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COMPLETE MANIFOLDS WITH NONNEGATIVE RICCI
CURVATURE AND ALMOST BEST SOBOLEV CONSTANT

CHANGYU XIA

ABSTRACT. We prove that for any given integer n > 2 and ¢ € [1,n)
there exists a constant € = €(n,q) > 0 such that any n-dimensional
complete Riemannian manifold with nonnegative Ricci curvature, in
which the Sobolev inequality

" _ng_ T " 1/a
( [ s dv) < (K(n,q)+o) ( / IVflqdv>  Vf € CE (M)
M M

holds with K(n,q) the optimal constant of this inequality in the n-
dimensional Euclidean space R™, is diffeomorphic to R"™.

1. Introduction

Let M be an n-dimensional smooth complete Riemannian manifold. Given
q € [1,n), we set ¢* = ”qu. Let C5°(M) be the space of smooth functions

n
with compact support in M. Denote by dv and V the Riemannian volume

element and the gradient operator of M, respectively. Let K(n,q) be the best
constant for the Euclidean Sobolev inequality, that is,

(fpn [Vul? dv)l/q
e (RM—{0} ([ uq*)l/‘f
It is well known that (cf. [Aul], [Au2], [H1], [Ta])
(1.2) K(n,1) =n"tw; /"
and for ¢ > 1

1 fnlg-1) (a-1)/q I'(n+1)
(13)  K(nq)=— (ﬁ) nw, T (%)F(n“— %) |
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where w,, is the volume of the Euclidean unit ball in R"™ and I' is the Euler
function. Moreover, for ¢ > 1 the infimum in (1.1) is attained by the function

n

()\ + |x\q731) *, XA > 0, where |z| is the Euclidean length of the vector =
in R™.

Ledoux [L] proved that a complete n-dimensional Riemannian manifold
with nonnegative Ricci curvature, in which one of the Sobolev inequalities

. 1/q* 1/q
(/ e dv) < K(n.q) (/ Vfl“dv) L VfecE),
M M

is satisfied, is isometric to R™.
In this paper, we are interested in the topology of manifolds M with non-
negative Ricci curvature in which one of the Sobolev inequalities

1/q* 1/q
(/ |f|4*dv) sc(/ IVflqdv> L Ve C ),
M M

holds for some constant C' close to K(n,¢). Our main result can be stated as
follows.

THEOREM 1. Given an integer n > 2 and q € [1,n), there exists a constant
e = €(n,q) > 0 such that any n-dimensional complete Riemannian manifold
with nonnegative Ricci curvature, in which the Sobolev inequality

) 1/q" 1/q
(L) <wma+a ([ 1vrmaw) . vrecgn,
M M
is satisfied, is diffeomorphic to R™.

This expresses the stability of the theorem of Ledoux mentioned above.

A recent result of Cheeger and Colding [CC] states that, given an integer
n > 2, there exists a constant 6(n) > 0 such that any n-dimensional complete
Riemannian manifold with nonnegative Ricci curvature and Vol[B(z,r)] >
(1 —0(n))Vo(r) for some p € M and all r > 0 is diffeomorphic to R™. Here
B(z,r) is the geodesic ball of radius r with center x and Vy(r) = w,r™ the
volume of the Euclidean ball of radius r in R™. Theorem 1 is a consequence
of this theorem and the following result.

THEOREM 2. Let n > 2 be an integer and let g € [1,n) and C > K(n,q)
be given. Let M be an n-dimensional complete Riemannian manifold with
nonnegative Ricci curvature and satisfying

. 1/q 1/q
wo ([ ra) <o wra) " vrecpan,
M M
Then for any xo € M and any r > 0 we have
(1.5) Vol[B(xq, )] > (C_lK(n,q))nVO(r).
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If we take C' = K(n,q) in Theorem 2, then (1.5) together with Bishop’s
comparison theorem [BC] implies that M is isometric to R™. Thus Theorem
2 is also a generalization of Ledoux’ theorem.

For related results on the topology of manifolds with nonnegative Ricci
curvature we refer to [AG], [CX], [C], [SS], [S1], [S2] and [X].

2. Proof of Theorem 2

The case ¢ = 1 is well-known. For the sake of completeness, we include
a proof here. In the case ¢ = 1 the Sobolev inequality is equivalent to the
isoperimetric inequality (cf. [SY])

(2.1) Q=D < o9,
where 09 is the boundary of a bounded open set Q in M, and || and |09

denote the volume of 2 and the area of 0, respectively. Let zo be a fixed
point of M. Since

d
J\B(foﬂ‘)\ = |0B(xo,7)],

we have from (2.1) that
d
|B(zg,r)| "/ < 05|B(x0,r)|, r > 0.
Integrating the above inequality yields
|B(xg,7)| > (nC)~"r™ = (C7 K (n,1))" Vo(r).

This proves the case ¢ = 1 of Theorem 2.

Now assume that (1.3) is satisfied for some ¢ € (1,n). Let 8 > 0 and set
f = p~td(-,z0), where d(-,z0) is the distance function from zq on M. We
set, for any A > 0,

FQA) = nil/M (A+fciv“1)“'

By Fubini’s theorem we have, for A > 0,

+o00 _1
q sa—Tds
2.2 F(A) = —— z:d(zg,x) < B8} ———F—
(2.2 W= e < a2
“+oo

sTT ds
|B(o, Bs)]

(A4 sTT)n
Bishop’s comparison theorem [BC] tells us that Vol[B(zg,s)] < wys™ for all

s> 0. Thus 0 < F((A\) < co and F is differentiable.
The extremal functions in the Sobolev inequality with C' = K(n,¢) in R"

__7
qg—1J

1—n
are the functions ()\ + |z q%) * A > 0. We will use similar functions on M
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in the Sobolev inequality (1.4) to obtain a differential inequality that allows
comparison to the extremal Euclidean case.

By a simple approximation procedure, we can apply (1.4) to the function
A+ f71)17F to get

1/(1* . 1/q
(2.3) /—d“ <C<"‘q) / _Jrdv
: q n—1 - _ _q \"
M (a4 ) a=1) \Ju (x+ p7)
for every A > 0. Set

(el=)”

Then (2.3) implies

IN

dv dv dv
’ /M (qu—fl)"_1 /M (Hf%)"_1 _/M (v ra)"
and hence
(2.5) d(—F'(\)' 7" = AF'(N) < (n— 1)F(A)

for every A > 0.
The idea now is to compare the solutions of (2.5) to the solutions H of the
differential equation

(2.6) d(fH’(/\))k% —AH'(N) = (n—1)H(N).
It is easy to check that a particular solution of (2.6) is given by
B
(2.7) Hi(A) = ==,
where
n/q
q (dn— q))
2.8 B= e
(28) n—q <n(q -1
= (C'K(n,q))" - -2 (1<) (Z:O)_q (n =) "
’ —q n(q—1)
n 1
= (C_lK(’n,Q)) . — / dl‘q _
& (14 Ja]77)
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We set, for any A > 0,

1 d
(2.9) Ho(A) = e 1/ xq n—1
n ()\+ |.’17|ﬁ>
+00 =
-4 wnsnsiq ds.
g—1Jo (A +s71)n
Then
w1 1 d
(2.10) Hi(\) = (C—lK(mq)) I / xq n—1
A (14 a7
— n 1 d
(K () nf1/ -
(A4 [l

= (C7'K(n,q))" - Ho(N).

Since F'(A\) and Hi(\) satisfy (2.5) and (2.6), respectively, one can use the
arguments in [L] to show that if Fi(Ag) < Hi(Xg) for some Ay > 0, then
F(\) < Hy(\) for every A < X\g. Also, as proved in [L], the local geometry
gives

L F(Y)
> n
hgn_}élf Ho () >pB" > 1,
and so
. FO) c \". .., F
lninf 5y = (K(n,q)) lninf 5y = b

Thus we have
F(X) > Hi(N)
for every A > 0, that is,

| 1,091 - (€ K "o(s) - 20, Ao

Letting 8 — 1, we get

@1) [ (Bl = (€ Km0 Valo) 5 20, A0

0 ()\ + sﬁ)
By the Bishop-Gromov comparison theorem (cf. [BC], [Ch], [GLP]) the func-
tion |B(xo, s)|/Vo(s) is decreasing. Set L = (C~1K(n,q))" and let

| B(xo, )|
Ly = lim .
0 S—}J,»OO VO(S)
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In order to prove (1.5), it suffices to show that Ly > L. Suppose on the
contrary that Ly = L — ¢g for some ¢y > 0. Then there exists an N > 0 such
that

|B(.’E0,8)‘ €0
<L - = > N.
Vols) LT 72

Substituting (2.12) into (2.11) and observing (2.7)—(2.10), we obtain that, for
every A > 0,

00 n+q+1
0 S/ <|B(x07s)| —L) Wn s de
o \ V() (r+s77)

n4 1 [e’) 1
S/N |B(o,5)|  wns™ T di+/+ (L,@),wnsnﬂ—l ds
0 Vo(s) (/\4_34%1) N 2 ()\4_5#)

L/*“’W
0 ()\—I—SF)
_ /N ‘B(:C075)| wn5n+q+1 ds /N (L 60) wnsn"rq—il ds
0 Vo(s) ()\—i-sﬁql)n 0 2 (A_qu;gl)"
_6_0/+°°M
2 Jo ()\+s?+1)n
" n+% — " n
S(l_L+6_O>/ o “di—e—o-(q 1)( ¢ ) "B-A\T9
o (rsat)" 2 @ \K@g

N n
€0 . gL e (g—1) C _—
<(1-L+2D)w, 2 =1 ds — 2. B\
_( +2)w /(; s S > 7 Kna)

1
1
(n—&-l-i-ﬁ)

e (¢g—1) ( C )n 1_n
_ 0, .B-M\T.
2 q K(n,q)

(2.12)

N

This implies that

1
€\ woN"TeT L e (¢—1) c \"
< p— [— —_— . q _—— .
0< (1 L+ ) A Klna) B

(n+1+q%1> 2 q

for every A > 0. Letting A — +o0 yields a contradiction. Thus L > Lg.
This completes the proof of Theorem 2. O
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