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MAPPINGS WITH CONVEX POTENTIALS AND THE
QUASICONFORMAL JACOBIAN PROBLEM

LEONID V. KOVALEV AND DIEGO MALDONADO

Abstract. This paper concerns convex functions that arise as poten-
tials of quasiconformal mappings. Several equivalent definitions for such

functions are given. We use them to construct quasiconformal mappings
whose Jacobian determinants are singular on a prescribed set of Haus-
dorff dimension less than 1.

1. Introduction

Throughout the paper Ω denotes a convex domain in Rn. We use D2u(x)
to denote the Hessian matrix of a function u : Ω → R at a point x ∈ Ω.
The operator norm of a matrix A is denoted by ‖A‖; the Euclidean norm of
a vector v is denoted by |v| = 〈v, v〉1/2. As usually, W k,p

loc stands for local
Sobolev spaces of real-valued functions.

Definition 1.1. Let Ω ⊂ Rn, n ≥ 2. A convex function u : Ω → R is
called quasiuniformly convex if u is not affine, u ∈ W 2,n

loc (Ω), and there is a
constant K ∈ [1,∞) such that

(1.1) ‖D2u(x)‖n ≤ K detD2u(x), a.e. x ∈ Ω.

When we want to specify the value of K, we call u a K-quasiuniformly
convex function, usually using the abbreviation “q.u.” Condition (1.1) is
equivalent to saying that the ratio of the maximal and minimal eigenvalues
of D2u is essentially bounded on Ω. This should be compared to a related
definition of uniformly convex functions [38, p. 59], which imposes a bound
on the Hessian eigenvalues themselves rather than on their ratio. Recall that
a function u : Ω → R is λ-uniformly convex if u(x) − λ|x|2/2 is convex. One
can easily see that if u ∈ C2(Ω) is uniformly convex, then u is q.u. convex
on every domain Ω′ that is compactly contained in Ω. However, Example 2.4
below shows that in general q.u. convex functions are not uniformly convex,
even locally.
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Our motivation for introducing quasiuniformly convex functions comes
from their connection with quasiconformal mappings [24], [37], [39]. In the fol-
lowing definition Df stands for the first-order derivative matrix of a mapping
f .

Definition 1.2. Let Ω ⊂ Rn, n ≥ 2. An injective mapping f : Ω→ R
n is

called quasiconformal if f ∈ W 1,n
loc (Ω;Rn) and there is a constant K ∈ [1,∞)

such that

(1.2) ‖Df(x)‖n ≤ K detDf(x), a.e. x ∈ Ω.

A mapping is called K-quasiregular if it verifies all of the above conditions
except for injectivity.

If u is a K-q.u. convex function, then its gradient

f(x) := ∇u(x) =
(
∂u

∂x1
, . . . ,

∂u

∂xn

)
is locally in W 1,n and (1.2) holds. This means that f is K-quasiregular
and therefore continuous. Suppose that f(x) = f(y) for some distinct points
x, y ∈ Ω. Since the graph of u admits only one supporting plane at every point,
it follows that f(z) = f(x) for all points z between x and y. This contradicts
Reshetnyak’s theorem [29], [30], which says that nonconstant quasiregular
mappings are open and discrete. Therefore, f is injective, which implies that
u is strictly convex (see Corollary 26.3.1 in [31]). To summarize the above, u
is K-q.u. convex if and only if f is K-quasiconformal.

In addition to being quasiconformal, f is a monotone mapping [1] in the
sense that

〈f(x)− f(y), x− y〉 ≥ 0, x, y ∈ Ω.
The interplay between monotonicity and quasiconformality is one of the main
underlying themes of this paper. While mappings with convex potentials have
been a subject of recent research (see [8], [9], [10]), our setup is somewhat
different since condition (1.1) is not invariant under affine transformations of
R
n. However, the family of all quasiuniformly convex functions is invariant

under affine changes of variables.
David and Semmes [12] asked for a characterization of nonnegative func-

tions w such that C−1w ≤ detDf ≤ Cw a.e. in Rn for some quasiconformal
mapping f : Rn → R

n and some constant C > 0. This question became
known as the quasiconformal Jacobian problem and drew much interest [4],
[5], [21], [26], [32], [33], in part because of its connection to the problem of
characterizing bi-Lipschitz images of Rn [5], [6].

Despite all the efforts, “currently there seems to be no good guess as to
what analytic conditions would characterize quasiconformal Jacobians” [5].
One can try to gain a better understanding of this problem by studying the
sets on which quasiconformal Jacobians assume the values 0 or ∞. Indeed,
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the function w from the previous paragraph must be equal to 0 or ∞ on the
same set. In order to make these remarks more precise, we introduce some
more notation. Let Ln stand for the n-dimensional Lebesgue measure on Rn,
and let dimE denote the Hausdorff dimension of a set E ⊂ Rn. When ϕ is a
function defined on a subset of Rn, we write ess lim

y→x
ϕ(y) = a if there is a set

Z ⊂ Rn such that Ln(Z) = 0 and lim
y→x, y/∈Z

ϕ(y) = a.

Definition 1.3. A set E ⊂ R
n is a quasiconformal 0-set if there is a

quasiconformal mapping f : Rn → R
n such that

ess lim
y→x

detDf(y) = 0, x ∈ E.

A quasiconformal ∞-set is defined in the same way, except that the essential
limit is required to be ∞ instead of 0.

Definition 1.3 admits an equivalent formulation in terms of the precise
representative of detDf . Given a locally integrable function ϕ, its precise
representative ϕ̃ is defined by

ϕ̃(x) =

 lim
r→0

1
Ln(B(x, r))

∫
B(x,r)

ϕ(y) dLn(y) if the limit exists;

0 otherwise.

According to Definition 1.3, E is a quasiconformal 0-set if and only if

lim
y→x

d̃etDf(y) = 0, x ∈ E.

The same is true with 0 replaced by ∞.
Bonk, Heinonen and Saksman [5] proved that if a set E ⊂ R2 has variational

2-capacity zero, then E is both a quasiconformal 0-set and a quasiconformal
∞-set. Note that a set of 2-capacity zero must have Hausdorff dimension zero.
In Sections 4 and 5 we combine the tools of convex analysis and potential
theory to prove that if E ⊂ R

n has Hausdorff dimension strictly smaller
than 1, then E is both a quasiconformal 0-set and a quasiconformal∞-set. It
is known that some sets of dimension 1 are not quasiconformal 0-sets (see §5).

Tyson [36] conjectured that for every compact set E ⊂ Rn of Hausdorff
dimension less than 1 and for every ε > 0 there is a quasiconformal mapping
f : Rn → R

n such that dim f(E) < ε. Theorem 5.6 suggests that such an f
might arise as the gradient of a convex function. This idea eventually led to
the proof of Tyson’s conjecture [25].

2. Definitions and preliminary results

Let u : Ω→ R be a convex function. For z ∈ Ω, the subdifferential of u at
z is the set

∂u(z) = {p ∈ Rn : u(x) ≥ u(z) + 〈p, x− z〉 ∀x ∈ Ω}.
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If u is differentiable at z, then ∂u(z) consists of only one vector, namely∇u(z).
For z ∈ Ω and p ∈ ∂u(z) let

uz,p(x) = u(x)− u(z)− 〈p, x− z〉, x ∈ Ω.

If u is differentiable at z, then we write uz instead of uz,∇u(z). To avoid
possible confusion, we do not use subscripts to denote derivatives in this
paper. Following Caffarelli [7], we define the section of u with the center
z ∈ Ω, direction p ∈ ∂u(z), and height t > 0 by

Su(z, p, t) = {x ∈ Ω : uz,p(x) < t}.

If u is differentiable at z, then we write Su(z, t) for Su(z,∇u(z), t). The convex
functions whose sections are similar in shape to Euclidean balls B(z, r) = {x ∈
R
n : |x− z| < r} shall be of primary interest to us.

Definition 2.1. We say that u : Rn → R has round sections if there
exists a constant τ ∈ (0, 1) with the following property. For every z ∈ Rn,
p ∈ ∂u(z) and t > 0 there is R > 0 such that

(2.1) B(z, τR) ⊂ Su(z, p, t) ⊂ B(z,R).

In other words, the boundary of every section of u is pinched between two
concentric spheres of comparable size.

Definition 2.2. The sections of a convex function u : Rn → R verify the
engulfing property with constant C if for every y ∈ Su(x, p, t)

(2.2) Su(x, p, t) ⊂ Su(y, q, Ct), ∀q ∈ ∂u(y).

The Monge-Ampère measure associated with a convex function u : Rn → R

is a Borel measure µu defined by µu(E) = Ln(∂u(E)) for every Borel set
E ⊂ Rn [18]. Note that µu does not change if u is replaced with uz,p for any
z ∈ Rn, p ∈ ∂u(z). Given a set E ⊂ Rn such that Ln(E) < ∞, let x∗ be its
center of mass and define λE = {x∗ + λ(x − x∗) : x ∈ E}, λ > 0. In other
words, λE is the dilation of E with respect to its center of mass. The Monge-
Ampère measure µu is called doubling if there exist C > 0 and α ∈ (0, 1) such
that

(2.3) µu(Su(z, p, t)) ≤ Cµu(αSu(z, p, t)), z ∈ Rn, p ∈ ∂u(p), t > 0.

If the sections of u are bounded sets, then the doubling condition on µu can
be proved to be equivalent to the engulfing property of the sections of u
(Theorem 2.2 [19] and Theorem 8 [14]). In §3 we will prove that q.u. convex
functions have round sections and verify the engulfing property.

Definition 2.3. A homeomorphism f : Rn → R
n is called quasisymmet-

ric, or η-quasisymmetric, if there is a homeomorphism η : [0,∞) → [0,∞)



MAPPINGS WITH CONVEX POTENTIALS 1043

such that

(2.4)
|f(x)− f(z)|
|f(y)− f(z)|

≤ η
(
|x− z|
|y − z|

)
, z ∈ Ω, x, y ∈ Ω \ {z}.

Note that Definition 2.3 makes sense for all n ≥ 1, whereas the above
definition of quasiconformal mappings is vacuous when n = 1. In dimensions
2 or higher, a mapping f : Rn → R

n is K-quasiconformal if and only if
it is η-quasisymmetric. Moreover, K and η depend only on each other and
the dimension n (see Theorem 11.14 [20] and [37]). The relation between
convex functions and quasisymmetric mappings in one dimension is rather
simple: a convex function on a line has a quasisymmetric gradient if and
only if its Monge-Ampère measure is doubling [15], [20]. In §3 we explore
such connections in higher dimensions. The rest of this section is devoted to
several basic facts about q.u. convex functions.

We write In for the n × n identity matrix. When A and B are square
matrices, the inequality A ≤ B means that B − A is positive semidefinite.
See [23] for basic properties of the positive semidefinite ordering.

Example 2.4. Let u(x) = g(|x|), where g : [0,∞) → R is a convex
increasing function such that g′ exists and is absolutely continuous on [0,M ]
for every M > 0. Then

D2u(x) =
g′(|x|)
|x|

{
In +

(
|x|g′′(|x|)
g′(|x|)

− 1
)
x⊗ x
|x|2

}
, a.e. x ∈ Rn.

Hence for a.e. x ∈ Rn we have

min
{
|x|g′′(|x|)
g′(|x|)

, 1
}
g′(|x|)
|x|

In ≤ D2u ≤ max
{

2
|x|g′′(|x|)
g′(|x|)

− 1, 1
}
g′(|x|)
|x|

In.

Thus D2u satisfies (1.1) whenever there exist C > 0 such that

C ≤ tg′′(t)
g′(t)

≤ C−1, a.e. t ∈ [0,∞).

If this condition holds, then integration yields g′(t) = O(tC), t→ 0. It is then
easy to see that u ∈W 2,n

loc (Rn), and so u is a q.u. convex function in Rn.
In particular, one can take g(t) = t1+α for any α > 0. If 0 < α < 1,

then the eigenvalues of D2u(x) grow indefinitely as x → 0. If α > 1, then
they vanish as x → 0, which implies that u is not uniformly convex in any
neighborhood of the origin.

The following lemma summarizes some convergence properties of q.u. con-
vex functions.

Lemma 2.5. Let Ω be a convex domain in Rn, and let uk, k = 1, 2, . . . be
K-q.u. convex functions. If the sequence {uk} converges pointwise on a dense
subset of Ω, then
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(i) there is u ∈ C1(Ω) such that uk → u locally uniformly in Ω;
(ii) ∇uk → ∇u locally uniformly in Ω;
(iii) u is either K-q.u. convex or affine;
(iv) detD2uk → detD2u weakly in L1

loc(Ω);
(v) if u is affine, then uk → u in W 2,n

loc (Ω).

Proof. By Theorem 10.8 [31] uk → u locally uniformly in Ω. By Theo-
rem 10.6 [31] the functions uk are equi-Lipschitz on every compact subset of
Ω (i.e., they have uniformly bounded Lipschitz constants). Hence the gradi-
ent mappings ∇uk are locally uniformly bounded in Ω. By Theorem 20.5 [37]
there is a subsequence {∇ukj} that converges locally uniformly in Ω. Hence
u ∈ C1(Ω). Now by Theorem 25.7 [31] we have ∇uk → ∇u locally uniformly
in Ω. Since the mappings ∇uk are K-quasiconformal, ∇u is either constant
or a K-quasiconformal mapping [37], [39]. Statement (iv) follows from [29, p.
141] and Theorem II.9.1 [29]. If ∇u is constant, then the functions uk−u are
K-q.u. convex and ∇(uk−u)→ 0 locally uniformly in Ω. Theorem II.9.1 [29]
now implies that ∇(uk − u)→ 0 in W 1,n

loc (Ω). �

It is obvious that the class of all convex functions on a given set is a convex
cone. In other words, if u and v are convex, then so is αu+βv for any positive
coefficients α and β. This property is shared by the class of K-q.u. convex
functions.

Lemma 2.6. The set of all K-q.u. convex functions in a convex domain
Ω ⊂ Rn is a convex cone.

Proof. Let u and v be K-q.u. convex functions in Ω, and let α, β > 0. Then
for a.e. x ∈ Ω

‖αD2u(x) + βD2v(x)‖ ≤ α‖D2u(x)‖+ β‖D2v(x)‖

≤ K1/n
(
α(detD2u(x))1/n + β(detD2v(x))1/n

)
≤ K1/n det

(
αD2u(x) + βD2v(x)

)1/n
,

where the last step is based on Minkowski’s determinantal inequality [23,
7.8.8]. Since the function αu+βv belongs to W 2,n

loc (Ω), it is K-q.u. convex. �

Lemma 2.6 allows us to build q.u. convex functions by adding together
several translated and rescaled copies of simpler functions, such as the ones
in Example 2.4. For instance, if u is a K-q.u. convex function and µ is a
Radon measure with compact support in Rn, then the convolution u ∗ µ is
K-q.u. convex. Other operations that preserve the class of K-q.u. convex
functions are described in Lemmas 2.7 and 2.8 below. Their proofs rely on
the strict convexity of q.u. convex functions which was proved in §1.
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Lemma 2.7. Let u : Ω → R be a q.u. convex function. Suppose that
H ⊂ Rn is a hyperplane of dimension d ≥ 2 such that Ω ∩ H 6= ∅. Then the
restriction of u to Ω ∩H is K-q.u. convex.

Proof. Let H⊥ be the orthogonal complement of H in Rn. Let G = {ξ ∈
H⊥ : Ω ∩ (H + ξ) 6= ∅}. By virtue of Fubini’s theorem, for Ln−d-a.e. points
ξ ∈ G the restriction of u to H + ξ is K-q.u. convex. Choose a sequence of
such points ξk so that ξk → 0. By Lemma 2.5 the restriction of u to H is
either K-q.u. convex or affine. The second case cannot occur since u is strictly
convex. �

Lemma 2.8. Suppose that u and v are K-q.u. convex in Rn. Then

(i) the Legendre transform of u

u∗(x) := sup
y∈Rn
{〈x, y〉 − u(y)},

is K-q.u. convex in Rn;
(ii) the infimal convolution of u and v

(u�v)(x) := inf
y∈Rn
{u(x− y) + v(y)},

is K-q.u. convex in Rn.

Proof. (i) Since ∇u : Rn → R
n is quasiconformal, it follows that |∇u(x)|

→ ∞ as |x| → ∞. This means that u is co-finite [31], i.e., its epigraph
contains no nonvertical halflines. Since u is also strictly convex, it follows by
Theorem 26.5 [31] that u∗ is finite and differentiable in Rn. Furthermore, the
gradient mapping ∇u∗ : Rn → R

n is the inverse of u, which implies that ∇u∗
is K-quasiconformal. Thus u is K-q.u. convex.

(ii) Since u�v = (u∗ + v∗)∗ [31, 16.4], the statement follows from (i) and
Lemma 2.6. �

We conclude this section with a remark on the regularity of q.u. convex
functions. Since K-quasiconformal mappings are locally Hölder continuous
with exponent α = 1/K (e.g., [24], [39]), it follows that K-q.u. convex func-
tions are locally C1,α. The sharpness of the exponent α is demonstrated by
the function u(x) = |x|1+α, which is K-q.u. convex according to Example 2.4.
The problem of Sobolev regularity is more difficult. Gehring [16] proved that
K-quasiconformal mappings are locally W 1,p for some p > n, where p de-
pends only on n and K. He conjectured that p can be taken arbitrarily close
to nK/(K − 1). So far, Gehring’s conjecture has been proved only when
n = 2 [2]. If this conjecture is true in all dimensions, it will yield a sharp
W 2,p estimate for q.u. convex functions, since the above function u does not
belong to W 2,p

loc when p = nK/(K − 1).
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3. Definitions of quasiuniform convexity

The following theorem provides several equivalent definitions of q.u. convex
functions.

Theorem 3.1. Let n ≥ 2, and let u : Rn → R be a convex function. The
following are equivalent:

(i) u is a quasiuniformly convex function;
(ii) u is differentiable and ∇u : Rn → R

n is quasiconformal;
(iii) u is differentiable but not affine; in addition, there exists a homeo-

morphism η : [0,∞)→ [0,∞) such that

(3.1)
uz(x)
uz(y)

≤ |x− z|
|y − z|

η

(
|x− z|
|y − z|

)
, z ∈ Rn, x, y ∈ Rn \ {z};

(iv) u is differentiable but not affine; in addition, there exists H < ∞
such that

(3.2) max
|x−z|=r

uz(x) ≤ H min
|x−z|=r

uz(x), z ∈ Rn, r > 0;

(v) u has round sections.

The equivalence is quantitative in the sense that the constants and functions
involved in each statement depend only on each other and n, but not on u.

The most interesting equivalence here is (ii)⇔(v). Note that in (v) the
function u is not assumed to be differentiable, whereas (ii) implies that u is
locally C1,α and W 2,p for some α > 0, p > n (see the end of §2). Because the
proof of (v)⇒(ii) is somewhat involved, we isolate a part of it in the following
lemma.

Lemma 3.2. If a convex function u : Rn → R has round sections, then it
is differentiable and strictly convex. Furthermore, there is a constant C such
that for any z, w ∈ Rn

(3.3) uz(z + 2w) ≤ Cuz(z + w).

The constant C depends only on τ in Definition 2.1.

Proof. A convex function is differentiable if and only if its restriction to
every line is such [31, 25.2]. It therefore suffices to prove the lemma for n = 1.

Suppose, by way of contradiction, that u is not strictly convex. Let (a, b) ⊂
R be a maximal (nonempty) open interval on which u is affine. Since u is
assumed not to be affine on R, at least one of the endpoints of (a, b) is finite;
for the sake of definiteness suppose that a is finite. Let u′+ and u′− denote
the one-sided derivatives of u. For t > 0 the section S(a, u′+(a), t) is an open
interval (at, bt) which contains (a, b). Therefore, limt→0(bt−a) ≥ b−a, which
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implies limt→0(a− at) ≥ τ(b− a) > 0. Let a′ = limt→0 at < a. For x ∈ (a′, a)
we have

u(x) < u(a) + u′+(a)(x− a) + t, for all t > 0.
This means that u(x) = u(a)+u′+(a)(x−a) for all x ∈ (a′, b), which contradicts
the maximality of the interval (a, b).

Our next goal is to prove that u′−(z) = u′+(z) for all z ∈ R. Again, let
(at, bt) denote the section Su(z, u′+(z), t). Note that

u(at) = u(z) + u′+(z)(at − z) + t and u(bt) = u(z) + u′+(z)(bt − z) + t.

Since u is strictly convex, we have at, bt → z as t→ 0. Hence

u′+(z) = lim
t→0

u(bt)− u(z)
bt − z

= u′+(z) + lim
t→0

t

bt − z
;(3.4)

u′−(z) = lim
t→0

u(at)− u(z)
at − z

= u′+(z) + lim
t→0

t

at − z
.(3.5)

From (3.4) we have

lim
t→0

t

|bt − z|
= 0,

which implies

lim
t→0

t

|at − z|
≤ τ−1 lim

t→0

t

|bt − z|
= 0.

This and (3.5) yield u′−(z) = u′+(z).
It remains to prove (3.3). In doing so we may assume that u = uz, z = 0,

and w = 1. Let ζ = (1 + τ)−1/2. The convexity of u implies

(3.6) u′(ζ) ≤ u(1)− u(ζ)
1− ζ

≤ u(1)
1− ζ

.

Let t = uζ(0) = ζu′(ζ). Since the closure of Su(ζ, t) contains 0, it also contains
the point (1 + τ)ζ due to roundedness of sections. Thus uζ((1 + τ)ζ) ≤ t.
Combining this with (3.6), we obtain

(3.7) u((1 + τ)ζ) ≤ u(ζ) + τζu′(ζ) + t ≤
{

1 +
ζ(1 + τ)

1− ζ

}
u(1).

Since (1 + τ)ζ =
√

1 + τ > 1, inequality (3.3) follows from (3.7) by iteration.
�

Proof of Theorem 3.1. The equivalence of (i) and (ii) was already observed
in §1. We shall prove that (ii)⇒(iii)⇒(iv)⇒(v)⇒(ii).

(ii)⇒(iii). Since ∇u is nonconstant, u is not affine. Let f = ∇uz, r1 =
|x − z|, r2 = |y − z|. By the results mentioned in §2 the mapping f is η0-
quasisymmetric for some η0 : [0,∞) → [0,∞). Integrating f along a line
segment connecting x to z, we obtain

(3.8) uz(x) ≤ r1 max
B(z,r1)

|f |
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Let γ be the curve of steepest descent from y to z with respect to uz. See [22,
VIII.3.4] for the existence, uniqueness, and rectifiability of γ. Let γ̃ be the
part of γ lying in B(z, r2) \B(z, r2/2). Then

(3.9) uz(y) =
∫
γ

|f(s)|ds ≥
∫
γ̃

|f(s)|ds ≥ r2

2
min

∂B(z,r2/2)
|f |.

From (3.8) and (3.9) we find

uz(x)
uz(y)

≤ 2r1

r2
η0

(
2r1

r2

)
.

Therefore, (3.1) holds with η(t) = 2η0(2t).
(iii)⇒(iv). Set H = η(1) with η as in (3.1).
(iv)⇒(v). Let Su(z, t) be a section of u. Suppose that Su(z, t) is un-

bounded. Being an unbounded convex set, it must contain a halfline l ema-
nating from z. The restriction of uz to l is a bounded convex function vanish-
ing at z. Therefore, uz vanishes on l. By (3.2) uz vanishes identically, which
contradicts the assumption that u is not affine. Thus Su(z, t) is bounded.

Let R = max{|x−z| : x ∈ ∂Su(z, t)}. Pick a point x ∈ ∂B(z,R)∩∂Su(z, t)
and let y = z +H−1(x− z). Since uz is convex,

uz(y) ≤ H−1uz(x) + (1−H−1)uz(z) = H−1t.

By (3.2) we have uz(w) ≤ t whenever |w − z| = H−1R. Therefore,

B(z,H−1R) ⊂ Su(z, t) ⊂ B(z,R).

(v)⇒(ii). By Lemma 3.2 u is differentiable, and therefore continuously
differentiable [31, 25.5]. The strict convexity of u implies that the mapping
f = ∇u is injective. To prove that f is quasiconformal, it suffices to show
that there is a constant H such that

(3.10) |f(x)− f(z)| ≤ H|f(y)− f(z)|
whenever z ∈ Ω and |x− z| = |y − z| = r > 0 (see [37] or Ch. 10–11 of [20]).
Note that

(3.11) f(x)− f(z) = ∇uz(x) and f(y)− f(z) = ∇uz(y).

Considering the restriction of u to the line passing through z and y, we see
that the quotient uz(y)/r does not exceed the slope of uz at y. Hence

(3.12) uz(y) ≤ r|∇uz(y)|.
Next, let L(w) = 〈∇uz(x), w − x〉 + uz(x) be the tangent plane of uz at x.
Since uz(x) > 0, we have

r|∇uz(x)| ≤ max{L(w) : |w − x| = r}(3.13)

≤ max{L(w) : |w − z| = 2r}
≤ max{uz(w) : |w − z| = 2r} =: M.
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The section Su(z,M) does not contain the closed ball B(z, 2r) and is therefore
contained in B(z, 2τ−1r), where τ is as in Definition 2.1. Let y′ = z+ 2τ−1y.
Then uz(y′) ≥M . Using (3.11), (3.12), (3.13) and Lemma 3.2, we obtain

(3.14)
|f(x)− f(z)|
|f(y)− f(z)|

=
|∇uz(x)|
|∇uz(y)|

≤ uz(y′)
uz(y)

≤ H,

where H depends only on τ . �

Remark 3.3. When n = 1, part (ii) of Theorem 3.1 can be interpreted as
(ii′) ∇u : R→ R exists and is quasisymmetric.

The proof of Theorem 3.1 applies verbatim to the equivalence between (ii′),
(iii), (iv), and (v).

Remark 3.4. One could also state a version of Theorem 3.1 for convex
functions defined in an arbitrary convex domain Ω ⊂ Rn. Statements (iii),
(iv) and (v) would then contain a condition that the considered points and
sections lie in a ball B such that 2B ⊂ Ω. We do not pursue this matter here.

Remark 3.5. Part (iv) of Theorem 3.1 implies that q.u. convex functions
are quasisymmetrically convex in the sense of [3]. The notion of quasisym-
metric convexity was introduced in [3] to characterize the convex domains in
R
n that are Gromov hyperbolic in the Hilbert metric.

Remark 3.6. By Theorem 11.3 [20] the function η in part (iii) can be
taken equal to η(t) = C max{tα, t1/α} for some C ≥ 1 and 0 < α ≤ 1.

Theorem 3.1 enables us to easily establish connections between quasiuni-
form convexity and some better known properties of convex functions.

Definition 3.7. The Monge-Ampère measure µu verifies the condition
µ∞ if for any δ1 ∈ (0, 1) there exists δ2 ∈ (0, 1) such that for every section
S = Su(z, t) and every Borel set E ⊂ S,

Ln(E)
Ln(S)

< δ2 ⇒
µu(E)
µu(S)

< δ1.

The condition µ∞, which is stronger than the doubling condition, plays an
important role in the proof of Harnack’s inequality for non-negative solutions
to the linearized Monge-Ampère equation [11].

Corollary 3.8. Let u : Rn → R be a q.u. convex function. Then its
Monge-Ampère measure µu verifies the condition µ∞.

Proof. By Gehring’s theorem [16] µu is an A∞ weight. Since u has round
sections by Theorem 3.1, the µ∞ property follows. �
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The following example, due to Wang [40], demonstrates that the converse
of Corollary 3.8 is false. Consider the following strictly convex function in R2:

u(x, y) =

{
x4 + 3

2x
−2y2, |y| ≤ |x|3;

1
2x

2|y|2/3 + 2|y|4/3, |y| > |x|3.

The Monge-Ampère measure of u is absolutely continuous with respect to the
Lebesgue measure, and its density is bounded away from 0 and∞ [40]. Hence
u verifies the condition µ∞. Since the second derivative of u in y

∂2u

∂y2
=

{
3x−2, |y| < |x|3;
− 1

9x
2|y|−4/3 + 8

9 |y|
−2/3, |y| > |x|3,

is unbounded near the origin, so is ‖D2u‖. Thus u is not quasiuniformly
convex.

It would be interesting to characterize quasiuniformly convex functions in
terms of their Monge-Ampère measure. Such a characterization would be a
step toward the solution of the quasiconformal Jacobian problem.

Theorem 3.9. If a convex function u : Rn → R has round sections, then
its sections verify the engulfing property with a constant depending only on τ
in Definition 2.1.

Proof. In this proof C stands for various constants which depend only on
τ . According to Definition 2.2, we must find C such that for all z ∈ Rn and
all t > 0

Su(z, t) ⊂ Su(y, Ct), ∀y ∈ Su(z, t).

Let R be such that B(z, τR) ⊂ Su(z, t) ⊂ B(z,R). For every y ∈ ∂Su(z, t)
inequality (3.13) implies

|∇ux(y)| ≤ max{uz(w) : |w − z| = 2|y − z|}
|y − z|

≤ max{uz(w) : |w − z| = 2R}
τR

.

Applying (3.3) to uz we obtain

max{uz(w) : |w − z| = 2R} ≤ C max{uz(w) : |w − z| = τR} ≤ Ct.

Hence for every y ∈ ∂Su(z, t) we have

|∇uz(y)| ≤ Ct/R;

this estimate is also valid in Su(z, t) by the convexity of uz. Now if x, y ∈
Su(z, t), then

uy(x) = (uz)y(x) = uz(x)−uz(y)−〈∇uz(y), x−y〉 ≤ t+ |∇uz(y)||x−y| ≤ Ct.

Thus x ∈ Su(y, Ct) for all x ∈ Su(z, t), as required. �
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4. Quasiconformal ∞-sets

For p ∈ R letMp denote the space of all Radon measures on Rn such that∫
(1 + |x|)pdµ(x) < ∞. In other words, M0 is the space of all finite Radon

measures, and Mp is the image of M0 under multiplication by the weight
(1 + |x|)−p. The space M0 is naturally equipped with the weak∗ topology
since M0 ⊂ C0(Rn)∗. For p 6= 0 the topology on Mp is induced from M0

by the above multiplication map. The spaces Mp are ordered by inclusion:
Mp ⊂ Mq if p > q. In this section we are mainly concerned with the case
p < 0, while in §5 we shall consider Mp with p > 0.

For every measure µ ∈Mp its Riesz potential

Iβµ(x) =
∫
|x− y|β−ndµ(y)

is finite a.e. in Rn as long as 0 < β ≤ n+ p [27, p. 61].

Lemma 4.1. Suppose that µ ∈ Mα−1, 0 < α < 1, and µ(Rn) > 0. Then
there exists a q.u. convex function u : Rn → R such that

(4.1) αn(In+α−1µ)n ≤ detD2u ≤ (In+α−1µ)n

a.e. in Rn.

Proof. We shall obtain u by convolving µ with the kernel

Kα(x, y) =
|x− y|α+1 − |y|α+1

α+ 1
+ 〈x, y〉|y|α−1, x, y ∈ Rn,

which is q.u. convex in x by Example 2.4. Using the asymptotic expansion

|x− y|α+1 = |y|α+1

∣∣∣∣ x|y| − y

|y|

∣∣∣∣α+1

= |y|α+1

{
1− (α+ 1)

〈x, y〉
|y|2

+O

(
|x|2

|y|2

)}
= |y|α+1 − (α+ 1)〈x, y〉|y|α−1 +O(|x|2|y|α−1), |y| → ∞,

we obtain

(4.2) Kα(x, y) = O(|y|α−1), |y| → ∞,

locally uniformly in x. Similarly,

(4.3) ∇xKα(x, y) = (x− y)|x− y|α−1 + y|y|α−1 = O(|y|α−1), |y| → ∞,

locally uniformly in x. Let

(4.4) u(x) =
∫
Kα(x, y)dµ(y), x ∈ Rn.

Since the integral converges locally uniformly in x, it follows from Lemma 2.5
that u is a q.u. convex function. Differentiating (4.4) yields

(4.5) ∇u(x) =
∫
∇xKα(x, y)dµ(y), x ∈ Rn,
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and

(4.6) D2u(x) =
∫
|x− y|α−1

(
In + (α− 1)

(x− y)⊗ (x− y)
|x− y|2

)
dµ(y),

for a.e. x ∈ Rn. For any z ∈ Rn we have

αIn ≤ In + (α− 1)
z ⊗ z
|z|2

≤ In

in the sense of the positive semidefinite ordering. This and (4.6) readily
imply (4.1). �

Theorem 4.2. For every set E ⊂ Rn of Hausdorff dimension less than 1
there is a q.u. convex function u : Rn → R such that

(4.7) ess lim
y→x

detD2u(y) =∞, x ∈ E.

Furthermore, there is a set of Hausdorff dimension 1 for which no such u
exists.

Proof. Since Hausdorff measures are Borel regular [28, 4.5], we can replace
E with a Borel superset of the same dimension. Thus we may assume that E
is Borel and therefore capacitable [27, 2.8]. Choose γ so that dimE < γ < 1.
By Theorem 3.14 [27] the set E has (n − γ)-capacity zero. This means that
there exists a sequence of open sets

G1 ⊃ G2 ⊃ · · · ⊃ E

such that their (n−γ)-capacity tends to 0. Let E′ =
⋂
kGk; this is a Gδ-set of

zero (n−γ)-capacity. Let Ej = E′∩B(0, j), j = 1, 2, . . . . By Theorem 3.1 [27]
for each j there exists a finite measure µj with compact support on Rn such
that its Riesz potential In−γµj is infinite at every point of Ej . Since Riesz
potentials are lower semicontinuous, it follows that

(4.8) lim
y→x
In−γµj(y) =∞, x ∈ Ej .

Let µ =
∑
j cjµj , where the coefficients cj > 0 are sufficiently small so that

µ ∈ M−γ . (In fact, we can achieve µ ∈ Mp for any p ∈ R by making cj very
small.) Applying Lemma 4.1 to µ with α = 1− γ, we obtain the first part of
the theorem.

It remains to show that the condition dimE < 1 cannot be replaced with
dimE ≤ 1. Let E be the line segment {te1 : 0 ≤ t ≤ 1}, where e1 =
(1, 0, . . . , 0) ∈ Rn. Suppose that u : Rn → R is a K-q.u. convex function
such that (4.7) holds. Then for any given M > 0 there exists ε > 0 such
that detD2u ≥M a.e. in the ε-neighborhood of E. Since u ∈ W 2,n

loc (Rn), for
a.e. x ∈ Rn the function ϕx(t) = u(x + te1), t ∈ R, has locally absolutely
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continuous derivative ϕ′x. Hence

ϕ′x(1)− ϕ′x(0) =
∫ 1

0

ϕ′′x(t)dt, a.e. x ∈ Rn.

If D2u exists at the point x + te1, then ϕ′′x(t) is bounded from below by
the minimal eigenvalue of D2u, which is in turn bounded from below by
K−1(detD2u)1/n. Therefore,

(4.9) |∇u(x+ e1)−∇u(x)| ≥ K−1M1/n, a.e. x ∈ B(0, ε).

In fact, the latter inequality holds for all x ∈ B(0, ε) because ∇u is con-
tinuous. On the other hand, the continuity of ∇u implies that it is locally
bounded. Since the constant M in (4.9) can be arbitrarily large, we arrive at
a contradiction. �

Corollary 4.3. Every set E ⊂ Rn of Hausdorff dimension less than 1
is a quasiconformal ∞-set.

It seems likely that the condition dimE < 1 in Corollary 4.3 can be con-
siderably weakened. In fact, it is possible that every set of n-dimensional
measure zero is a quasiconformal ∞-set. See [5], [21].

5. Quasiconformal 0-sets

By an argument similar to the second part of the proof of Theorem 4.2, a
quasiconformal 0-set cannot contain a line segment [5], [12]. In this section
we prove that every set of Hausdorff dimension less than 1 is a quasiconfor-
mal 0-set. The idea of the proof is to apply the Legendre transform to the
convex functions constructed in the previous section. The main difficulty lies
in finding a q.u. convex function whose Legendre transform has a vanishing
Hessian matrix on a prescribed set.

Let Mp, p ∈ R, be as in §4. Recall that µk → µ in Mp if and only if
wpµk

w∗−−→ wpµ, where w(x) = (1 + |x|). Given 0 < α < 1 and µ ∈ Mα, we
define

ρα,µ(x) =
|x|2

2
+
∫
|x− y|α+1 − |y|α+1

α+ 1
dµ(y), x ∈ Rn;

Fα,µ(x) = ∇ρα,µ(x) = x+
∫

(x− y)|x− y|α−1 dµ(y), x ∈ Rn.

Since the integrands are majorized by |y|α locally uniformly in x, both inte-
grals converge. Consequently, ρα,µ is q.u. convex. The reader might wonder
why we did not use the kernel Kα from §4, which would allow for measures
from a larger space Mα−1. The reason is that for the proof of Lemma 5.5
to work, we need a kernel K(x, y) such that its gradient F = ∇xK is anti-
symmetric, i.e., F (x, y) = −F (y, x). Unfortunately, Kα does not possess this
property.
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Lemma 5.1. Let µ ∈Mα, 0 < α < 1. Then

(5.1) |Fα,µ(x)− Fα,µ(y)| ≥ |x− y|, x, y ∈ Rn,

and

(5.2) |x| − C1 ≤ |Fα,µ(x)| ≤ C2|x|+ C3, x ∈ Rn,

where the constants C1, C2 and C3 are positive and depend only on α and∫
wαdµ.

Proof. The mapping x 7→ Fα,µ(x)− x is monotone, being the gradient of a
convex function. Since

〈Fα,µ(x)− Fα,µ(y)− (x− y), x− y〉 ≥ 0,

it follows that 〈Fα,µ(x)−Fα,µ(y), x−y〉 ≥ |x−y|2, which implies (5.1). Using
the elementary inequality |x− y|α ≤ |x|α + |y|α, we obtain

|Fα,µ(x)| ≤ |x|+
∫

(|x|α + |y|α) dµ(y).

On the other hand, (5.1) implies

|Fα,µ(x)| ≥ |x| − |Fα,µ(0)| ≥ |x| −
∫
wα dµ.

This proves (5.2). �

Lemma 5.2. Suppose that µk → µ in Mα, 0 < α < 1, and
∫
wα dµk →∫

wα dµ. Then Fα,µk → Fα,µ and F−1
α,µk

→ F−1
α,µ locally uniformly in Rn.

Proof. Let µ̃k = wαµk and µ̃ = wαµ. For any bounded continuous function
ϕ : Rn → R we have

∫
ϕdµ̃k →

∫
ϕdµ̃ [13, p. 225]. For any fixed x ∈ Rn

ρα,µk(x) =
|x|2

2
+
∫
|x− y|α+1 − |y|α+1

(α+ 1)w(y)α
dµ̃k(y),

where the integrand is bounded and continuous on Rn. Hence ρα,µk → ρα,µ
pointwise in Rn. Since the pointwise convergence of differentiable convex
functions implies locally uniform convergence of their gradients [31, 25.7],
Fα,µk → Fα,µ locally uniformly in Rn. Since F−1

α,µ is a contraction by (i), it
follows that F−1

α,µ ◦ Fα,µk → id locally uniformly. Let M = supk|Fα,µk(0)|.
Since F−1

α,µk
is a contraction,

|F−1
α,µk

(x)| ≤ |x− Fα,µk(0)| ≤ |x|+M, x ∈ Rn.

It remains to observe that for every R > 0

sup
|x|≤R

|F−1
α,µk

(x)− F−1
α,µ(x)| ≤ sup

|y|≤R+M

|y − F−1
α,µ(Fα,µk(y))| → 0

as k →∞. �
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Consider the pushforward of µ under Fα,µ:

Fα(µ) := (Fα,µ)#µ.

By (5.2) Fα maps Mp into itself for all p ≥ α.

Lemma 5.3. Let 0 < α < 1 and let p ≥ α. If µk → µ in Mp and∫
wp dµk →

∫
wp dµ, then Fα(µk)→ Fα(µ) in Mp.

Proof. Let µ̃k = wpµk and µ̃ = wpµ. Pick a test function ϕ ∈ C0(Rn). We
must prove that ∫

ϕwp dFα(µk)→
∫
ϕwp dFα(µ),

which is equivalent to

(5.3)
∫

(ϕ ◦ Fα,µk)
(w ◦ Fα,µk)p

wp
dµ̃k →

∫
(ϕ ◦ Fα,µ)

(w ◦ Fα,µ)p

wp
dµ̃.

Since µ̃k
w∗−−→ µ̃ and µ̃k(Rn)→ µ̃(Rn), it suffices to prove that the integrands

in (5.3) converge uniformly in Rn. For this we use Lemma 5.2, whose assump-
tions are satisfied because p ≥ α. Since the functions ϕ and w are uniformly
continuous on Rn, Lemma 5.2 implies

ϕ ◦ Fα,µk → ϕ ◦ Fα,µ

and

(w ◦ Fα,µk)p

wp
→ (w ◦ Fα,µ)p

wp

locally uniformly. Using (5.2), we find that

lim
|x|→∞

sup
k

(ϕ ◦ Fα,µk)(x) = 0

and

sup
x∈Rn

sup
k

(w ◦ Fα,µk)(x)
w(x)

<∞,

hence

lim
|x|→∞

sup
k

(ϕ ◦ Fα,µk)(x)
(w ◦ Fα,µk)p(x)

wp(x)
→ 0.

Locally uniform convergence together with uniform vanishing at infinity imply
uniform convergence of the integrands in (5.3). �

Remark 5.4. The assumptions of Lemma 5.3 are satisfied whenever µk →
µ in Mq for some q > p.

Lemma 5.5. Let 0 < α < 1. The mapping Fα : Mp → Mp is surjective
for all p ≥ 2.
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Proof. Let us introduce the spaces of finite atomic measures

Mc,m =

{
c
m∑
k=1

δak : ak ∈ Rn
}
,

where c > 0 and m ≥ 1. To avoid double indices, write δA =
∑m
k=1 δak where

A = (a1, . . . , am) ∈ Rmn. Let µ = cδA for some A ∈ Rmn. Then Fα(µ) = cδB ,
where

(5.4) bk = ak + c
∑
l 6=k

(ak − al)|ak − al|α−1, k = 1, . . . ,m.

Define Φ : Rmn → R by

Φ(A) =
1
2

m∑
k=1

|ak|2 +
c

α+ 1

∑
1≤k<l≤m

|ak − al|α+1.

It is easy to see that Φ is a co-finite, strictly convex function and therefore
∇Φ : Rmn → R

mn is a bijection. Furthermore, ∇Φ(A) = B, where A and B
are related by (5.4). This shows that Fα :Mc,m →Mc,m is a bijection.

By the same argument as in the first part of Lemma 5.1 we have

|∇Φ(A)−∇Φ(A′)| ≥ |A−A′|, A,A′ ∈ Rmn.

Since ∇Φ(0) = 0, it follows that |∇Φ(A)| ≥ |A| for all A ∈ Rmn. To put it
another way, ∫

|x|2 dFα(µ)(x) ≥
∫
|x|2 dµ(x), µ ∈Mc,m.

This and µ(Rn) = cm = Fα(µ)(Rn) imply

(5.5)
∫

(1 + |x|2) dFα(µ)(x) ≥
∫

(1 + |x|2) dµ(x), µ ∈Mc,m.

Given ν ∈ Mp, let ν̃ = wpν and find a sequence {ν̃k} ⊂
⋃
c,mMc,m such

that ν̃k
w∗−−→ ν̃ and ν̃k(Rn) → ν̃(Rn). It follows that the family of measures

{ν̃k} is tight in the sense that

(5.6) lim
R→∞

sup
k
ν̃k(Rn \B(0, R)) = 0.

For each k let νk = w−pν̃k and let µk ∈
⋃
c,mMc,m be such that Fα(µk) = νk.

By virtue of (5.5)

sup
k

∫
w2(x) dµk(x) ≤ 2 sup

k

∫
(1 + |x|2) dνk(x)(5.7)

≤ 2 sup
k

∫
wpdνk <∞.
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Let Fk = Fα,µk . By (5.2) and (5.7) there is a constant C such that Fk(x) ≥
|x| − C for all k. Since νk = (Fk)#µk, it follows that∫

|x|>R
(1 + |x|)pdµk(x) =

∫
|F−1
k (x)|>R

(1 + |F−1
k (x)|)pdνk(x)

≤
∫
|x|>R−C

(1 + |x| − C)pdνk(x)

≤ ν̃k(Rn \B(0, R− C)), R > C.

Combining this with (5.6), we conclude that the measures µ̃k = wpµk form
a tight family. It follows (see, e.g., [34, p. 133]) that there exists a weak∗-
convergent subsequence {µ̃kj} with a limit µ̃ such that µ̃kj (R

n) → µ̃(Rn).
The measure µ = w−pµ̃ evidently belongs to Mp. By Lemma 5.3 we have
Fα(µ) = ν. �

Theorem 5.6. Let E ⊂ Rn be a set of Hausdorff dimension less than 1.
Then there exists a q.u. convex function u : Rn → R such that

(5.8) ess lim
y→x

detD2u(y) = 0, x ∈ E.

Proof. As in the proof of Theorem 4.2, we can find α ∈ (0, 1) and ν ∈M2

such that In+α−1ν =∞ on E. Let µ ∈M2 be such that Fα(µ) = ν. By (5.1)
the mapping T = F−1

α,µ is a contraction. Since µ = T#ν, for every x ∈ E we
have∫
|T (x)− y|α−1 dµ(y) =

∫
|T (x)− T (y)|α−1 dν(y) ≥

∫
|x− y|α−1 dν(y) =∞.

In other words, the Riesz potential In+α−1µ is infinite on T (E). As in the
proof of Theorem 4.2, we obtain

ess lim
y→x

detD2ρα,µ(y) =∞, x ∈ T (E).

Since ρα,µ is q.u. convex, so is ρ∗α,µ, by virtue of Lemma 2.8. Finally, using
the fact that ∇ρ∗α,µ = T is the inverse of ∇ρα,µ, we obtain

ess lim
y→x

detD2ρ∗α,µ(y) = 0, x ∈ E.

This completes the proof. �

Corollary 5.7. Every set E ⊂ Rn of Hausdorff dimension less than 1
is a quasiconformal 0-set.

Corollary 5.7 is a more satisfactory result than Corollary 4.3, because the
former is sharp as far as the dimension of E is concerned. However, there
exist quasiconformal 0-sets of Hausdorff dimension greater than 1 [17], [35],
which means that quasiconformal 0-sets cannot be characterized by their size
alone.
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