COMPLETE MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE AND ALMOST BEST SOBOLEV CONSTANT

CHANGYU XIA

ABSTRACT. We prove that for any given integer $n \geq 2$ and $q \in [1,n)$ there exists a constant $\epsilon = \epsilon(n,q) > 0$ such that any n-dimensional complete Riemannian manifold with nonnegative Ricci curvature, in which the Sobolev inequality

$$\left(\int_{M}|f|^{\frac{nq}{n-q}}\,dv\right)^{\frac{n-q}{nq}}\leq \left(K(n,q)+\epsilon\right)\left(\int_{M}|\nabla f|^{q}\,dv\right)^{1/q},\;\forall f\in C_{0}^{\infty}(M)$$

holds with K(n,q) the optimal constant of this inequality in the *n*-dimensional Euclidean space \mathbb{R}^n , is diffeomorphic to \mathbb{R}^n .

1. Introduction

Let M be an n-dimensional smooth complete Riemannian manifold. Given $q \in [1, n)$, we set $q^* = \frac{nq}{n-q}$. Let $C_0^{\infty}(M)$ be the space of smooth functions with compact support in M. Denote by dv and ∇ the Riemannian volume element and the gradient operator of M, respectively. Let K(n, q) be the best constant for the Euclidean Sobolev inequality, that is,

(1.1)
$$K(n,q)^{-1} = \inf_{u \in C_0^{\infty}(R^n) - \{0\}} \frac{\left(\int_{R^n} |\nabla u|^q \, dv\right)^{1/q}}{\left(\int_{R^n} u^{q^*}\right)^{1/q^*}}.$$

It is well known that (cf. [Au1], [Au2], [H1], [Ta])

(1.2)
$$K(n,1) = n^{-1}\omega_n^{-1/n},$$

and for q > 1

(1.3)
$$K(n,q) = \frac{1}{n} \left(\frac{n(q-1)}{n-q} \right)^{(q-1)/q} \left(\frac{\Gamma(n+1)}{n\omega_n \Gamma\left(\frac{n}{q}\right) \Gamma\left(n+1-\frac{n}{q}\right)} \right)^{1/n},$$

Received September 29, 2000; received in final form December 12, 2000. 2000 Mathematics Subject Classification. Primary 53C20. Secondary 53C21, 57R70, 31C12.

This work is supported by CNPq.

©2001 University of Illinois

where ω_n is the volume of the Euclidean unit ball in R^n and Γ is the Euler function. Moreover, for q>1 the infimum in (1.1) is attained by the function $\left(\lambda+|x|^{\frac{q}{q-1}}\right)^{1-\frac{n}{q}},\ \lambda>0$, where |x| is the Euclidean length of the vector x in R^n .

Ledoux [L] proved that a complete *n*-dimensional Riemannian manifold with nonnegative Ricci curvature, in which one of the Sobolev inequalities

$$\left(\int_{M}|f|^{q^{*}}\,dv\right)^{1/q^{*}}\leq K(n,q)\left(\int_{M}|\nabla f|^{q}\,dv\right)^{1/q},\quad\forall f\in C_{0}^{\infty}(M),$$

is satisfied, is isometric to \mathbb{R}^n .

In this paper, we are interested in the topology of manifolds M with non-negative Ricci curvature in which one of the Sobolev inequalities

$$\left(\int_{M} |f|^{q^*} dv\right)^{1/q^*} \le C \left(\int_{M} |\nabla f|^{q} dv\right)^{1/q}, \quad \forall f \in C_0^{\infty}(M),$$

holds for some constant C close to K(n,q). Our main result can be stated as follows.

THEOREM 1. Given an integer $n \geq 2$ and $q \in [1, n)$, there exists a constant $\epsilon = \epsilon(n, q) > 0$ such that any n-dimensional complete Riemannian manifold with nonnegative Ricci curvature, in which the Sobolev inequality

$$\left(\int_M |f|^{q^*}\,dv\right)^{1/q^*} \leq \left(K(n,q)+\epsilon\right) \left(\int_M |\nabla f|^q\,dv\right)^{1/q}, \quad \forall f \in C_0^\infty(M),$$

is satisfied, is diffeomorphic to \mathbb{R}^n .

This expresses the stability of the theorem of Ledoux mentioned above.

A recent result of Cheeger and Colding [CC] states that, given an integer $n \geq 2$, there exists a constant $\delta(n) > 0$ such that any n-dimensional complete Riemannian manifold with nonnegative Ricci curvature and $\operatorname{Vol}[B(x,r)] \geq (1-\delta(n))V_0(r)$ for some $p \in M$ and all r > 0 is diffeomorphic to R^n . Here B(x,r) is the geodesic ball of radius r with center x and $V_0(r) = \omega_n r^n$ the volume of the Euclidean ball of radius r in R^n . Theorem 1 is a consequence of this theorem and the following result.

THEOREM 2. Let $n \geq 2$ be an integer and let $q \in [1, n)$ and $C \geq K(n, q)$ be given. Let M be an n-dimensional complete Riemannian manifold with nonnegative Ricci curvature and satisfying

$$(1.4) \qquad \left(\int_{M} |f|^{q^*} dv\right)^{1/q^*} \leq C \left(\int_{M} |\nabla f|^{q} dv\right)^{1/q}, \quad \forall f \in C_0^{\infty}(M).$$

Then for any $x_0 \in M$ and any r > 0 we have

(1.5)
$$\operatorname{Vol}[B(x_0, r)] \ge \left(C^{-1}K(n, q)\right)^n V_0(r).$$

If we take C = K(n,q) in Theorem 2, then (1.5) together with Bishop's comparison theorem [BC] implies that M is isometric to \mathbb{R}^n . Thus Theorem 2 is also a generalization of Ledoux' theorem.

For related results on the topology of manifolds with nonnegative Ricci curvature we refer to [AG], [CX], [C], [SS], [S1], [S2] and [X].

2. Proof of Theorem 2

The case q=1 is well-known. For the sake of completeness, we include a proof here. In the case q=1 the Sobolev inequality is equivalent to the isoperimetric inequality (cf. [SY])

$$(2.1) |\Omega|^{(n-1)/n} \le C|\partial\Omega|,$$

where $\partial\Omega$ is the boundary of a bounded open set Ω in M, and $|\Omega|$ and $|\partial\Omega|$ denote the volume of Ω and the area of $\partial\Omega$, respectively. Let x_0 be a fixed point of M. Since

$$\frac{d}{dr}|B(x_0,r)| = |\partial B(x_0,r)|,$$

we have from (2.1) that

$$|B(x_0,r)|^{(n-1)/n} \le C \frac{d}{dr} |B(x_0,r)|, \quad r > 0.$$

Integrating the above inequality yields

$$|B(x_0,r)| \ge (nC)^{-n}r^n = (C^{-1}K(n,1))^n V_0(r).$$

This proves the case q = 1 of Theorem 2.

Now assume that (1.3) is satisfied for some $q \in (1, n)$. Let $\beta > 0$ and set $f = \beta^{-1} d(\cdot, x_0)$, where $d(\cdot, x_0)$ is the distance function from x_0 on M. We set, for any $\lambda > 0$,

$$F(\lambda) = \frac{1}{n-1} \int_{M} \frac{dv}{\left(\lambda + f^{\frac{q}{q-1}}\right)^{n-1}}.$$

By Fubini's theorem we have, for $\lambda > 0$,

(2.2)
$$F(\lambda) = \frac{q}{q-1} \int_0^{+\infty} |\{x : d(x_0, x) < \beta s\}| \frac{s^{\frac{1}{q-1}} ds}{(\lambda + s^{\frac{q}{q-1}})^n}$$
$$= \frac{q}{q-1} \int_0^{+\infty} |B(x_0, \beta s)| \frac{s^{\frac{1}{q-1}} ds}{(\lambda + s^{\frac{q}{q-1}})^n}.$$

Bishop's comparison theorem [BC] tells us that $Vol[B(x_0, s)] \leq \omega_n s^n$ for all s > 0. Thus $0 \leq F(\lambda) < \infty$ and F is differentiable.

The extremal functions in the Sobolev inequality with C=K(n,q) in \mathbb{R}^n are the functions $\left(\lambda+|x|^{\frac{q}{q-1}}\right)^{1-\frac{n}{q}},\,\lambda>0$. We will use similar functions on M

in the Sobolev inequality (1.4) to obtain a differential inequality that allows comparison to the extremal Euclidean case.

By a simple approximation procedure, we can apply (1.4) to the function $(\lambda + f^{\frac{q}{q-1}})^{1-\frac{n}{q}}$ to get

$$(2.3) \qquad \left(\int_{M} \frac{dv}{\left(\lambda + f^{\frac{q}{q-1}}\right)^{n-1}} \right)^{1/q^{*}} \leq C\left(\frac{n-q}{q-1}\right) \left(\int_{M} \frac{f^{\frac{q}{q-1}} dv}{\left(\lambda + f^{\frac{q}{q-1}}\right)^{n}} \right)^{1/q}$$

for every $\lambda > 0$. Set

(2.4)
$$d = \left(C\left(\frac{n-q}{q-1}\right)\right)^{-q}.$$

Then (2.3) implies

$$d\left(\int_{M} \frac{dv}{\left(\lambda + f^{\frac{q}{q-1}}\right)^{n-1}}\right)^{q/q^{*}} \leq \int_{M} \frac{dv}{\left(\lambda + f^{\frac{q}{q-1}}\right)^{n-1}} - \int_{M} \frac{dv}{\left(\lambda + f^{\frac{q}{q-1}}\right)^{n}},$$

and hence

$$(2.5) d(-F'(\lambda))^{1-\frac{q}{n}} - \lambda F'(\lambda) \le (n-1)F(\lambda)$$

for every $\lambda > 0$.

The idea now is to compare the solutions of (2.5) to the solutions H of the differential equation

$$(2.6) d\left(-H'(\lambda)\right)^{1-\frac{q}{n}} - \lambda H'(\lambda) = (n-1)H(\lambda).$$

It is easy to check that a particular solution of (2.6) is given by

(2.7)
$$H_1(\lambda) = \frac{B}{\lambda^{\frac{n}{q}-1}},$$

where

$$(2.8) B = \frac{q}{n-q} \left(\frac{d(n-q)}{n(q-1)} \right)^{n/q}$$

$$= \left(C^{-1} K(n,q) \right)^n \cdot \frac{q}{n-q} \left(\frac{\left(K(n,q) \left(\frac{n-q}{q-1} \right) \right)^{-q} (n-q)}{n(q-1)} \right)^{n/q}$$

$$= \left(C^{-1} K(n,q) \right)^n \cdot \frac{1}{n-1} \int_{\mathbb{R}^n} \frac{dx}{\left(1 + |x|^{\frac{q}{q-1}} \right)^{n-1}}.$$

We set, for any $\lambda > 0$,

(2.9)
$$H_0(\lambda) = \frac{1}{n-1} \int_{R^n} \frac{dx}{\left(\lambda + |x|^{\frac{q}{q-1}}\right)^{n-1}} dx$$
$$= \frac{q}{q-1} \int_0^{+\infty} \omega_n s^n \frac{s^{\frac{1}{q-1}}}{(\lambda + s^{\frac{q}{q-1}})^n} ds.$$

Then

$$(2.10) H_1(\lambda) = \left(C^{-1}K(n,q)\right)^n \cdot \frac{1}{\lambda^{\frac{n}{q}-1}} \cdot \frac{1}{n-1} \int_{R^n} \frac{dx}{\left(1+|x|^{\frac{q}{q-1}}\right)^{n-1}}$$
$$= \left(C^{-1}K(n,q)\right)^n \frac{1}{n-1} \int_{R^n} \frac{dx}{\left(\lambda+|x|^{\frac{q}{q-1}}\right)^{n-1}}$$
$$= \left(C^{-1}K(n,q)\right)^n \cdot H_0(\lambda).$$

Since $F(\lambda)$ and $H_1(\lambda)$ satisfy (2.5) and (2.6), respectively, one can use the arguments in [L] to show that if $F(\lambda_0) < H_1(\lambda_0)$ for some $\lambda_0 > 0$, then $F(\lambda) < H_1(\lambda)$ for every $\lambda \leq \lambda_0$. Also, as proved in [L], the local geometry gives

$$\liminf_{\lambda \to 0} \frac{F(\lambda)}{H_0(\lambda)} \ge \beta^n > 1,$$

and so

$$\liminf_{\lambda \to 0} \frac{F(\lambda)}{H_1(\lambda)} = \left(\frac{C}{K(n,q)}\right)^n \liminf_{\lambda \to 0} \frac{F(\lambda)}{H_0(\lambda)} > 1.$$

Thus we have

$$F(\lambda) \ge H_1(\lambda)$$

for every $\lambda > 0$, that is,

$$\int_0^\infty \left(|B(x_0, \beta s)| - (C^{-1}K(n, q))^n V_0(s) \right) \frac{s^{\frac{1}{q-1}} ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} \ge 0, \quad \lambda > 0.$$

Letting $\beta \to 1$, we get

$$(2.11) \quad \int_0^\infty \left(|B(x_0, s)| - (C^{-1}K(n, q))^n V_0(s) \right) \frac{s^{\frac{1}{q-1}} ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} \ge 0, \quad \lambda > 0.$$

By the Bishop-Gromov comparison theorem (cf. [BC], [Ch], [GLP]) the function $|B(x_0,s)|/V_0(s)$ is decreasing. Set $L=(C^{-1}K(n,q))^n$ and let

$$L_0 = \lim_{s \to +\infty} \frac{|B(x_0, s)|}{V_0(s)}.$$

In order to prove (1.5), it suffices to show that $L_0 \geq L$. Suppose on the contrary that $L_0 = L - \epsilon_0$ for some $\epsilon_0 > 0$. Then there exists an N > 0 such that

$$(2.12) \frac{|B(x_0,s)|}{V_0(s)} \le L - \frac{\epsilon_0}{2}, \ \forall s \ge N.$$

Substituting (2.12) into (2.11) and observing (2.7)–(2.10), we obtain that, for every $\lambda > 0$,

$$\begin{split} 0 & \leq \int_0^\infty \left(\frac{|B(x_0,s)|}{V_0(s)} - L \right) \frac{\omega_n s^{n + \frac{1}{q-1}} \, ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} \\ & \leq \int_0^N \frac{|B(x_0,s)|}{V_0(s)} \cdot \frac{\omega_n s^{n + \frac{1}{q-1}} \, ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} + \int_N^{+\infty} \left(L - \frac{\epsilon_0}{2} \right) \cdot \frac{\omega_n s^{n + \frac{1}{q-1}} \, ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} \\ & - L \int_0^{+\infty} \frac{\omega_n s^{n + \frac{1}{q-1}} \, ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} \\ & = \int_0^N \frac{|B(x_0,s)|}{V_0(s)} \cdot \frac{\omega_n s^{n + \frac{1}{q-1}} \, ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} - \int_0^N \left(L - \frac{\epsilon_0}{2} \right) \frac{\omega_n s^{n + \frac{1}{q-1}} \, ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} \\ & - \frac{\epsilon_0}{2} \int_0^{+\infty} \frac{\omega_n s^{n + \frac{1}{q-1}} \, ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} \\ & \leq \left(1 - L + \frac{\epsilon_0}{2} \right) \int_0^N \frac{\omega_n s^{n + \frac{1}{q-1}} \, ds}{\left(\lambda + s^{\frac{q}{q-1}}\right)^n} - \frac{\epsilon_0}{2} \cdot \frac{(q-1)}{q} \left(\frac{C}{K(n,q)} \right)^n \cdot B \cdot \lambda^{1 - \frac{n}{q}} \\ & \leq \left(1 - L + \frac{\epsilon_0}{2} \right) \omega_n \lambda^{-n} \int_0^N s^{n + \frac{1}{q-1}} \, ds - \frac{\epsilon_0}{2} \cdot \frac{(q-1)}{q} \left(\frac{C}{K(n,q)} \right)^n \cdot B \cdot \lambda^{1 - \frac{n}{q}} \\ & = \left(1 - L + \frac{\epsilon_0}{2} \right) \omega_n \lambda^{-n} \cdot \frac{1}{\left(n + 1 + \frac{1}{q-1}\right)} N^{n + 1 + \frac{1}{q-1}} \\ & - \frac{\epsilon_0}{2} \cdot \frac{(q-1)}{q} \left(\frac{C}{K(n,q)} \right)^n \cdot B \cdot \lambda^{1 - \frac{n}{q}}. \end{split}$$

This implies that

$$0 \le \left(1 - L + \frac{\epsilon_0}{2}\right) \cdot \frac{\omega_n N^{n+1 + \frac{1}{q-1}}}{\left(n + 1 + \frac{1}{q-1}\right)} \cdot \lambda^{\frac{n}{q} - n - 1} - \frac{\epsilon_0}{2} \cdot \frac{(q-1)}{q} \left(\frac{C}{K(n,q)}\right)^n \cdot B$$

for every $\lambda > 0$. Letting $\lambda \to +\infty$ yields a contradiction. Thus $L \ge L_0$. This completes the proof of Theorem 2.

References

- [AG] U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), 355–374.
- [Au1] T. Aubin, Nonlinear analysis on manifolds, Monge-Ampère equations, Springer-Verlag, New York, 1982.
- [Au2] _____, Some nonlinear problems in Riemannian geometry, Springer-Verlag, New York, 1998.
- [BC] R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Academic Press, New York, 1964.
- [Ch] I. Chavel, Riemannian geometry: a modern introduction, Cambridge Univ. Press, Cambridge, 1993.
- [CC] J. Cheeger and T. Colding, On the structure of spaces with Ricci curvature bounded below I, J. Differential Geom. 46 (1997), 406–480.
- [C] T. Colding, Spaces with Ricci curvature bounds, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), Doc. Math. 1998, Extra Vol. II, pp. 299–308.
- [CE] J. Cheeger and D. Enin, Comparison theorems in Riemannian geometry, North-Holland, Amsterdan, 1975.
- [CX] M. P. do Carmo and C. Y. Xia, Ricci curvature and the topology of open manifolds, Math. Ann. 316 (2000), 319–400.
- [GLP] M. Gromov, J. Lafontaine, and P. Pansu, Structures métriques pour les variétés Riemanniennes, CEDIC, Paris, 1981.
- [H1] E. Hebey, Sobolev spaces on Riemannian manifolds, Lecture Notes in Math., vol. 1635, Springer-Verlag, New York, 1996.
- [H2] _____, Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematical Sciences, New York, 1999.
- [L] M. Ledoux, On manifolds with nonnegative Ricci curvature and Sobolev inequalities, Comm. Anal. Geom. 7 (1999), 347–353.
- [SY] R. Schoen and S. T. Yau, Lectures on differential geometry, International Press, Cambridge, MA, 1994.
- [SS] J. Sha and Z. Shen, Complete manifolds with nonnegative Ricci curvature and quadratically nonnegatively curved infinity, Amer. J. Math. 119 (1997), 1399–1404.
- [S1] Z. Shen, On complete manifolds of nonnegative kth-Ricci curvature, Trans. Amer. Math. Soc. 338 (1993), 289–310.
- [S2] _____, Complete manifolds with nonnegative Ricci curvature and large volume growth, Invent. Math. 125 (1996), 393–404.
- [Ta] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372.
- [X] C. Y. Xia, Open manifolds with nonnegative Ricci curvature and large volume growth, Comment. Math. Helv. 74 (1999), 456–466.

DEPARTAMENTO DE MATEMÁTICA-IE, FUNDAÇÃO UNIVERSIDADE DE BRASÍLIA, CAMPUS UNIVERSITÁRIO, 70910-900-BRASÍLIA-DF, BRASIL

 $E ext{-}mail\ address: xia@ipe.mat.unb.br}$