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ON THE GEOMETRY OF POSITIVELY CURVED
MANIFOLDS WITH LARGE RADIUS

QIAOLING WANG

Abstract. Let M be an n-dimensional complete connected Riemann-
ian manifold with sectional curvature KM ≥ 1 and radius rad(M) >

π/2. For any x ∈ M , denote by rad(x) and ρ(x) the radius and con-
jugate radius of M at x, respectively. In this paper we show that if
rad(x) ≤ ρ(x) for all x ∈ M , then M is isometric to a Euclidean n-
sphere. We also show that the radius of any connected nontrivial (i.e.,
not reduced to a point) closed totally geodesic submanifold of M is

greater than or equal to that of M .

1. Introduction

Let M be an n-dimensional complete connected Riemannian manifold with
sectional curvature KM ≥ 1. Many interesting results about M have been
proven during the past years. It was shown by Grove and Shiohama [GS]
that M is homeomorphic to Sn, the n-dimensional sphere, if diam(M), the
diameter of M , is greater than π/2. In the case diam(M) = π/2 (where
the theorem is false, as shown by the example of the real projective space) a
classification was given by Gromoll and Grove [GG]. It should be mentioned
that in the proof of their result Grove and Shiohama established a critical point
theory of distance functions on complete Riemannian manifolds, which serves
as an important tool in Riemannian geometry (cf. [C]). In 1989, Shiohama
and Yamaguchi [SY] proved that if the radius of M is close to π, then M is
diffeomorphic to Sn. Recall that for a compact metric space (X, d), the radius
of X at a point x ∈ X is defined as rad(x) = maxy∈X d(x, y), and the radius
of X is given by rad(X) = minx∈X rad(x) (cf. [SY]).

Colding [C1], [C2] extended the result of Shiohama and Yamaguchi as fol-
lows: An n-dimensional complete connected Riemannian manifold with Ricci
curvature larger than or equal to n−1 and radius close to π is diffeomorphic to
Sn (cf. [C1], [C2]). A classical result due to Toponogov [T] states that if n = 2
and M contains a closed geodesic without self-intersections of length 2π, then

Received March 2, 2003; received in final form May 12, 2003.
2000 Mathematics Subject Classification. 53C20.

c©2004 University of Illinois

89



90 QIAOLING WANG

M is isometric to a 2-dimensional unit sphere. Recently, Xia [X] partially ex-
tended Toponogov’s theorem to higher dimensional Riemannian manifolds. In
the case when the radius of M is greater than π/2, Grove and Petersen [GP]
showed that the volume of M satisfies C(n) ≤ vol(M) ≤ {rad(M)/π} · ωn,
where ωn is the volume of a unit Euclidean n-sphere and C(n) is a positive
constant depending only on n.

In this article, we study complete manifolds with sectional curvature boun-
ded below by 1 and radius greater than π/2. In order to state our first result
we fix some notation.

Let x be a point in a complete Riemannian manifold M and let γ be a
unit speed geodesic with γ′(0) = v ∈ TxM . The conjugate value cv of v is
defined to be the first number r > 0 such that there is a Jacobi field J along
γ satisfying J(0) = J(r) = 0. Set

ρ(x) := inf
v∈SxM

cv,

where SxM is the unit tangent sphere ofM at x. We call ρ(x) the conjugate ra-
dius of M at x. The conjugate radius of M is defined as ρ(M) = infp∈M ρ(p).

Our first theorem is motivated by the simple fact that the radius and the
conjugate radius at any point on a Euclidean sphere are the same. Theorem
1 below shows that in the set of closed manifolds with sectional curvature
larger than or equal to 1 and radius greater than π/2 this phenomenon can
only happen for the spheres.

Theorem 1. Let M be an n-dimensional complete connected Riemannian
manifold with KM ≥ 1 and rad(M) > π/2. If for any x ∈ M we have
ρ(x) ≥ rad(x), then M is isometric to an n-sphere.

We next prove the following result.

Theorem 2. Let M be an n(≥ 3)-dimensional complete connected Rie-
mannian manifold with KM ≥ 1 and rad(M) > π/2. Then the radius of
any connected nontrivial (i.e., not reduced to a point) closed totally geodesic
submanifold of M is greater than or equal to that of M .

As a direct consequence of Theorem 2 and the diameter sphere theorem
of Grove and Shiohama, we have the following corollary, first obtained by
Xia [X].

Corollary 3. Let M be an n(≥ 3)-dimensional complete Riemannian
manifold with sectional curvature KM ≥ 1 and radius rad M > π/2. Suppose
that N is a k(≥ 2)-dimensional complete connected totally geodesic submani-
fold. Then N is homeomorphic to a k-sphere.

Combining Theorem 2 and the above-mentioned theorem of Grove and
Petersen, we obtain the following result.
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Corollary 4. Let M be an n(≥ 3)-dimensional complete Riemannian
manifold with sectional curvature KM ≥ 1 and radius rad M > π/2. Suppose
that N is a k(≥ 2)-dimensional closed connected totally geodesic submanifold.
Then there exists a positive constant C(k) such that vol(N) ≥ C(k).

2. Proof of the theorems

Before proving our results, we list some known facts that we will need. Let
M be a complete connected Riemannian n-manifold satisfying KM ≥ 1 and
rad(M) > π/2. By using the Toponogov comparison theorem one can show
that for any x ∈ M there exists a unique point A(x) which is at maximal
distance from x. The map A : M → M is easily seen to be continuous
(cf. [GP], [X]). Since M is homeomorphic to Sn, the Brouwer fixed point
theorem implies that A is surjective.

We shall assume throughout this paper that all geodesics are parametrized
by arc-length.

A connected simply connected compact Riemannian n-manifold M without
boundary such that for any m ∈M the cut locus of m in M is a single point
is called a wiedersehen manifold (cf. [Gn]). From the work of Green [Gn],
Berger [B], Weinstein [W] and Yang [Y1], [Y2] we know that a wiedersehen
manifold is isometric to a Euclidean sphere.

Now we are ready to prove our main theorems.

Proof of Theorem 1. The Bonnet-Myers Theorem implies that M is com-
pact. Since the diameter of M is greater than or equal to rad(M) > π/2, M
is homeomorphic to Sn and, in particular, M is simply connected. For any
x ∈ M , let D(x) be the cut locus of x. It is well known that the function
g : M → R+ given by f(x) = d(x,D(x)) is continuous. We shall show that
our M is a wiedersehen manifold and therefore is isometric to an n-sphere. It
then suffices to show that D(x) = {A(x)} for all x ∈ M , where A : M → M
is the map defined at the beginning of this section. To do this, we fix a point
p ∈ M . Since D(p) is closed and hence is compact, there exists q ∈ D(p)
such that d(p, q) = infx∈D(p) d(p, x). We claim that q = A(p). In fact, set
s = d(p, q); from well known results in Riemannian geometry (cf. [Ca, p. 274])
we conclude that either

(a) there exists a minimizing geodesic σ from p to q along which q is
conjugate to p, or

(b) there exist exactly two minimizing geodesics σ1 and σ2 from p to q
with σ′1(s) = −σ′2(s).

If (a) holds, then we have s ≥ ρ(p) ≥ rad(p). Thus s = rad(p) and so
q = A(p) since A(p) is the unique point which is at maximal distance from p.

Suppose that (b) holds and q 6= A(p). Set t = d(q, A(p)), r = d(p,A(p))
and consider first the case when s > π/2. Take a minimal geodesic σ3 from q
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to A(p); then either

∠ (σ′3(0),−σ′1(s)) ≤ π

2
,

or
∠ (σ′3(0),−σ′2(s)) ≤ π

2
.

We assume without loss of generality that ∠(σ′3(0),−σ′1(s)) ≤ π/2.
Applying the Toponogov inequality to the hinge (σ1, σ3), we obtain

0 > cos r ≥ cos s cos t+ sin s sin t cos∠ (σ′3(0),−σ′1(s)) ≥ cos s cos t.(2.1)

On the other hand, since A(p) is at maximal distance from p, by the well
known Berger Lemma (cf. [CE]) there exists a minimal geodesic γ from A(p)
to p such that ∠(−σ′3(t), γ′(0)) ≤ π/2. Applying the Toponogov comparison
theorem to the hinge (γ, σ3), we obtain

cos s ≥ cos r cos t+ sin r sin t cos∠ (−σ′3(t), γ′(0)) ≥ cos r cos t.(2.2)

Since s > π/2, (2.1) and (2.2) imply that

cos r sin2 t ≥ 0,(2.3)

which is a contradiction.
Suppose now that s ≤ π/2. We suppose that p = A(z) is the unique point

which is at maximal distance from some point z ∈ M . Then z 6= q since
d(p, z) > π/2 ≥ d(p, q). Set t1 = d(p, z) and t2 = d(q, z); then t1 > t2. Take
a minimal geodesic c from q to z. Since we have either

∠ (c′(0),−σ′1(s)) ≤ π

2
,

or
∠ (c′(0),−σ′2(s)) ≤ π

2
,

one can use the Toponogov comparison theorem to the hinge (c, σ1) or (c, σ2)
to get

0 > cos t1 ≥ cos s cos t2.(2.4)

This implies that s 6= π/2, and so we obtain from

cos t1 < cos t2

and (2.4) that

cos t1 > cos s cos t1.(2.5)

Thus,
cos t1(1− cos s) > 0,

which clearly contradicts the fact that t1 > π/2. Thus our claim is true. For
any x ∈ D(p), we then conclude from

d(p, q) = d(p,A(p)) ≥ d(p, x) ≥ d(p,D(p)) = d(p, q)(2.6)
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that x = A(p). Consequently, we have D(p) = {A(p)}. Hence, our M is a
wiedersehen manifold and so is isometric to an n-sphere. This completes the
proof of Theorem 1. �

Proof of Theorem 2. Let N be a closed totally geodesic submanifold of M .
We consider two cases:

Case 1. dimN ≥ 2. Denote by d and dN the distance functions on M
and N , respectively. Let radN : N → R be the radius function on N , i.e.,
radN (x) = maxy∈N dN (x, y) for all x ∈ N , and define radM similarly. It then
suffices to prove that radN (x) ≥ radM (x) for all x ∈ N . In order to prove
this, we fix a point p ∈ N and take q ∈ N satisfying

radN (p) = dN (p, q).(2.7)

Let Γqp be the set of unit vectors in TqN corresponding to the set of normal
minimal geodesics of N from q to p. Then, by Berger’s Lemma, Γqp is π/2-
dense in SqN , that is,

Γqp(π/2) := {u ∈ SqN | ∠ (u,Γqp) ≤ π/2} = SqN,(2.8)

where SxN denotes the unit tangent sphere of N at x. Since a π/2-dense
subset of a great sphere Sl in a unit sphere Sm, l < m, is also π/2-dense in
Sm, Γqp is π/2-dense in SqM .

Let A : M → M be the map defined above. Set s = dN (p, q) and r =
d(p,A(p)). We claim that s > π/2. Suppose on the contrary that s ≤ π/2.
Take a point z ∈M so that p = A(z). It follows from

d(p, z) >
π

2
≥ dN (p, q) ≥ d(p, q)

that q 6= z. Set l = d(p, z) and t = d(q, z); then l > t. Take a minimal geodesic
c of M from q to z. Since Γqp is π/2-dense in SqM , we can find v ∈ Γqp such
that ∠(v, c′(0)) ≤ π/2. Thus, by the definition of Γqp, there exists a minimal
geodesic c1 of N from q to p such that c′1(0) = v. Since N is totally geodesic,
c1 is also a geodesic of M . We apply the Toponogov comparison theorem to
the hinge (c, c1) to get

0 > cos l ≥ cos s cos t+ sin s sin t cos∠ (c′(0), c′1(0)) ≥ cos s cos t.(2.9)

Since cos l < cos t and s ≤ π/2, we get from (2.9) that

cos l(1− cos s) > 0.(2.10)

This is a contradiction. Hence s > π/2.
Now we are ready to show that s ≥ r. Assume by contradiction that s < r.

Since
d(p, q) ≤ dN (p, q) < d(p,A(p)),

we have A(p) 6= q. Let w = d(q, A(p)) and take a minimal geodesic γ of M
from q to A(p). We can find a minimal geodesic γ1 of N from q to p such
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that ∠(γ′(0), γ′1(0)) ≤ π/2. Since γ1 is also a geodesic of M , applying the
Toponogov inequality to the hinge (γ, γ1), we conclude that

0 > cos r ≥ cos s cosw,(2.11)

which gives cosw > 0 since s > π/2. Hence, since s < r, we have

cosw cos s > cosw cos r.(2.12)

Combining (2.11) and (2.12), we conclude

cos r(1− cosw) > 0.(2.13)

This is a contradiction.

Case 2. N is a closed geodesic. The proof in this case is similar to that
in Case 1; for the sake of completeness, we give the argument. Denote by
c : [0, a] → M the closed geodesic N . Set p = c(0) and q = c(a/2). Let us
first show that a > π. Take z ∈ M so that p = A(z) and assume that a ≤ π.
Then we have q 6= z since

d(p, z) >
π

2
≥ a

2
= L[c|[0,a/2]] ≥ d(p, q),

where d is as before the distance function on M . Set l = d(p, z) and t = d(q, z);
then l > t. Let γ be a minimal geodesic of M from q to z; then we have either

∠
(
γ′(0), c′

(a
2

))
≤ π

2
,

or
∠
(
γ′(0),−c′

(a
2

))
≤ π

2
.

Thus, we can apply the Toponogov inequality to the hinges (γ, c|[0,a/2]) or
(γ, c|[a/2,a]) to get

0 > cos l ≥ cos
a

2
cos t,

which contradicts the fact that cos l < cos t and a ≤ π. Thus we have a > π.
Set r = d(p,A(p)). Then we need only show that a ≥ 2r, since the (intrin-

sic) radius of c is equal to its intrinsic diameter, which in turn is equal to half
of its length, i.e., a/2. Suppose on the contrary that a < 2r. Then A(p) 6= q
since

d(p, q) ≤ a

2
< r.

Take a minimal geodesic σ of M from q to A(p) and let w = d(q, A(p)).
Applying the Toponogov inequality to (σ, c|[0,a/2]) or (σ, c|[a/2,a]), we have

0 > cos r ≥ cos
a

2
cosw,(2.14)

and so cosw > 0 since a/2 > π/2. Since a/2 < r, we conclude that

cosw cos
a

2
> cosw cos r.(2.15)
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From (2.14) and (2.15) it follows that cos r(1− cosw) > 0, which is a contra-
diction. The proof of Theorem 2 is complete. �

In view of Theorem 2, it is interesting to study the following problem.

Problem. Let M be a complete Riemannian manifold with KM ≥ 1 and
rad(M) > π/2. Does the “antipodal” map A of M restricted to a totally
geodesic submanifold agree with the “antipodal” map of the submanifold?
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