verdier’s dualizing complex D•X ∈ Db(Shc(X)), we
construct a cochain complex ω• of injective left (R ⊗k R)-modules which
gives a duality functor from Db(modR) to itself. Let M be a left (R ⊗k R)-
module. When we regard M as a left R-module via the ring homomorphism
R 3 x 7→ x⊗ 1 ∈ R ⊗k R (resp. R 3 x 7→ 1⊗ x ∈ R ⊗k R ), we denote it by
RM (resp. MRop).

For i ≤ 1, the ith component ωi of ω• has a k-basis

{ e(σ)τρ | σ, τ, ρ ∈ Σ, dimσ = −i, σ ≥ τ, ρ },
and its module structure is defined by

(eσ′, τ ′ ⊗ 1) · e(σ)τρ =

{
e(σ)τσ′ if τ ′ = ρ and σ′ ≤ σ,
0 otherwise,

and

(1⊗ eσ′, τ ′) · e(σ)τρ =

{
e(σ)σ

′

ρ if τ ′ = τ and σ′ ≤ σ,
0 otherwise.

Then we have R(ωi) ∼= (ωi)Rop ∼=
⊕

dimσ=−iE(σ)µ(σ) as left R-modules, where
µ(σ) := #{τ ∈ Σ | τ ≤ σ}. Note that R ⊗k R is isomorphic to the incidence
algebra of the poset Σ× Σ. For each σ ∈ Σ with dimσ = −i, we let I(σ) be
the subspace 〈 e(σ)τρ | τ, ρ ≤ σ 〉 of ωi. Then, as a left R⊗k R-module, I(σ) is
isomorphic to the injective module ER⊗kR( (σ, σ) ), and ωi ∼=

⊕
dimσ=−i I(σ).

Thus ω• is of the form

0→ ω−d → ω−d+1 → · · · → ω1 → 0,

ωi =
⊕
σ∈Σ

dimσ=−i

ER⊗kR( (σ, σ) ).

The differential of ω• given by

ωi 3 e(σ)τρ 7−→
∑

σ′≥τ, ρ

ε(σ, σ′) · e(σ′)τρ ∈ ωi+1



1228 KOHJI YANAGAWA

makes ω• a complex of left (R⊗k R)-modules.
Let M ∈ modR. Using the left R-module structure I(σ)Rop , we can regard

HomR(M,RI(σ)) also as a left R-module. Moreover, we have the following.

Lemma 3.1. For M ∈ modR, we have HomR(M,RI(σ)) ∼= E(σ)⊗k (Mσ)∨

as left R-modules. Here (Mσ)∨ is the dual vector space Homk(Mσ, k) of Mσ.

Proof. First, we show that if Mσ = 0 then HomR(M,RI(σ)) = 0. Assume
the contrary. If 0 6= f ∈ HomR(M,RI(σ)), there is some x ∈Mτ , τ < σ, such
that f(x) 6= 0. But we have f(eσ, τ x) = eσ, τ f(x) 6= 0. This contradicts the
fact that eσ, τ x ∈Mσ = 0.

For a general M ∈ modR, let M≥σ =
⊕

τ∈Σ, τ≥σMτ be a submodule of M .
By the short exact sequence 0→M≥σ →M →M/M≥σ → 0 we have

0→ HomR(M/M≥σ,RI(σ))→ HomR(M,RI(σ))→ HomR(M≥σ,RI(σ))→ 0.

Since (M/M≥σ)σ = 0, we have HomR(M,RI(σ)) = HomR(M≥σ,RI(σ)). So
we may assume that M = M≥σ. Let {f1, . . . , fn} be a k-basis of (Mσ)∨.
Since (RI(σ))τ = 0 for τ > σ, HomR(M≥σ,RI(σ)) has a k-basis { e(σ)τσ ⊗ fi |
τ ≤ σ, 1 ≤ i ≤ n }. By the module structure of I(σ)Rop , we have the expected
isomorphism. �

Since each Rω
i is injective, D(−) := Hom•R(−,Rω•) ∼= R HomR(−,Rω•)

gives a contravariant functor from Db(modR) to itself. In the sequel, we
simply denote HomR(−,Rωi) by HomR(−, ωi), etc.

We can describe D(M•) explicitly. Since ωi ∼=
⊕

dimσ=−i I(σ), we have

HomR(M,ωi) ∼=
⊕

dimσ=−i

HomR(M, I(σ)) ∼=
⊕

dimσ=−i

E(σ)⊗k (Mσ)∨

for M ∈ modR by Lemma 3.1. So we can easily check that D(M) is of the
form

D(M) : 0 −→ D−d(M) −→ D−d+1(M) −→ · · · −→ D1(M) −→ 0,

Di(M) =
⊕

dimσ=−i

E(σ)⊗k (Mσ)∨.

Here the differential sends e(σ)ρ ⊗ f ∈ E(σ)⊗k (Mσ)∨ to∑
τ∈Σ, τ≥ρ

ε(σ, τ) · e(τ)ρ ⊗ f(eσ,τ−) ∈
⊕

dim τ=dimσ−1

E(τ)⊗k (Mτ )∨.

For a bounded cochain complex M• of objects in modR, we have

Dt(M•) =
⊕
i−j=t

Di(M j) =
⊕

− dimσ−j=t

E(σ)⊗k (M j
σ)∨,

and the differential is given by

Dt(M•) ⊃ E(σ)⊗k(M j
σ)∨ 3 x⊗y 7→ d(x⊗y )+(−1)t(x⊗∂∨(y)) ∈ Dt+1(M•),
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where ∂∨ : (M j
σ)∨ → (M j−1

σ )∨ is the k-dual of the differential ∂ of M•, and
d is the differential of D(M j).

Since the underlying space X of Σ is locally compact and finite dimensional,
it admits Verdier’s dualizing complex D•X ∈ Db(Sh(X)) with coefficients in k
(see [6, V. §2]).

Theorem 3.2. For M• ∈ Db(modR), we have

D(M•)† ∼= RHom((M•)†,D•X) in Db(Shc(X)).

Proof. An explicit description of RHom((M•)†,D•X) is given in the un-
published thesis [11] of A. Shepard. When Σ is a simplicial complex, this
description is treated in [14, §2.4], and also follows from the author’s previ-
ous paper [17] (and [18]). The general case can be reduced to the simplicial
complex case using the barycentric subdivision.

Shepard’s description of RHom((M•)†,D•X) is the same thing as the above
description of D(M•) under the functor (−)†. �

Lemma 3.3. For each σ ∈ Σ, the natural map E(σ)→ D ◦D(E(σ)) is an
isomorphism in Db(modR).

Proof. We may assume that σ 6= ∅. Let Σ|σ := { τ ∈ Σ | τ ≤ σ } be a
subcomplex of Σ. It is easy to see that D(E(σ))∅ is isomorphic to the chain
complex C•(Σ|σ, k) of Σ|σ. Thus Hi(D(E(σ)))∅ = H̃−i(σ̄; k) for all i, where
H̃•(σ̄; k) stands for the reduced homology group of the closure σ̄ of σ. Hence
Hi(D(E(σ)))∅ = 0 for all i.

By Theorem 3.2 and the Verdier duality, we have

D(E(σ))† ∼= RHom(j∗kσ,D•X) ∼= j!kσ[dimσ].

Here j : σ → X is the embedding map.
Let M be a simple R-module with M = Mσ

∼= k. Combining the above ob-
servations, we have D(E(σ)) ∼= M [dimσ]. So D ◦D(E(σ)) ∼= D(M [dimσ]) ∼=
E(σ), and the natural map E(σ)→ D ◦D(E(σ)) is an isomorphism. �

Theorem 3.4.

(1) ω• ∈ Db(modR⊗kR) is a dualizing complex in the sense of [19, Defini-
tion 1.1]. Hence D(−) is a duality functor from Db(modR) to itself.

(2) The dualizing complex ω• satisfies the Auslander condition in the
sense of [19, Definition 2.1]. That is, if we set

jω(M) := inf
{
i | ExtiR(M,ω•) 6= 0

}
∈ Z ∪ {∞},

then, for all i ∈ Z and all M ∈ modR, any submodule N of
ExtiR(M,ω•) satisfies jω(N) ≥ i.
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Proof. (1) The conditions (i) and (ii) of [19, Definition 1.1] obviously hold
in our case, so it remains to prove that condition (iii) also holds. To see this, it
suffices to show that the natural morphism R→ D◦D(R) is an isomorphism.
But it follows from “Lemma on Way-out Functors” ([5, Proposition 7.1]) and
Lemma 3.3.

(2) We may assume that M 6= 0. By the description of D(M), we have

jω(M) = −max{dimσ | σ ∈ Σ,Mσ 6= 0 }

and ExtiR(M,ω•)σ = 0 for σ ∈ Σ with dimσ > −i. Hence, any submodule
N ⊂ ExtiR(M,ω•) satisfies jω(N) ≥ i. �

Corollary 3.5. We have ExtiR(M•, ω•)∅ ∼= H−i+1
∅ (M•)∨ for all i ∈ Z

and all M• ∈ Db(modR).

Proof. Since D◦D(M•) is an injective resolution of M•, we have RΓ∅(M•)
= Γ∅(D ◦ D(M•)). By the structure of D(−), we have Γ∅(D ◦ D(M•)) =
(D(M•)∅)∨[−1]. So we are done. �

4. Categorical Remarks

For M,N ∈ modR and σ ∈ Σ, set HomR(M,N)σ := HomR(M≥σ, N). We
make HomR(M,N) :=

⊕
σ∈Σ HomR(M,N)σ a left R-module as follows: For

f ∈ HomR(M,N)σ and a cell τ with τ ≥ σ, we let eτ, σf be the restriction of
f into the submodule M≥τ of M≥σ.

Lemma 4.1. For M ∈ modR, we have HomR(M,E(σ)) ∼= E(σ)⊗k (Mσ)∨.

Proof. Similar to Lemma 3.1. �

If a complex M• is exact, then so is HomR(M•, E(σ)) by Lemma 4.1. By
the usual argument on double complexes, if M• is bounded and exact, and I•

is bounded and each Ii is injective, then Hom•R(M•, I•) is exact.
Note that Σ is a meet-semilattice (see [13, §3.3]) as a poset if and only if,

for any two cells σ, τ ∈ Σ with σ̄ ∩ τ̄ 6= ∅, there is a cell ρ ∈ Σ with σ̄ ∩ τ̄ = ρ̄.
If Σ is a simplicial complex, or more generally, a polyhedral complex, then it
is a meet-semilattice. If Σ is a meet-semilattice, for two cells σ, τ ∈ Σ, either
there is no upper bound for σ and τ (i.e., no cell ρ ∈ Σ satisfies ρ ≥ σ and
ρ ≥ τ), or there is the least element σ ∨ τ in { ρ ∈ Σ | ρ ≥ σ, τ } (cf. [13,
Proposition 3.3.1]).

Assume that Σ is a meet-semilattice. Consider HomR(Reσ, N)τ for N ∈
modR and τ ∈ Σ. If σ ∨ τ exists, then we have HomR(Reσ, N)τ = Nσ∨τ .
Otherwise, there is no upper bound for σ and τ , and HomR(Reσ, N)τ = 0.
Hence the complex HomR(Reσ, N•) is exact for an exact complex N•. Hence
if N• is bounded and exact, and P • is bounded and each P i is projective,
then Hom•R(P •, N•) is exact.
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By the above remarks, we have the following lemma (see [7, I.1.10] for the
derived functor of a bifunctor).

Lemma 4.2. For M•, N• ∈ Db(modR), we have:
(1) If I• is an injective resolution of N•, then

RHomR(M•, N•) ∼= Hom•R(M•, I•).

(2) If Σ is a meet-semilattice as a poset (e.g., Σ is a simplicial complex),
then

RHomR(M•, N•) ∼= Hom•R(P •, N•)
for a projective resolution P • of M•.

Example 4.3. The additional assumption in Lemma 4.2 (2) is indeed
necessary, that is, RHomR(M•, N•) 6∼= Hom•R(P •, N•) in general.

For example, let X be a closed 2 dimensional disc, and Σ a regular cell
decomposition of X consisting of one 2-cell (say, σ), two 1-cells (say, τ1, τ2),
and two 0-cells (say, ρ1, ρ2). Since τ̄1∩τ̄2 = ρ1∪ρ2, Σ is not a meet-semilattice.

Let N be a left R-module with N = Nσ = k. Then an injective resolution
of N is of the form

I• : 0→ E(σ)→ E(τ1)⊕ E(τ2)→ E(ρ1)⊕ E(ρ2)→ E(∅)→ 0.

We have

HomR(Reρ1 , E(σ))ρ2 = HomR(Reρ1 , E(τ1))ρ2 = HomR(Reρ1 , E(τ2))ρ2 = k

and
HomR(Reρ1 , E(ρ1))ρ2 = HomR(Reρ1 , E(ρ2))ρ2 = 0.

Thus Ext1
R(Reρ1 , N)ρ2 = H1(Hom(Reρ1 , I

•))ρ2 6= 0, while Reρ1 is a projective
module.

Proposition 4.4. If M• ∈ Db(modR), then

D(M•) ∼= RHomR(M•,D(Re∅)).

Proof. Since D(Re∅) is of the form

0→ D−d → D−d+1 → · · · → D1 → 0

with Di =
⊕

dimσ=−iE(σ), the assertion follows from Lemmas 4.1 and 4.2.
�

Since (Re∅)† ∼= kX , we have D•X ∼= D(kX) ∼= D(Re∅)† by Proposition 4.4.
If F ,G ∈ Shc(X), then it is easy to see that Hom(F ,G) ∈ Shc(X). For

M,N ∈ modR and ∅ 6= σ ∈ Σ, we have

Hom(M†, N†)(Uσ) = HomSh(Uσ)(M†|Uσ , N†|Uσ ) ∼= HomR(M≥σ, N≥σ)

= HomR(M≥σ, N) = HomR(M,N)σ.
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Hence

HomR(M,N)† ∼= Hom(M†, N†).

For F•,G• ∈ Db(Shc(X)), it is known that RHom(F•,G•) ∈ Db(Shc(X))
(see [7, Proposition 8.4.10]). Thus we can use an injective resolution of G•
in Db(Shc(X)) to compute RHom(F•,G•). If I• is an injective resolution of
N• ∈ Db(modR), then (I•)† is an injective resolution of (N•)† in Db(Shc(X)).
Hence we have the following.

Proposition 4.5 ([11, Theorem 5.2.5]). If M•, N• ∈ Db(modR), then

RHomR(M•, N•)† ∼= RHom((M•)†, (N•)†).

By Lemma 4.2 (2), if Σ is a meet-semilattice, then RHom(F•,G•) for
F•,G• ∈ Db(Shc(X)) can be computed using a projective resolution of F• in
Db(Shc(X)).

Remark 4.6. (1) Let J be the left ideal of R generated by { eσ, ∅ | σ 6=
∅ }. Note that J† ∼= kX . Then we have that HomR(J,M)† ∼= M† and
HomR(J,M)∅ ∼= Γ(X,M†). Moreover, we have ExtiR(J,M) = ExtiR(J,M)∅ ∼=
Hi(X,M†) for all i ≥ 1 by an argument similar to that in the proof of Theo-
rem 2.2.

(2) Let mod∅ be the full subcategory of modR consisting of modules M
with Mσ = 0 for all σ 6= ∅. Then mod∅ is a dense subcategory of modR.
That is, for a short exact sequence 0 → M ′ → M → M ′′ → 0 in modR, M
is in mod∅ if and only if M ′ and M ′′ are in mod∅. So we have the quotient
category modR /mod∅ by [10, Theorem 4.3.3]. Let π : modR → modR /mod∅
be the canonical functor. It is easy to see that π(M) ∼= π(M ′) if and only if
M>∅ ∼= M ′>∅. Moreover, we have Shc(X) ∼= modR /mod∅.

Let the notation be as in (1) of this remark. Then HomR(J,−) gives a
functor η : modR /mod∅ → modR with π ◦ η = Id. Moreover, η is a section
functor (cf. [10, §4.4]) and mod∅ is a localizing subcategory of modR.

Let A =
⊕

i≥0Ai be a commutative Noetherian homogeneous k-algebra as
in Remark 2.3 (2) and GrA the category of graded A-modules. We say M ∈
GrA is a torsion module if for all x ∈M there is some i ∈ N with A≥i ·x = 0.
Let TorA be the full subcategory of GrA consisting of torsion modules. Clearly,
TorA is dense in GrA. It is well known that the category Qco(Y ) of quasi-
coherent sheaves on the projective scheme Y := ProjA is equivalent to the
quotient category GrA /TorA, and we have the section functor Qco(Y )→ GrA
given by F 7→

⊕
i∈ZH

0(Y,F(i)). So TorA is a localizing subcategory of GrA.
In this sense, our Shc(X) ∼= modR /mod∅ is a small imitation of Qco(Y ) ∼=
GrA /TorA.
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5. Cohomologies of sheaves on open subsets

Let Ψ ⊂ Σ be an order filter of the poset Σ. That is, σ ∈ Ψ, τ ∈ Σ,
and τ ≥ σ imply τ ∈ Ψ. Then UΨ :=

⋃
σ∈Ψ σ is an open subset of X. If

M ∈ modR, MΨ :=
⊕

σ∈ΨMσ is a submodule of M . It is easy to see that
(MΨ)† ∼= j!j

∗M†, where j : UΨ → X is the embedding map. If Ψ = {τ |
τ ≥ σ} for some σ ∈ Σ, then UΨ and MΨ are denoted by Uσ and M≥σ,
respectively.

Lemma 5.1. Let Ψ ⊂ Σ be an order filter with Ψ 63 ∅. Then we have the
following isomorphisms for all i ∈ Z and M ∈ modR.

(1) Hi+1
∅ (MΨ) ∼= Hi

c(UΨ,M
†|UΨ) for all i.

(2) ExtiR(M,ω•)σ ∼= H−i+1
∅ (M≥σ)∨ ∼= H−ic (Uσ,M†|Uσ )∨ for all ∅ 6=

σ ∈ Σ.

Proof. (1) We have

Hi+1
∅ (MΨ) ∼= Hi(X, (MΨ)†) ∼= Hi(X, j!j∗M†) ∼= Hi

c(UΨ,M
†|UΨ).

Here, by Remark 2.3 (1), the first isomorphism holds even if i = 0.
(2) By the description of D(M), we have D(M)σ ∼= D(M≥σ)∅. Hence we

have

ExtiR(M,ω•)σ ∼= ExtiR(M≥σ, ω•)∅ ∼= H−i+1
∅ (M≥σ)∨ ∼= H−ic (Uσ,M†|Uσ )∨.

Here the second isomorphism follows from Corollary 3.5. �

Proposition 5.2. For any σ ∈ Σ, D(Reσ)† ∼= Rj∗D•Uσ , where j : Uσ →
X is the embedding map. In particular, D(Re∅)† ∼= D•X .

Proof. Set U := Uσ. Since (Reσ)† ∼= j!kU , we have

D(Reσ)† ∼= RHom( j!kU , D•X ) (by Theorem 3.2)
∼= Rj∗RHom( kU , j

∗D•X ) (by [6, VII. Theorem 5.2])
∼= Rj∗RHom( kU , D•U ) ∼= Rj∗D•U . �

Motivated by Lemma 5.1, we give a formula for the ordinary (not compact
support) cohomology Hi(UΨ,M

†|UΨ).

Theorem 5.3. Let Ψ ⊂ Σ be an order filter with Ψ 63 ∅. We have

Hi(UΨ,M
†|UΨ) ∼= [ ExtiR( D(M)Ψ, ω

• ) ]∅
for all i ∈ N and M ∈ modR.

Proof. For simplicity set U := UΨ. Let F• ∈ Db(Sh(U)). Taking a complex
in the isomorphic class of F•, we may assume that each component F i is a
direct sum of sheaves of the form h!kV , where V is an open subset of U with
the embedding map h : V → U (see [6, II. Proposition 7.4]). Since each
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component DiU of D•U is an injective sheaf, h∗DiU is also injective by [6, II.
Corollary 6.10], and we have

Hom(h!kV ,DiU ) ∼= Rh∗RHom(kV , h
∗DiU ) ∼= Rh∗(h∗DiU ) ∼= h∗h

∗DiU
by [6, VII, Theorem 5.2]. Since the sheaf h∗h∗DiU is flabby, Hom•(F•,D•U ) is
a complex of flabby sheaves. Hence we have

ExtiSh(U)(F•,D•U ) ∼= Hi( Γ(U,Hom•(F•, D•U ) )
∼= RiΓ(U,RHom(F•, D•U ) ).

Since RHom( RHom(M†|U ,D•U ), D•U ) ∼= M†|U in Db(Sh(U)), we have

Hi(U,M†|U ) ∼= RiΓ(U, RHom( RHom(M†|U ,D•U ), D•U ) )
∼= ExtiSh(U)( RHom(M†|U ,D•U ), D•U )
∼= R−iΓc(U,RHom(M†|U ,D•U ))∨ (by [6, V, Theorem 2.1])
∼= R−iΓc(U,RHom(M†,D•X)|U )∨

∼= R−iΓc(U,D(M)†|U )∨

∼= R−i+1Γ∅(U,D(M)Ψ)∨ (by Lemma 5.1)
∼= ( ExtiR( D(M)Ψ, ω

• )∅ ) (by Corollary 3.5).�

Example 5.4. Assume that X is a d-dimensional manifold (in this paper,
the word “manifold” always means a manifold with or without boundary, as in
[6]) and Ψ ⊂ Σ is an order filter with Ψ 63 ∅. We denote the orientation sheaf
of X over k (cf. [6, V.§3]) by orX . Thus we have orX [d] ∼= D•X in Db(Sh(X)).
Let U := UΨ be an open subset with the embedding map j : U → X. We
have

(D(Re∅)Ψ)† ∼= j!j
∗D(Re∅)† ∼= j!j

∗D•X ∼= j!D•U ∼= (j!orU )[d].
Thus

[ ExtiR( D(Re∅)Ψ, ω
• ) ]∅ ∼= H−i+1

∅ (D(Re∅)Ψ)∨ ∼= Hd−i
c (U, orU )∨.

But we have Hi(U ; k) ∼= Hd−i
c (U, orU )∨ by the Poincaré duality. So equality

in Theorem 5.3 can actually hold.

For a finite poset P , the order complex ∆(P ) is the set of chains of P .
Recall that a subset C of P is a chain if any two elements of C are compa-
rable. Obviously, ∆(P ) is an (abstract) simplicial complex. The geometric
realization of the order complex ∆(Σ′) of Σ′ := Σ \ ∅ is homeomorphic to the
underlying space X of Σ.

We say a finite regular cell complex Σ is Cohen-Macaulay (resp. Buchs-
baum) over k if ∆(Σ′) is Cohen-Macaulay (resp. Buchsbaum) over k in the
sense of [12, II.§§3-4] (resp. [12, II.§8]). (If Σ is a simplicial complex, we
can use Σ directly instead of ∆(Σ′).) These are topological properties of the
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underlying space X. In fact, Σ is Buchsbaum if and only if Hi(D•X) = 0 for all
−i 6= d := dimX (see [17, Corollary 4.7]). For example, if X is a manifold, Σ
is Buchsbaum. Similarly, Σ is Cohen-Macaulay if and only if it is Buchsbaum
and H̃i(X; k) = 0 for all i < d.

We have

Hi(D(Re∅))∅ = ExtiR(Re∅, ω•)∅ ∼= H−i+1
∅ (Re∅)∨ ∼= H̃−i(X; k)∨

for all i ∈ Z by Corollary 3.5 and Theorem 2.2. Recall that D(Re∅)† ∼= D•X .
So Hi(D(Re∅)) = 0 for all i 6= −d if and only if X is Cohen-Macaulay
over k. In general, Hi(ω•)† can be non-zero for some i 6= −d even if X is
Cohen-Macaulay. For example, let X be a closed 2-dimensional disc, and Σ
the regular cell decomposition of X given in Example 4.3. Then the “ρ1-ρ2

component” (ω•)ρ1
ρ2

of ω• is of the form

0→ E(σ)ρ1
ρ2
→ E(τ1)ρ1

ρ2
⊕ E(τ2)ρ1

ρ2
→ 0.

Thus H−1(ω•)ρ1
ρ2
6= 0, while X is Cohen-Macaulay. However, we have the

following result.

Proposition 5.5. Assume that Σ is a meet-semilattice as a poset (e.g.,
Σ is a simplicial complex). Then we have:

(1) Hi(ω•) = 0 for all i 6= −d if and only if Σ is Cohen-Macaulay over k.
(2) Hi(ω•)† = 0 for all i 6= −d if and only if Σ is Buchsbaum over k.

Proof. (1) Since ω• ∼= D(R) ∼=
⊕

σ∈Σ D(Reσ), the “only if” part is clear
by the argument preceding the proposition. To prove the “if” part, we assume
that Σ is Cohen-Macaulay. Set Ω := H−d(D(Re∅)). Then Ω[d] ∼= D(Re∅)
in Db(modR). By Proposition 4.4, we have D(Reσ) ∼= RHomR(Reσ,Ω[d]).
Since Reσ is a projective module, we have ExtiR(Reσ,Ω) = 0 for all i > 0 by
Lemma 4.2. Thus Hi(D(Reσ)) = 0 for all i 6= −d.

(2) Similar to (1). �

Remark 5.6. By [17, Proposition 4.10], Proposition 5.5 (1) states that
if Σ is a Cohen-Macaulay simplicial complex, the relative simplicial complex
(Σ,delΣ(σ)) is Cohen-Macaulay in the sense of [12, III.§7] for all σ ∈ Σ. Here
delΣ(σ) := { τ ∈ Σ | τ 6≥ σ } is a subcomplex of Σ.

Example 5.7. (1) We say that a finite regular cell complex Σ of dimension
d is Gorenstein* over k (see [12, p. 67]), if the order complex ∆ := ∆(Σ′) of
Σ′ := Σ \ ∅ is Cohen-Macaulay over k (that is, H̃i(lk∆ σ; k) = 0 for all σ ∈ Σ
and all i 6= d−dimσ−1; see [12, II. Corollary 4.2]) and H̃d−dimσ−1(lk∆ σ; k) =
k for all σ ∈ ∆. (If Σ is a simplicial complex, we can use Σ directly instead of
∆.) This is a topological property of the underlying space X. For example,
if X is homeomorphic to a d-dimensional sphere, then Σ is Gorenstein* (over
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any k). Note that Σ is Gorenstein* over k if and only if it is Cohen-Macaulay
over k and Eulerian (cf. [13]) as a poset.

It is easy to see that D(Re∅) ∼= (Re∅)[d] in Db(modR) if and only if X
is Gorenstein*. If Σ is a Gorenstein* simplicial complex, then ω• ∼= Ω[d]
for some Ω ∈ modR⊗kR by Proposition 5.5. Moreover, we can describe Ω
explicitly. In fact, Ω has a k-basis { eστ | σ, τ ∈ Σ, σ ∪ τ ∈ Σ } and its module
structure is defined by

(eσ′, τ ′ ⊗ 1) · eτρ =

{
eτσ′ if τ ′ = ρ and σ′ ∪ τ ∈ Σ,
0 otherwise,

and

(1⊗ eσ′, τ ′) · eτρ =

{
eσ
′

ρ if τ ′ = τ and σ′ ∪ ρ ∈ Σ,
0 otherwise.

To check this, note that the “τ -ρ component” (ω•)τρ of ω• = 〈 e(σ)τρ | σ ≥ τ, ρ 〉
is isomorphic to C̃−n−•(lkΣ(τ ∪ ρ)) as a complex of k-vector spaces, where
C̃•(lkΣ(τ ∪ρ)) is the augmented chain complex of lkΣ(τ ∪ρ) and n = dim(τ ∪
ρ) + 1. So the description follows from the Gorenstein* property of Σ. It is
easy to see that D(Reσ) ∼= 〈 eστ | τ ∈ stΣ σ 〉. So we have Rj∗D•Uσ ∼= j∗kUσ [d],
where j : Uσ → X is the embedding map (j∗kUσ is essentially the constant
sheaf on the closure Ūσ of Uσ).

(2) Let Σ be a finite simplicial complex of dimension d, and V the set of its
vertices. Assume that Σ is Gorenstein in the sense of [12, II.§5]. Then there
is a subset W ⊂ V and a Gorenstein* simplicial complex ∆ ⊂ 2V \W such
that Σ = 2W ∗∆, where “∗” stands for the simplicial join. (The Gorenstein
property depends on the particular simplicial decomposition of X.) Since a
Gorenstein simplicial complex is Cohen-Macaulay, there is Ω ∈ modR⊗kR such
that ω• ∼= Ω[d]. By an argument similar to (1), Ω has a k-basis { eστ | σ ∪ τ ∈
Σ, σ ∪ τ ⊃W } and its left R⊗k R-module structure is obtained in a similar
way as in (1).

Assume that Σ is the d-simplex 2V . Then Σ is Gorenstein and Ω has a
k-basis { eστ | σ∪ τ = V }. Moreover, we have a ring isomorphism given by ϕ :
R 3 eσ,τ 7→ eτ c,σc ∈ Rop, where Rop is the opposite ring of R, and σc := V \σ.
Thus R has a left (R⊗kR)-module structure given by (x⊗ y) · r = x · r ·ϕ(y).
Then a map given by R 3 eσ,τ 7→ eτ

c

σ ∈ Ω is an isomorphism of (R ⊗ R)-
modules. So R is an Auslander regular ring in this case. See [18, Remark 3.3].

(3) Assume that Σ is a simplicial complex and X is a d-dimensional man-
ifold which is orientable (i.e., orX ∼= kX) and connected. Then Hi(ω•)† = 0
for all i 6= −d. It is easy to see that Ω := H−d(ω•) ∈ modR⊗kR has a k-basis
{ eστ | σ ∪ τ ∈ Σ } and the module structure is give by the same way as (1).
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6. The Möbius function of the poset Σ̂

The Möbius function of a finite poset P is a function

µ : { (x, y) | x ≤ y in P } → Z

recursively defined by µ(x, x) = 1 for all x ∈ P and µ(x, y) = −
∑
x≤z<y µ(x, z)

for all x, y ∈ P with x < y. See [13, Chapter 3] for a general theory of this
function.

For a finite regular cell complex Σ, let Σ̂ be the poset obtained from Σ by
adjoining the greatest element 1̂ (even if Σ already possess a greatest element,
we add a new one). Then the Möbius function µ of Σ̂ has a topological
meaning. For example, we have µ(∅, 1̂) = χ̃(X), where χ̃(X) is the reduced
Euler characteristic

∑
i≥0(−1)i dimk H̃

i(X; k) of X. When the underlying
space X is a manifold, the Möbius function of Σ̂ is completely determined in
[13, Proposition 3.8.9]. Here we study the general case.

For σ ∈ Σ with dimσ > 0, {σ′ ∈ Σ | σ′ < σ } is a regular cell decomposition
of σ̄ − σ which is homeomorphic to a sphere of dimension dimσ − 1. Hence
we have µ(τ, σ) = (−1)l(τ,σ) for τ ∈ Σ with τ ≤ σ by [13, Proposition 3.8.9],
where l(τ, σ) := dimσ − dim τ . So it remains to describe µ(σ, 1̂) for σ 6= ∅.

Proposition 6.1. For a cell ∅ 6= σ ∈ Σ with j := dimσ, we have

µ(σ, 1̂) =
∑
i≥j

(−1)i−j+1 dimkH
i
c(Uσ; k).

Here Hi
c(Uσ; k) is the cohomology with compact support of the open set Uσ =⋃

ρ≥σ ρ of X.

Proof. The assertion follows from the following computation:

µ(σ, 1̂) = −
∑

ρ∈Σ, ρ≥σ

µ(σ, ρ)

=
∑
i≥j

(−1)i−j+1 ·#{ ρ ∈ Σ | ρ ≥ σ, dim ρ = i }

=
∑
i≥j

(−1)i−j+1 dimkH−i(D•X)(Uσ)

=
∑
i≥j

(−1)i−j+1 dimkH
i
c(Uσ; k).

Here the second equality follows from the fact that µ(σ, ρ) = (−1)l(σ,ρ); the
third equality follows from D•X ∼= D(Re∅)† and the description of D(Re∅)
(recall also that M†(Uσ) ∼= Mσ); and the last equality follows from the Verdier
duality. �
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Assume that X is a manifold of dimension d. If σ 6= ∅ is contained in the
boundary of X, then Uσ is homeomorphic to (Rd−1×R≥0) and Hi

c(Uσ; k) = 0
for all i. Thus µ(σ, 1̂) = 0 in this case. If σ is not contained in the boundary
of X, then Uσ is homeomorphic to Rd and Hi

c(Uσ; k) = 0 for all i 6= d and
Hd
c (Uσ; k) = k. Hence we have µ(σ, 1̂) = (−1)d−dimσ+1. So Proposition 6.1

recovers [13, Proposition 3.8.9].

7. Relation to Koszul duality

Let A =
⊕

i≥0Ai be an N-graded associative k-algebra such that dimk Ai <

∞ for all i and A0
∼= kn for some n ∈ N as an algebra. Then r :=

⊕
i>0Ai

is the graded Jacobson radical. We say A is Koszul if a left A-module A/r
admits a graded projective resolution

· · · → P−2 → P−1 → P 0 → A/r→ 0

such that P−i is generated by its degree i component as an A-module (i.e.,
P−i = AP−ii ). If A is Koszul, it is a quadratic ring, and its quadratic dual ring
A! (see [1, Definition 2.8.1]) is Koszul again, and isomorphic to the opposite
ring of the Yoneda algebra Ext•A(A/r, A/r).

Note that the incidence algebra R of Σ is a graded ring with deg(eσ,σ′) =
dimσ − dimσ′. So we can discuss the Koszul property of R.

Proposition 7.1 (cf. [18, Lemma 4.5]). The incidence algebra R of a
finite regular cell complex Σ is always Koszul. Moreover, the quadratic dual
ring R! is isomorphic to Rop.

When Σ is a simplicial complex, the above result was proved by Polishchuk
[8] in much wider context (but ∅ 6∈ Σ in his convention). More precisely,
Polishchuk introduced a new partial order on the set Σ \ ∅ associated with a
perversity function p, and constructed two rings from this new poset. Then
he proved that these two rings are Koszul and quadratic dual rings of each
other. Our rings R and Rop correspond to the case when p is the top (or
bottom) perversity. In the middle perversity case, Σ has to be a simplicial
complex to make their rings Koszul.

Proof. By [9], [15], R is Koszul if and only if the order complex ∆(I) is
Cohen-Macaulay over k for any open interval I of Σ. Set Σ′ := Σ \ ∅. Note
that ∆(I) = lk∆(Σ′) F for some F ∈ ∆(Σ′) containing a maximal cell σ ∈ Σ.
Set ∆ := st∆(Σ′) σ. Then ∆(I) = lk∆ F . Since the underlying space of ∆ is
the closed disc σ̄, ∆ is Cohen-Macaulay. Hence lk∆ F is also. So R is Koszul.

Let
T := TR0R1 = R0 ⊕R1 ⊕ (R1 ⊗R0 R1)⊕ · · · =

⊕
i≥0

R⊗i1
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be the tensor ring of

R1 = 〈 eσ, τ | σ, τ ∈ Σ, σ > τ, dimσ = dim τ + 1 〉
over R0. Then R ∼= T/I, where

I = ( eσ, ρ1 ⊗ eρ1, τ − eσ, ρ2 ⊗ eρ2, τ | σ > ρi > τ, dimσ = dim τ + 2 )

is a two-sided ideal. Let R∗1 := HomR0(R1, R0) be the dual of the left R0-
module R1. Then R∗1 has a right R0-module structure such that (fa)(v) =
(f(v))a, and a left R0-module structure such that (af)(v) = f(va), where
a ∈ R0, f ∈ R∗1, v ∈ R1. As a left (or right) R0-module, R∗1 is generated by
{ e∗τ, σ | σ > τ, dimσ = dim τ + 1 }, where e∗τ, σ(eσ′, τ ′) = δσ,σ′ · δτ,τ ′ · eσ.

Let T ∗ = TR0R
∗
1 be the tensor ring of R∗1. Note that e∗τ, σ⊗e∗τ ′, σ′ ∈ R∗1⊗R0

R∗1 is non-zero if and only if σ = τ ′. We have that (R∗1 ⊗R0 R
∗
1) is isomorphic

to (R1 ⊗R0 R1)∗ = HomR0(R1 ⊗R0 R1, R0) via (f ⊗ g)(v ⊗ w) = g(vf(w)),
where f, g ∈ R∗1 and v, w ∈ R1. In particular, (e∗τ, ρ ⊗ e∗ρ, σ)(eσ, ρ ⊗ eρ, τ ) = eσ.
Recall that if σ, τ ∈ Σ, σ > τ and dimσ = dim τ + 2, then there are exactly
two cells ρ1, ρ2 ∈ Σ between σ and τ . So an easy computation shows that the
quadratic dual ideal

I⊥ = ( f ∈ R∗1 ⊗R∗1 | f(v) = 0 for all v ∈ I2 ⊂ R1 ⊗R1 = T2 ) ⊂ T ∗

of I is equal to

( e∗τ, ρ1
⊗ e∗ρ1, σ + e∗τ, ρ2

⊗ e∗ρ2, σ | ρ1 6= ρ2, σ > ρi > τ, dimσ = dim τ + 2 ).

The k-algebra homomorphism Rop → R! = T ∗/I⊥ defined by the identity
map on R0 = T0 = (T ∗)0 = (R!)0 and R1 3 eσ, τ 7→ ε(σ, τ) · e∗τ, σ ∈ R!

1 is a
graded isomorphism. Here ε is an incidence function of Σ. �

Since R! ∼= Rop, Homk(−, k) gives duality functors Dk : modR → modR!

and Dop
k : modR! → modR. These functors are exact, and they can be ex-

tended to duality functors between Db(modR) and Db(modR!).
Note that R! is a graded ring with deg e∗τ, σ = dimσ − dim τ . Let grR

(resp. grR!) be the category of finitely generated graded left R-modules (resp.
R!-modules). Note that we can regard the functor D (resp. Dk and Dop

k ) as
a functor from Db(grR) to itself (resp. Db(grR)→ Db(grR!) and Db(grR!)→
Db(grR)).

For each i ∈ Z, let grR(i) be the full subcategory of grR consisting of
modules M with degMσ = dimσ − i. For any M ∈ grR, there are modules
M (i) ∈ grR(i) such that M ∼=

⊕
i∈ZM

(i). The forgetful functor gives an
equivalence grR(i) ∼= modR for all i ∈ Z, and Db(grR(i)) is a full subcategory
of Db(grR). Similarly, let grR!(i) be the full subcategory of grR! consisting of
modules M with degMσ = −dimσ− i. The above mentioned facts on grR(i)
also hold for grR!(i).

Let DF : Db(grR) → Db(grR!) and DG : Db(grR!) → Db(grR) be the
functors defined in [1, Theorem 2.12.1]. Since R and R! are Artinian, DF
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and DG give an equivalence Db(grR) ∼= Db(grR!) by the Koszul duality ([1,
Theorem 2.12.6]).

For the case when Σ is a simplicial complex the following result was proved
by Vybornov [14] (under the convention that ∅ 6∈ Σ). Independently, the
author also proved a similar result ([18, Theorem 4.7]).

Theorem 7.2 (cf. Vybornov, [14, Corollary 4.3.5]). Under the above
notation, if M• ∈ Db(grR(0)), then we have DF (M•) ∈ Db(grR!(0)). Sim-
ilarly, if N• ∈ Db(grR!(0)), then DG(N•) ∈ Db(grR(0)). Under the equiv-
alence grR(0) ∼= modR and grR!(0) ∼= modR! , we have DF ∼= Dk ◦ D and
DG ∼= D ◦Dop

k .

Proof. Recall that (R!)0 = R0. Let N ∈ modR! . For the functor DG, we
need the left R-module structure on HomR0(R,Nσ) given by (xf)(y) := f(yx).
The R-homomorphism given by HomR0(R,Nσ) 3 f 7−→

∑
τ≤σ e(σ)τ ⊗k

f(eσ, τ ) ∈ E(σ) ⊗k Nσ gives an isomorphism HomR0(R,Nσ) ∼= E(σ) ⊗k Nσ.
Under this isomorphism, for cells τ < σ, the morphism HomR0(R,Nσ) →
HomR0(R,Nτ ) given by f 7→ [x 7→ e∗τ, σ f(eσ, τ x)] corresponds to the mor-
phism E(σ)⊗k Nσ → E(τ)⊗k Nτ given by e(σ)ρ ⊗ y 7→ e(τ)ρ ⊗ e∗τ, σ y. (Here
e(τ)ρ = 0 if τ 6≥ ρ.)

Let N ∈ grR! . By the explicit description of D given in §3, we have

(D ◦Dop
k )i(N) =

⊕
σ∈Σ

dimσ=−i

E(σ)⊗k Nσ =
⊕
σ∈Σ

dimσ=−i

HomR0(R,Nσ)

and the differential map defined by

E(σ)⊗kNσ 3 e(σ)ρ⊗y 7→
∑
τ∈Σ

dim τ=−i−1

ε(σ, τ) ( e(τ)ρ⊗e∗τ, σ y) ∈ (D◦Dop
k )i+1(N).

So, if we forget the grading of modules, we have DG(N) ∼= (D ◦ Dop
k )(N).

Similarly, we can obtain an isomorphism DG(N•) ∼= (D ◦ Dop
k )(N•) for a

complex N• ∈ Db(grR!).
Assume that N ∈ grR!(0). Then the degree of e(σ)τ ⊗ y ∈ E(σ) ⊗k Nσ ⊂

DG(N) is (dim τ−dimσ)+dimσ = dim τ (see the proof of [1, Theorem 2.12.1]
for the grading of DG(N)). Thus we have DG(N) ∈ grR(0).

We can prove the statement on DF in a similar (and easier) way. �

The results corresponding to Proposition 7.1 and Theorem 7.2 also hold for
the incidence algebra of the poset Σ\∅. In other words, Vybornov [14, Corol-
lary 4.3.5] and the “top perversity case” of Polishchuk [8] can be generalized
directly into regular cell complexes.
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8. Summary

For the reader’s convenience, we give a list of the similarities between the
subjects investigated in this paper and (quasi-)coherent sheaves on a projec-
tive scheme.

For a cell complex and related concepts, we use the same notation as be-
fore (Σ, X, R, modR, Shc(X) and so on). Readers who skipped the preced-
ing sections are recommended to see §1 for a review of this notation. Let
A =

⊕
i≥0Ai be a commutative Noetherian homogeneous algebra over a field

k. We denote the graded maximal ideal
⊕

i≥1Ai by m. Let GrA be the cat-
egory of graded A-modules, and grA its full subcategory consisting of finitely
generated modules. For M ∈ grA and N ∈ GrA, HomA(M,N) has a nat-
ural graded A-module structure. By Qco(Y ) (resp. Coh(Y )) we denote the
category of quasi-coherent (resp. coherent) sheaves on the projective scheme
Y = Proj(A)

In the following list, the item (nR) for n = 1, 2, . . ., states the property of
modR corresponding to the property of GrA (or grA) stated in the item (nA).
Of course, the situations of (nR) are much simpler than those of (nA).

(1R) We have an exact functor (−)† : modR → Shc(X) with M†(Uσ) ∼= Mσ

for each ∅ 6= σ ∈ Σ. Here Uσ denotes the open set
⋃
τ≥σ τ of X.

(2R) We have a left exact functor Γ∅ : modR → modR (or vectk) whose
derived functor Hi

∅(−) satisfies Hi(X,M†) ∼= Hi+1
∅ (M) for all i ≥ 1

and 0→ H0
∅ (M)→M∅ → H0(X,M†)→ H1

∅ (M)→ 0 (exact).
(3R) If mod∅ is the full subcategory of modR consisting of modules M with

Γ∅(M) = M (equivalently, M ∈ mod∅ ⇐⇒ M† = 0), then this is a
localizing subcategory with modR /mod∅ ∼= Shc(X).

(4R) We have a dualizing complex ω• ∈ Db(modR⊗kR) giving the duality
functor R HomR(−, ω•) from Db(modR) to itself. We have a direct
summand ω• of ω• such that (ω•)† ∈ Db(Shc(X)) is the dualizing
complex D•X of X (e.g., if X is a manifold of dimension d, then
H−d(ω•)† is the orientation sheaf of X). For M• ∈ Db(modR), we
have R HomR(M•, ω•)† ∼= RHom((M•)†,D•X) in Db(Shc(X)). More-
over, RHom(−, ω•)† corresponds to the Verdier duality for
Db(Shc(X)).

(5R) For M• ∈ Db(modR), we have ExtiR(M•, ω•)∅ ∼= H−i+1
∅ (M•)∨.

(6R) The dualizing complex ω• satisfies the Auslander condition of [19].
For 0 6= M ∈ modR, we have

max{dimσ |Mσ 6= 0 } = −min{ i | ExtiR(M,ω•) 6= 0 }.

(1A) We have a well known exact functor (−)∼ : GrA → Qco(Y ). If M ∈
grA, then M̃ is coherent.

(2A) We have a left exact functor Γm : GrA → GrA whose derived func-
tor (i.e., the local cohomology functor) Hi

m(−) satisfies Hi(Y, M̃) ∼=
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[Hi+1
m (M)]0 for all i ≥ 1 and 0 → [H0

m(M)]0 → M0 → H0(Y, M̃) →
[H1

m(M)]0 → 0 (exact).
(3A) If TorA is the full subcategory of GrA consisting of modules M with

Γm(M) = M (equivalently, M ∈ TorA ⇐⇒ M̃ = 0), then this is a
localizing subcategory with GrA /TorA ∼= Qco(Y ).

(4A) We have a dualizing complex ω•A ∈ Db(grA) which gives the duality
functor R HomA(−, ω•A) from Db(grA) to itself. If we use the con-
vention that Hi

m(ω•A) 6= 0 ⇐⇒ i = 1, then (ω•A)∼ ∈ Db(Coh(Y ))
is the dualizing complex D•Y of Y . For M• ∈ Db(grA), we have
R HomA(M•, ω•A)∼ ∼= RHom((M•)∼,D•Y ) in Db(Coh(Y )). More-
over, R HomA(−, ω•A)∼ corresponds to the Serre duality for
Db(Coh(Y )).

(5A) For M• ∈ Db(grA), we have ExtiA(M•, ω•A) ∼= H−i+1
m (M•)∨, where

(−)∨ stands for the graded k-dual. (Note that RΓm(ω•A) ∼= A∨[−1]
in our convention.)

(6A) The dualizing complex ω•A satisfies the Auslander condition (this con-
dition is always satisfied in the commutative case). For 0 6= M ∈ grA,
we have Krull-dim(M) − 1 = −min{ i | ExtiA(M,ω•A) 6= 0 }. Recall
that if M 6∈ TorA, then dim M̃ = Krull-dim(M)− 1.
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